Unifying Global Topology Manifolds and Local Persistent Homology for Data Pruning

Editors: List of editors' names

Abstract

Geometric coreset selection is often compromised by architectural variance in feature embeddings. We propose a solution grounded in topological invariance, which first standardizes the data's global manifold before a differentiable persistence-based optimizer distills local sample importance from each point's corrective displacement. The resulting framework yields coresets that are fundamentally robust to the geometric shifts between diverse pretrained models, enabling universal applicability.

1. Introduction

The immense scale of modern datasets and foundation models has made training and fine-tuning computationally prohibitive. Data pruning (or commonly called coreset selection) addresses this by creating a small, representative subset of the data that preserves the full dataset's essential learning characteristics. This enables faster training, efficient fine-tuning, and reduced storage costs with minimal degradation in model performance.

Coreset selection methods that require model training can be broadly categorized into two groups. Optimization-based methods select a subset whose loss (Killamsetty et al., 2021b; Mindermann et al., 2022) or gradient dynamics (Mirzasoleiman et al., 2019; Killamsetty et al., 2021a; Tan et al., 2023) closely match the full dataset, but often rely on computationally intensive second-order (Pooladzandi et al., 2022) or bilevel optimization (Borsos et al., 2020). Similarly, score-based methods rank samples using training dynamics (Toneva et al., 2019; Garg and Roy, 2023; Zheng et al., 2025) or uncertainty scores (Paul et al., 2021; He et al., 2023, 2024; Cho et al., 2025), but these metrics are dynamic throughout training and model-dependent. The critical limitation for both is their reliance on training-time information, making them incompatible with the vast ecosystem of pretrained models where only final weights are available.

To overcome this constraint, geometric-based coreset selection methods operate on static feature embeddings extracted from a suitably trained model, which removes the need for costly training-based analysis. Approaches in this domain range from analyzing the penultimate layer feature embedding space (Xia et al., 2023), using optimal transport to measure distributional similarity (Xiao et al., 2024), or leveraging the geometric reconstruction error of samples (Yang et al., 2024). However, a significant limitation of existing geometric methods is their reliance on metrics that are sensitive to the extrinsic geometry of the embedding space, a vulnerability we term "geometric brittleness." This leads to two primary shortcomings. First, these methods tend to prioritize samples from dense, highly represented regions of the data manifold, often at the expense of informative samples from the sparse tails of the distribution, an issue that is exacerbated at high pruning rates (Zheng et al., 2023). Second, their performance is not stable across different network architectures,

as each model produces a unique geometric embedding. This instability is particularly apparent in graph-based methods (Maharana et al., 2024; Xie et al., 2025), where Euclidean distance-based metrics are used for hyperparameter tuning, making them highly sensitive to changes in the geometric embedding space and not easily transferable across architectures (see Appendix E for more details).

In this work, we introduce TopoCore, a novel framework that resolves the challenge of geometric brittleness by leveraging the principles of topology. The inherent invariance of topology to geometric deformation allows TopoCore to achieve exceptional stability and, most critically, architectural invariance. This enables the direct use of a single, small proxy model to generate coresets for a wide array of much larger, diverse architectures without retraining or hyperparameter tuning. TopoCore achieves this through a unique combination of topological structures at two distinct scales:

- 1. Global Structure via Manifold Projection: We employ topology-aware manifold approximation (McInnes et al., 2018; Wang et al., 2021) to project the high-dimensional feature space into a standardized, low-dimensional representation. This provides a stable global view that preserves the data's density distribution, ensuring comprehensive coverage.
- 2. Local Structure via Differentiable Persistent Homology: While global scores can group similarly important samples, they fail to distinguish which ones to prioritize within a localized region. Existing methods often resort to random sampling within these strata or use geometric heuristics like message-passing (Maharana et al., 2024). We propose a more principled approach using differentiable persistent homology (Cohen-Steiner et al., 2005; Birdal et al., 2021; Mukherjee et al., 2024) to assess a sample's importance relative to its immediate neighbors. Instead of using a static topological measure, we perform a topological optimization that maximizes the persistence of samples w.r.t. it's closest neighbors (Loiseaux et al., 2023). Through this optimization, samples in topologically ambiguous positions are repositioned to maximize the persistence of their local structures. The magnitude of this displacement quantifies a sample's local structural importance, enabling the selection of the most informative examples from groups of otherwise indistinguishable points.

By defining sample importance through the stable, intrinsic properties of topology, TopoCore moves beyond brittle geometric heuristics to deliver a truly architecture-agnostic coreset selection framework (see Appendix A for a visual representation of the pipeline).

2. Methodology

Our proposed method, TopoCore, constructs a coreset by analyzing the data's topological structure at two distinct scales. The first stage, Global Manifold Representation, addresses the challenge of architectural variance by projecting the original high-dimensional embeddings into a standardized low-dimensional space. This ensures a stable, global view of the data's overall shape. The second stage, Local Topological Scoring, then analyzes the intricate local structure of this manifold. We use differentiable multi-parameter persistent homology to derive an importance score for each sample based on its contribution to the local topological complexity, effectively measuring its importance relative to its neighbors.

Extended Abstract Track

2.1. Global Structure: Dataset Representation with Topological Manifold Projections

Given a well-trained deep model, denoted by $f(\cdot)$, we can express it as a composition of a feature extractor $h(\cdot)$ and a classifier $g(\cdot)$, such that $f(\cdot) = g(h(\cdot))$. Here, $h(\cdot)$ represents the network up to the *penultimate layer*, which maps an input data point \mathbf{x} to a high-dimensional hidden representation $\mathbf{z} = h(\mathbf{x}) \in \mathbb{R}^D$. The full training dataset $S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$ can thus be transformed into a high-dimensional feature set $Z = \{\mathbf{z}_1, \dots, \mathbf{z}_N\}$. While this high-dimensional space Z contains rich semantic information, its extrinsic geometry is often complex and architecture-dependent. To obtain a stable and standardized representation, we project Z onto a low-dimensional manifold using topology-based manifold approximation and projection techniques (McInnes et al., 2018; Wang et al., 2021). See Appendix D for a more detailed explanation on these techniques. Through a detailed investigation into different manifold approximation and projection techniques presented in Appendix F and Figure 5 we use the Uniform Manifold Approximation & Projection (McInnes et al., 2018) algorithm as it creates more uniform feature embeddings across network architectures.

2.2. Local Structure: Sample Neighborhoods with Persistence-Based Optimizer

The Topological Manifold Projection provides a low-dimensional embedding that faithfully preserves the global structure of the data manifold. While this ensures a stable, high-level representation, a purely global perspective is insufficient for identifying the most informative samples, whose importance is often defined by the complex local interactions with their nearest neighbors. To capture this fine-grained structure, we leverage persistent homology not as a static descriptor, but as the foundation for a dynamic topological optimization process.

The objective of this process is to iteratively adjust the position of each point within its class manifold to maximize topological persistence. This is performed independently for each class $c \in \{1, ..., C\}$ to analyze the specific intra-class structure. For each class, we begin with its low-dimensional point cloud $Y_c = \{\mathbf{y}_j \mid \text{label}(\mathbf{y}_j) = c\}$. We then construct a density-aware Delaunay-Rips filtration on Y_c due to its computational scalability as shown in Mishra and Motta (2023). This filtration builds a sequence of simplicial complexes that captures how the topology of the class evolves across different scales, yielding a class-specific persistence diagram, $\operatorname{Dgm}(Y_c)$.

Similar to work from Scoccola et al. (2024) we define a differentiable loss function, $\mathcal{L}_{pers}(Y_c)$, whose negative gradient, $-\nabla_{Y_c}\mathcal{L}_{pers}$, points in the direction that maximally increases the total persistence of the features in $Dgm(Y_c)$. This loss is formulated using a signed measure derived from the filtration, which assigns positive weights to simplices that create persistent features and negative weights to those that destroy them. For each class c, the optimization seeks a new point configuration Y'_c that minimizes this loss solved iteratively via gradient descent, where the positions of the points in Y_c are updated at each step:

$$Y_c' = \arg\min_{Y_c} \mathcal{L}_{pers}(Y_c) \tag{1}$$

We define the **Persistence Score** for each sample \mathbf{y}_j belonging to class c as the magnitude of its total displacement during its class-specific optimization, where \mathbf{y}_j is the initial position and $\mathbf{y'}_j$ is the final, optimized position.:

$$Score_{pers}(\mathbf{y}_j) = \|\mathbf{y}_j - \mathbf{y'}_j\|_2, \quad \text{for } \mathbf{y}_j \in Y_c, \mathbf{y'}_j \in Y_c'$$
(2)

A high Persistence Score signifies importance because it quantifies the degree of topological instability a sample introduces within its own class manifold. Samples that must move a significant distance are those that initially reside in structurally ambiguous regions of their class which create noisy or short-lived topological features. The optimization process repositions these points to clarify the underlying intra-class structure and increase its persistence. Therefore, the magnitude of this corrective displacement serves as a direct measure of a sample's contribution to the topological complexity of its class. This dynamic, optimization-based score provides a higher-fidelity measure of local importance than static methods, as it is derived from the collective interaction and structural role of every point within the class manifold.

2.3. Comprehensive Coreset with Global and Local Dataset Structures

To create a comprehensive sample importance metric, we formulate a final score that synergizes the local, topological information from our Persistence Score with a global measure of data representativeness. This global component is a **Density Score**, derived from a Kernel Density Estimator (KDE) applied to the projected features within each class, Y_c . The final score for a sample \mathbf{y}_j is a weighted combination of these two metrics:

$$TopoScore(\mathbf{y}_j) = \alpha \cdot Persistence(\mathbf{y}_j) + \beta \cdot Density(\mathbf{y}_j)$$
 (3)

The hyperparameters $\alpha, \beta \in [0,1]$ modulate the influence of local topological complexity (Persistence Score) versus global distributional rarity (Density Score). This allows our framework to construct a coreset that is not only rich in challenging, boundary-defining examples but also maintains a faithful representation of the full dataset's underlying distribution.

Inspired by the findings in Zheng et al. (2023), we incorporate a crucial filtering step, during sample selection, to handle potentially mislabeled data. Since noisy or mislabeled examples can often receive high importance scores but ultimately degrade model accuracy (Swayamdipta et al., 2020), we preemptively remove all training samples that are misclassified by the base model. This ensures that our subsequent topological scoring and selection process operates on a cleaner data distribution, allowing us to focus on samples that are genuinely "hard" rather than simply erroneous. We present coreset accuracy for different dataset pruning rates for CIFAR-10 and CIFAR-100 and show that TopoCore outperforms previous geometric-based coreset selection techniques (see Appendix B).

For brevity, our main Conclusion is presented in Appendix C. We also provide a comprehensive set of additional experiments and theoretical discussions in the appendix, including validation of the architectural transferability of topological versus Euclidean metrics (Appendix E). Ablation study comparing different manifold projection techniques (Appendix F) as well as other supporting results and experiments.

Extended Abstract Track

References

- Tolga Birdal, Aaron Lou, Leonidas Guibas, and Umut Simsekli. Intrinsic dimension, persistent homology and generalization in neural networks. In *Advances in Neural Information Processing Systems*, 2021.
- Zalán Borsos, Mojmir Mutny, and Andreas Krause. Coresets via bilevel optimization for continual learning and streaming. Advances in Neural Information Processing Systems, 2020.
- Yeseul Cho, Baekrok Shin, Changmin Kang, and Chulhee Yun. Lightweight dataset pruning without full training via example difficulty and prediction uncertainty. In *International Conference on Machine Learning*, 2025.
- David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence diagrams. In Symposium on Computational Geometry, 2005.
- Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis, Percy Liang, Jure Leskovec, and Matei Zaharia. Selection via proxy: Efficient data selection for deep learning. In *International Conference on Learning Representations*, 2020.
- Vitaly Feldman. Does learning require memorization? a short tale about a long tail. In ACM SIGACT Symposium on Theory of Computing, 2020.
- Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering the long tail via influence estimation. Advances in Neural Information Processing Systems, 2020.
- Isha Garg and Kaushik Roy. Samples with low loss curvature improve data efficiency. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2023.
- Isha Garg, Deepak Ravikumar, and Kaushik Roy. Memorization through the lens of curvature of loss function around samples. In *International Conference on Machine Learning*, 2024.
- Muyang He, Shuo Yang, Tiejun Huang, and Bo Zhao. Large-scale dataset pruning with dynamic uncertainty. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2024.
- Yang He, Lingao Xiao, and Joey Tianyi Zhou. You only condense once: Two rules for pruning condensed datasets. In Advances in Neural Information Processing Systems, 2023.
- Krishnateja Killamsetty, Ganesh Ramakrishnan, Abir De, and Rishabh Iyer. Grad-match: Gradient matching based data subset selection for efficient deep model training. In *International Conference on Machine Learning*, 2021a.
- Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, and Rishabh Iyer. Glister: Generalization based data subset selection for efficient and robust learning. In *Proceedings of the AAAI conference on artificial intelligence*, 2021b.

- David Loiseaux, Mathieu Carrière, and Andrew Blumberg. A framework for fast and stable representations of multiparameter persistent homology decompositions. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
- Adyasha Maharana, Prateek Yadav, and Mohit Bansal. \$\mathbb{D}^2\$ pruning: Message passing for balancing diversity & difficulty in data pruning. In *International Conference on Learning Representations*, 2024.
- Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and projection for dimension reduction. *ArXiv*, 2018.
- Sören Mindermann, Jan M Brauner, Muhammed T Razzak, Mrinank Sharma, Andreas Kirsch, Winnie Xu, Benedikt Höltgen, Aidan N Gomez, Adrien Morisot, Sebastian Farquhar, et al. Prioritized training on points that are learnable, worth learning, and not yet learnt. In *International Conference on Machine Learning*, 2022.
- Baharan Mirzasoleiman, Jeff A. Bilmes, and Jure Leskovec. Coresets for data-efficient training of machine learning models. In *International Conference on Machine Learning*, 2019.
- Amish Mishra and Francis C Motta. Stability and machine learning applications of persistent homology using the delaunay-rips complex. Frontiers in Applied Mathematics and Statistics, 2023.
- Soham Mukherjee, Shreyas N Samaga, Cheng Xin, Steve Oudot, and Tamal K Dey. D-gril: End-to-end topological learning with 2-parameter persistence. *ArXiv*, 2024.
- Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Finding important examples early in training. Advances in neural information processing systems, 2021.
- Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1901.
- Omead Pooladzandi, David Davini, and Baharan Mirzasoleiman. Adaptive second order coresets for data-efficient machine learning. In *International Conference on Machine Learning*, 2022.
- Luis Scoccola, Siddharth Setlur, David Loiseaux, Mathieu Carrière, and Steve Oudot. Differentiability and optimization of multiparameter persistent homology. In *International Conference on Machine Learning*, 2024.
- Suryaka Suresh, Bishshoy Das, Vinayak Abrol, and S Dutta Roy. On characterizing the evolution of embedding space of neural networks using algebraic topology. *Pattern Recognition Letters*, 2024.
- Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie, Yizhong Wang, Hannaneh Hajishirzi, Noah A Smith, and Yejin Choi. Dataset cartography: Mapping and diagnosing datasets with training dynamics. *ArXiv*, 2020.

Extended Abstract Track

- Haoru Tan, Sitong Wu, Fei Du, Yukang Chen, Zhibin Wang, Fan Wang, and Xiaojuan Qi. Data pruning via moving-one-sample-out. In *Advances in Neural Information Processing Systems*, 2023.
- Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, and Geoffrey J. Gordon. An empirical study of example forgetting during deep neural network learning. In *International Conference on Learning Representations*, 2019.
- Renata Turkes, Guido F Montufar, and Nina Otter. On the effectiveness of persistent homology. Advances in Neural Information Processing Systems, 2022.
- Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of Machine Learning Research*, 2008.
- Yingfan Wang, Haiyang Huang, Cynthia Rudin, and Yaron Shaposhnik. Understanding how dimension reduction tools work: an empirical approach to deciphering t-sne, umap, trimap, and pacmap for data visualization. *Journal of Machine Learning Research*, 2021.
- Xiaobo Xia, Jiale Liu, Jun Yu, Xu Shen, Bo Han, and Tongliang Liu. Moderate coreset: A universal method of data selection for real-world data-efficient deep learning. In International Conference on Learning Representations, 2023.
- Weiwei Xiao, Yongyong Chen, Qiben Shan, Yaowei Wang, and Jingyong Su. Feature distribution matching by optimal transport for effective and robust coreset selection. AAAI Conference on Artificial Intelligence, 2024.
- Tianchi Xie, Jiangning Zhu, Guozu Ma, Minzhi Lin, Wei Chen, Weikai Yang, and Shixia Liu. Structural-entropy-based sample selection for efficient and effective learning. In *International Conference on Learning Representations*, 2025.
- Shuo Yang, Zhe Cao, Sheng Guo, Ruiheng Zhang, Ping Luo, Shengping Zhang, and Liqiang Nie. Mind the boundary: Coreset selection via reconstructing the decision boundary. In *International Conference on Machine Learning*, 2024.
- Haizhong Zheng, Rui Liu, Fan Lai, and Atul Prakash. Coverage-centric coreset selection for high pruning rates. In *International Conference on Learning Representations*, 2023.
- Haizhong Zheng, Elisa Tsai, Yifu Lu, Jiachen Sun, Brian R. Bartoldson, Bhavya Kailkhura, and Atul Prakash. ELFS: Label-free coreset selection with proxy training dynamics. In International Conference on Learning Representations, 2025.

Appendix A. Overview of TopoCore Pipeline

See Figure 1.

Appendix B. Coreset Performance

See Figure 4.

Figure 1: An overview of the TopoCore pipeline. (Left) A UMAP projection of CIFAR-10 visualizes the global data manifold, with colors denoting classes. (Middle) Within a single class, a Kernel Density Estimation (KDE) captures the density distribution before and after persistent homology optimization. The color map indicates high (yellow) to low (blue) density. The density distribution remains unchanged, demonstrating that our topological optimization successfully enhances local feature persistence without altering the global structure. (Right) To construct the final coreset, we first compute a composite score for each sample by combining its global density and local persistence values. We then employ stratified sampling on this score distribution to ensure that the final coreset not only prioritizes the most topologically informative samples but also faithfully represents the density distribution of the original dataset.

Appendix C. Conclusion

In this work, we addressed the critical challenge of "geometric brittleness" in coreset selection, where methods fail to transfer effectively across different neural network architectures due to their sensitivity to extrinsic embedding geometry. We introduced TopoCore, a framework that resolves this issue by leveraging the principles of topology. By combining a global manifold projection for a stable overall representation with a novel local importance score derived from differentiable persistent homology, TopoCore captures the intrinsic, stable structure of the data rather than its transient geometric layout. Our central contribution is a coreset selection method that demonstrates exceptional robustness and architectural invariance. This allows for the direct and efficient application of TopoCore to a wide variety of pretrained models without the need for costly retraining or architecture-specific tuning. Ultimately, TopoCore highlights the promise of topological data analysis in developing more fundamental and universal principles for data-efficient deep learning.

Appendix D. Further Explanation on Topology-based Manifold Projection

This class of methods begins by constructing a topological representation of the highdimensional data in the form of a *fuzzy simplicial set*. A simplicial set is a collection

Extended Abstract Track

Figure 2: Comparison of the test accuracy (averaged over five random seeds) across various geometric-based coreset selection methods on (a) CIFAR-10 and (b) CIFAR-100

of simplices (0-simplices are points, 1-simplices are edges, 2-simplices are triangles, etc.) that captures the shape of the data. The "fuzzy" aspect assigns a membership strength to each simplex, representing the belief that it exists in the true underlying manifold. This is achieved by examining the local neighborhood of each point \mathbf{z}_i and assigning a membership strength p_{ij} to the 1-simplex (edge) connecting it to its neighbor \mathbf{z}_j , based on their distance and normalized by the local density.

The algorithm then seeks to learn a low-dimensional embedding $Y = \{\mathbf{y}_1, \dots, \mathbf{y}_N\}$, where $\mathbf{y}_i \in \mathbb{R}^d$ and $d \ll D$, whose own fuzzy simplicial set is as similar as possible to the one derived from the high-dimensional data. A corresponding set of membership strengths, $Q = \{q_{ij}\}$, is defined for the 1-simplices in the low-dimensional space, typically using a heavy-tailed kernel to allow for effective separation of dissimilar points.

The final low-dimensional representation Y is found by optimizing the positions of the points $\{y_i\}$ to minimize the divergence between the high-dimensional and low-dimensional fuzzy simplicial sets. The objective function, often a form of cross-entropy, can be expressed as:

$$\mathcal{L}(Y) = \sum_{(i,j)} \text{AttractiveForce}(p_{ij}, q_{ij}) + \sum_{(i,j)} \text{RepulsiveForce}(p_{ij}, q_{ij})$$
(4)

This optimization effectively arranges the points in the low-dimensional space such that the topological structure (clusters, voids, and connectivity) of the original high-dimensional manifold is preserved. The resulting representation Y is a standardized embedding robust for downstream tasks like coreset selection.

Appendix E. On the Transferability of Topological vs. Euclidean Features Across Neural Architectures

We provide a formal argument for the superior transferability of topological features derived from persistent homology over traditional Euclidean metrics across different neural

network architectures. We demonstrate that the stability guarantees inherent to persistent homology ensure that its output is robust to the geometric variations common between different network embeddings. Conversely, we show that Euclidean-based metrics, such as the distance to a class prototype, are inherently sensitive to these variations, explaining their lack of transferability.

E.1. Preliminaries and Notation

Let X be the input data space and $Y = \{1, ..., K\}$ be the set of K class labels. A neural network architecture is a function $f: X \to \mathbb{R}^n$ that maps input data to an n-dimensional embedding space. Let f_A and f_B denote two distinct network architectures (e.g., ResNet18 and ViT-L-16). The outputs of these networks for the entire dataset X are the point clouds $X_A = f_A(X)$ and $X_B = f_B(X)$ in their respective embedding spaces. We equip these embedding spaces with the standard Euclidean metric, d_E .

Definition 1 (Vietoris-Rips Filtration) For a point cloud $P \subset \mathbb{R}^n$ and a scale parameter $r \geq 0$, the **Vietoris-Rips complex** VR(P,r) is the simplicial complex whose vertices are the points in P and whose simplices are all finite subsets of P with a diameter of at most 2r. A filtration is the nested sequence of complexes $\{VR(P,r)\}_{r\geq 0}$.

Definition 2 (Persistence Diagram) Applying the homology functor $H_k(\cdot)$ (for a fixed dimension k, e.g., k = 0 for connected components) to a filtration yields a set of birth-death pairs (b,d) representing the scales at which topological features appear and disappear. This multiset of pairs is the **persistence diagram**, denoted Dgm(P). The **persistence** of a feature (b,d) is defined as d-b.

Definition 3 (Bottleneck Distance) The similarity between two persistence diagrams Dgm_1 and Dgm_2 is measured by the **bottleneck distance** $d_B(Dgm_1, Dgm_2)$, defined as the infimum over all bijections $\eta: Dgm_1 \to Dgm_2$ of the supremum of distances between matched points:

$$d_B(\mathit{Dgm}_1,\mathit{Dgm}_2) = \inf_{\eta} \sup_{p \in \mathit{Dgm}_1} \|p - \eta(p)\|_{\infty}$$

Points may also be matched to the diagonal. The p-Wasserstein distance W_p is a related metric.

Definition 4 (Gromov-Hausdorff Distance) The distance between two metric spaces (M_1, d_1) and (M_2, d_2) is measured by the **Gromov-Hausdorff distance** $d_{GH}(M_1, M_2)$, which is the infimum of distances over all possible isometric embeddings into a common metric space. It quantifies the "metric dissimilarity" of two spaces.

E.2. Instability of Euclidean Distances to Prototypes

We now formalize the lack of such stability for Euclidean distances.

Definition 5 (Class Prototype and Distance Distribution) For an embedding f(X) and a class $k \in Y$, the class prototype (centroid) is $c_k = \frac{1}{|X_k|} \sum_{x \in X_k} f(x)$, where X_k are the samples of class k. The set of distances to the prototype is $S_k(f) = \{d_E(f(x), c_k) \mid label(x) = k\}$. Let $P(S_k(f))$ be the probability distribution of these distances.

Proposition 6 (Sensitivity to Scaling) Let f_A be a network embedding. Consider a new embedding f_B defined by a simple isotropic scaling transformation, $f_B(x) = \alpha f_A(x)$ for some scalar $\alpha > 0, \alpha \neq 1$. Then the distribution of distances to the prototype is scaled accordingly: $P(S_k(f_B)) = \alpha P(S_k(f_A))$.

Proof The new class prototype c'_k under the embedding f_B is:

$$c'_{k} = \frac{1}{|X_{k}|} \sum_{x \in X_{k}} f_{B}(x) = \frac{1}{|X_{k}|} \sum_{x \in X_{k}} \alpha f_{A}(x) = \alpha \left(\frac{1}{|X_{k}|} \sum_{x \in X_{k}} f_{A}(x) \right) = \alpha c_{k}$$

The distance for any sample x of class k to the new prototype is:

$$d_{E}(f_{B}(x), c'_{k}) = d_{E}(\alpha f_{A}(x), \alpha c_{k})$$

$$= \|\alpha f_{A}(x) - \alpha c_{k}\|_{2}$$

$$= |\alpha| \cdot \|f_{A}(x) - c_{k}\|_{2} = \alpha \cdot d_{E}(f_{A}(x), c_{k})$$

Thus, every distance value in the set $S_k(f_A)$ is multiplied by α to obtain the set $S_k(f_B)$. The probability distribution of these distances is therefore a scaled version of the original.

E.3. Theoretical Guarantees for Persistent Homology

The transferability of persistence-based features is a direct consequence of the fundamental stability theorem of topological data analysis (Cohen-Steiner et al., 2005).

Theorem 7 (Invariance and Stability of Persistent Homology)

- 1. **Isometry Invariance**: Let $P \subset \mathbb{R}^n$ be a point cloud and $g : \mathbb{R}^n \to \mathbb{R}^n$ be a Euclidean isometry (translation, rotation, reflection). Then, the persistence diagram is unchanged: Dgm(P) = Dgm(g(P)).
- 2. **Stability**: Let X_A and X_B be two point clouds in \mathbb{R}^n . The bottleneck distance between their respective persistence diagrams is bounded by the Gromov-Hausdorff distance between their metric spaces:

$$d_B(Dgm(X_A), Dgm(X_B)) \le d_{GH}((X_A, d_E), (X_B, d_E))$$

Proof (1) An isometry g preserves all pairwise Euclidean distances. Since the Vietoris-Rips filtration is constructed based solely on these distances, the filtration $\{VR(P,r)\}_{r\geq 0}$ is identical to $\{VR(g(P),r)\}_{r\geq 0}$. Applying the homology functor to identical filtrations yields identical persistence diagrams. (2) The proof is a cornerstone result in TDA. It formalizes the intuition that if two spaces are metrically similar (a small d_{GH}), their topological features as captured by persistence homology must also be similar (a small d_B).

E.4. Application to Neural Networks

Consider two networks f_A and f_B trained for the same classification task. Although they may produce geometrically distinct embeddings X_A and X_B , they are both optimized to preserve the topological structure of the input data. This incentivizes the networks to learn representations where the Gromov-Hausdorff distance $d_{GH}(X_A, X_B)$ is bounded. By Theorem 2.1, this implies that the bottleneck distance $d_B(\operatorname{Dgm}(X_A), \operatorname{Dgm}(X_B))$ is also bounded. Consequently, the distributions of persistence values derived from these diagrams will be similar.

This proposition demonstrates that even a trivial geometric transformation which does not alter the topological structure of the embedding, fundamentally changes the distribution of Euclidean distances to the class prototype. Different network architectures, with their varying normalization schemes, naturally produce embeddings at different scales. There exists no stability theorem analogous to Theorem 2.1 that would bound the change in this distribution. The observed transferability of persistence-based features across diverse neural network architectures is theoretically grounded in the Stability Theorem of persistent homology. This theorem guarantees that persistence diagrams, which capture the intrinsic topological structure of data, are robust to the metric deformations between different network embeddings. In contrast, extrinsic geometric measures like the Euclidean distance to a class centroid lack any such theoretical guarantee. They are provably sensitive to simple geometric transformations, making their distributions inherently dependent on the specific architecture that generated the embedding.

E.5. Empirical Validation

To validate the above proof related to the stability of persistent homology across perturbations in the embedding space we look at (a) the euclidean distance of samples to their class prototype (Figure 3), (b) the density of samples after manifold projection (Figure 4(a)) and (c) the persistence score of samples (Figure 4(b)). We see that that as we move from euclidean-based metric (a) to global topology (b) to local topology (c) we see an increased uniformity in the metrics, showing increased stability to embedding space perturbations with topological information. As similarly shown in Turkes et al. (2022), the properties of topology render methods like TopoCore exceptionally stable across issues that arise in deep learning such as limited training data, noisy and out-of-distribution data. This insight is similar to findings in Suresh et al. (2024) which investigated the topological complexity of the embedding space of different network architectures based on Betti numbers and Coleman et al. (2020) which showed that the feature representation of smaller proxy models can be used directly to determine the sample importance of larger more expensive models.

Figure 3: Euclidean distance of individual samples to their class prototype (barycenter) across a wide range of network architectures for CIFAR-100. We see that these distances, from the feature embedding space, are not uniform across architectures.

Figure 4: (a) Kernel density estimation of individual samples within their class across a wide range of network architectures for CIFAR-100. We see that applying a "global" topology standardization via manifold projection starts improving stability across architectures. (b) Persistence score of individual samples within their class across a wide range of network architectures for CIFAR-100. By further adding the "local" topological structure, we see further improvement in stability where probability distributions across architectures almost fully match.

Appendix F. Manifold Projection as a Topological Standardization

We provide a formal argument explaining why preprocessing high-dimensional neural network embeddings with a topological projection like UMAP induces stability in both topological and traditional Euclidean metrics across different architectures. We posit that while networks produce embeddings that are topologically similar but geometrically disparate, the UMAP algorithm acts as a standardizing function. It maps these embeddings to a common low-dimensional space where they become geometrically, and thus metrically, aligned.

F.1. Preliminaries and Notation

Let X be the input data space. Let $f_A, f_B : X \to \mathbb{R}^n$ be two distinct neural network architectures mapping data to a high-dimensional embedding space. Let $X_A = f_A(X)$ and $X_B = f_B(X)$ be the resulting point clouds.

We introduce a dimensionality reduction function $g: \mathbb{R}^n \to \mathbb{R}^d$ (with $d \ll n$, e.g., d=2) representing the UMAP algorithm. The final low-dimensional embeddings are denoted $Y_A = g(X_A)$ and $Y_B = g(X_B)$. Our analysis concerns the properties of these final embeddings, Y_A and Y_B .

The definitions of Persistence Diagram $\mathrm{Dgm}(\cdot)$, Bottleneck Distance d_B , and Gromov-Hausdorff Distance d_{GH} remain as previously stated.

F.2. The Normalizing Effect of UMAP Projection

The central thesis is that UMAP acts as a normalizing function that maps topologically similar but geometrically disparate spaces to a common, standardized geometric representation.

Principle 8 (UMAP's Objective) The UMAP algorithm first constructs a fuzzy topological representation of a high-dimensional point cloud P (a weighted graph, or fuzzy simplicial set). It then seeks to find a low-dimensional embedding Y = g(P) whose own fuzzy topological representation is as similar as possible to that of P. This similarity is optimized by minimizing the cross-entropy between the two representations.

Argument for Standardization

- 1. Initial Topological Similarity: As argued previously, different networks f_A and f_B trained on the same task learn to preserve the intrinsic topology of the data. Therefore, the high-dimensional embeddings X_A and X_B are topologically similar. This implies their fuzzy simplicial set representations, which UMAP computes, are also nearly identical.
- 2. **Identical Optimization Goal:** Since the topological structures of X_A and X_B are nearly identical, UMAP is given effectively the same optimization target for both embeddings. The algorithm's objective is to arrange points in \mathbb{R}^d to best match this target structure.
- 3. **Geometric Congruence:** As the UMAP optimization procedure is deterministic (up to minor initialization effects), feeding it nearly identical topological inputs will result

Topology-based Data Pruning

Extended Abstract Track

in nearly identical geometric outputs. The resulting low-dimensional embeddings Y_A and Y_B will thus be approximately congruent via an isometry. This implies that their geometric dissimilarity is minimal:

$$d_{GH}((Y_A, d_E), (Y_B, d_E)) \approx 0$$

In essence, UMAP discards the original, architecture-dependent extrinsic geometry of X_A and X_B and constructs new, standardized geometries for Y_A and Y_B based on their shared underlying topology.

F.3. Stability of Persistent Homology

The stability of persistence is a direct and strengthened consequence of the UMAP normalization.

Theorem 9 (Stability of Persistence Post-UMAP) Let $Y_A = g(f_A(X))$ and $Y_B = g(f_B(X))$ be the UMAP-projected embeddings. The bottleneck distance between their persistence diagrams is minimal:

$$d_B(Dgm(Y_A), Dgm(Y_B)) \le d_{GH}(Y_A, Y_B) \approx 0$$

Proof This follows directly from the Stability Theorem of persistent homology and the normalizing effect of UMAP, which ensures that the Gromov-Hausdorff distance between the projected point clouds is close to zero.

This confirms that the distribution of persistence values calculated on the low-dimensional embeddings will be highly stable across architectures.

F.4. Induced Stability of Euclidean Distances

The original instability of Euclidean metrics is overcome by the UMAP preprocessing step.

Proposition 10 (Induced Stability of Prototype Distances) Let Y_A and Y_B be the UMAP-projected embeddings. Given that UMAP produces geometrically congruent embeddings (Y_A and Y_B are nearly isometric), the probability distributions of Euclidean distances to their respective class prototypes, $P(S_k(g \circ f_A))$ and $P(S_k(g \circ f_B))$, will be nearly identical.

Proof [Proof Sketch] Since Y_A and Y_B are nearly isometric, there exists an isometry $T: \mathbb{R}^d \to \mathbb{R}^d$ (a rotation and/or translation) such that for any point $y_A \in Y_A$ and its corresponding point $y_B \in Y_B$, we have $y_B \approx T(y_A)$. The class prototype c'_k in the space Y_B is the mean of its points, so $c'_k \approx T(c_k)$, where c_k is the prototype in Y_A . The Euclidean distance for a sample in Y_B is therefore:

$$d_E(y_B, c_k') \approx d_E(T(y_A), T(c_k))$$

Since isometries preserve Euclidean distances by definition, $d_E(T(y_A), T(c_k)) = d_E(y_A, c_k)$. Thus, the set of distances $S_k(g \circ f_B)$ is almost identical to the set of distances $S_k(g \circ f_A)$, leading to nearly identical probability distributions.

F.5. Application to Neural Networks

The inclusion of a UMAP projection as a preprocessing step is a critical component in achieving metric stability across diverse neural network architectures. While high-dimensional embeddings may vary significantly in their extrinsic geometry, they share a common intrinsic topology. The UMAP algorithm leverages this shared topology to construct new, low-dimensional embeddings that are not only topologically faithful but also geometrically standardized. This standardization forces both the topological features (by design) and the extrinsic Euclidean features (as a consequence) of the final embeddings to be consistent.

F.6. Empirical Validation

To further elaborate on the proof related to the standardization of topology-based manifold approximation and projection across perturbations in the embedding space we look at correlation between per-sample distance to prototypes across different manifold projection and feature reduction techniques (a) PCA (Pearson, 1901), (b) t-SNE (van der Maaten and Hinton, 2008) (c) PaCMAP (Wang et al., 2021) and (d) UMAP (McInnes et al., 2018). We see that the topology-based methods, UMAP and PaCMAP, demonstrate significantly higher correlation and thus better transferability across architectures compared to linear PCA or the more locally-focused t-SNE. Notably, UMAP exhibits slightly superior transferability over PaCMAP, reinforcing its selection for our framework. This high correlation between smaller models (e.g., ResNet-18) and larger models is particularly valuable, as it validates the use of computationally inexpensive networks to generate feature embeddings that remain effective for data selection on much larger models. See Figure 5.

Figure 5: Correlation of per-sample distance to prototype across different architectures when applying different linear and non-linear manifold projection techniques.

Appendix G. Ablation on "Global" Density and "Local" Persistence

We investigate the impact of the hyperparameters α and β from Equation (3), which balance the influence of global density and local persistence (see Figure 6). Our analysis reveals that the final coreset quality is remarkably stable to variations in these parameters across different pruning rates. This low sensitivity allows us to use a consistent (α, β) configuration, set at (50/50), across diverse datasets and network architectures, minimizing the need for extensive hyperparameter tuning.

Figure 6: Topology hyperparameters are generally stable.

Appendix H. Ablation on Persistence Optimization Steps

We investigate the impact of the number of optimization steps for "local" persistent homology (see Figure 7). The number of required persistence optimization steps is inversely correlated with the final coreset size. When selecting a large coreset (e.g., at a 30% pruning rate), the selection process is robust, and even a few optimization steps (1-2) suffice to identify a high-quality subset. However, at high pruning rates (e.g., 90%), the task of distinguishing the most crucial samples becomes more sensitive, necessitating a greater number of optimization steps (≥ 6) to allow the point positions to converge and accurately reveal the most structurally important examples.

Appendix I. Relating Topology and Memorization

As a fun experiment, we examine the link between the intra-class density of our topology-based manifold projection and the established notion of sample memorization (Feldman, 2020; Feldman and Zhang, 2020), measured via the input curvature score (Garg et al., 2024). We see that high-density samples, which are prototypical examples near a class's barycenter, consistently exhibit low input curvature, characteristic of un-memorized, typical examples.

Extended Abstract Track

Figure 7: The required number of persistence optimization steps is inversely correlated with the final coreset size. Smaller coresets have a lower margin for error, as the importance of each selected sample is magnified. Consequently, more optimization steps are needed to precisely distinguish the most critical samples. In contrast, larger coresets are more forgiving, requiring fewer steps to achieve a high-quality result.

While low-density samples, which represent atypical data, show high input curvature, a key indicator of highly memorized samples.

Figure 8: **Prototypical Samples:** Top-10 lowest curvature samples (left) vs. highest density samples (right) of the same class, for five CIFAR-100 classes.

Figure 9: **Atypical Samples:** Top-10 highest curvature samples (left) vs. lowest density samples (right) of the same class, for five CIFAR-100 classes.