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Abstract

Geometric coreset selection is often compromised by architectural variance in feature
embeddings. We propose a solution grounded in topological invariance, which first stan-
dardizes the data’s global manifold before a differentiable persistence-based optimizer dis-
tills local sample importance from each point’s corrective displacement. The resulting
framework yields coresets that are fundamentally robust to the geometric shifts between
diverse pretrained models, enabling universal applicability.

1. Introduction

The immense scale of modern datasets and foundation models has made training and fine-
tuning computationally prohibitive. Data pruning (or commonly called coreset selection)
addresses this by creating a small, representative subset of the data that preserves the full
dataset’s essential learning characteristics. This enables faster training, efficient fine-tuning,
and reduced storage costs with minimal degradation in model performance.

Coreset selection methods that require model training can be broadly categorized into
two groups. Optimization-based methods select a subset whose loss (Killamsetty et al.,
2021b; Mindermann et al., 2022) or gradient dynamics (Mirzasoleiman et al., 2019; Kil-
lamsetty et al., 2021a; Tan et al., 2023) closely match the full dataset, but often rely on
computationally intensive second-order (Pooladzandi et al., 2022) or bilevel optimization
(Borsos et al., 2020). Similarly, score-based methods rank samples using training dynam-
ics (Toneva et al., 2019; Garg and Roy, 2023; Zheng et al., 2025) or uncertainty scores
(Paul et al., 2021; He et al., 2023, 2024; Cho et al., 2025), but these metrics are dynamic
throughout training and model-dependent. The critical limitation for both is their reliance
on training-time information, making them incompatible with the vast ecosystem of pre-
trained models where only final weights are available.

To overcome this constraint, geometric-based coreset selection methods operate on static
feature embeddings extracted from a suitably trained model, which removes the need for
costly training-based analysis. Approaches in this domain range from analyzing the penul-
timate layer feature embedding space (Xia et al., 2023), using optimal transport to measure
distributional similarity (Xiao et al., 2024), or leveraging the geometric reconstruction er-
ror of samples (Yang et al., 2024). However, a significant limitation of existing geometric
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methods is their reliance on metrics that are sensitive to the extrinsic geometry of the em-
bedding space, a vulnerability we term ”geometric brittleness.” This leads to two primary
shortcomings. First, these methods tend to prioritize samples from dense, highly repre-
sented regions of the data manifold, often at the expense of informative samples from the
sparse tails of the distribution, an issue that is exacerbated at high pruning rates (Zheng
et al., 2023). Second, their performance is not stable across different network architectures,
as each model produces a unique geometric embedding. This instability is particularly ap-
parent in graph-based methods (Maharana et al., 2024; Xie et al., 2025), where Euclidean
distance-based metrics are used for hyperparameter tuning, making them highly sensitive to
changes in the geometric embedding space and not easily transferable across architectures
(see Appendix E for more details).

In this work, we introduce TopoCore, a novel framework that resolves the challenge of ge-
ometric brittleness by leveraging the principles of topology. The inherent invariance of topol-
ogy to geometric deformation allows TopoCore to achieve exceptional stability. TopoCore
achieves this through a unique combination of topological structures at two distinct scales:

1. Global Structure via Manifold Projection: We employ topology-aware mani-
fold approximation (McInnes et al., 2018a; Wang et al., 2021) to project the high-
dimensional feature space into a standardized, low-dimensional representation. This
provides a stable global view that preserves the data’s density distribution, ensuring
comprehensive coverage.

2. Local Structure via Differentiable Persistent Homology: While global scores
can group similarly important samples, they fail to distinguish which ones to prior-
itize within a localized region. Existing methods often resort to random sampling
within these strata or use geometric heuristics like message-passing (Maharana et al.,
2024). We propose a more principled approach using differentiable persistent homol-
ogy (Cohen-Steiner et al., 2005; Birdal et al., 2021; Mukherjee et al., 2024) to assess
a sample’s importance relative to its immediate neighbors. Instead of using a static
topological measure, we perform a topological optimization that maximizes the per-
sistence of samples w.r.t. it’s closest neighbors (Loiseaux et al., 2023). Through this
optimization, samples in topologically ambiguous positions are repositioned to max-
imize the persistence of their local structures. The magnitude of this displacement
quantifies a sample’s local structural importance, enabling the selection of the most
informative examples from groups of otherwise indistinguishable points.

By defining sample importance through the stable, intrinsic properties of topology,
TopoCore moves beyond brittle geometric heuristics to deliver a truly architecture-agnostic
coreset selection framework (see Appendix A for a visual representation of the pipeline).

2. Methodology

Our proposed method, TopoCore, constructs a coreset by analyzing the data’s topological
structure at two distinct scales. The first stage, Global Manifold Representation, addresses
the challenge of architectural variance by projecting the original high-dimensional embed-
dings into a standardized low-dimensional space. This ensures a stable, global view of the
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data’s overall shape. The second stage, Local Topological Scoring, then analyzes the in-
tricate local structure of this manifold. We use differentiable multi-parameter persistent
homology to derive an importance score for each sample based on its contribution to the
local topological complexity, effectively measuring its importance relative to its neighbors.

2.1. Global Structure: Dataset Representation with Topological Manifold
Embedding

Given a well-trained deep model, denoted by f(·), we can express it as a composition of a
feature extractor h(·) and a classifier g(·), such that f(·) = g(h(·)). Here, h(·) represents the
network up to the penultimate layer, which maps an input data point x to a high-dimensional
hidden representation z = h(x) ∈ RD. The full training dataset S = {(x1, y1), . . . , (xN , yN )}
can thus be transformed into a high-dimensional feature set Z = {z1, . . . , zN}. While this
high-dimensional space Z contains rich semantic information, its extrinsic geometry is often
complex and architecture-dependent. To obtain a stable and standardized representation,
we project Z onto a low-dimensional manifold using topology-based manifold approximation
and projection techniques (McInnes et al., 2018a; Wang et al., 2021). See Appendix D for
a more detailed explanation on these techniques. Through a detailed investigation into
different manifold approximation and projection techniques presented in Appendix F and
Figure 5 we use the Uniform Manifold Approximation & Projection (McInnes et al., 2018a)
algorithm as it creates more uniform feature embeddings across network architectures.

2.2. Local Structure: Sample Neighbors with Persistence-Based Optimizer

The Global Manifold Embedding provides a low-dimensional representation that faithfully
preserves the global structure of the data manifold. While this ensures a stable, high-level
representation, a purely global perspective is insufficient for identifying the most informative
samples, whose importance is often defined by the complex local interactions with their
nearest neighbors. To capture this fine-grained structure, we leverage persistent homology
not as a static descriptor, but as the foundation for a dynamic topological optimization
process. The objective of this process is to iteratively adjust the position of each point within
its class manifold to maximize topological persistence. This is performed independently for
each class c ∈ {1, . . . , C} to analyze the specific intra-class structure. For each class, we
begin with its point cloud from the global manifold embedding Yc = {yi | label(yi) = c} and
construct a Vietoris-Rips filtration (Oudot, 2015) on Yc due to it’s computational scalability
compared to Alpha and Čech complexes, as shown in Otter et al. (2017) and Mishra and
Motta (2023).

Similar to work from Scoccola et al. (2024) we define a differentiable loss function,
Lpers(Yc), whose negative gradient, −∇YcLpers, points in the direction that maximally in-
creases the total persistence of the features. This loss is formulated using a multi-parameter
filtration considering two parameters: (1) the class-manifold Vietoris-Rips filtration (V RYc)
and (2) the class-manifold Kernel Density Estimator (f̂ = KDEYc). The persistence of this
two-parameter filtration is summarized using the Hilbert decomposition signed measure,
denoted µHil

H(V RYc
,f̂)

(Botnan and Lesnick, 2022).

This descriptor represents the persistence diagram as a finite collection of positive point
masses (representing feature births) and negative point masses (representing feature deaths)
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in the parameter space of (distance, density). Our objective is to maximize the persistence,
which is accomplished by maximizing the Optimal Transport (OT) distance between this
signed measure and the zero measure, 0 (Carriere et al., 2021). The differentiable loss
function for a given class c is therefore defined as:

Lpers(Yc) := OT(µHil
H(V RYc ,f̂)

,0) (1)

The optimization seeks a new point configuration Y ′
c that minimizes this loss (see Ap-

pendix H exploring the number of optimization steps). This formulation ensures that the
optimization enhances topological stability while preserving the original density of the class
manifold, as the density is recomputed at each epoch and is an integral part of the loss
calculation. We define the Persistence Score for each sample yi belonging to class c as
the magnitude of its total displacement during its class-specific optimization, where yi is
the initial position and y′

i is the final, optimized position:

Scorepers(yi) = ∥yi − y′
i∥2, for yi ∈ Yc,y

′
i ∈ Y ′

c (2)

Interpreting this notion of local dataset structure. A high Persistence Score quan-
tifies the degree of topological instability a sample introduces within its own class manifold.
Crucially, our optimization process is designed to be density-preserving, it enhances local
topological features without altering the overall density distribution of the class manifold.
This is vital for coreset selection, as it ensures our search for structurally important samples
does not distort the global representativeness of the data. The optimization process reposi-
tions these points to clarify the underlying intra-class structure and increase its persistence.
Therefore, the magnitude of this corrective displacement serves as a direct, dynamic mea-
sure of a sample’s contribution to the topological complexity of its class, derived from the
collective interaction of every point in the manifold.

2.3. Comprehensive Coreset with Global and Local Dataset Structures

To create a comprehensive sample importance metric, we formulate a final score that syner-
gizes the local, topological information from our Persistence Score with a global measure of
data representativeness. This global component is a Density Score, derived from a Kernel
Density Estimator (KDE) applied to the projected features within each class, Yc. The final
score for a sample yj is a weighted combination of these two metrics:

TopoScore(yj) = α · Persistence(yj) + β ·Density(yj) (3)

The hyperparameters α, β ∈ [0, 1] modulate the influence of local topological complexity
(Persistence Score) versus global distributional rarity (Density Score). This allows our
framework to construct a coreset that is not only rich in challenging, boundary-defining
examples but also maintains a faithful representation of the full dataset’s underlying distri-
bution.

For brevity, our main Conclusion is presented in Appendix B. We present coreset ac-
curacy for different dataset pruning rates for CIFAR-10 and CIFAR-100 and show that
TopoCore outperforms previous geometric-based coreset selection techniques (see Appendix C).
We also provide a comprehensive set of additional experiments and theoretical discussions in
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the appendix, including validation of the architectural transferability of topological versus
Euclidean metrics (Appendix E). Ablation study comparing different manifold projection
techniques (Appendix F) as well as other supporting results and experiments.
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Appendix A. Overview of TopoCore Pipeline

See Figure 1

Appendix B. Conclusion

In this work, we addressed the critical challenge of ”geometric brittleness” in coreset selec-
tion, where methods fail to transfer effectively across different neural network architectures
due to their sensitivity to extrinsic embedding geometry. We introduced TopoCore, a frame-
work that resolves this issue by leveraging the principles of topology. By combining a global
manifold projection for a stable overall representation with a novel local importance score
derived from differentiable persistent homology, TopoCore captures the intrinsic, stable
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Figure 1: An overview of TopoCore. (Left) A topology-aware projection visualizes
the global data manifold. (Middle) Within each class, a density-preserving per-
sistent homology optimization derives a local persistence score per sample. The
color map indicates high (yellow) to low (blue) density. (Right) The final coreset
is constructed via stratified sampling on a unified score combining global density
and local persistence. This not only prioritizes the most topologically informa-
tive samples but also faithfully represents the density distribution of the original
dataset.

structure of the data rather than its transient geometric layout. Our central contribution
is a coreset selection method that demonstrates exceptional robustness to perturbations in
feature embedding across architectures. This allows for the direct and efficient application
of TopoCore to a wide variety of pretrained models without the need for costly retraining
or architecture-specific tuning. Ultimately, TopoCore highlights the promise of topologi-
cal data analysis in developing more fundamental and universal principles for data-efficient
deep learning.

Appendix C. Coreset Performance on CIFAR-10 and CIFAR-100

C.1. Experimental Setup

TopoCore utilizes several tools and frameworks. Manifold projection is performed using
UMAP (McInnes et al., 2018b), multipers (Loiseaux and Schreiber, 2024) facilitates dif-
ferential persistent homology which uses the Gudhi C++ library (Maria et al., 2025) as
a backend, and DeepCore (Guo et al., 2022) is used to standardize coreset selection and
training across different methods.

Inspired by the findings in Zheng et al. (2023), we incorporate a crucial filtering step,
during sample selection, to handle potentially mislabeled data. Since noisy or mislabeled
examples can often receive high importance scores but ultimately degrade model accuracy
(Swayamdipta et al., 2020), we preemptively remove all training samples that are misclassi-
fied by the base model. This ensures that our subsequent topological scoring and selection
process operates on a cleaner data distribution, allowing us to focus on samples that are
genuinely ”hard” rather than simply erroneous.
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We compare TopoCore with several geometry-based coreset selection methods: A)
Random selection. B) Moderate (Xia et al., 2023) uses samples near the median dis-
tance to a class prototype. C) FDMat (Xiao et al., 2024) matches data distribution be-
tween dataset and coreset using optimal transport. D) D2 (Maharana et al., 2024) uses
a message-passing graph network. All reported coreset accuracies and standard deviations
are computed over five independent training runs, with each run using a different random
seed. Please see Figure 2 and Table 1.

(a) Results on CIFAR-10 (b) Results on CIFAR-100

Figure 2: Comparison of the test accuracy (averaged over five random seeds) across various
geometric-based coreset selection methods on (a) CIFAR-10 and (b) CIFAR-100

Appendix D. Further Explanation on Topology-based Manifold
Projection

This class of methods begins by constructing a topological representation of the high-
dimensional data in the form of a fuzzy simplicial set. A simplicial set is a collection
of simplices (0-simplices are points, 1-simplices are edges, 2-simplices are triangles, etc.)
that captures the shape of the data. The “fuzzy” aspect assigns a membership strength to
each simplex, representing the belief that it exists in the true underlying manifold. This is
achieved by examining the local neighborhood of each point zi and assigning a membership
strength pij to the 1-simplex (edge) connecting it to its neighbor zj , based on their distance
and normalized by the local density.

The algorithm then seeks to learn a low-dimensional embedding Y = {y1, . . . ,yN},
where yi ∈ Rd and d ≪ D, whose own fuzzy simplicial set is as similar as possible to the
one derived from the high-dimensional data. A corresponding set of membership strengths,
Q = {qij}, is defined for the 1-simplices in the low-dimensional space, typically using a
heavy-tailed kernel to allow for effective separation of dissimilar points.

The final low-dimensional representation Y is found by optimizing the positions of the
points {yi} to minimize the divergence between the high-dimensional and low-dimensional
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Table 1: Accuracy and standard deviation across various geometric-based coreset selection
methods on CIFAR-10 and CIFAR-100.

CIFAR-10 (ResNet-18)

Pruning Rate (→) 30% 50% 70% 80% 90%

Random 94.5±0.1 93.5±0.1 90.8±0.2 86.6±0.3 76.7±0.9
Moderate (Xia et al., 2023) 94.2±0.1 93.1±0.1 89.9±0.2 87.2±0.2 76.9±1.0
FDMat (Xiao et al., 2024) 94.7±0.1 93.6±0.2 90.8±0.2 87.3±0.4 74.4±0.7
D2 (Maharana et al., 2024) 95.6±0.1 94.8±0.1 93.1±0.1 89.2±0.2 80.9±1.5

TopoCore 94.7±0.2 93.7±0.2 91.6±0.1 88.7±0.4 82.1±0.3

CIFAR-100 (ResNet-18)

Pruning Rate (→) 30% 50% 70% 80% 90%

Random 75.3±0.2 71.6±0.1 63.7±0.5 55.9±1.0 34.0±1.1
Moderate (Xia et al., 2023) 74.9±0.3 70.1±0.3 63.7±0.2 56.1±0.5 34.9±2.1
FDMat (Xiao et al., 2024) 75.4±0.2 71.9±0.3 64.0±0.6 56.1±1.5 37.5±1.6
D2 (Maharana et al., 2024) 75.1±0.5 71.2±0.2 67.8±0.9 61.1±1.4 44.3±2.6

TopoCore 75.9±0.4 72.8±0.3 66.9±0.5 61.9±0.6 45.8±0.7

fuzzy simplicial sets. The objective function, often a form of cross-entropy, can be expressed
as:

L(Y ) =
∑
(i,j)

AttractiveForce(pij , qij) +
∑
(i,j)

RepulsiveForce(pij , qij) (4)

This optimization effectively arranges the points in the low-dimensional space such that
the topological structure (clusters, voids, and connectivity) of the original high-dimensional
manifold is preserved. The resulting representation Y is a standardized embedding robust
for downstream tasks like coreset selection.

Appendix E. On the Transferability of Topological vs. Euclidean
Features

We provide a formal argument for the superior transferability of topological features derived
from persistent homology over traditional Euclidean metrics across different neural network
architectures (Papillon et al., 2025). We demonstrate that the stability guarantees inherent
to persistent homology ensure that its output is robust to the geometric variations common
between different network embeddings. Conversely, we show that Euclidean-based metrics,
such as the distance to a class prototype, are inherently sensitive to these variations.

E.1. Preliminaries and Notation

Let X be the input data space and Y = {1, . . . ,K} be the set of K class labels. A neural
network architecture is a function f : X → Rn that maps input data to an n-dimensional
embedding space. Let fA and fB denote two distinct network architectures (e.g., ResNet18
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and ViT-L-16). The outputs of these networks for the entire dataset X are the point clouds
XA = fA(X) and XB = fB(X) in their respective embedding spaces. We equip these
embedding spaces with the standard Euclidean metric, dE .

Definition 1 (Vietoris-Rips Filtration) For a point cloud P ⊂ Rn and a scale param-
eter r ≥ 0, the Vietoris-Rips complex V R(P, r) is the simplicial complex whose vertices
are the points in P and whose simplices are all finite subsets of P with a diameter of at
most 2r. A filtration is the nested sequence of complexes {V R(P, r)}r≥0.

Definition 2 (Persistence Diagram) Applying the homology functor Hk(·) (for a fixed
dimension k, e.g., k = 0 for connected components) to a filtration yields a set of birth-death
pairs (b, d) representing the scales at which topological features appear and disappear. This
multiset of pairs is the persistence diagram, denoted Dgm(P ). The persistence of a
feature (b, d) is defined as d− b.

Definition 3 (Bottleneck Distance) The similarity between two persistence diagrams
Dgm1 and Dgm2 is measured by the bottleneck distance dB(Dgm1,Dgm2), defined as the
infimum over all bijections η : Dgm1 → Dgm2 of the supremum of distances between matched
points:

dB(Dgm1,Dgm2) = inf
η

sup
p∈Dgm1

∥p− η(p)∥∞

Points may also be matched to the diagonal. The p-Wasserstein distance Wp is a related
metric.

Definition 4 (Gromov-Hausdorff Distance) The distance between two metric spaces
(M1, d1) and (M2, d2) is measured by the Gromov-Hausdorff distance dGH(M1,M2),
which is the infimum of distances over all possible isometric embeddings into a common
metric space. It quantifies the “metric dissimilarity” of two spaces.

E.2. Instability of Euclidean Distances to Prototypes

We now formalize the lack of such stability for Euclidean distances.

Definition 5 (Class Prototype and Distance Distribution) For an embedding f(X)
and a class k ∈ Y , the class prototype (centroid) is ck = 1

|Xk|
∑

x∈Xk
f(x), where Xk are

the samples of class k. The set of distances to the prototype is Sk(f) = {dE(f(x), ck) |
label(x) = k}. Let P (Sk(f)) be the probability distribution of these distances.

Proposition 6 (Sensitivity to Scaling) Let fA be a network embedding. Consider a
new embedding fB defined by a simple isotropic scaling transformation, fB(x) = αfA(x)
for some scalar α > 0, α ̸= 1. Then the distribution of distances to the prototype is scaled
accordingly: P (Sk(fB)) = αP (Sk(fA)).

Proof The new class prototype c′k under the embedding fB is:

c′k =
1

|Xk|
∑
x∈Xk

fB(x) =
1

|Xk|
∑
x∈Xk

αfA(x) = α

 1

|Xk|
∑
x∈Xk

fA(x)

 = αck
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The distance for any sample x of class k to the new prototype is:

dE(fB(x), c
′
k) = dE(αfA(x), αck)

= ∥αfA(x)− αck∥2
= |α| · ∥fA(x)− ck∥2 = α · dE(fA(x), ck)

Thus, every distance value in the set Sk(fA) is multiplied by α to obtain the set Sk(fB).
The probability distribution of these distances is therefore a scaled version of the original.

E.3. Stability Guarantees for Persistent Homology

The transferability of persistence-based features is a direct consequence of the fundamental
stability theorem of topological data analysis (Cohen-Steiner et al., 2005).

Proposition 7 (Invariance and Stability of Persistent Homology)

1. Isometry Invariance: Let P ⊂ Rn be a point cloud and g : Rn → Rn be a Eu-
clidean isometry (translation, rotation, reflection). Then, the persistence diagram is
unchanged: Dgm(P ) = Dgm(g(P )).

2. Stability: Let XA and XB be two point clouds in Rn. The bottleneck distance between
their respective persistence diagrams is bounded by the Gromov-Hausdorff distance
between their metric spaces:

dB(Dgm(XA),Dgm(XB)) ≤ dGH((XA, dE), (XB, dE))

Proof (1) An isometry g preserves all pairwise Euclidean distances. Since the Vietoris-
Rips filtration is constructed based solely on these distances, the filtration {V R(P, r)}r≥0 is
identical to {V R(g(P ), r)}r≥0. Applying the homology functor to identical filtrations yields
identical persistence diagrams. (2) The proof is a cornerstone result in TDA. It formalizes
the intuition that if two spaces are metrically similar (a small dGH), their topological features
as captured by persistence homology must also be similar (a small dB).

E.4. Empirical Validation

To validate the above proof related to the stability of persistent homology across perturba-
tions in the embedding space we look at (a) the euclidean distance of samples to their class
prototype (Figure 3), (b) the density of samples after manifold projection (Figure 4(a))
and (c) the persistence score of samples (Figure 4(b)). We see that that as we move from
euclidean-based metric (a) to global topology (b) to local topology (c) we see an increased
uniformity in the metrics, showing increased stability to embedding space perturbations
with topological information. As similarly shown in Turkes et al. (2022), the properties of
topology render methods like TopoCore exceptionally stable across issues that arise in deep
learning such as limited training data, noisy and out-of-distribution data. This insight is
similar to findings in Suresh et al. (2024) which investigated the topological complexity of
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the embedding space of different network architectures based on Betti numbers and Cole-
man et al. (2020) which showed that the feature representation of smaller proxy models can
be used directly to determine the sample importance of larger more expensive models.

Figure 3: Euclidean distance of individual samples to their class prototype (barycenter)
across a wide range of network architectures for CIFAR-100. We see that these
distances, from the feature embedding space, are not uniform across architectures.

(a) Density (b) Persistence

Figure 4: (a) Kernel density estimation of individual samples within their class across a
wide range of network architectures for CIFAR-100. We see that applying a
”global” topology standardization via manifold projection starts improving sta-
bility across architectures. (b) Persistence score of individual samples within their
class across a wide range of network architectures for CIFAR-100. By further
adding the ”local” topological structure, we see further improvement in stability
where probability distributions across architectures almost fully match.
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Appendix F. Manifold Projection as a Topological Standardization

Applying a UMAP projection as a preprocessing step is critical for achieving metric stability
across diverse neural network architectures. While high-dimensional embeddings may vary
in their extrinsic geometry, they share a common intrinsic topology. UMAP leverages this
shared structure to construct a new, low-dimensional manifold that is not only topologically
faithful but also geometrically standardized. A key consequence of this process is that
the resulting low-dimensional embeddings are density-preserving across architectures. This
standardization ensures that the global density score, a core component of our sample
importance calculation, is a stable and reliable metric regardless of the source network.

To further elaborate the standardization of topology-based manifold approximation and
projection across perturbations in the embedding space we look at correlation (Figure 5) of
per-sample distance to prototypes across different manifold projection and feature reduc-
tion techniques (a) PCA (Pearson, 1901), (b) t-SNE (van der Maaten and Hinton, 2008)
(c) PaCMAP (Wang et al., 2021) and (d) UMAP (McInnes et al., 2018a). We see that
the topology-based methods, UMAP and PaCMAP, demonstrate significantly higher cor-
relation and thus better transferability across architectures compared to linear PCA or the
more locally-focused t-SNE. Notably, UMAP exhibits slightly superior transferability over
PaCMAP, reinforcing its selection for our framework. This high correlation between smaller
models (e.g., ResNet-18) and larger models is particularly valuable, as it validates the use
of computationally inexpensive networks to generate manifold embeddings that remain ef-
fective for data selection on much larger models.
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(a) PCA (b) t-SNE

(c) PaCMAP (d) UMAP

Figure 5: Correlation of per-sample distance to prototype across different architectures
when applying different linear and non-linear manifold projection techniques.

Appendix G. Ablation on ”Global” Density and ”Local” Persistence

We investigate the impact of the hyperparameters α and β from Equation (3), which bal-
ance the influence of global density and local persistence (see Figure 7). Our analysis
reveals that while the coreset quality is generally stable across a range of (α, β) values, a
synergistic combination of both metrics consistently yields the best performance. Although
using either density or persistence alone provides a reasonable baseline, combining them
is particularly crucial at high pruning rates (e.g., 90%), where a balanced score improves
accuracy by up to 5.4% over using either metric in isolation. This demonstrates that both
global and local topology are vital for optimal selection and justifies our use of a fixed
and balanced configuration set at (50/50) across all experiments, minimizing the need for
extensive hyperparameter tuning.
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(a) CIFAR-10 (b) CIFAR-100

Figure 6: Topology hyperparameters across all ranges of data pruning rates for both (a)
CIFAR-10 and (b) CIFAR-100.

Appendix H. Ablation on Persistence Optimization Steps

We investigate the impact of the number of optimization steps for ”local” persistent ho-
mology (see Figure 7). The number of required persistence optimization steps is inversely
correlated with the final coreset size. When selecting a large coreset (e.g., at a 30% prun-
ing rate), the selection process is robust, and even a few optimization steps (1-2) suffice
to identify a high-quality subset. However, at high pruning rates (e.g., 90%), the task
of distinguishing the most crucial samples becomes more sensitive, necessitating a greater
number of optimization steps (≥6) to allow the point positions to converge and accurately
reveal the most structurally important examples.

Appendix I. Relating Topology and Memorization

As a fun experiment, we examine the link between the intra-class density of our topology-
based manifold projection and the established notion of sample memorization (Feldman,
2020; Feldman and Zhang, 2020), measured via the input curvature score (Garg et al.,
2024). We see that high-density samples, which are prototypical examples near a class’s
barycenter, consistently exhibit low input curvature, characteristic of un-memorized, typical
examples (see Figure 8). While low-density samples, which represent atypical data, show
high input curvature, a key indicator of highly memorized samples (see Figure 9).
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(a) Accuracy on CIFAR-10 (b) Distribution of Per-Sample Displace-
ment

Figure 7: Smaller coresets have a lower margin for error, as the importance of each selected
sample is magnified. Consequently, more optimization steps are needed to pre-
cisely distinguish the most critical samples. In contrast, larger coresets are more
forgiving, requiring fewer steps to achieve a high-quality result.

Figure 8: Prototypical Samples: Top-10 lowest curvature samples (left) vs. highest
density samples (right) of the same class, for five CIFAR-100 classes.

Figure 9: Atypical Samples: Top-10 highest curvature samples (left) vs. lowest density
samples (right) of the same class, for five CIFAR-100 classes.
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I.1. Training and Topological Hyperparameters

Table 2: Training and topological hyperparameters.

Section Hyperparameter
CIFAR-10
CIFAR-100

Training (DeepCore)

Epochs 200
Batch Size 256
Optimizer SGD
Momentum 0.9

Learning Rate 1e-1
Weight Decay 5e-4
Scheduler CosineAnnealing

Global Manifold
Projection (UMAP)

Number Neighbors 15
Minimum Distance 0.1

Metric Cosine
Dimensions 2

Kernel Density
Estimation (sklearn)

Bandwidth 0.4

Local Persistent
Homology (multipers)

Theta (Density Bandwidth) 0.4
Function/Kernel Gaussian

Complex Weak-Delaunay
Homology Degree 1
Optimization Steps 6

Topology Score
Global Density (α) 0.5
Local Persistence (β) 0.5

I.2. Copyrights

Datasets: CIFAR-10 (unknown), CIFAR-100 (unknown). Libraries: Multipers (MIT Li-
cense, Copyright (c) 2023 David Loiseaux), DeepCore (MIT License, Copyright (c) 2023
Zhao, Bo), UMAP (BSD 3-Clause License, Copyright (c) 2017, Leland McInnes)
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