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ABSTRACT

Sequence parallelism (SP) serves as a prevalent strategy to handle long sequences
that exceed the memory limit of a single device. However, for linear sequence
modeling methods like linear attention, existing SP approaches do not take advan-
tage of their right-product-first feature, resulting in sub-optimal communication
efficiency and usability. In this paper, we introduce Linear Attention Sequence
Parallelism (LASP), an efficient SP approach designed for linear attention-based
transformer models. Specifically, we design an efficient point-to-point ring-style
communication mechanism to leverage the right-product kernel trick of linear
attention, which sharply decreases the communication overhead, comparing with
existing SP methods. We enhance the computation efficiency of LASP by per-
forming kernel fusion and intermediate state caching, making the implementation
of LASP hardware-friendly on GPUs. Furthermore, we meticulously ensure the
compatibility of sequence-level LASP with all types of batch-level data parallel
methods, which is vital for distributed training on large clusters with very-long
sequences. We also discuss the generalization of LASP on other linear sequence
modeling methods. Extensive experiments on linear attention-based models are
conducted with varying sequence lengths from 2K to 4096K. LASP scales sequence
length up to 4096K on 128 GPUs, which is 8× longer than existing SP methods.

1 INTRODUCTION

Recently, linear-complexity sequence modeling methods (Qin et al., 2024a; 2022a; Choromanski
et al., 2022) are becoming increasingly popular due to their faster processing speed and comparable
modeling performance to vanilla Softmax attention-based transformer models (Vaswani et al., 2017;
Zeng et al., 2022; Touvron et al., 2023a;b). As the size of large language models (LLMs) increases
and sequence lengths extend, the capacity limitations of single GPU’s memory become a significant
challenge, constraining the maximum sequence length manageable by a large model. To address
this, Sequence Parallelism (SP) techniques (Li et al., 2022; Korthikanti et al., 2022) are employed,
which partition a long sequence into multiple sub-sequences to be processed on separate devices.
However, current implementations of SP methods do not fully exploit the right-product advantages
of linear-complexity attention mechanisms Qin et al. (2024b). This results in less than optimal
parallelism efficiency and reduced usability on linear sequence modeling methods.

In this paper, we present Linear Attention Sequence Parallelism (LASP) approach for efficient SP
on models with linear sequence modeling. Our approach takes linear attention (Katharopoulos
et al., 2020) as an instance to design a sophisticated point-to-point (P2P) ring-style communication
mechanism during both forward and backward among devices within a node or across multiple
nodes. This design maximizes the utilization of right-product kernel tricks in linear attention, by
only exchanging one single intermediate state instead of both of key and value states in other
counterparts. Notably, our approach is independent of attention heads partitioning, allowing it to be
applied to models with varying numbers or styles of attention heads, such as multi-head, multi-query,
and grouped-query attentions. This flexibility exceeds the capabilities of existing SP methods in
Megatron-LM (Shoeybi et al., 2019; Korthikanti et al., 2022) or DeepSpeed (Jacobs et al., 2023).

Our implementation of LASP incorporates system engineering optimizations such as kernel fusion
and KV State caching, resulting in significantly enhanced execution efficiency. Furthermore, we
have taken great care in ensuring compatibility of LASP with various (sharded) distributed data-
parallel (DDP) (Li et al., 2020) training methods during the implementation, which we refer to as the
data-sequence hybrid parallelism. Through extensive experiments with linear transformer models of
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different parameter numbers, cluster sizes, and sequence lengths, we demonstrate the performance
and efficiency of LASP when used with different DDP instances. Specifically, LASP can extend
sequence length up to 4096K on 128 GPUs, which is 8× longer than existing SP methods.

Our primary contributions can be summarized as follows:

• A new SP approach called LASP that is designed for linear sequence modeling methods.
LASP is able to perform sequence-level distributed training on 8× longer sequences than
existing SP methods while being significantly faster.

• Sequence length-independent communication overhead. Our proposed P2P ring-style com-
munication strategy leverages right-product kernel trick of linear attention to ensure that the
exchanging of linear attention intermediate states is sequence length-independent.

• GPU friendly implementation. We optimize the execution of LASP on GPU hardware
through meticulous system engineering, including kernel fusion and KV State caching.

• Data-parallel compatibility. LASP is compatible with all batch-level DDP methods, includ-
ing PyTorch/Legacy DDP, FSDP, and ZeRO-series optimizers.

2 METHOD

2.1 PRELIMINARY

Softmax Attention. Consider the standard attention (Vaswani et al., 2017) computation with causal
masking in the transformer architecture, formulated as:

O = Softmax(QK⊤/
√
d⊙M)V, (1)

where d denotes the hidden dimension. The matrices Q,K,V ∈ RN×d represent query, key, and
value matrices, respectively. These matrices are linear projections of the input X ∈ RN×d, i.e.,
Q = XWQ, K = XWK, V = XWV. The output matrix is denoted as O ∈ RN×d, and
M ∈ RN×N represents the causal mask matrix. The Softmax(·) operation introduces quadratic time
complexity relative to the input sequence length N , limiting the scalability of vanilla transformers to
extended input sequences.

Linear Attention. Linear attention is originally proposed in (Katharopoulos et al., 2020), with the
elimination of Softmax operation (Vaswani et al., 2017). Qin et al. (2022a; 2024a) propose to replace
the Softmax operation with a normalization operation Norm(·), which turns to

O = Norm((QK⊤ ⊙M)V). (2)

When considering bidirectional tasks, the above formulation can be simplified as O =
Norm((QK⊤)V). Then by performing the associativity property of matrix products, it can be
mathematically equivalently transformed into a right-product version:

O = Norm(Q(K⊤V)). (3)

This linear attention formulation facilitates recurrent prediction with a computational complexity of
O(Nd2). And the recurrent update of K⊤V without needing to compute the entire attention matrix
makes its inference efficient.

While linear complexity offers significant advantages in terms of computational efficiency and
memory optimization for linear attention, it still incurs a proportional increase in computation and
memory utilization on a single GPU as the sequence length N grows. This can lead to memory
constraints on a single GPU, such as the 80GB limit in NVIDIA A100, for exceptionally long
sequences. The challenge of achieving zero-redundancy (on sequence level) training for such
long sequences using linear attention-based LLMs across GPU clusters remains an open problem.
Furthermore, the complexity of addressing this issue in a casual setting further intensifies the
challenge. To address this, we propose LASP as a solution for parallelizing linear attention training
at the sequence level, even in a casual setting.

2.2 LASP

LASP tiles sequences over the cluster. Follow the thought-of-tiling, LASP partitions the input
sequences into multiple sub-sequence chunks, distributing these chunks individually across different
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Figure 1: Visualization of LASP. Left: The chunk-level linear attention computation with a causal
mask can be segmented into two categories: intra-chunk and inter-chunk computations. Intra-chunk
computations, corresponding to the diagonal elements (in diagonal orange boxes) of the mask
matrix, utilize traditional left-product methods. While inter-chunk computations, corresponding to
the lower triangular boxes, employ efficient right-product methods for computation. Right: This
panel illustrates the P2P communication mechanism employed by LASP. The input sequence X
is divided into multiple sub-sequence chunks {· · · ,Xi,Xi+1, · · · }, each processed by different
model instances across distinct devices. For each device i, Qi, Ki, and Vi are computed from its
respective input chunk Xi. Notably, the communication operations between devices are designed
to be complementary in the forward and backward passes. Specifically, in the forward pass, KV
matrices are sent from device i to device (i+ 1), and in the backward pass, dKV matrices are sent
back from device (i+ 1) to device i.

Sub-seq0 Sub-seq1 Sub-seq2 Sub-seq3

0 1 2 3 4 5 6 7

Seq0

GPU

SP-Group0 SP-Group1

Sub-seq0 Sub-seq1 Sub-seq2 Sub-seq3Seq1

Algorithm 1 LASP Data Distribution

1: Input: An input sequence in embedding space X ∈
RN×d with sequence length N and hidden dimension d,
distributed world size W and sequence parallel size T .

2: Obtain number of sequence parallel groups G = W/T .
3: Obtain sub-sequence length (or chunk size) C = N/T .
4: Get global rank list R = get_global_rank().
5: Obtain sequence parallel source rank list Rsrc =

⌊R/T ⌋ ∗ T .
6: Along sequence dimension, split X into T chunks

{X1,X2, ...XT }, of size C × d for each.
7: Transfer copies of data chunks {X1,X2, · · · ,XT } to

GPUs with rank indices in Rsrc.
8: Scatter {X1,X2, · · · ,XT } from Rsrc to all ranks in

respective sequence parallel groups.

Figure 2: LASP Data Distribution. Left: An example of data distribution with two input sequences
and eight GPUs. Right: Complete data distribution algorithm.

GPUs. For linear attention in a casual setting, in order to fully exploit the advantage of right-product
in linear attention, we categorize the attention computation for chunks into two distinct types: intra-
chunks and inter-chunks. Intra-chunks involve conventional attention computation, while inter-chunks
leverage the kernel tricks associated with linear attention’s right-product. Further details regarding the
intricate mechanisms of LASP in data distribution, forward pass, and backward pass are expounded
upon below. A visualization of LASP is presented in Fig. 1.

Data Distribution. LASP is designed for training long sequences on linear transformers in a
distributed environment, achieved by partitioning the input data along its sequence dimension. In
this situation, each GPU within the distributed environment undertakes the training of a subset of
sub-sequences, which serves to diminish the large memory footprint associated with activation during
the training of long sequences. Communication operations are introduced between GPUs to transmit
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intermediate states. The final trained model assimilates the knowledge derived from the entirety of
the long sequences.

For an input sequence of length N , we establish its embedding space representation denoted as
X ∈ RN×d with a feature dimension of d. In the LASP framework, X is evenly partitioned into
T chunks, where T is called the sequence parallel size, which must be divisible by the distributed
world size W . These segmented data chunks are subsequently assigned to the respective GPUs. It is
essential to note that different sequence parallel groups receive dissimilar data batches. However,
within the same group, all data chunks originate from an identical batch of data. A comprehensive
depiction of the data distribution process in LASP is provided in Algorithm 1.

Additionally, an illustrative example of data distribution in LASP is presented in Fig. 2, where the
distributed world size is characterized by W = 8, the sequence parallel size by T = 4, the number of
sequence parallel groups by G = 2, and the sequence parallel source rank list by Rsrc = [0, 4]. For
the first batch SEQ0, the input sequence X undergoes partitioning into T chunks {X1,X2, ...,XT }
along the sequence dimension, subsequently transmitted to the first rank in SP-GROUP0, which
corresponds to global rank 0. The data chunks on global rank 0 are then scattered to global ranks
{0, 1, 2, 3} within SP-GROUP0, where each rank only retains a single chunk. The subsequent batch
SEQ1 follows a similar manner, being assigned to global ranks {4, 5, 6, 7} within SP-GROUP1.

Algorithm 2 LASP Forward Pass

1: Input: input sequence in embedding space X ∈ RN×d

with sequence length N and hidden dimension d, dis-
tributed world size W , sequence parallel size T = W ,
decay rate λ ∈ R+.

2: Distribute input sequence X according to Algorithm 1.
3: Obtain sub-sequence length (or chunk size) C = N/T .
4: Initialize mask M ∈ RC×C , where Mij = λi−j , if

i ≥ j, else Mij = 0.
5: Initialize Λ = diag{λ, λ2, · · · , λC} ∈ RC×C .
6: Initialize activation state KV = 0 ∈ Rd×d.
7: for chunk t ∈ {1, · · · , T} at rank i ∈ {1, · · · ,W} in

parallel do
8: Calculate Qt = XtWQ, Kt = XtWK , Vt =

XtWV according to its own data chunk, of size C × d
for each.

9: Compute Ot,intra = [(QtK
⊤
t )⊙M]Vt.

10: end for
11: for chunk t ∈ {1, · · · , T} at rank i ∈ {1, · · · ,W} do
12: Recv activation KVt−1 from rank (i− 1).
13: Save KVt−1 as KVi for backward computation.
14: Compute Ot,inter = ΛQtKVt−1.
15: Compute Ot = Ot,intra +Ot,inter.
16: Update KVt = λCKVt−1 + (λCΛ−1Kt)

⊤Vt.
17: Send activation KVt to rank (i+ 1).
18: end for
19: return O = [Ot], with t ∈ {1, · · · , T}.

Forward Pass. To streamline
derivations, the Norm(·) operator
in Eq. (2) is temporarily omitted.
Additionally, we consider a normal
case where W = T , indicating
G = W/T = 1. In this scenario,
GPU with rank 0 consolidates all
split sub-sequences in a batch, subse-
quently distributing them to all GPUs
across the entire distributed world. It
is noteworthy that the scenario where
the sequence parallel size is not equal
to world size is discussed in Sec.2.5.

We first define kv and KV as the in-
termediate memory state vector and
matrix, respectively. Without loss of
generality, we add λ as the decay rate
in linear attention with casual mask-
ing, choosing λ = 1 yields the ordi-
nary linear attention (Qin et al., 2024a;
Sun et al., 2023). In the forward pass
of linear attention computation with
casual masking, the s-th output can be
calculated as

o⊤
s = q⊤

s

∑
i≤s

λs−ikiv
⊤
i . (4)

Rewrite in a recurrence form, we have

kv0 =0 ∈ Rd×d, kvs = λkvs−1 + ksv
⊤
s , o⊤

s = q⊤
s (kvs), (5)

where
kvs =

∑
i≤s λ

s−ikiv
⊤
i (6)

is the activation memory state in the forward pass with s-th input.

In SP, given data chunk Xt on rank i, the query, key and value corresponding to Xt is Qt = XtWQ,
Kt = XtWK , Vt = XtWV . Note that we assume T = W here, their indices are thus equivalent,
i.e., t = i. The output within the t-th chunk can be calculated as

Ot,intra = [(QtK
⊤
t )⊙M]Vt. (7)
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The intra-chunk computation has no dependencies with other chunks on other GPUs, so it can be
calculated parallelized on all ranks in the distributed world. However, this result does not consider
the impact of the previous 1 ∼ (t− 1) chunks on the t-th chunk, which is called an inter-chunk. To
calculate inter-chunk, let us rearrange Eq. (4) as

o⊤
s+C = q⊤

s+C

∑
i≤s+C

λs+C−ikiv
⊤
i = q⊤

s+C

C+s∑
i=C+1

λs+C−ikiv
⊤
i + λsq⊤

s+C

∑
i≤C

λC−ikiv
⊤
i .

(8)
The resulted first part in Eq. (8) corresponds to the computation on previous chunks, and the second
part corresponds to the computation on the current chunk. In SP, Eq. (8) can be rewritten in the chunk
form as

Ot,inter = ΛQtKVt−1, (9)

where KVt = kvtC . Note that the calculation of the inter-chunk for the t-th chunk depends on the
activation state of previous (t− 1) chunk, i.e., KVt−1, which is calculated on rank (i− 1). Thus a
P2P communication operation Recv should be performed to pull KVt−1 from rank (i− 1) to rank
i. Then the activation state KVt should be updated for subsequent inter-chunk attention computation
at (t+ 1)-th chunk. The update rule of KVt at t-th chunk is

KVt =
∑
s≤tC

λtC−sksv
⊤
s = λC

∑
s≤(t−1)C

λ(t−1)C−sksv
⊤
s +

tC∑
s=(t−1)C+1

λtC−sksv
⊤
s

= λCKVt−1 +
(
diag{λC−1, . . . , 1}Kt

)⊤
Vt = λCKVt−1 +

(
λCΛ−1Kt

)⊤
Vt.

(10)

In correspondence to the preceding Recv operation, another P2P communication operation Send is
executed to transmit the acquired KVt in Eq. (10) to the subsequent rank (i+ 1) for its inter-chunk
computation.

It is noteworthy that in the backward pass, the t-th chunk necessitates KVt−1 as activation to
calculate gradients. To minimize communication operations, we cache KVt−1 on High-Bandwidth
Memory (HBM) to accelerate computation. Integrating both the intra and inter parts, the final forward
output is as follows:

Ot = Ot,intra +Ot,inter (11)

We present the complete forward pass of LASP with W = T in Algorithm 2.

Backward Pass. For the backward pass, given dos, we have (Katharopoulos et al., 2020)

dq⊤
s = do⊤

s kv
⊤
s ∈ R1×d, dk⊤

s = v⊤
s dkv

⊤
s ∈ R1×d,

dv⊤
s = k⊤

s dkvs ∈ R1×d, dkvs =
∑
i≥s

λi−sqido
⊤
i ∈ Rd×d. (12)

By writing dkvs in a recursive form, we have

dkvn+1 = 0 ∈ Rd×d, dkvs−1 = λdkvs + qs−1do
⊤
s−1. (13)

In SP, we have {Qt,Kt,Vt,Ot,dOt} which corresponds to the t-th sub-sequence chunk on rank i,
where t ∈ {1, · · · , T} and i ∈ {1, · · · ,W}. Same with the forward pass, the following derivations
assume t = i, T = W .

We first calculate dQ with respective to the t-th data chunk, which yields:

dQt,intra = [(dOtV
⊤
t )⊙M]Kt. (14)

Since the computation of dQt,intra is independent, its calculation can be parallelized on all GPUs.
While the calculation of dQt,inter reflects the inter-dependence of chunks 1 to t− 1 on chunk t. In
order to compute the inter part, we transform Eq. (12) as

dq⊤
s+C = do⊤

s+C

∑
i≤s+C

λs+C−ivik
⊤
i = do⊤

s+C

C+s∑
i=C+1

λs+C−ivik
⊤
i + λsdo⊤

s+C

∑
i≤C

λC−ivik
⊤
i .

(15)
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The first part in Eq. (15) corresponds to the intra-chunk, while the second part corresponds to the
inter-chunk. In SP, we can calculate dQt,inter as

dQt,inter = ΛdOtKV⊤
t−1. (16)

Note that KVt has already been computed and cached during the forward pass, so no communication
is required here to obtain KVt. Benefit from the KV state caching, the calculation of dQt,inter can
also be executed in parallel.

Next, dK within the t-th chunk can be calculated in parallel as

dKt,intra = [(dOtV
⊤
t )⊙M]⊤Qt. (17)

Then we transform Eq. (12) as

dk⊤
s = v⊤

s

∑
i≥s

λi−sdoiq
⊤
i = v⊤

s

C∑
i=s

λi−sdoiq
⊤
i + λC−sv⊤

s

∑
i≥C+1

λi−Cdoiq
⊤
i , (18)

where the term before plus sign corresponds to the intra-chunk, and the term after plus sign corre-
sponds to the inter-chunk. The above equation can be rewritten in terms of chunks as follow:

dKt,inter = λCΛ−1VtdKV⊤
t+1. (19)

Here a Recv operation is required here to pull dKVt+1 from the (t+ 1)-th chunk. Then in order to
compute dKV for the (t− 1)-th chunk, dKV should be updated as:

dKVt =
∑
s>tC

λs−tCqsdo
⊤
s = λC

∑
s>(t+1)C

λs−(t+1)Cq⊤
s dos +

(t+1)C∑
s=tC+1

λs−tCqsdo
⊤
s

= λCdKVt+1 + (ΛQt)
⊤
dOt.

(20)

Then a Send operation is performed to push dKVt to rank (i− 1). Finally, for dV, its intra part
can be calculated as dVt,intra = [(QtK

⊤
t )⊙M]⊤dOt. Again we transform Eq. (12) as:

dv⊤
s = k⊤

s

∑
i≥s

λi−sqido
⊤
i = k⊤

s

C∑
i=s

λi−sqido
⊤
i + λC−sk⊤

s

∑
i≥C+1

λi−Cqido
⊤
i . (21)

The first and second terms corresponds to the computation of the intra- and inter-chunks, respectively.
In SP, dVt,inter can be calculated as:

dVt,inter = λCΛ−1KtdKVt+1. (22)

Combine the intra and inter part, we obtain the final results of dQt, dKt and dVt:

dQt = dQt,intra + dQt,inter,dKt = dKt,intra + dKt,inter,dVt = dVt,intra + dVt,inter. (23)

We provide the complete backward pass of LASP in Algorithm 3 in Appendix A.1.

2.3 COMPARISON

In LASP, it is important to note that the forward pass requires communication for the KV ∈ Rd×d

state in each linear attention module layer. The communication volume is determined by Bd2/h,
where B is the batch size and h is the number of heads. In comparison, Ring Attention also adopts
P2P ring-style communication on states K,V ∈ RV×d, which results a communication volume of
BNd/h. SP in Megatron-LM utilizes all-gather operations twice after two layer normalization layers
within each transformer layer, and a reduce-scatter operation after the attention and Feedforward
Neural Network (FFN) layers. This results in a communication volume of 2BNd + 4BNd/T .
DeepSpeed uses all-to-all collective communication (Thakur et al., 2005) for input Q,K,V, and
output O of each attention module layer, resulting in a communication volume of 4BNd/T .
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Table 1: Communication Volume Comparison.
Simplified Formulation: we eliminate the common
factors Bd for ease of comparison.

Method Full
Formulation

Simplified
Formulation

LASP Bd2/h d/h
Ring Attention 2BNd/h 2N/h
DeepSpeed-Ulysses 4BNd/T 4N/T
Megatron-SP 2BNd+ 4BNd/T 2N + 4N/T

Table 1 displays a comparison of communica-
tion volumes across three frameworks. d/h
is the head dimension which is set at 128 as
usual (Lan et al., 2020). In practical appli-
cations where N/T ≥ 32, LASP is able to
achieve the lowest theoretical communication
volume. Furthermore, the communication
volume of LASP is not impacted by changes
in sequence length N or sub-sequence length
C, which is a huge advantage for SP with
very-long sequences across large clusters.

It is worth to note that, although Ring Attention and LASP both use P2P ring-style communication,
they have differences lie in both communication and computation sides. Communication: In both
forward and backward, Ring Attention involves communicating two states K,V ∈ RV×d. In contrast,
LASP only communicates one single state KV ∈ Rd×d, which does not depend on the sequence
length. LASP has a lower theoretical communication complexity. This makes LASP more efficient,
especially in environments with slower interconnects where the communication-computation overlap
may not be optimal. Computation: Ring Attention is specifically designed for standard attention,
utilizing a left-product manner, i.e., ((QK⊤)V). On the other hand, LASP is specifically tailored
for linear attention-like sequence modeling methods, which leverages the right-product kernel trick
(Q(K⊤V)) to achieve linear-time complexity.

2.4 SYSTEM ENGINEERING OPTIMIZATION

Kernel Fusion. To improve the efficiency of LASP on GPU, we perform kernel fusion in both the
intra-chunk and inter-chunk computations, and also fused the updates of KV and dKV into the
intra-chunk and inter-chunk computations.

KV State Caching. To avoid recomputing activation KV during the backward pass, we choose to
store it in the HBM of the GPU right after computing it in the forward pass. During the subsequent
backward pass, LASP directly accesses KV for use. It is important to note that the size of the KV
activation cached in HBM is d× d, which is not affected by the sequence length N . When the input
sequence length N is exceptionally large, the memory usage of KV becomes negligible.

2.5 HYBRID PARALLELISM

Data-Sequence Hybrid Parallelism. As illustrated in Fig. 2, LASP allows for the specification of
a smaller sequence parallel size that is divisible by the distributed world size. This configuration
results in the input data being split along both the batch and sequence dimensions, which is a type of
hybrid parallelism called data-sequence hybrid parallelism. The ZeRO-series optimizers (Rajbhandari
et al., 2020) in DeepSpeed and FSDP (Zhao et al., 2023) in PyTorch propose to distribute model
states, which include optimizer states, gradients, and model parameters, across all GPUs within the
distributed environment. As variants of data parallelism, these techniques seamlessly align with
LASP. Furthermore, their focus on minimizing the memory of model states complements LASP’s
objective of reducing activation memory on each GPU. By integrating these techniques, the training
of large models handling long sequence lengths is rendered more practical.

Compatibility with Tensor Parallelism and Pipeline Parallelism. LASP supports both tensor
parallelism (TP) and pipeline parallelism (PP). In the context of PP, as exemplified by the GPipe (Kim
et al., 2020) scheduling method, the model is initially partitioned across multiple devices, with each
device holding a segment of the model. Data within a mini-batch is then divided into micro-batches,
which are sequentially fed into the device containing the first segment. Each device processes its
micro-batch and forwards the output to the next device in the sequence, simultaneously preparing to
receive and process the subsequent micro-batch from the preceding device. This method of pipelining
inputs effectively minimizes device idle times. When LASP is integrated with PP, micro-batches are
substituted with sub-sequences derived from a mini-batch. Unlike standard PP, each device retains
the intermediate states (KV in the forward pass and dKV in the backward pass) locally, rather than
transmitting them to the next device as typically done in LASP alone. For TP, the integration with
LASP is fluid. Linear attention layers utilize TP to segment matrix operations across both intra-chunk
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and inter-chunk computations, whereas the handling of MLP layers under TP remains unchanged.
The experiment tests on hybrid of LASP, DP, TP and SP will be conducted in the future work.

3 RELATED WORK

Linear Attention. Linear Transformer models bypass the use of Softmax attention by adopting
various approximation methods (Katharopoulos et al., 2020; Choromanski et al., 2020; Peng et al.,
2021; Qin et al., 2022b;a) instead. The central concept involves using the "kernel trick" to speed up
the calculation of the attention matrix, specifically by multiplying keys and values before tackling
the computationally intensive n × n matrix multiplication. For instance, Katharopoulos et al.
(2020) use 1 + elu activation function, Qin et al. (2022b) utilizes the cosine function to imitate
Softmax characteristics, and Choromanski et al. (2020); Zheng et al. (2022; 2023) leverage sampling
techniques to closely replicate the Softmax process are all strategies employed to achieve this.

Memory-Efficient Attention. Rabe & Staats (2021) first employs the online Softmax technique to
efficiently compute numerically stable attention scores sequentially, resulting in a linear memory
for attention, yet still needs quadratic time complexity. While FlashAttention (Dao et al., 2022;
Dao, 2023) employs tiling to minimize the number of memory reads/writes between GPU’s high
bandwidth memory (HBM) and on-chip SRAM to reduce time and memory in the training process,
PagedAttention (Kwon et al., 2023) optimizes the utilization of the KV cache memory by reducing
waste and enabling adaptable sharing among batched requests during inference. Ring Attention (Liu
et al., 2023) reduces memory requirements for Transformer models when handling long sequences
by distributing sequences across multiple devices and overlapping the communication of key-value
blocks with blockwise attention computation.

Sequence Parallelism. SP as a widely used method to train long sequences has been integrated
into many large model training frameworks, including Megatron-LM, DeepSpeed, and Colossal-AI.
Megatron-LM (Shoeybi et al., 2019) implements SP along with model (tensor) parallelism (MP) to
perform large matrix multiplications on GPUs. However, MP partitions the attention heads, which
limits the maximum parallelism degree to be less than the number of attention heads. DeepSpeed-
Ulysses (Jacobs et al., 2023) uses an all-to-all communication primitive to reduce communication
volume, but also partitions attention heads and faces similar issues as Megatron-LM.

4 EXPERIMENTS

We evaluate LASP on two representative linear attention-based models: TransNormerLLM
(TNL) (Qin et al., 2024a) and Linear Transformer (Katharopoulos et al., 2020). TNL is the lat-
est large language model purely built upon linear attention, while Linear Transformer is a classical
linear transformer model recognized in the community. Our assessment focuses on three key areas: 1)
the ability of LASP to scale up sequence length on scaling-out GPUs, 2) the convergence when using
LASP, and 3) speed evaluation when using LASP and its comparison with other SP methods. No
activation checkpointing (AC) (Korthikanti et al., 2022) techniques are used in following experiments
to reduce activation memory, except experiments in Section A.5.3. This is because although the
adoption of AC will further enables longer sequence lengths, it will cover up the ability of our
sequence parallel method LASP. All experiments are conducted on a GPU cluster equipped with 128x
A100 80G GPUs. Our implementation is built on Metaseq (Zhang et al., 2022), a PyTorch-based
sequence modeling framework with FairScale (FairScale authors, 2021) integrated. For more details
of hardware and software, and experimental setup, see Appendix A.2 & A.3.

Note that when implement other SP methods (e.g., Ring Attentoin, DeepSpeed-ulysses and Megatron-
SP) on linear attention instances for the purpose of comparison, we do not use the right-product kernel
trick. We maintain the use of each method’s original communication primitives and computational
manners as they originally proposed for standard softmax attention.

4.1 SCALABILITY AND SPEED COMPARISON

The scalability results regarding throughput and memory usage with varying sequence lengths and
number of GPUs are illustrated in Fig. 3. By using LASP, we successfully scale the sequence length
up to 4096K using the FSDP backend and 2048K with the DDP backend on a TNL model with 1B
parameters, on 128 GPUs. We keep using a fixed batch size of 1 to thoroughly assess the performance
of LASP across a range of sequence lengths, from a typical 2K to an exceptionally long 4096K. By
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Figure 3: Scalability Evaluation of LASP on Throughput (tokens/sec) and Memory Usage. Left:
Integration of LASP with FSDP backend; Right: Integration of LASP with DDP backend. The
TNL-1B model is used, with a batch size of 1 across up to 128x A100 80GB GPUs. The sign "×"
with a dotted line represents occurring an Out of Memory (OOM).
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Figure 4: Speed Comparison (tokens/sec) of LASP Against Ring Attention, DeepSpeed-Ulysses
and Megatron-SP. The sign "×" with a dotted line represents occurring an Out of Memory (OOM).
The evaluation utilizes the TNL-1B and 7B models with a batch size of 1 on 64x A100 80GB GPUs.
The parallelism size for these three methods is configured to 64.

keeping the batch size constant at 1, we ensure that the experiment results are directly comparable,
with only the sequence length varying.

Importantly, the implementation of LASP allows for a linear increase in the maximum sequence
length capacity, directly proportional (linear) to the number of GPUs used. For instance, a sequence
length of 512K can be trained using 16 GPUs, while 64 GPUs (4×) has is able to train 2048K (4×)
sequence length. Enabling LASP maintains a high throughput level even with more GPUs used.
Furthermore, LASP demonstrates consistent scalability performance under both the FSDP and DDP
backends. For more quantitative scalability results of LASP, see Table 4 in Appendix A.5.

We furthermore conducted a comparison of SP on TNL 1B and 7B models against existing SP
methods: Ring Attention (Liu et al., 2023), DeepSpeed-Ulysses (Jacobs et al., 2023) and Megatron-
SP (Korthikanti et al., 2022). All results presented in Fig. 4 are obtained on 64 GPUs. LASP
demonstrates a notable enhancement in throughput for linear attention, primarily due to its efficient
communication design that facilitates the exchange of linear attention intermediate states. Specifically,
LASP outperforms all counterparts in terms of throughput at 256K sequence length on 1B model, with
the performance gap widening as the sequence length increases. Additionally, system optimizations
like kernel fusion and KV State caching enable LASP to support the longest sequence lengths within
the same cluster, achieving 2048K for the 1B model and 512K for the 7B model.

4.2 CONVERGENCE

Table 2 presents the convergence results of two linear attention based models: TNL (Qin et al., 2024a)
and Linear Transformer (Katharopoulos et al., 2020), and one transformer model (LLaMA (Touvron
et al., 2023a;b)) with Softmax attention, evaluated on an epoch-by-epoch basis. The experiments
were conducted using the same training corpus: the Pile (Gao et al., 2020). Both linear models has
0.4B parameters, demonstrated consistent loss values when training with and without LASP. All
experiments undergoes 50K steps. The uniform loss convergence across various DDP backends
demonstrates that LASP does not negatively affect model convergence.

For ablation studies on system engineering optimization techniques and activation checkpointing,
and evaluation results on downstream tasks, please refer to more results in Appendix A.5.
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Table 2: Convergence Performance of LASP. All experiments use 8x A100 80G GPUs, sequence
length of 16K, and batch size of 1. The results cover various DDP backends in conjunction with
LASP. We explore the performance of two linear attention models: TransNormerLLM (TNL) and
Linear Transformer, and one transformer model (LLaMA) with Softmax attention, all with 0.4B
parameters, across 50K updates. We compare the loss values (lower is better) with and without LASP.

Model Parameters Method Loss Method Loss

Transformer 0.4B DDP 3.727 \ \

TNL
(Qin et al., 2024a) 0.4B

DDP 3.719 LASP + DDP 3.715
Legacy DDP 3.709 LASP + Legacy DDP 3.705
FSDP 3.717 LASP + FSDP 3.714
ZeRO-1 3.653 LASP + ZeRO-1 3.653
ZeRO-2 3.655 LASP + ZeRO-2 3.649
ZeRO-3 3.656 LASP + ZeRO-3 3.649

Linear
Transformer

(Katharopoulos et al., 2020)
0.4B

DDP 5.419 LASP + DDP 5.408
Legacy DDP 5.425 LASP + Legacy DDP 5.413
FSDP 5.428 LASP + FSDP 5.441
ZeRO-1 5.114 LASP + ZeRO-1 5.118
ZeRO-2 5.105 LASP + ZeRO-2 5.120
ZeRO-3 5.110 LASP + ZeRO-3 5.123

5 DISCUSSION

Linear-complexity sequence modeling methods are emerging as important alternatives to traditional
transformers (using Softmax attention) for next-generation foundational models due to their sig-
nificantly faster training and inference times, coupled with performance that rivals conventional
approaches. Recently, the AI community has seen a rapid development of novel linear-complexity
models, gaining considerable interest. Examples include linear attention models such as TransNormer-
LLM, state space models (SSM) like Mamba and Jamba, and linear RNN models including RWKV,
HGRN, and Griffin. We contend that the LASP design can be seamlessly integrated into most
linear-complexity models. To underscore LASP’s generalization, we use a generalized form of linear
attention in Appendix A.4 (Qin et al., 2024b), demonstrating that the majority of linear-complexity
models can be accommodated within this broad framework.

6 CONCLUSION

We presented LASP to effectively address the limitations of existing SP methods on linear-complexity
sequence modeling methods by leveraging their right-product features, which significantly enhanced
communication and parallelism efficiency. Through the design of an efficient P2P ring-style com-
munication mechanism and elaborated engineering optimizations including kernel fusion and KV
state caching, LASP achieved a notable reduction in communication traffic and improved hardware
utilization on GPU clusters. Compatibility with all types of batch-level DDP methods ensured the
practicability of LASP for large-scale distributed training with very-long sequences. Our experiments
highlighted the advantages of LASP on scalability, speed, memory usage and convergence perfor-
mance. In specific experimental setup, LASP achieves significant faster sequence-level distributed
training speed on a maximum 8× longer sequence length than the out-of-the-box SP methods.
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BROADER IMPACT

This work represents a notable advancement in artificial intelligence and machine learning, particularly
in improving the efficiency and scalability of linear attention-based models. LASP-2 enables the
processing of much longer sequences compared to existing methods while significantly accelerating
computation, making it highly beneficial for tasks like natural language understanding, genomic
sequence analysis, and time-series forecasting. However, the enhanced capabilities and efficiency
introduced by LASP-2 also raise ethical and societal considerations, such as the potential for misuse
in generating persuasive but misleading content or in surveillance applications. Nevertheless, the
contributions of LASP-2 to reducing computational overhead and energy consumption in training
large models may also bring positive environmental impacts.
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A APPENDIX

A.1 BACKWARD PASS ALGORITHM

Algorithm 3 LASP Backward Pass

1: Input: Sequence Length N , Distributed world size W , sequence parallel size T , decay rate
λ ∈ R+, Qt,Kt,Vt,Ot,dOt ∈ RC×d for t ∈ {1, 2, · · · , T}.

2: Obtain sub-sequence length (or chunk size) C = N/T .
3: Initialize mask M ∈ RC×C , where Mij = λi−j , if i ≥ j, else Mij = 0.
4: Initialize Λ = diag{λ, λ2, · · · , λC} ∈ RC×C .
5: Initialize dKV = 0 ∈ Rd×d.
6: for t ∈ {1, 2, · · · , T} at rank i ∈ {1, 2, · · · ,W} in parallel do
7: Compute dQt,intra = [(dOtV

⊤
t )⊙M]Kt.

8: Compute dQt,inter = ΛdOtKV⊤
t−1.

9: Compute dKt,intra = [(dOtV
⊤
t )⊙M]⊤Qt.

10: Compute dVt,intra = [(QtK
⊤
t )⊙M]⊤dOt.

11: end for
12: for t ∈ {T, · · · , 2, 1} at rank i ∈ {W, · · · , 2, 1} do
13: Recv activation dKVt+1 from rank (i+ 1).
14: Compute dKt,inter = (λCΛ−1Vt)dKV⊤

t+1.
15: Compute dVt,inter = (λCΛ−1Kt)dKVt+1.
16: Load KVi as KVt on rank i.
17: Combine intra- and inter-chunks of dQt,dKt,dVt:

dQt = dQt,intra + dQt,inter,

dKt = dKt,intra + dKt,inter,

dVt = dVt,intra + dVt,inter.

18: Compute dKVt = λCdKVt+1 + (ΛQt)
⊤dOt.

19: Send activation dKVt to rank i.
20: end for
21: return dQ = [dQt], dK = [dKt], dV = [dVt], with t ∈ {1, 2, · · · , T}.

A.2 HARDWARE AND SOFTWARE

Hardware. Our experimental configuration involves a maximum of 16x DGX-A100 servers, each
equipped with 8x A100 GPUs, these GPUs are interconnected through NVSwitch, ensuring an
inter-GPU bandwidth of 600GBps. For inter-node communication, we employ RoCE (RDMA over
Converged Ethernet) technology, utilizing 8 RoCE RDMA adapters in each server. This setup
facilitates efficient inter-server communication with a bandwidth capacity of 800Gbps.

Software. Experiments are implemented in PyTorch 2.1.1 and Triton 2.0.0 with CUDA 11.7,
cuDNN 8.0, and NCCL 2.14.3. Our algorithm is developed upon Metaseq and DeepSpeed.

A.3 EXPERIMENTAL SETUP

The training configuration is set with specific hyperparameters: a learning rate of 0.0005 to control
the optimization step size, a cap of 50,000 updates to define the training duration, and a 2,000-update
warmup period to stabilize early training by gradually adjusting the learning rate. Additionally,
a weight decay rate of 0.01 is used for regularization to avoid over-fitting. The Adam optimizer,
with beta values of 0.9 and 0.999, is chosen for managing the momentum and scaling of gradients,
aiding in effective and stable training convergence. Different DDP backends, including PyTorch DDP
(abbr. DDP), Legacy DDP, FSDP, ZeRO-series, are selected in experiments for cross-validation of
compatibility with LASP.
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A.4 GENERALIZATION OF LASP

Although the idea of LASP origins from the linear attention sequence modeling, we would like to
demonstrate it is also applicable to other linear-complexity models.

We first define the following terms: Memory State mt ∈ Rk×d, Input State it ∈ Rd, Expand State
et ∈ Rk, Oscillation State ot ∈ Rk×m, Shrink State st ∈ Rk and write a general form of recurrent
memory as (Qin et al., 2024b)

mt = otmt−1 + eti
⊤
t . (24)

which is general form of the recurrence form of Linear Attention in Eq. (5) with specified ot and et:

kvt = λkvt−1 + ktv
⊤
t . (25)

The design of LASP can be seamlessly applied to models which is able to be generally expressed
by Eq. (24). These models include: S4 (Gu et al., 2022), S5 (Smith et al., 2022), DSS (Gupta
et al., 2022), TNN (Qin et al., 2023a), Linear Attention (Katharopoulos et al., 2020), TNL (Qin
et al., 2024a), RetNet (Sun et al., 2023), Mamba (Gu & Dao, 2023), RWKV-4 (Peng et al., 2023),
Cosformer (Qin et al., 2022b), Lrpe (Qin et al., 2023b), GLA (Yang et al., 2023), GateLoop (Katsch,
2023), DUR (Mao, 2022), GFW (Schlag & Schmidhuber, 2018), HGRN (Qin et al., 2024d;c), and
LRN (Martin & Cundy, 2018). We list all these models and their corresponding elements in Table 3.

Table 3: Checklist for Typical Linear-Complexity Sequence Modeling Methods within the
Defined General Form. For each method, the following states are outlined: Input State, Expand
State, Oscillation State, Shrink State, and Memory State. If the state is directly linked to the input
sequence, the subscript i is emphasized. Note that we use 1(k) ∈ Rk, where 1(k)

j = 1 for j = 1, . . . , k,

and J(kd) = 1(k)1(d)⊤ ∈ Rk×d.

Methods Input it Expand et Oscillation ot Shrink st Memory k × d

S4 xt B A C k × 1
S5 xt B A C k × d
DSS xt B a1⊤

k C k × d
TNN xt B A C k × d
Linear Attention xt Bt J(kd) Ct k × d
TNL/RetNet xt Bt λJ(k) Ct k × d
Mamba xt Bt At Ct k × d
RWKV4 xt exp(kt) exp(−w) Ct 1× 1
Cosformer xt Bt exp(iθ)J(kd) Ct k × d

LRPE xt Bt exp(iΘ)1(d)⊤ Ct k × d
GLA/GateLoop xt Bt gt1

⊤
d Ct k × d

DUR/GFW xt Bt gtḡ
⊤
t Ct k × d

HGRN/LRN xt 1−At At Ct 1× 1

We also give the complete explanation for each modeling method as below.

S4. In S4, we obtain ut ∈ Rd through linear projection from input xt and A ∈ Rk×k, B, C ∈ Rk×1

through SSM parameterization. The calculation is as follows:

mt = Amt−1 +Bu⊤
t , yt = m⊤

t C.

Note that the original definition of S4 is defined as a channel-wise mappings fi, i = 1, . . . , d of
Rn×1 → Rn×1.

S5. The recurrence equation of S5 is the same as S4, with the only difference being the direct
definition of the mapping Rn×d → Rn×d and B,C ∈ Rk×d.

DSS. The recurrence equation of DSS is same as S4/S5, with the only difference being the direct
definition of the mapping Rn×d → Rn×d and B,C ∈ Rk×d, A = Diaga ∈ Rk×k.

TNN. According to (Qin & Zhong, 2023), TNN can be losslessly converted to SSM, where C =
J (kd) ∈ Rk×d, B ∈ Rk×d, A = Diagλ1, . . . , λk ∈ Rk×k, get ut from xt through linear projection,
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and it can be expressed as a recursive formula:

mt = Amt−1 +Bu⊤
t , yt = m⊤

t C.

Linear Attention. In Linear Attention, we obtain query qt ∈ Rk, key kt ∈ Rk, value vt ∈ Rd from
the input xt ∈ Rd through linear projection, and recursively calculation is as follows:

kvt = kvt−1 + ktv
⊤
t , yt = kv⊤t qt.

TNL/RetNet. TNL/RetNet is a form of Linear Attention with exponential decay and the method for
getting qt, kt, vt are the same as those in Linear Attention, and lambda is a predefined parameter that
cannot be learned. Its recursive calculation is:

kvt = λkvt−1 + ktv
⊤
t , yt = kv⊤t qt.

Mamba. Mamba can be seen as a data-dependent S4. It uses the similar method to get ut, A,B,C,
the At, Bt, Ct are computed throuth xt and A,B,C. Its recurrence equation is defined as:

mt = At ⊙mt−1 +Btu
⊤
t , yt = m⊤

t Ct.

RWKV-4. In RWKV-4, we get rt, kt, vt through linear projection from input xt and w as a learnable
weight. Ignoring the denominator of RWKV-4, the recurrence equation can be simplified as:

mt = exp(−w)mt−1 + exp(kt)v
⊤
t , yt = m⊤

t rt.

Similar to S4, RWKV4 uses channel-wise mapping fi, i = 1, . . . , d of Rn×1 → Rn×1.

Cosformer. In Cosformer, we obtain query qt ∈ Rk, key kt ∈ Rk, value vt ∈ Rd from the input
xt ∈ Rd and a prefined θ(not learnable). Then recursively calculate as follows:

kvt = exp(iθ)kvt−1 + ktv
⊤
t , yt = Rel[kv⊤t ]qt.

Lrpe. In Lrpe, we obtain query qt ∈ Rk, key kt ∈ Rk, value vt ∈ Rd from the input xt ∈ Rd, θ as a
learnable weight and recursively calculate as follows:

kvt = Λkvt−1 + ktv
⊤
t ,Λ = diag(exp(iθ1), . . . , exp(iθk)), yt = Rel[kv]t

⊤
qt.

.

GLA/GateLoop. In GLA/GateLoop, we obtain query qt ∈ Rk, key kt ∈ Rk, value vt ∈ Rd, decay
gt ∈ Rk from the input xt ∈ Rd and recursively calculate as follows:

kvt = Diag(gt)kvt−1 + ktv
⊤
t , yt = kv⊤t qt.

DUR/GFW In DUR/GFW, we obtain query qt ∈ Rk, key kt ∈ Rk, value vt ∈ Rd, decay gt ∈
Rk, ḡt ∈ Rd from the input xt ∈ Rd, and recursively calculate as follows:

kvt = (gtḡt⊤)⊙ kvt−1 + ktv
⊤
t , yt = [kv]⊤t qt.

HGRN/LRN In HGRN/LRN, we obtain output gate ot ∈ R1, forget gate ft ∈ R1, input state it ∈ R1

from the input xt ∈ R1, and recursively calculate as follows:

ht = ft ⊙ ht−1 + (1− ft)i
⊤
t , yt = h⊤

t ot.

Similar to S4, HGRN/LRN use channel-wise mapping fi, i = 1, . . . , d of Rn×1 → Rn×1.

A.5 ADDITIONAL EXPERIMENT RESULTS

A.5.1 QUANTITATIVE SCALABILITY RESULTS

See Table 4 in next page.
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Table 4: Quantitative Scalability Results of LASP on Throughput (tokens/sec) and Memory
Usage Per GPU (GB). Experiments are performed on TNL-1B, scaling sequence length from 2K to
4096K with a batch size of 1. Both DDP and FSDP backends are tested.

Sequence Length GPUs LASP + DDP LASP + FSDP
Throughput Memory Throughput Memory

2K

16 1893.3 22.5 1780.5 6.9
32 1645.4 22.5 1671.2 6.6
64 1639.7 22.5 1589.8 6.4

128 1610.9 22.5 1566.2 6.2

4K

16 3686.9 22.5 3519.9 6.9
32 3458.4 22.5 3304.4 6.6
64 3245.3 22.5 3152.2 6.4

128 3211.5 22.5 3075.7 6.2

8K

16 7076.9 22.5 6924.8 6.9
32 7319.3 22.5 6472.9 6.6
64 6869.1 22.5 6459.4 6.4

128 6793.6 22.5 6398.4 6.2

16K

16 14036.8 22.5 13513.7 6.9
32 14671.7 22.5 12978.9 6.6
64 13828.6 22.5 12569.4 6.4

128 13484.5 22.5 12184.5 6.2

32K

16 28354.6 24.4 25727.2 6.9
32 27863.6 22.5 26646.4 6.6
64 25275.9 22.5 25201.4 6.4

128 24523.8 22.5 25638.9 6.2

64K

16 52993.1 28.3 48542.8 11
32 53393.2 24.4 49648.6 6.6
64 52024.2 22.5 49780.5 6.4

128 51983.3 22.5 49833.3 6.2

128K

16 107682 36.1 84901.9 19
32 93371.5 28.3 92718.8 10.6
64 100046 24.4 96771.6 6.4

128 95828.5 22.5 98975.9 6.2

256K

16 202057 51.7 136765 35.2
32 190675 36.1 159326 18.7
64 193341 28.3 170996 10.4

128 187347.7 24.4 178628.4 6.3

512K

16 OOM OOM 201791 67.5
32 323596 51.7 250663 34.8
64 304366 36.1 284803 18.5

128 295128.5 28.3 298755 10.1

1024K

16 OOM OOM OOM OOM
32 OOM OOM 358478 67.1
64 523119 51.7 437728 34.6

128 508383 36.1 459794 18.2

2048K

16 OOM OOM OOM OOM
32 OOM OOM OOM OOM
64 OOM OOM 585326 66.9

128 658432 51.7 597953 33.8

4096K

16 OOM OOM OOM OOM
32 OOM OOM OOM OOM
64 OOM OOM OOM OOM

128 OOM OOM 792705 66.2
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Table 5: Ablation on System Engineering Optimizations Techniques Kernel Fusion and KV
State Caching. Experiments are conducted on TNL-1B model with a batch size of 2 and a sequence
length of 8K, utilizing 2x A100 GPUs.

Kernel Fusion KV State Cache Throughput (tokens/s) Memory Usage Per GPU (GB)
No No 37684.4 49.5
Yes No 44691.0 49.5
No Yes 41179.6 49.7
Yes Yes 45915.2 49.6

A.5.2 ABLATION STUDY ON SYSTEM ENGINEERING OPTIMIZATION

The system engineering optimizations techniques Kernel Fusion and KV State Caching are designed
to enhance the execution efficiency of LASP in practice. We conduct ablation studies to further
investigate their impact, the results of which are outlined in Table 5. We evaluate the training
throughput and memory usage of a 1B TNL model with a batch size of 2 and a sequence length of
8K, utilizing 2x A100 GPUs. The results indicate that in these settings, Kernel Fusion and KV State
Caching effectively boost the training throughput, with minor impact on memory usage.

A.5.3 ABLATION STUDY ON ACTIVATION REDUCING METHODS

LASP prominently reduces the activation memory usage during training process on per GPU, which
is orthometric with another activation memory reducing method: activation checkpointing. Following
we conduct ablation experiments on AC and LASP to reveal their performance on memory reduction.
With pure DDP and FSDP, the maximum sequence lengths are able to train on 8 GPUs are 12K and
16K, respectively. Both AC and LASP can enlarge the maximum sequence length markedly, but
encounters slightly throughput reduction. The distinction is the scaling-up performance of LASP
is directly proportional to the number of GPUs used. By combining AC and LASP, we can obtain
surprising maximum sequence lengths 496K and 768K on single node with using DDP and FSDP
backends, respectively.

Table 6: Ablation on Activation Reducing Methods. Both DDP and FSDP backends are tested. A
single node equipped with 8x A100 80G GPUs is used to train a TNL-1B model, still with a batch
size of 1 for all experiments.

Method
Maximum
Sequence
Length

Throughput
(tokens/sec) Method

Maximum
Sequence
Length

Throughput
(tokens/sec)

DDP 12K 131286.0 FSDP 16K 145303.6
DDP+AC 64K 117429.5 FSDP+AC 96K 114464.0
DDP+LASP 96K 126829.4 FSDP+LASP 120K 138598.8
DDP+AC+LASP 496K 100837.8 FSDP+AC+LASP 768K 106578.3

A.5.4 EVALUATION RESULTS ON DOWNSTREAM TASKS

We conduct an experiment with extended training duration of 300K steps (which consumes 40B
tokens) to assess the performance of LASP, and its evaluation results on downstream tasks. Both TNL
and Linear Transformer with 0.4B parameters are investigated. We evaluate the performance of the
trained models on multiple downstream benchmarks, including PIQA, HellaSwag (HS), WinoGrande
(WG), ARC-E, ARC-C, OBQA, and CSR-AVG. The results are presented in the Tables 7 and 8.
LASP always shows comparable performances on convergence as well as downstream tasks.
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Table 7: Convergence Results of LASP with Extended 300K steps. Both TNL and Linear
Transformer with 0.4B parameters are tested with a batch size of 2 and sequence length of 16K.

Model Parameters Steps Method Loss PPL Method Loss PPL
TNL 0.4B 300K DDP 3.218 9.318 LASP+DDP 3.218 9.321

Linear
Transformer 0.4B 300K DDP 4.164 17.972 LASP+DDP 4.145 17.730

Table 8: Evaluation Results on Downstream Tasks. HS: HellaSwag, WG: WinoGrande. A higher
score indicates better performance.

Model Method Tokens PIQA HS WG ARC-E ARC-C OBQA CSR-AVG
TNL DDP 40B 55.71 28.21 51.30 28.87 23.72 26.00 35.64

TNL LASP+DDP 40B 54.30 28.17 51.54 31.27 24.06 29.60 36.49

Linear
Transformer DDP 40B 52.18 25.68 49.80 26.81 25.60 26.40 34.93

Linear
Transformer LASP+DDP 40B 52.18 26.07 49.25 26.22 26.71 27.00 35.44
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