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Abstract

Geometric coreset selection is often compromised by architectural variance in feature
embeddings. We propose a solution grounded in topological invariance, which first stan-
dardizes the data’s global manifold before a differentiable persistence-based optimizer dis-
tills local sample importance from each point’s corrective displacement. The resulting
framework yields coresets that are fundamentally robust to the geometric shifts between
diverse pretrained models, enabling universal applicability.

1. Introduction

The immense scale of modern datasets and foundation models has made training and fine-
tuning computationally prohibitive. Data pruning (or commonly called coreset selection)
addresses this by creating a small, representative subset of the data that preserves the full
dataset’s essential learning characteristics. This enables faster training, efficient fine-tuning,
and reduced storage costs with minimal degradation in model performance.

Coreset selection methods that require model training can be broadly categorized into
two groups. Optimization-based methods select a subset whose loss (Killamsetty et al.,
2021b; Mindermann et al., 2022) or gradient dynamics (Mirzasoleiman et al., 2019; Kil-
lamsetty et al., 2021a; Tan et al., 2023) closely match the full dataset, but often rely on
computationally intensive second-order (Pooladzandi et al., 2022) or bilevel optimization
(Borsos et al., 2020). Similarly, score-based methods rank samples using training dynam-
ics (Toneva et al., 2019; Garg and Roy, 2023; Zheng et al., 2025) or uncertainty scores
(Paul et al., 2021; He et al., 2023, 2024; Cho et al., 2025), but these metrics are dynamic
throughout training and model-dependent. The critical limitation for both is their reliance
on training-time information, making them incompatible with the vast ecosystem of pre-
trained models where only final weights are available.

To overcome this constraint, geometric-based coreset selection methods operate on static
feature embeddings extracted from a suitably trained model, which removes the need for
costly training-based analysis. Approaches in this domain range from analyzing the penul-
timate layer feature embedding space (Xia et al., 2023), using optimal transport to measure
distributional similarity (Xiao et al., 2024), or leveraging the geometric reconstruction er-
ror of samples (Yang et al., 2024). However, a significant limitation of existing geometric
methods is their reliance on metrics that are sensitive to the extrinsic geometry of the em-
bedding space, a vulnerability we term ”geometric brittleness.” This leads to two primary
shortcomings. First, these methods tend to prioritize samples from dense, highly repre-
sented regions of the data manifold, often at the expense of informative samples from the
sparse tails of the distribution, an issue that is exacerbated at high pruning rates (Zheng
et al., 2023). Second, their performance is not stable across different network architectures,
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as each model produces a unique geometric embedding. This instability is particularly ap-
parent in graph-based methods (Maharana et al., 2024; Xie et al., 2025), where Euclidean
distance-based metrics are used for hyperparameter tuning, making them highly sensitive to
changes in the geometric embedding space and not easily transferable across architectures
(see Appendix E for more details).

In this work, we introduce TopoCore, a novel framework that resolves the challenge of
geometric brittleness by leveraging the principles of topology. The inherent invariance of
topology to geometric deformation allows TopoCore to achieve exceptional stability and,
most critically, architectural invariance. This enables the direct use of a single, small proxy
model to generate coresets for a wide array of much larger, diverse architectures without
retraining or hyperparameter tuning. TopoCore achieves this through a unique combination
of topological structures at two distinct scales:

1. Global Structure via Manifold Projection: We employ topology-aware man-
ifold approximation (Mclnnes et al., 2018; Wang et al., 2021) to project the high-
dimensional feature space into a standardized, low-dimensional representation. This
provides a stable global view that preserves the data’s density distribution, ensuring
comprehensive coverage.

2. Local Structure via Differentiable Persistent Homology: While global scores
can group similarly important samples, they fail to distinguish which ones to prior-
itize within a localized region. Existing methods often resort to random sampling
within these strata or use geometric heuristics like message-passing (Maharana et al.,
2024). We propose a more principled approach using differentiable persistent homol-
ogy (Cohen-Steiner et al., 2005; Birdal et al., 2021; Mukherjee et al., 2024) to assess
a sample’s importance relative to its immediate neighbors. Instead of using a static
topological measure, we perform a topological optimization that maximizes the per-
sistence of samples w.r.t. it’s closest neighbors (Loiseaux et al., 2023). Through this
optimization, samples in topologically ambiguous positions are repositioned to max-
imize the persistence of their local structures. The magnitude of this displacement
quantifies a sample’s local structural importance, enabling the selection of the most
informative examples from groups of otherwise indistinguishable points.

By defining sample importance through the stable, intrinsic properties of topology,
TopoCore moves beyond brittle geometric heuristics to deliver a truly architecture-agnostic
coreset selection framework (see Appendix A for a visual representation of the pipeline).

2. Methodology

Our proposed method, TopoCore, constructs a coreset by analyzing the data’s topological
structure at two distinct scales. The first stage, Global Manifold Representation, addresses
the challenge of architectural variance by projecting the original high-dimensional embed-
dings into a standardized low-dimensional space. This ensures a stable, global view of the
data’s overall shape. The second stage, Local Topological Scoring, then analyzes the in-
tricate local structure of this manifold. We use differentiable multi-parameter persistent
homology to derive an importance score for each sample based on its contribution to the
local topological complexity, effectively measuring its importance relative to its neighbors.
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2.1. Global Structure: Dataset Representation with Topological Manifold
Projections

Given a well-trained deep model, denoted by f(-), we can express it as a composition of a
feature extractor h(-) and a classifier g(-), such that f(-) = g(h(-)). Here, h(-) represents the
network up to the penultimate layer, which maps an input data point x to a high-dimensional
hidden representation z = h(x) € RP. The full training dataset S = {(x1,%1),- -, (Xn,yn)}
can thus be transformed into a high-dimensional feature set Z = {z1,...,zy}. While this
high-dimensional space Z contains rich semantic information, its extrinsic geometry is often
complex and architecture-dependent. To obtain a stable and standardized representation,
we project Z onto a low-dimensional manifold using topology-based manifold approximation
and projection techniques (Mclnnes et al., 2018; Wang et al., 2021). See Appendix D for
a more detailed explanation on these techniques. Through a detailed investigation into
different manifold approximation and projection techniques presented in Appendix F and
Figure 5 we use the Uniform Manifold Approximation & Projection (McInnes et al., 2018)
algorithm as it creates more uniform feature embeddings across network architectures.

2.2. Local Structure: Sample Neighborhoods with Persistence-Based
Optimizer

The Topological Manifold Projection provides a low-dimensional embedding that faithfully
preserves the global structure of the data manifold. While this ensures a stable, high-level
representation, a purely global perspective is insufficient for identifying the most informative
samples, whose importance is often defined by the complex local interactions with their
nearest neighbors. To capture this fine-grained structure, we leverage persistent homology
not as a static descriptor, but as the foundation for a dynamic topological optimization
process.

The objective of this process is to iteratively adjust the position of each point within
its class manifold to maximize topological persistence. This is performed independently for
each class ¢ € {1,...,C} to analyze the specific intra-class structure. For each class, we
begin with its low-dimensional point cloud Y. = {y; | label(y;) = c¢}. We then construct a
density-aware Delaunay-Rips filtration on Y. due to its computational scalability as shown
in Mishra and Motta (2023). This filtration builds a sequence of simplicial complexes that
captures how the topology of the class evolves across different scales, yielding a class-specific
persistence diagram, Dgm(Y%).

Similar to work from Scoccola et al. (2024) we define a differentiable loss function,
Lpers(Ye), whose negative gradient, —Vy, Lpers, points in the direction that maximally in-
creases the total persistence of the features in Dgm(Y.). This loss is formulated using a
signed measure derived from the filtration, which assigns positive weights to simplices that
create persistent features and negative weights to those that destroy them. For each class
¢, the optimization seeks a new point configuration Y, that minimizes this loss solved it-
eratively via gradient descent, where the positions of the points in Y, are updated at each
step:

Y, = arg H}l/in Lpers(Ye) (1)



We define the Persistence Score for each sample y; belonging to class ¢ as the mag-
nitude of its total displacement during its class-specific optimization, where y; is the initial
position and y’; is the final, optimized position.:

Scorepers(5) = y; = ¥'jll2,  fory; € Ye,y'; € VI (2)

A high Persistence Score signifies importance because it quantifies the degree of topo-
logical instability a sample introduces within its own class manifold. Samples that must
move a significant distance are those that initially reside in structurally ambiguous regions
of their class which create noisy or short-lived topological features. The optimization pro-
cess repositions these points to clarify the underlying intra-class structure and increase its
persistence. Therefore, the magnitude of this corrective displacement serves as a direct
measure of a sample’s contribution to the topological complexity of its class. This dynamic,
optimization-based score provides a higher-fidelity measure of local importance than static
methods, as it is derived from the collective interaction and structural role of every point
within the class manifold.

2.3. Comprehensive Coreset with Global and Local Dataset Structures

To create a comprehensive sample importance metric, we formulate a final score that syner-
gizes the local, topological information from our Persistence Score with a global measure of
data representativeness. This global component is a Density Score, derived from a Kernel
Density Estimator (KDE) applied to the projected features within each class, Y.. The final
score for a sample y; is a weighted combination of these two metrics:

TopoScore(y;) = « - Persistence(y;) + 3 - Density(y;) (3)

The hyperparameters «, 5 € [0,1] modulate the influence of local topological complexity
(Persistence Score) versus global distributional rarity (Density Score). This allows our
framework to construct a coreset that is not only rich in challenging, boundary-defining
examples but also maintains a faithful representation of the full dataset’s underlying distri-
bution.

Inspired by the findings in Zheng et al. (2023), we incorporate a crucial filtering step,
during sample selection, to handle potentially mislabeled data. Since noisy or mislabeled
examples can often receive high importance scores but ultimately degrade model accuracy
(Swayamdipta et al., 2020), we preemptively remove all training samples that are misclassi-
fied by the base model. This ensures that our subsequent topological scoring and selection
process operates on a cleaner data distribution, allowing us to focus on samples that are
genuinely "hard” rather than simply erroneous. We present coreset accuracy for different
dataset pruning rates for CIFAR-10 and CIFAR-100 and show that TopoCore outperforms
previous geometric-based coreset selection techniques (see Appendix B).

For brevity, our main Conclusion is presented in Appendix C. We also provide a compre-
hensive set of additional experiments and theoretical discussions in the appendix, including
validation of the architectural transferability of topological versus Euclidean metrics (Ap-
pendix E). Ablation study comparing different manifold projection techniques (Appendix F)
as well as other supporting results and experiments.
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Appendix A. Overview of TopoCore Pipeline
See Figure 1.

Appendix B. Coreset Performance

See Figure 4.
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Figure 1: An overview of the TopoCore pipeline. (Left) A UMAP projection of
CIFAR-10 visualizes the global data manifold, with colors denoting classes.
(Middle) Within a single class, a Kernel Density Estimation (KDE) captures
the density distribution before and after persistent homology optimization. The
color map indicates high (yellow) to low (blue) density. The density distribution
remains unchanged, demonstrating that our topological optimization successfully
enhances local feature persistence without altering the global structure. (Right)
To construct the final coreset, we first compute a composite score for each sample
by combining its global density and local persistence values. We then employ
stratified sampling on this score distribution to ensure that the final coreset not
only prioritizes the most topologically informative samples but also faithfully rep-
resents the density distribution of the original dataset.

Appendix C. Conclusion

In this work, we addressed the critical challenge of ” geometric brittleness” in coreset selec-
tion, where methods fail to transfer effectively across different neural network architectures
due to their sensitivity to extrinsic embedding geometry. We introduced TopoCore, a frame-
work that resolves this issue by leveraging the principles of topology. By combining a global
manifold projection for a stable overall representation with a novel local importance score
derived from differentiable persistent homology, TopoCore captures the intrinsic, stable
structure of the data rather than its transient geometric layout. Our central contribution
is a coreset selection method that demonstrates exceptional robustness and architectural
invariance. This allows for the direct and efficient application of TopoCore to a wide variety
of pretrained models without the need for costly retraining or architecture-specific tuning.
Ultimately, TopoCore highlights the promise of topological data analysis in developing more
fundamental and universal principles for data-efficient deep learning.

Appendix D. Further Explanation on Topology-based Manifold
Projection

This class of methods begins by constructing a topological representation of the high-
dimensional data in the form of a fuzzy simplicial set. A simplicial set is a collection
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Figure 2: Comparison of the test accuracy (averaged over five random seeds) across various
geometric-based coreset selection methods on (a) CIFAR-10 and (b) CIFAR-100

of simplices (0-simplices are points, 1-simplices are edges, 2-simplices are triangles, etc.)
that captures the shape of the data. The “fuzzy” aspect assigns a membership strength to
each simplex, representing the belief that it exists in the true underlying manifold. This is
achieved by examining the local neighborhood of each point z; and assigning a membership
strength p;; to the 1-simplex (edge) connecting it to its neighbor z;, based on their distance
and normalized by the local density.

The algorithm then seeks to learn a low-dimensional embedding Y = {y1,...,y~n},
where y; € R? and d < D, whose own fuzzy simplicial set is as similar as possible to the
one derived from the high-dimensional data. A corresponding set of membership strengths,
Q = {qij}, is defined for the 1-simplices in the low-dimensional space, typically using a
heavy-tailed kernel to allow for effective separation of dissimilar points.

The final low-dimensional representation Y is found by optimizing the positions of the
points {y;} to minimize the divergence between the high-dimensional and low-dimensional
fuzzy simplicial sets. The objective function, often a form of cross-entropy, can be expressed
as:

LY)= Z AttractiveForce(pyj, ¢ij) + Z RepulsiveForce(p;;, gi;) (4)
(4,5) (4,5)
This optimization effectively arranges the points in the low-dimensional space such that
the topological structure (clusters, voids, and connectivity) of the original high-dimensional
manifold is preserved. The resulting representation Y is a standardized embedding robust
for downstream tasks like coreset selection.

Appendix E. On the Transferability of Topological vs. Euclidean
Features Across Neural Architectures

We provide a formal argument for the superior transferability of topological features de-
rived from persistent homology over traditional Euclidean metrics across different neural



network architectures. We demonstrate that the stability guarantees inherent to persistent
homology ensure that its output is robust to the geometric variations common between
different network embeddings. Conversely, we show that Euclidean-based metrics, such as
the distance to a class prototype, are inherently sensitive to these variations, explaining
their lack of transferability.

E.1. Preliminaries and Notation

Let X be the input data space and Y = {1,..., K} be the set of K class labels. A neural
network architecture is a function f : X — R™ that maps input data to an n-dimensional
embedding space. Let f4 and fp denote two distinct network architectures (e.g., ResNet18
and ViT-L-16). The outputs of these networks for the entire dataset X are the point clouds
X4 = fa(X) and Xp = fp(X) in their respective embedding spaces. We equip these
embedding spaces with the standard Euclidean metric, dg.

Definition 1 (Vietoris-Rips Filtration) For a point cloud P C R™ and a scale param-
eter r > 0, the Vietoris-Rips complex V R(P,r) is the simplicial complex whose vertices
are the points in P and whose simplices are all finite subsets of P with a diameter of at
most 2r. A filtration is the nested sequence of complezes {V R(P,r)}r>0.

Definition 2 (Persistence Diagram) Applying the homology functor Hy(-) (for a fized
dimension k, e.g., k = 0 for connected components) to a filtration yields a set of birth-death
pairs (b, d) representing the scales at which topological features appear and disappear. This
multiset of pairs is the persistence diagram, denoted Dgm(P). The persistence of a
feature (b,d) is defined as d —b.

Definition 3 (Bottleneck Distance) The similarity between two persistence diagrams
Dgm, and Dgms, is measured by the bottleneck distance dg(Dgm,, Dgm,), defined as the
infimum over all bijections n : Dgm; — Dgmy of the supremum of distances between matched
points:

dp(Dgmy, Dgmy) = inf sup ||p —n(p) |l
N peDgm,

Points may also be matched to the diagonal. The p-Wasserstein distance W), is a related
metric.

Definition 4 (Gromov-Hausdorff Distance) The distance between two metric spaces
(My,dy) and (Ms,ds) is measured by the Gromov-Hausdorff distance dgy(My, Ms),
which is the infimum of distances over all possible isometric embeddings into a common
metric space. It quantifies the “metric dissimilarity” of two spaces.

E.2. Instability of Euclidean Distances to Prototypes
We now formalize the lack of such stability for Euclidean distances.
Definition 5 (Class Prototype and Distance Distribution) For an embedding f(X)

and a class k € Y, the class prototype (centroid) is cj = ﬁ erXk f(z), where X}, are

the samples of class k. The set of distances to the prototype is Sk(f) = {de(f(z),ck) |
label(x) = k}. Let P(Sk(f)) be the probability distribution of these distances.
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Proposition 6 (Sensitivity to Scaling) Let fa be a network embedding. Consider a
new embedding fp defined by a simple isotropic scaling transformation, fp(x) = afa(x)
for some scalar a > 0, # 1. Then the distribution of distances to the prototype is scaled
accordingly: P(Sk(fs)) = aP(Sy(fa)):

Proof The new class prototype ¢, under the embedding fp is:

;1 _ 1 _ 1 _
b=y 2 Io) = gy 2 afa) =a | gy Y ale) | = acy

z€ Xy € Xy zeXg

The distance for any sample = of class k£ to the new prototype is:

de(fB(),c)) = dp(afa(z), ack)
= [lafa(x) — acgll2
= la| - [[fa(z) = clla = a - de(fa(z), cx)

Thus, every distance value in the set Si(f4) is multiplied by « to obtain the set Si(fp)-
The probability distribution of these distances is therefore a scaled version of the original.
|

E.3. Theoretical Guarantees for Persistent Homology

The transferability of persistence-based features is a direct consequence of the fundamental
stability theorem of topological data analysis (Cohen-Steiner et al., 2005).

Theorem 7 (Invariance and Stability of Persistent Homology)

1. Isometry Invariance: Let P C R" be a point cloud and g : R" — R" be a Fu-
clidean isometry (translation, rotation, reflection). Then, the persistence diagram is
unchanged: Dgm(P) = Dgm(g(P)).

2. Stability: Let X 4 and Xp be two point clouds in R™. The bottleneck distance between
their respective persistence diagrams is bounded by the Gromov-Hausdorff distance
between their metric spaces:

dp(Dgm(Xa), Dgm(Xp)) < dar((Xa,dg),(XB.dEg))

Proof (1) An isometry g preserves all pairwise Euclidean distances. Since the Vietoris-
Rips filtration is constructed based solely on these distances, the filtration {VR(P,r)},>0 is
identical to {VR(g(P),r)}r>0. Applying the homology functor to identical filtrations yields
identical persistence diagrams. (2) The proof is a cornerstone result in TDA. It formalizes
the intuition that if two spaces are metrically similar (a small dgfr), their topological features
as captured by persistence homology must also be similar (a small dp). [ |
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E.4. Application to Neural Networks

Consider two networks fa and fp trained for the same classification task. Although they
may produce geometrically distinct embeddings X4 and Xp, they are both optimized to
preserve the topological structure of the input data. This incentivizes the networks to
learn representations where the Gromov-Hausdorff distance dgg (X4, Xp) is bounded. By
Theorem 2.1, this implies that the bottleneck distance dp(Dgm(X4),Dgm(Xp)) is also
bounded. Consequently, the distributions of persistence values derived from these diagrams
will be similar.

This proposition demonstrates that even a trivial geometric transformation which does
not alter the topological structure of the embedding, fundamentally changes the distribution
of Euclidean distances to the class prototype. Different network architectures, with their
varying normalization schemes, naturally produce embeddings at different scales. There
exists no stability theorem analogous to Theorem 2.1 that would bound the change in this
distribution. The observed transferability of persistence-based features across diverse neu-
ral network architectures is theoretically grounded in the Stability Theorem of persistent
homology. This theorem guarantees that persistence diagrams, which capture the intrinsic
topological structure of data, are robust to the metric deformations between different net-
work embeddings. In contrast, extrinsic geometric measures like the Euclidean distance to
a class centroid lack any such theoretical guarantee. They are provably sensitive to simple
geometric transformations, making their distributions inherently dependent on the specific
architecture that generated the embedding.

E.5. Empirical Validation

To validate the above proof related to the stability of persistent homology across perturba-
tions in the embedding space we look at (a) the euclidean distance of samples to their class
prototype (Figure 3), (b) the density of samples after manifold projection (Figure 4(a))
and (c) the persistence score of samples (Figure 4(b)). We see that that as we move from
euclidean-based metric (a) to global topology (b) to local topology (c) we see an increased
uniformity in the metrics, showing increased stability to embedding space perturbations
with topological information. As similarly shown in Turkes et al. (2022), the properties of
topology render methods like TopoCore exceptionally stable across issues that arise in deep
learning such as limited training data, noisy and out-of-distribution data. This insight is
similar to findings in Suresh et al. (2024) which investigated the topological complexity of
the embedding space of different network architectures based on Betti numbers and Cole-
man et al. (2020) which showed that the feature representation of smaller proxy models can
be used directly to determine the sample importance of larger more expensive models.

12



TOPOLOGY-BASED DATA PRUNING

ResNet18
0.20 ResNet50
5 ResNet101
=] EfficientNet-BO
>
__g 0.15 EfficientNetV2-M
7 SwinV2-B
a SwinV2-T
£0.10 ViT-L-16
Q
©
Q
o
a 0.05
0.00

10 20 30 40 50
Distance to Barycenter

Figure 3: Euclidean distance of individual samples to their class prototype (barycenter)
across a wide range of network architectures for CIFAR-100. We see that these
distances, from the feature embedding space, are not uniform across architectures.
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Figure 4: (a) Kernel density estimation of individual samples within their class across a
wide range of network architectures for CIFAR-100. We see that applying a
”global” topology standardization via manifold projection starts improving sta-
bility across architectures. (b) Persistence score of individual samples within their
class across a wide range of network architectures for CIFAR-100. By further
adding the ”local” topological structure, we see further improvement in stability
where probability distributions across architectures almost fully match.
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Appendix F. Manifold Projection as a Topological Standardization

We provide a formal argument explaining why preprocessing high-dimensional neural net-
work embeddings with a topological projection like UMAP induces stability in both topo-
logical and traditional Euclidean metrics across different architectures. We posit that while
networks produce embeddings that are topologically similar but geometrically disparate, the
UMAP algorithm acts as a standardizing function. It maps these embeddings to a common
low-dimensional space where they become geometrically, and thus metrically, aligned.

F.1. Preliminaries and Notation

Let X be the input data space. Let fa,fp : X — R™ be two distinct neural network
architectures mapping data to a high-dimensional embedding space. Let X4 = f4(X) and
Xp = f(X) be the resulting point clouds.

We introduce a dimensionality reduction function g : R* — R? (with d < n, e.g., d = 2)
representing the UMAP algorithm. The final low-dimensional embeddings are denoted Y4 =
9(X4) and Yp = g(Xp). Our analysis concerns the properties of these final embeddings,
Y4 and Y3g.

The definitions of Persistence Diagram Dgm(-), Bottleneck Distance dp, and Gromov-
Hausdorff Distance dgy remain as previously stated.

F.2. The Normalizing Effect of UMAP Projection

The central thesis is that UMAP acts as a normalizing function that maps topologically
similar but geometrically disparate spaces to a common, standardized geometric represen-
tation.

Principle 8 (UMAP’s Objective) The UMAP algorithm first constructs a fuzzy topo-
logical representation of a high-dimensional point cloud P (a weighted graph, or fuzzy sim-
plicial set). It then secks to find a low-dimensional embedding Y = g(P) whose own fuzzy
topological representation is as similar as possible to that of P. This similarity is optimized
by minimizing the cross-entropy between the two representations.

Argument for Standardization

1. Initial Topological Similarity: As argued previously, different networks f4 and
fp trained on the same task learn to preserve the intrinsic topology of the data.
Therefore, the high-dimensional embeddings X4 and Xp are topologically similar.
This implies their fuzzy simplicial set representations, which UMAP computes, are
also nearly identical.

2. Identical Optimization Goal: Since the topological structures of X 4 and Xp are
nearly identical, UMAP is given effectively the same optimization target for both
embeddings. The algorithm’s objective is to arrange points in R? to best match this
target structure.

3. Geometric Congruence: As the UMAP optimization procedure is deterministic (up
to minor initialization effects), feeding it nearly identical topological inputs will result

14
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in nearly identical geometric outputs. The resulting low-dimensional embeddings Y4
and Yp will thus be approximately congruent via an isometry. This implies that their
geometric dissimilarity is minimal:

der((Ya,dg), (Yp,dg)) =0

In essence, UMAP discards the original, architecture-dependent extrinsic geometry of X4
and Xp and constructs new, standardized geometries for Y4 and Yp based on their shared
underlying topology.

F.3. Stability of Persistent Homology

The stability of persistence is a direct and strengthened consequence of the UMAP normal-
ization.

Theorem 9 (Stability of Persistence Post-UMAP) Let Y4 = g(fa(X)) and Yp =
9(fB(X)) be the UMAP-projected embeddings. The bottleneck distance between their persis-
tence diagrams is minimal:

dB(ng(YA), ng(YB)) < dGH(YA,YB) ~0

Proof This follows directly from the Stability Theorem of persistent homology and the
normalizing effect of UMAP, which ensures that the Gromov-Hausdorff distance between
the projected point clouds is close to zero. |

This confirms that the distribution of persistence values calculated on the low-dimensional
embeddings will be highly stable across architectures.

F.4. Induced Stability of Euclidean Distances

The original instability of Euclidean metrics is overcome by the UMAP preprocessing step.

Proposition 10 (Induced Stability of Prototype Distances) Let Y4 and Yp be the
UMA P-projected embeddings. Given that UMAP produces geometrically congruent embed-
dings (Ya and Yp are nearly isometric), the probability distributions of Fuclidean distances
to their respective class prototypes, P(Si(go fa)) and P(Sk(go fB)), will be nearly identical.

Proof [Proof Sketch| Since Y4 and Yp are nearly isometric, there exists an isometry
T : R — R? (a rotation and/or translation) such that for any point y4 € Y4 and its
corresponding point yp € Yp, we have yp ~ T'(ya). The class prototype ¢}, in the space Yz
is the mean of its points, so ¢}, ~ T'(ci), where ¢, is the prototype in Y. The Euclidean
distance for a sample in Yp is therefore:

de(yB, ) = de(T(ya), T(ck))

Since isometries preserve Euclidean distances by definition, dg(T(y4), T (ck)) = dg(ya, ck)-
Thus, the set of distances Si(g o fg) is almost identical to the set of distances Sk(go fa),
leading to nearly identical probability distributions. |
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F.5. Application to Neural Networks

The inclusion of a UMAP projection as a preprocessing step is a critical component in
achieving metric stability across diverse neural network architectures. While high-dimensional
embeddings may vary significantly in their extrinsic geometry, they share a common in-
trinsic topology. The UMAP algorithm leverages this shared topology to construct new,
low-dimensional embeddings that are not only topologically faithful but also geometrically
standardized. This standardization forces both the topological features (by design) and the
extrinsic Euclidean features (as a consequence) of the final embeddings to be consistent.

F.6. Empirical Validation

To further elaborate on the proof related to the standardization of topology-based mani-
fold approximation and projection across perturbations in the embedding space we look at
correlation between per-sample distance to prototypes across different manifold projection
and feature reduction techniques (a) PCA (Pearson, 1901), (b) t-SNE (van der Maaten and
Hinton, 2008) (¢) PaCMAP (Wang et al., 2021) and (d) UMAP (Mclnnes et al., 2018).
We see that the topology-based methods, UMAP and PaCMAP, demonstrate significantly
higher correlation and thus better transferability across architectures compared to linear
PCA or the more locally-focused t-SNE. Notably, UMAP exhibits slightly superior trans-
ferability over PaCMAP, reinforcing its selection for our framework. This high correlation
between smaller models (e.g., ResNet-18) and larger models is particularly valuable, as it
validates the use of computationally inexpensive networks to generate feature embeddings
that remain effective for data selection on much larger models. See Figure 5.
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Figure 5: Correlation of per-sample distance to prototype across different architectures

when applying different linear and non-linear manifold projection techniques.
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Appendix G. Ablation on ”Global” Density and ”Local” Persistence

We investigate the impact of the hyperparameters « and 8 from Equation (3), which balance
the influence of global density and local persistence (see Figure 6). Our analysis reveals
that the final coreset quality is remarkably stable to variations in these parameters across
different pruning rates. This low sensitivity allows us to use a consistent («, 3) configuration,
set at (50/50), across diverse datasets and network architectures, minimizing the need for
extensive hyperparameter tuning.
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Figure 6: Topology hyperparameters are generally stable.

Appendix H. Ablation on Persistence Optimization Steps

We investigate the impact of the number of optimization steps for "local” persistent ho-
mology (see Figure 7). The number of required persistence optimization steps is inversely
correlated with the final coreset size. When selecting a large coreset (e.g., at a 30% prun-
ing rate), the selection process is robust, and even a few optimization steps (1-2) suffice
to identify a high-quality subset. However, at high pruning rates (e.g., 90%), the task
of distinguishing the most crucial samples becomes more sensitive, necessitating a greater
number of optimization steps (>6) to allow the point positions to converge and accurately
reveal the most structurally important examples.

Appendix I. Relating Topology and Memorization

As a fun experiment, we examine the link between the intra-class density of our topology-
based manifold projection and the established notion of sample memorization (Feldman,
2020; Feldman and Zhang, 2020), measured via the input curvature score (Garg et al., 2024).
We see that high-density samples, which are prototypical examples near a class’s barycenter,
consistently exhibit low input curvature, characteristic of un-memorized, typical examples.
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Figure 7: The required number of persistence optimization steps is inversely correlated with
the final coreset size. Smaller coresets have a lower margin for error, as the
importance of each selected sample is magnified. Consequently, more optimization
steps are needed to precisely distinguish the most critical samples. In contrast,

larger coresets are more forgiving, requiring fewer steps to achieve a high-quality
result.

While low-density samples, which represent atypical data, show high input curvature, a key
indicator of highly memorized samples.
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Figure 8: Prototypical Samples: Top-10 lowest curvature samples (left) vs. highest
density samples (right) of the same class, for five CIFAR-100 classes.
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Figure 9: Atypical Samples: Top-10 highest curvature samples (left) vs. lowest density
samples (right) of the same class, for five CIFAR-100 classes.
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