
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

SEPAL: SCALABLE FEATURE LEARNING ON
HUGE KNOWLEDGE GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Knowledge graphs accumulate information about more and more entities of the
world. Much research is conducted to improve embedding models that capture
this information and give useful node features in many downstream applications.
However, most current methods are hard to scale to large knowledge graphs,
partly because GPU memory is too small to hold the embeddings of many en-
tities –YAGO4 has 67M entities. To scale existing embedding models on modest
hardware, we introduce SEPAL: Scalable Embedding Propagation Algorithm for
Large knowledge graphs. The key idea of SEPAL to reduce compute is to only
optimize embeddings on a core subset of entities, those that come with much more
information than others. Then SEPAL propagates these embeddings to the rest of
the graph with message passing, but no explicit optimization. To enable efficient
message passing, we break down large graphs into well-connected subgraphs that
fit in GPU memory using a new algorithm called BLOCS: Balanced Local Over-
lapping Connected Subgraphs. We evaluate SEPAL on five different knowledge
graphs for four downstream regression tasks. We show that SEPAL outperforms
alternative on downstream tasks, while providing a 43× speedup to its base em-
bedding algorithm. Moreover, outside the core subgraph, embeddings obtained by
message passing are not degraded compared to traditional methods, demonstrating
the validity of SEPAL’s propagation.

1 INTRODUCTION

Relational data gathers various information on different objects across multiple tables. Modern
general-purpose knowledge graph push the agenda to describe an increasingly large fraction of the
entities of the world: Wikidata (Vrandečić & Krötzsch, 2014) describes as of 2024 109M entities,
and YAGO4 gives a curated view on 67M entities (Pellissier Tanon et al., 2020). For machine
learning and artificial intelligence, capturing general knowledge opens an old promise of making
tasks easier via this knowledge (Lenat & Feigenbaum, 2000). Integrating this information into
machine learning does raise the challenge of assembling features from multiple tables. For this
purpose, graph-embedding methods provide node features that can improve downstream learning
task (Grover & Leskovec, 2016; Cvetkov-Iliev et al., 2023; Robinson et al., 2024). Increasingly
sophisticated embeddings models (Bordes et al., 2013; Yang et al., 2014; Balazevic et al., 2019, ...)
help produce embeddings that better capture the relational aspect of the data, which is important for
downstream tasks (Cvetkov-Iliev et al., 2023).

The size of large knowledge graphs is exploding: Wikidata gains 20M entities yearly (Wikimedia).
This enables the exciting prospect of general feature enrichment: given a downstream table, enti-
ties can be automatically linked to the knowledge graph (Mendes et al., 2011; Foppiano & Romary,
2020; Delpeuch, 2019), and node features could be inserted in the table to facilitate machine learning
task. The more entities in the knowledge graph, the more this process provides value to the down-
stream analysis. And yet, there can be a disconnect between the growth of knowledge graphs, and
the fact that the increasingly complex embedding models tend to be less tractable, and are typically
demonstrated on comparatively small graphs, often subsets of real-world graphs such as FB15k (15k
entities from Freebase) or WN18 (40k entities from WordNet), 3 orders of magnitude smaller than
modern general knowledge graphs, or industrial knowledge graphs (Sullivan, 2020). One roadblock
to scaling knowledge-graph embeddings is that, with many entities, the embeddings no longer fit in
the memory of GPUs. The typical answer to this challenge is distributed computation across GPUs,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

explored by PyTorch-BigGraph (Lerer et al., 2019) and many more (Zheng et al., 2020; Mohoney
et al., 2021; Zhu et al., 2019; Dong et al., 2022; Ren et al., 2022, ...). This comes with sizeable
engineering and computational cost, as the graph is fit piece by piece. The multi-GPU requirement
is a challenge for non-profits such as the Wikimedia foundation, in charge of Wikidata, given that
the embeddings should be recomputed regularly to incorporate newly-added entities.

Here we show how to scale most knowledge-graph embedding methods with little computational
resources. Our goal is to bridge the gap between advanced embedding approaches and huge general-
purpose knowledge graphs that strive to gather all human knowledge at once. For this, we leverage
fundamental structure in knowledge graphs: a small set of “core” entities come with much more
information than the others. Our method, SEPAL (Scalable Embedding Propagation Algorithm for
Large knowledge graphs), is ‘pluggable’ to any embedding model that, at triple-level, models the
tail embedding as a relation-specific transformation of the head embedding. There are two technical
contributions that enable SEPAL to bring scalability. 1) We show that good embeddings on a small
core subset of entities can be propagated to give good embeddings for the full graph. The challenge
here is to maintain the relational geometry. 2) We devise an algorithm called BLOCS to break down
a huge knowledge graph into overlapping subsets that fit in GPU memory. Here, the challenge lies
in the scale-free and connectivity properties of a large knowledge graph: some nodes are connected
to a significant fraction of the graphs, while others are very hard to reach.

We start by reviewing related work. Then, section 3 describes our contributions. In section 4 we
evaluate SEPAL’s performance on knowledge graphs of increasing size between YAGO3 (Mahdis-
oltani et al., 2014) and YAGO4 (67M entities, Pellissier Tanon et al., 2020); we study the use of
the embeddings for feature-enrichment on four downstream machine learning tasks, showing that
SEPAL makes embedding methods much more tractable while generating better embeddings for
downstream tasks. Empirical findings show that:

1. propagating embeddings to outer entities with message passing does not lead to a performance
loss and gives orders of magnitude speed-ups compared to full optimization;

2. this approach can be scaled to very large knowledge graphs on modest hardware.

2 RELATED WORK: EMBEDDING AND SCALABILITY IN KNOWLEDGE GRAPHS

Knowledge graphs are multi-relational graphs describing knowledge in an entity-relation model.
Knowledge graphs store information as triples (h, r, t), where h is the head entity, r is the relation,
and t is the tail entity.

2.1 GRAPH-EMBEDDING METHODS

Graph embedding methods learn low-dimensional (typically d = 100 or 200) vector representations
for the entities and relations. Knowledge-graph embeddings are directly related to the more general
graph embedding literate, learning representations for graph nodes but not for the relations. Different
embedding methods naturally lead to different structures of the embedding space.

Global methods Global methods can be formulated at the graph level, typically using the adja-
cency matrix A. A first family of methods performs explicit matrix factorizations on matrices
derived from the adjacency matrix, for instance GraREP (Cao et al., 2015) or NetMF (Qiu et al.,
2018). These methods output close embedding vectors for nodes with similar neighborhoods.

As the adjacency matrix does not represent the edge-type information of multi-relational graphs, it
may be preferable to use a {0, 1}-valued third-order tensor, and correspondingly tensor factoriza-
tion approaches such as canonical polyadic decomposition (Hitchcock, 1927), Tucker decomposi-
tion (Tucker, 1966), or more recently RESCAL (Nickel et al., 2011). Unlike other global methods,
these methods compute embeddings for both entities and relations. However, they limit the relational
model to multiplicative interactions between entities and relations embeddings.

To avoid relying on –potentially costly– optimization, another strategy is to compute random pro-
jections. Indeed these give very cost-effective approximations of the pairwise distances (Dasgupta
& Gupta, 2003). FastRP (Chen et al., 2019) proposes a scalable approach, with a few well-chosen
applications of the adjacency matrix on a random projection matrix.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Local methods Local methods formulate an optimization on triples rather than on the matrices
or tensors. They define a scoring function f(h, r, t) to represent the plausibility of a triple given
the embeddings θh, θr, θt of the entities and relation. The embeddings are optimized by stochastic
gradient descent to maximize the score of positive triples, and minimize that of negative ones.

Skip-gram negative sampling (SGNS), behind word2vec (Mikolov et al., 2013), has been shown
to perform an implicit factorization (Levy & Goldberg, 2014). It has been adapted to graphs: Deep-
Walk (Perozzi et al., 2014) and node2vec (Grover & Leskovec, 2016) perform random walks on the
graph to generate “sentences” fed to word2vec. Here the scoring function between two nodes h and
t is simply f(h, t) = θh · θt. RDF2vec adapts this framework to multi-relational graphs by adding
the relations to the generated sentences (Ristoski & Paulheim, 2016).

Triple-based methods design scoring functions to model the relations as geometric transformations
in the embedding space. A seminal model is TransE (Bordes et al., 2013), modeling relations as
translations in the embedding space. Many of these models can be framed as:

Scoring function f(h, r, t) = −sim(ϕ(θh, θr), θt) (1)

where ϕ is a model-specific relational operator, and sim a similarity function. These models strive
to align, for positive triples, the tail embedding θt with the “relationally” transformed head embed-
ding ϕ(θh, θr). The challenge is to design a clever ϕ operator to model complex patterns in the data
–hierarchies, compositions, symmetries... Indeed some relations are one-to-one (people only have
one biological mother), well represented by a translation, while others are many-to-one (for instance
many person were BornIn Paris), calling for ϕ to be a contractive operation (Wang et al., 2017).
Many models explore different parametrizations, among which MuRE (Balazevic et al., 2019), Ro-
tatE (Sun et al., 2019) or QuatE (Zhang et al., 2019) have good performance (Ali et al., 2021b). This
framework also includes models like DistMult (Yang et al., 2014), ComplEX (Trouillon et al., 2016)
or TuckER (Balažević et al., 2019), that implicitly perform tensor factorizations.

Table 1: Expression of ϕ in some
embedding models. ⊙ denotes the
Hadamard product, ⊗ the Hamilton
product, and ×i the tensor product
along mode i. The models we list
here are all compatible with our pro-
posed SEPAL approach.

Model Relational operator ϕ

TransE (Bordes et al., 2013) θh + θr
MuRE (Balazevic et al., 2019) θh ⊙ ρr − θr
RotatE (Sun et al., 2019) θh ⊙ θr
QuatE (Zhang et al., 2019) θh ⊗ θr
DistMult (Yang et al., 2014) θh ⊙ θr
ComplEX (Trouillon et al., 2016) θh ⊙ θr
TuckER (Balažević et al., 2019) W ×1 θh ×2 θr

Embedding propagation CompGCN (Vashishth et al., 2019) introduces the idea of propagating
knowledge-graph embeddings using the relational operator ϕ, but couples it with learnable weights
and a non-linearity. REP (Wang et al., 2022) simplifies this framework by removing weight matrices
and nonlinearities.

2.2 SCALING GRAPH ALGORITHMS

Various tricks help scale graph algorithms to the sizes we are interested in –millions of nodes.

Graph partitioning Scaling up computation on graph, for graph embedding or more generally,
often relies on breaking down graphs in subgraphs. For this, the partitioning, clustering, and
community-detection literatures are relevant. METIS (Karypis & Kumar, 1997), is a greedy node-
merging algorithm heavily used to scale all types of graph algorithm. A variety of algorithms have
also been developed to detect “communities”, groups of nodes more connected together, often with
applications on social networks: the Label Propagation Algorithm (LPA) (Raghavan et al., 2007),
spectral clustering (SC) (Shi & Malik, 2000), Louvain method (Blondel et al., 2008), the Leading
Eigenvector (LE) method (Newman, 2006), the Infomap method (Rosvall & Bergstrom, 2008), and
the Leiden method (Traag et al., 2019) which guarantees connected communities.

Local subsampling Other forms of data reduction can help to scale graph algorithms (e.g. based
on message passing). Algorithms may subsample neighborhoods, as GraphSAGE (Hamilton et al.,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

2017) that selects a fixed number of neighbors for each node on each layer, or MariusGNN (Wal-
effe et al., 2023) that uses an optimized data structure for neighbor sampling and GNN aggrega-
tion. Cluster-GCN (Chiang et al., 2019) restricts the neighborhood search within clusters, obtained
by classic clustering algorithms, to improve computational efficiency on graphs with a community
structure. GraphSAINT (Zeng et al., 2019) creates overlapping subgraphs through random walks.

Multi-level techniques. Multi-level approaches, such as HARP (Chen et al., 2018), GraphZoom
(Deng et al., 2019) or MILE (Liang et al., 2021), coarsen the graph, compute embeddings on the
obtained smaller graph, and project them back to the original graph.

2.3 SCALING KNOWLEDGE-GRAPH EMBEDDING

The multi-relational aspect of knowledge graphs, captured e.g. in the ϕ detailed above, calls for
scaling tailored methods.

Parallel training. Many approaches speed up triple-level stochastic solvers by distributing train-
ing across multiple workers, starting from the seminal PyTorch-BigGraph (PBG) (Lerer et al., 2019).
The challenge is then to limit overheads and communication costs, as the embeddings of the relations
are global trainable parameters, and thus require moving data between workers. For this, DGL-KE
(Zheng et al., 2020) reduces data movement by using sparse relation embeddings and a min-cut-
based graph partitioning algorithm (Karypis & Kumar, 1997, METIS) to distribute the triples across
workers. HET-KG (Dong et al., 2022) further optimizes distributed training by preserving a copy of
the few most frequently used embeddings on each worker, to reduce communication costs. These
‘hot-embeddings’ are periodically synchronized to minimize inconsistency. SMORE (Ren et al.,
2022) leverages asynchronous scheduling to overlap CPU-based data sampling, with GPU-based
embedding computations. Algorithmically, it contributes a bidirectional rejection sampling strategy
to generate the negatives at a very low cost. GraphVite (Zhu et al., 2019) accelerates SGNS for graph
embedding by both parallelizing random walk sampling on multiple CPUs, and negative sampling
on multiple GPUs. Finally, Marius (Mohoney et al., 2021) optimizes data movement with 1) a data
flow architecture that maximizes resource utilization of the entire memory hierarchy, including disk,
CPU, and GPU memory, 2) Partition caching and a buffer-aware data ordering to minimize disk IO.

Bags of entities. Other attempts to scale knowledge graphs include StarSpace (Wu et al., 2018),
that models some entities as bags of other entities rather than giving them explicit embeddings,
or NodePiece (Galkin et al., 2021) that embeds a subset of entities called anchors, and learns an
aggregation function to compute embeddings for all the other entities.

3 SEPAL: EXPANDING FROM A CORE SUBGRAPH

The work on scaling knowledge-graph embedding has mainly focused on efficient parallel comput-
ing to speed up stochastic optimization. We introduce a complementary approach, SEPAL, which
changes how the embeddings are computed, avoiding much of the optimization cost. To extract rich
node features from very large knowledge graphs, SEPAL allocates more computation time to the
more frequent entities. To that end, SEPAL proceeds in two steps (Figure 1):

1. compute connected overlapping subgraphs that cover the full graph;

2. propagate the embeddings from the core to the outer subgraphs, with a message-passing strategy
preserving the relational geometry.

SEPAL’s key idea is to propagate embeddings to regions of the graph where they have not been
computed yet, departing from embedding propagation methods (Vashishth et al., 2019; Wang et al.,
2022) that use propagation as a post-processing to smooth pre-trained knowledge-graph embeddings.
SEPAL is compatible with any embedding model whose scoring function has the form given by
Equation 1, some examples of which are provided in Table 1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

core
subgraph

θe

θe

θe

θe
θe

θr

θr

θe

θe

θe

θe

outer
subgraphs

Φ

Φ

Φ

Φ Φ

Φ

relation-aware
propagation

core embedding

0. 1. 2.

Figure 1: SEPAL’s general framework. An input knowledge graph (0.) is first subdivided into
BLOCS (1.). The core subgraph is then embedded, and the resulting embeddings are propagated to
the outer subgraphs successively (2.).

3.1 SPLITTING LARGE GRAPHS WITH BLOCS

Breaking up the graph into subgraphs is key to scaling up our approach memory-wise. Specifically,
we seek a set of subgraphs that altogether cover the full graph but are individually small enough to
fit on GPUs, to enable the subsequent GPU-based message passing.

Core subgraph. SEPAL first defines the core of a knowledge graph as the subgraph induced by
its most central entities. To build it, SEPAL focuses on entities, selecting the top η% entities by
degree and keeping the largest connected component of the induced subgraph. The parameter η is
chosen large enough to ensure that the core subgraph contains all the relation types present in the
graph (typically η varies between 2 and 5%).

Outer subgraphs. The next class of subgraphs that we generate –the outer subgraphs– aim at
covering the rest of the graph. The purpose of these subgraphs demands the following requirements:

R1: connected the subgraphs must be connected, to propagate the embeddings
R2: bounded size the subgraphs must have bounded sizes, to fit their embedding in GPU memory
R3: coverage the union of the subgraphs must be the full graph, to embed every entities
R4: scalability extraction must run with available computing resources, in particular memory

Extracting such subgraphs is challenging on large knowledge graphs. These are scale-free graphs
with millions of nodes exhibit no well-defined clusters (Leskovec et al., 2009) and pose difficulties
to existing partitioning algorithms. For instance, algorithms based on propagation, eigenvalues,
or power iterations of the adjacency matrix (Raghavan et al., 2007; Shi & Malik, 2000; Newman,
2006) struggle with the presence of extremely high-degree nodes that make the adjacency matrix
ill-conditioned. To satisfy our requirements despite these challenge, we allow subgraphs to overlap.

We contribute BLOCS, an algorithm designed to break large graphs into Balanced Local
Overlapping Connected Subgraphs. The name summarizes the goals: 1) Balanced: BLOCS pro-
duces subgraphs of comparable sizes. m, the upper bound for subgraph sizes, is a hyperparameter.
2) Local: the subgraphs have small diameters. The essence of BLOCS minimizes the intrasubgraph
mean shortest path length using a diffusion step. This locality property is important for the efficiency
of SEPAL’s propagation phase, as it intuitively reduces the number of propagation iterations needed
to converge to the global embedding structure. 3) Overlapping: a given node can belong to several
subgraphs. This is beneficial to our purpose because it facilitates information transfer between the
different subgraphs during the propagation. 4) Connected: all generated subgraphs are connected.

BLOCS uses three base mechanisms to grow the subgraphs: diffuse (add all neighboring entities
to the current subgraph), merge (merge two overlapping subgraphs) and dilate (add all unassigned
neighboring entities to the current subgraph). There are two different regimes during the generation
of subgraphs. First, few entities are assigned, and the computationally effective diffusion quickly
covers a large part of the graph, especially entities that are close to high-degree nodes. However,
once these close entities have been assigned, the effectiveness of diffusion drops because it strug-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Algorithm 1 BLOCS algorithm
1: Input: Graph G = (V,E) with nodes V and edges E, hyperparameters h and m
2: Output: List of overlapping connected subgraphs
3: S← ∅ ▷ list of subgraphs
4: U ← V ▷ set of unassigned nodes
5: Step 1: Create subgraphs from high-degree nodes’ neighbors
6: for each node v ∈ V do
7: if deg(v) > 0.2m then
8: S, U ← EQUALLYSPLITNEIGHBORSINSUBGRAPHS(v, max size = 0.2m)
9: end if

10: end for
11: Step 2: Assign nodes to subgraphs by diffusion
12: while |U | > (1− h)|V | do
13: k ← 0 ; S0 ← {argmaxv∈U deg(v)} ▷ start with unassigned node v with highest degree
14: while |Sk| < 0.8m do
15: Sk+1 ← DIFFUSE(Sk) ; k ← k + 1
16: end while
17: Append Sk−1 to S, and update U ▷ Sk−1 is the last subgraph smaller than 0.8m
18: end while
19: Step 3: Merge small overlapping subgraphs
20: S, U ← MERGESMALLSUBGRAPHS(S, min size = m/2)
21: Step 4: Dilation and diffusion until all entities are assigned
22: p← 0
23: while |U | > 0 do
24: if 5 divides p and p > 0 then▷ create new subgraphs by diffusion every 5 rounds, to tackle long chains
25: repeat 10 times
26: k ← 0 ; S0 ← {argmaxv∈U deg(v)}
27: while |Sk| < 0.8m do
28: Sk+1 ← DIFFUSE(Sk) ; k ← k + 1
29: end while
30: Append Sk−1 to S, and update U ▷ Sk−1 is the last subgraph smaller than 0.8m
31: end
32: end if
33: S← DILATE(S) ; p← p+ 1
34: end while
35: Step 5: Merge small overlapping subgraphs again
36: S, U ← MERGESMALLSUBGRAPHS(S, min size = m/2)
37: Step 6: Split subgraphs larger than m
38: S, U ← SPLITLARGESUBGRAPHS(S, max size = m)
39: Return: S, the set of overlapping subgraphs covering the graph G

gles to reach entities farther away. For this reason, BLOCS switches from diffusion to dilation once
the proportion of assigned entities reaches a certain threshold h (chosen ≈ .6, depending on the
dataset). By adding only unassigned neighbors to subgraphs, dilation drives subgraph growth to-
wards unassigned distant entities. However, the presence of long chains can drastically slow this
regime, because they make it add entities one by one. Some knowledge graphs have long chains,
for instance YAGO4.5 (see Mean Shortest Path Length in Appendix B). To tackle them, BLOCS
switches back to diffusion for a few steps, with seeds taken inside the long chains.

The design of BLOCS makes it work faster on graphs that have small diameters, where most entities
can be reached during the diffusion regime and very few dilation steps are required.

3.2 SEPARATING CORE OPTIMIZATION AND OUTER PROPAGATION

Embedding the core Once the core subgraph is defined, embeddings for the relations and core
entities are trained on GPU using any triple-based embedding model that fits with our framework.
We add the inverse relations, ensuring connectedness for the subsequent propagation step.

Relation-aware embedding propagation by message passing The key to SEPAL’s computa-
tional efficiency is not requiring any gradient descent for the embeddings of the outer entities.
Instead, the final step involves an embedding propagation that is consistent with the KGE model

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

(multiplication for DistMult, addition for TransE, ...) and preserves the relational geometry of the
embedding space. To do so, SEPAL leverages the entity-relation composition function ϕ used by
the knowledge-graph embedding model, and the embeddings of the relations θr trained on the core
subgraph. From Equation 1 one can derive, for a given triple (h, r, t), the closed-form expression of
the tail embedding that maximizes the scoring function argmaxθt f(h, r, t) = ϕ(θh, θr). SEPAL
uses this property to compute the embeddings of the outer entities, by propagating from core entities
with message passing.

First, the embeddings are initialized with θ(0)u =

{
θu, if entity u belongs the core subgraph,
0, otherwise.

Then, each outer subgraph is merged with the core subgraph, and SEPAL loads its embeddings on
GPU and performs K steps of propagation, satisfying the following message-passing equations:

m(t+1)
u,v =

∑
(u,r,v)∈K

ϕ(θ(t)v , θr) (message; ϕ is given by Table 1)

a(t+1)
u =

∑
v∈N (u)

m(t+1)
u,v (aggregation)

θ(t+1)
u = NORMALIZE(θ(t)u + a(t+1)

u) (update)
where N (u) denotes the set of neighbors of entity u, and K the set of positive triples of the graph.
During updates, ℓ2 normalization projects embeddings on the unit sphere. This accelerates conver-
gence by canceling the effect of neighbors that still have zero embeddings. Normalizing embeddings
is a common practice of knowledge-graph embedding models (Bordes et al., 2013; Yang et al., 2014),
and SEPAL acts consistently. During propagation, the core embeddings remain frozen.

4 EXPERIMENTAL STUDY

4.1 KNOWLEDGE GRAPH DATASETS

To compare large knowledge graphs of different sizes, we use three different generations of YAGO:
YAGO3 (Mahdisoltani et al., 2014), YAGO4 (Pellissier Tanon et al., 2020), and YAGO4.5 (Suchanek
et al., 2023). We expand YAGO4 and YAGO4.5 into a larger version that also contains the taxonomy,
i.e., types and classes –which algorithms will treat as entities– and their relations. We discard
numerical attributes and keep only the largest connected component (Appendix B). To perform
an ablation study of SEPAL without BLOCS for which we need smaller datasets, we also introduce
Mini YAGO3, a subset of YAGO3 built by extracting the 5% most frequent entities.

4.2 EVALUATING NODE FEATURES ON DOWNSTREAM REGRESSION TASKS

We evaluate the embeddings as node features, used to facilitate learning in downstream tasks (Grover
& Leskovec, 2016; Cvetkov-Iliev et al., 2023; Robinson et al., 2024). This task enables to compare
the value of knowledge graphs of different sizes. Indeed, for a user, a suboptimal embedding of a
larger knowledge graph may be more interesting than a high-quality embedding of a smaller knowl-
edge graph because the larger graph brings information on more entities. We benchmark 4 down-
stream regression tasks (adapted from Cvetkov-Iliev et al., 2023): Movie revenues, US accidents,
US elections, and housing prices (see Appendix C).

Figure 2 gives the prediction performance on the downstream tasks. SEPAL not only scales well to
very large graphs (computing times markedly smaller than Pytorch-BigGraph), but also create more
valuable node features for downstream tasks. Larger knowledge graphs do bring value, as they cover
more entities of the downstream task (Table 8). The good performance of FastRP provides insights
on why SEPAL improves on the performance of its base models: as SEPAL’s second step, it is based
on iterating graph propagations, which structures the embeddings.

4.3 EVALUATING BLOCS

Compared to other partitioning algorithms We first compare BLOCS to other graph partition-
ing, clustering, and community detection methods. Table 2 reports empirical evaluation on our four

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

DistMult + NodePiece
DistMult + PyTorch-BigGraph

DistMult + DGL-KE
FastRP

DistMult
DistMult + SEPAL 23 min

42 s
9 h

21 min
2 h
21 min

YAGO3 (2.6M entities, 5.6M triples)

DistMult
DistMult + PyTorch-BigGraph

DistMult + NodePiece
DistMult + DGL-KE

FastRP
DistMult + SEPAL

Out of memory GPU (> 32GB)

3 h
17 min
2 h

17 h
4 h

YAGO4.5 (32M entities, 75M triples)

DistMult + NodePiece
DistMult

DistMult + PyTorch-BigGraph
DistMult + DGL-KE

FastRP
DistMult + SEPAL

Out of memory GPU (> 32GB)
Out of memory GPU (> 32GB)

4 h
48 min
4 h
15 h

YAGO4.5 + taxonomy (50M entities, 128M triples)

DistMult + NodePiece
DistMult

DistMult + PyTorch-BigGraph
DistMult + DGL-KE

FastRP
DistMult + SEPAL

Out of memory GPU (> 32GB)
Out of memory GPU (> 32GB)

12 h
28 min
8 h
30 h

YAGO4 (38M entities, 250M triples)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Cumulative normalized mean cross-validation score (R2)

DistMult + NodePiece
DistMult

FastRP
DistMult + DGL-KE

DistMult + PyTorch-BigGraph
DistMult + SEPAL

Out of memory GPU (> 32GB)
Out of memory GPU (> 32GB)
Out of memory CPU (> 400GB)

4 h

11 h
55 h

YAGO4 + taxonomy (67M entities, 320M triples)

Evaluation dataset
Movie revenues
US accidents
US elections
Housing prices

Figure 2: Performance on downstream tasks: normalized score (ie for an evaluation dataset, 1
corresponds to the best R2 score across all models). SEPAL, PyTorch-BigGraph, DGL-KE, and
NodePiece use DistMult as base model.

knowledge graphs. BLOCS and METIS are the only approaches that scale to the largest knowl-
edge graphs. Others fail due to excessive runtimes –our limit was set to 104 seconds. Compared to
METIS, BLOCS is more efficient in terms of RAM usage while having similar computation times.
Experimental results also show that classic partitioning methods fail to meet the connectedness and
size requirements. Indeed, knowledge graphs are prone to yield disconnected partitions due to their
scale-free nature: they contain very high degree nodes. Such a node is hard to allocate to a single
subgraph, and subgraphs without it often explode in multiple connected components. Our choice of
overlapping subgraphs avoids this problem.

BLOCS inside SEPAL: ablation study Here, we study the effect of removing BLOCS from our
proposed method. On smaller knowledge graphs, SEPAL can be used with a simple core subgraph
extraction and embedding followed by the embedding propagation. This ablation reveals the impact
of BLOCS on the model’s performance. Figure 3 shows that adding BLOCS to the pipeline on
graphs that would not need it (because they are small enough for all the embeddings to fit in GPU
memory) does not alter performance, showing that BLOCS enables efficient embedding propaga-
tion through message-passing. Additionally, BLOCS brings scalability. By tuning the maximum
subgraph size m hyperparameter, one can move the blue points horizontally on Figure 3 and choose
a value within the GPU constraints. There is a trade-off between decreasing GPU RAM usage
(i.e. moving the blue points to the left) and increasing execution time, as this requires more data
movement between CPU and GPU.

4.4 OUTER PERFORMANCE

Table 3 shows the scores of the different methods for the entities of the outer subgraphs. This ex-
periment demonstrates the effectiveness of SEPAL’s propagation step, as all the SEPAL embeddings
evaluated here have been computed through propagation. Results show that SEPAL’s propagated
embeddings compare favorably to all the baselines on four of the five knowledge graphs.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 2: Scalability and
performance of clustering
methods: whether each
method experimentally com-
plies with requirements R1
and R2, as well as computa-
tion time and RAM usage.
Table 5 in appendix gives
results on Mini YAGO3,
showing that spectral cluster-
ing fails to meet R1 and R2,
and uses much RAM.
As the graph size increases,
an increasing number of algo-
rithms do not run with avail-
able resources, and are not
displayed in the table. Ap-
pendix F.2 provides more de-
tails.

a. YAGO3
R1

(connected)
R2

(bounded size) Time RAM
usage

BLOCS ✓ ✓ 98.7 s 2.68 GB
METIS ✗ ✓ 50.7 s 5.43 GB
LE ✓ ✗ 41.0 s 2.65 GB
Leiden ✓ ✗ 101 s 2.37 GB
Louvain ✗ ✗ 101 s 3.11 GB
Infomap ✗ ✗ 1580 s 6.00 GB
LPA ✗ ✗ 607 s 2.24 GB

b. YAGO4.5
BLOCS ✓ ✓ 53.2 min 25.1 GB
METIS ✗ ✓ 16.0 min 68.0 GB
LE ✗ ✗ 127 min 54.3 GB
Leiden ✓ ✗ 39.0 min 54.0 GB
Louvain ✗ ✗ 163 min 54.5 GB

c. YAGO4.5 + taxonomy
BLOCS ✓ ✓ 22.3 min 47.5 GB
METIS ✗ ✓ 35.4 min 120 GB

d. YAGO4
BLOCS ✓ ✓ 72.3 min 63.2 GB
METIS ✗ ✓ 65.2 min 209 GB
LE ✓ ✗ 33.9 min 157 GB

e. YAGO4 + taxonomy
BLOCS ✓ ✓ 22.7 min 119 GB

102 103 104 105

GPU RAM usage (MB)

0

1

2

3

4

A
g
g
re

g
a
te

d
 p

e
rf

o
rm

a
n
ce

G
P
U

 c
a
p

a
ci

ty

with BLOCS

without BLOCS

without BLOCS (extrapolated)

experimental

Knowledge graph

Effect of removing BLOCS

Mini YAGO3

YAGO3

YAGO4

YAGO4.5

extrapolated

+0.9%

-2.5%

Figure 3: Ablation study: BLOCS scales SEPAL memory-wise. Normalized R2 scores (same
as Figure 2) aggregated across evaluation datasets (movie revenues, US accidents, US elections,
housing prices) for SEPAL with and without BLOCS are plotted against GPU RAM usage (see
Appendix F.1). The relative performance variation when removing BLOCS is indicated above the
arrows. BLOCS preserves performance for a given knowledge graph while drastically reducing
memory pressure on GPU RAM. Without BLOCS, the GPU runs out of memory for YAGO4 and
YAGO4.5.

5 DISCUSSION AND CONCLUSION

Modern embeddings on modern knowledge graphs with modest hardware SEPAL reconciles
the evergrowing size of knowledge graphs with the evergrowing sophistication of knowledge-graph
embeddings. Indeed, it brings marked computational-performance benefits when embedding large
knowledge graphs: multiple-fold decreased train times and bounded memory usage. It achieves
this speed-up without requiring heavy engineering, such as distributed computing, and can easily be
adapted to most knowledge-graph embedding methods. SEPAL improves the quality of the gener-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Table 3: Normalized mean cross-validation score (R2) in outer graphs. Best in bold, second under-
lined.

a. YAGO3 (2.4M outer entities)
Housing

prices
Movie

revenues
US

accidents
US

elections Average score

DistMult + SEPAL 1.000 0.228 0.853 0.952 0.758
DistMult 0.842 0.283 0.822 0.957 0.726
PyTorch-BigGraph 0.451 0.270 0.863 0.883 0.617
DGL-KE 0.685 0.393 0.991 0.950 0.755
NodePiece 0.149 0.078 0.158 0.806 0.298
FastRP 0.902 0.204 0.799 0.941 0.712

b. YAGO4.5 (31M outer entities)
DistMult + SEPAL 0.896 0.473 0.757 0.984 0.778
PyTorch-BigGraph 0.201 0.778 0.607 0.889 0.619
DGL-KE 0.408 0.931 0.689 0.896 0.731
NodePiece 0.178 0.339 0.116 0.985 0.404
FastRP 0.461 0.135 0.396 0.994 0.497

c. YAGO4.5 + taxonomy (48M outer entities)
DistMult + SEPAL 0.857 0.595 0.741 0.952 0.786
PyTorch-BigGraph 0.402 0.904 0.720 0.902 0.732
DGL-KE 0.498 1.000 0.798 0.914 0.803
FastRP 0.747 0.422 0.532 1.000 0.675

d. YAGO4 (37M outer entities)
DistMult + SEPAL 0.826 0.999 1.000 0.955 0.945
PyTorch-BigGraph 0.211 0.793 0.654 0.888 0.636
DGL-KE 0.321 0.826 0.692 0.905 0.686
FastRP 0.684 0.587 0.672 0.960 0.726

e. YAGO4 + taxonomy (66M outer entities)
DistMult + SEPAL 0.906 0.996 0.919 0.956 0.944
PyTorch-BigGraph 0.422 0.886 0.691 0.902 0.725
DGL-KE 0.299 0.862 0.701 0.898 0.690

ated node features when used for data enrichment in external (downstream) tasks, a setting that can
strongly benefit from pre-training embeddings on knowledge bases as large as possible.

Insights brought by our experiments go further than SEPAL. First, the method successfully exploits
the asymmetry of information between “central” entities and more peripheral ones. Power-law distri-
butions are indeed present on many types of objects, from words (Piantadosi, 2014) to geographical
entities (Giesen & Südekum, 2011) and should probably be exploited for general-knowledge repre-
sentations such as knowledge-graph embeddings. Second, and related, breaking up large knowledge
graphs in communities is surprisingly difficult: some entities just belong in many (all?) communi-
ties, and others are really hard to reach. Our BLOCS algorithm can be useful for other knowledge-
graph engineering tasks, such as scaling message-passing algorithms or simply generating partitions.
Finally, the embedding propagation in SEPAL appears powerful and we conjecture it will benefit
further approaches. First, it can be combined with much of the prior art to scale knowledge-based
embedding. Second, it seems a natural solution for link prediction semi-inductive settings: link
prediction on nodes newly connected to the graph (Ali et al., 2021a; Galkin et al., 2021), that thus
could be easily embedded by propagation. Finally, embedding propagation could naturally adapt to
continual learning settings (Van de Ven & Tolias, 2019; Hadsell et al., 2020; Biswas et al., 2023)

REFERENCES

Mehdi Ali, Max Berrendorf, Mikhail Galkin, Veronika Thost, Tengfei Ma, Volker Tresp, and Jens
Lehmann. Improving inductive link prediction using hyper-relational facts. In The Semantic Web–
ISWC 2021: 20th International Semantic Web Conference, ISWC 2021, Virtual Event, October
24–28, 2021, Proceedings 20, pp. 74–92. Springer, 2021a.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Laurent Vermue, Mikhail Galkin, Sahand Shar-
ifzadeh, Asja Fischer, Volker Tresp, and Jens Lehmann. Bringing light into the dark: A large-scale
evaluation of knowledge graph embedding models under a unified framework. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 44(12):8825–8845, 2021b.

Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Laurent Vermue, Sahand Sharifzadeh, Volker
Tresp, and Jens Lehmann. PyKEEN 1.0: A Python Library for Training and Evaluating Knowl-
edge Graph Embeddings. Journal of Machine Learning Research, 22(82):1–6, 2021c. URL
http://jmlr.org/papers/v22/20-825.html.

Ivana Balazevic, Carl Allen, and Timothy Hospedales. Multi-relational poincaré graph embeddings.
Advances in Neural Information Processing Systems, 32, 2019.

Ivana Balažević, Carl Allen, and Timothy M Hospedales. Tucker: Tensor factorization for knowl-
edge graph completion. arXiv preprint arXiv:1901.09590, 2019.

Russa Biswas, Lucie-Aimée Kaffee, Michael Cochez, Stefania Dumbrava, Theis E Jendal, Matteo
Lissandrini, Vanessa Lopez, Eneldo Loza Mencı́a, Heiko Paulheim, Harald Sack, et al. Knowl-
edge graph embeddings: open challenges and opportunities. Transactions on Graph Data and
Knowledge, 1(1):4–1, 2023.

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding
of communities in large networks. Journal of statistical mechanics: theory and experiment, 2008
(10):P10008, 2008.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. Advances in neural information pro-
cessing systems, 26, 2013.

Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph representations with global
structural information. In Proceedings of the 24th ACM international on conference on informa-
tion and knowledge management, pp. 891–900, 2015.

Haochen Chen, Bryan Perozzi, Yifan Hu, and Steven Skiena. Harp: Hierarchical representation
learning for networks. In Proceedings of the AAAI conference on artificial intelligence, vol-
ume 32, 2018.

Haochen Chen, Syed Fahad Sultan, Yingtao Tian, Muhao Chen, and Steven Skiena. Fast and ac-
curate network embeddings via very sparse random projection. In Proceedings of the 28th ACM
international conference on information and knowledge management, pp. 399–408, 2019.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn:
An efficient algorithm for training deep and large graph convolutional networks. In Proceedings
of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
257–266, 2019.

Maintainer Gabor Csardi. Package ‘igraph’. Last accessed, 3(09):2013, 2013.

Alexis Cvetkov-Iliev, Alexandre Allauzen, and Gaël Varoquaux. Relational data embeddings for
feature enrichment with background information. Machine Learning, 112(2):687–720, 2023.

Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of johnson and linden-
strauss. Random Structures & Algorithms, 22(1):60–65, 2003.

Antonin Delpeuch. Opentapioca: Lightweight entity linking for wikidata. arXiv preprint
arXiv:1904.09131, 2019.

Chenhui Deng, Zhiqiang Zhao, Yongyu Wang, Zhiru Zhang, and Zhuo Feng. Graphzoom:
A multi-level spectral approach for accurate and scalable graph embedding. arXiv preprint
arXiv:1910.02370, 2019.

Sicong Dong, Xupeng Miao, Pengkai Liu, Xin Wang, Bin Cui, and Jianxin Li. Het-kg:
Communication-efficient knowledge graph embedding training via hotness-aware cache. In 2022
IEEE 38th International Conference on Data Engineering (ICDE), pp. 1754–1766. IEEE, 2022.

11

http://jmlr.org/papers/v22/20-825.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Luca Foppiano and Laurent Romary. entity-fishing: a dariah entity recognition and disambiguation
service. Journal of the Japanese Association for Digital Humanities, 5(1):22–60, 2020.

Mikhail Galkin, Jiapeng Wu, Etienne Denis, and William L Hamilton. Nodepiece: Compo-
sitional and parameter-efficient representations of large knowledge graphs. arXiv preprint
arXiv:2106.12144, 2021.

Kristian Giesen and Jens Südekum. Zipf’s law for cities in the regions and the country. Journal of
economic geography, 11(4):667–686, 2011.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 855–864, 2016.

Raia Hadsell, Dushyant Rao, Andrei A Rusu, and Razvan Pascanu. Embracing change: Continual
learning in deep neural networks. Trends in cognitive sciences, 24(12):1028–1040, 2020.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Frank L Hitchcock. The expression of a tensor or a polyadic as a sum of products. Journal of
Mathematics and Physics, 6(1-4):164–189, 1927.

George Karypis and Vipin Kumar. Metis: A software package for partitioning unstructured graphs,
partitioning meshes, and computing fill-reducing orderings of sparse matrices. 1997.

Douglas Lenat and E Feigenbaum. On the thresholds of knowledge. Artificial Intelligence: Critical
Concepts, 2:298, 2000.

Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt, Abhijit Bose, and Alex
Peysakhovich. Pytorch-biggraph: A large scale graph embedding system. Proceedings of Ma-
chine Learning and Systems, 1:120–131, 2019.

Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. Community structure
in large networks: Natural cluster sizes and the absence of large well-defined clusters. Internet
Mathematics, 6(1):29–123, 2009.

Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix factorization. Advances
in neural information processing systems, 27, 2014.

Jiongqian Liang, Saket Gurukar, and Srinivasan Parthasarathy. Mile: A multi-level framework for
scalable graph embedding. In Proceedings of the International AAAI Conference on Web and
Social Media, volume 15, pp. 361–372, 2021.

Farzaneh Mahdisoltani, Joanna Biega, and Fabian Suchanek. Yago3: A knowledge base from mul-
tilingual wikipedias. In 7th biennial conference on innovative data systems research. CIDR Con-
ference, 2014.

Pablo N Mendes, Max Jakob, Andrés Garcı́a-Silva, and Christian Bizer. Dbpedia spotlight: shedding
light on the web of documents. In Proceedings of the 7th international conference on semantic
systems, pp. 1–8, 2011.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Jason Mohoney, Roger Waleffe, Henry Xu, Theodoros Rekatsinas, and Shivaram Venkataraman.
Marius: Learning massive graph embeddings on a single machine. In 15th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 21), pp. 533–549, 2021.

Mark EJ Newman. Finding community structure in networks using the eigenvectors of matrices.
Physical review E, 74(3):036104, 2006.

Maximilian Nickel, Volker Tresp, Hans-Peter Kriegel, et al. A three-way model for collective learn-
ing on multi-relational data. In Icml, volume 11, pp. 3104482–3104584, 2011.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn:
Machine learning in python. the Journal of machine Learning research, 12:2825–2830, 2011.

Thomas Pellissier Tanon, Gerhard Weikum, and Fabian Suchanek. Yago 4: A reason-able knowl-
edge base. In European Semantic Web Conference, pp. 583–596. Springer, 2020.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 701–710, 2014.

Steven T Piantadosi. Zipf’s word frequency law in natural language: A critical review and future
directions. Psychonomic bulletin & review, 21:1112–1130, 2014.

Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. Network embedding as
matrix factorization: Unifying deepwalk, line, pte, and node2vec. In Proceedings of the eleventh
ACM international conference on web search and data mining, pp. 459–467, 2018.

Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near linear time algorithm to detect
community structures in large-scale networks. Physical review E, 76(3):036106, 2007.

Hongyu Ren, Hanjun Dai, Bo Dai, Xinyun Chen, Denny Zhou, Jure Leskovec, and Dale Schu-
urmans. Smore: Knowledge graph completion and multi-hop reasoning in massive knowledge
graphs. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 1472–1482, 2022.

Petar Ristoski and Heiko Paulheim. Rdf2vec: Rdf graph embeddings for data mining. In The
Semantic Web–ISWC 2016: 15th International Semantic Web Conference, Kobe, Japan, October
17–21, 2016, Proceedings, Part I 15, pp. 498–514. Springer, 2016.

Joshua Robinson, Rishabh Ranjan, Weihua Hu, Kexin Huang, Jiaqi Han, Alejandro Dobles, Matthias
Fey, Jan E Lenssen, Yiwen Yuan, Zecheng Zhang, et al. Relbench: A benchmark for deep learning
on relational databases. arXiv preprint arXiv:2407.20060, 2024.

Martin Rosvall and Carl T Bergstrom. Maps of random walks on complex networks reveal commu-
nity structure. Proceedings of the national academy of sciences, 105(4):1118–1123, 2008.

Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions on
pattern analysis and machine intelligence, 22(8):888–905, 2000.

Fabian Suchanek, Mehwish Alam, Thomas Bonald, Pierre-Henri Paris, and Jules Soria. Integrating
the wikidata taxonomy into yago. arXiv preprint arXiv:2308.11884, 2023.

Danny Sullivan. A reintroduction to our knowledge graph and knowl-
edge panels. https://blog.google/products/search/
about-knowledge-graph-and-knowledge-panels/, 2020. Accessed: 2024-
05-22.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding
by relational rotation in complex space. arXiv preprint arXiv:1902.10197, 2019.

Vincent A Traag, Ludo Waltman, and Nees Jan Van Eck. From louvain to leiden: guaranteeing
well-connected communities. Scientific reports, 9(1):5233, 2019.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Com-
plex embeddings for simple link prediction. In International conference on machine learning, pp.
2071–2080. PMLR, 2016.

Ledyard R Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3):
279–311, 1966.

Gido M Van de Ven and Andreas S Tolias. Three scenarios for continual learning. arXiv preprint
arXiv:1904.07734, 2019.

13

https://blog.google/products/search/about-knowledge-graph-and-knowledge-panels/
https://blog.google/products/search/about-knowledge-graph-and-knowledge-panels/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. Composition-based multi-
relational graph convolutional networks. arXiv preprint arXiv:1911.03082, 2019.

Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledgebase. Communi-
cations of the ACM, 57(10):78–85, 2014.

Roger Waleffe, Jason Mohoney, Theodoros Rekatsinas, and Shivaram Venkataraman. Mariusgnn:
Resource-efficient out-of-core training of graph neural networks. In Proceedings of the Eighteenth
European Conference on Computer Systems, pp. 144–161, 2023.

Huijuan Wang, Siming Dai, Weiyue Su, Hui Zhong, Zeyang Fang, Zhengjie Huang, Shikun Feng,
Zeyu Chen, Yu Sun, and Dianhai Yu. Simple and effective relation-based embedding propagation
for knowledge representation learning. arXiv preprint arXiv:2205.06456, 2022.

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph embedding: A survey of
approaches and applications. IEEE transactions on knowledge and data engineering, 29(12):
2724–2743, 2017.

Wikimedia. Wikidata growth. https://wikitech.wikimedia.org/wiki/WMDE/
Wikidata/Growth#Number_of_Entities_by_type. [Online; accessed Sept-2024].

Ledell Wu, Adam Fisch, Sumit Chopra, Keith Adams, Antoine Bordes, and Jason Weston.
Starspace: Embed all the things! In Proceedings of the AAAI conference on artificial intelli-
gence, volume 32, 2018.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575, 2014.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931, 2019.

Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. Quaternion knowledge graph embeddings. Advances in
neural information processing systems, 32, 2019.

Da Zheng, Xiang Song, Chao Ma, Zeyuan Tan, Zihao Ye, Jin Dong, Hao Xiong, Zheng Zhang, and
George Karypis. Dgl-ke: Training knowledge graph embeddings at scale. In Proceedings of the
43rd international ACM SIGIR conference on research and development in information retrieval,
pp. 739–748, 2020.

Zhaocheng Zhu, Shizhen Xu, Jian Tang, and Meng Qu. Graphvite: A high-performance cpu-gpu
hybrid system for node embedding. In The World Wide Web Conference, pp. 2494–2504, 2019.

A ADDITIONAL RESULTS

A.1 EXTENDED RESULTS: MORE EMBEDDING MODELS, MORE DATASETS

Figure 4 extends the results of Figure 2 by adding TransE and RotatE, alone and combined with
SEPAL, as well as the Freebase dataset. This demonstrates that:

1. SEPAL scales to knowledge graphs up to 85M entities.

2. SEPAL adapts to embedding models other than DistMult, such as TransE and RotatE, and
even improves on its base model.

For a fair comparison, we ran RotatE with embedding dimension d = 50, as it outputs complex
embeddings having twice as many parameters. For other models, we use d = 100.

14

https://wikitech.wikimedia.org/wiki/WMDE/Wikidata/Growth#Number_of_Entities_by_type
https://wikitech.wikimedia.org/wiki/WMDE/Wikidata/Growth#Number_of_Entities_by_type

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

DistMult + NodePiece
TransE
RotatE

RotatE + SEPAL
DistMult + PyTorch-BigGraph

TransE + SEPAL
DistMult + DGL-KE

FastRP
DistMult + SEPAL without BLOCS

DistMult + SEPAL + METIS
DistMult

DistMult + SEPAL
13 min

23 min

42 s

17 min

9 h

11 min
21 min

2 h

11 min

21 min

12 h
21 min

YAGO3 (2.6M entities, 5.6M triples)

TransE
RotatE

DistMult + SEPAL without BLOCS
DistMult

DistMult + PyTorch-BigGraph
DistMult + NodePiece

TransE + SEPAL
DistMult + DGL-KE
RotatE + SEPAL

FastRP
DistMult + SEPAL

DistMult + SEPAL + METIS

Out of memory GPU (> 32GB)
Out of memory GPU (> 32GB)
Out of memory GPU (> 32GB)
Out of memory GPU (> 32GB)

1 h
3 h
17 min
4 h

4 h
2 h

17 h
4 h

YAGO4.5 (32M entities, 75M triples)

TransE
RotatE

DistMult + NodePiece
DistMult + SEPAL without BLOCS

DistMult
DistMult + SEPAL + METIS

TransE + SEPAL
DistMult + PyTorch-BigGraph

RotatE + SEPAL
DistMult + DGL-KE

FastRP
DistMult + SEPAL

Out of memory GPU (> 32GB)
Out of memory GPU (> 32GB)
Out of memory GPU (> 32GB)
Out of memory GPU (> 32GB)
Out of memory GPU (> 32GB)
Out of memory CPU (> 100GB)

3 h
48 min

3 h

2 h

4 h

15 h

YAGO4.5 + taxonomy (50M entities, 128M triples)

TransE
RotatE

DistMult + NodePiece
DistMult + SEPAL without BLOCS

DistMult
DistMult + SEPAL + METIS
DistMult + PyTorch-BigGraph

DistMult + DGL-KE
TransE + SEPAL

FastRP
RotatE + SEPAL

DistMult + SEPAL

Out of memory GPU (> 32GB)
Out of memory GPU (> 32GB)
Out of memory GPU (> 32GB)
Out of memory GPU (> 32GB)
Out of memory GPU (> 32GB)
Out of memory CPU (> 100GB)

12 h

28 min
7 h

4 h
8 h
30 h

YAGO4 (38M entities, 250M triples)

TransE
RotatE

DistMult + NodePiece
DistMult + SEPAL without BLOCS

DistMult
FastRP

DistMult + SEPAL + METIS
DistMult + DGL-KE

DistMult + PyTorch-BigGraph
RotatE + SEPAL
TransE + SEPAL

DistMult + SEPAL

Out of memory GPU (> 32GB)
Out of memory GPU (> 32GB)
Out of memory GPU (> 32GB)
Out of memory GPU (> 32GB)
Out of memory GPU (> 32GB)
Out of memory CPU (> 400GB)
Out of memory CPU (> 100GB)

4 h

9 h
6 h

11 h
55 h

YAGO4 + taxonomy (67M entities, 320M triples)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Cumulative normalized mean cross-validation score (R2)

TransE
RotatE

DistMult + NodePiece
DistMult + SEPAL without BLOCS

DistMult
FastRP

DistMult + SEPAL + METIS
RotatE + SEPAL

DistMult + DGL-KE
DistMult + PyTorch-BigGraph

TransE + SEPAL
DistMult + SEPAL

Out of memory GPU (> 32GB)
Out of memory GPU (> 32GB)
Out of memory GPU (> 32GB)
Out of memory GPU (> 32GB)
Out of memory GPU (> 32GB)
Out of memory CPU (> 400GB)
Out of memory CPU (> 100GB)

6 h

5 h

5 h

9 h
34 h

Freebase (85M entities, 338M triples)

Evaluation dataset
Movie revenues
US accidents
US elections
Housing prices

Figure 4: Performance on downstream tasks.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

YAGO4.5 YAGO4.5 + taxonomy YAGO4 YAGO4 + taxonomy Freebase
0

1

2

3

4
Ti

m
e

(h
ou

rs
)

Core subgraph
extraction

Outer subgraphs
generation (BLOCS)

Core
embedding

Embedding
propagation

Figure 5: SEPAL’s execution time breakdown.

A.2 EXECUTION TIME BREAKDOWN

Here, we present the contribution of each part of the pipeline to the total execution time. Specifically,
we break down our method into four parts:

1. core subgraph extraction;
2. outer subgraphs generation (BLOCS);
3. core embedding;
4. embedding propagation.

Figure 5 shows the execution time of the different components of SEPAL. It includes our five largest
knowledge graphs, for which the execution times have the same order of magnitude. The results
reveal that most of the execution time is due to the core embedding and embedding propagation
phases, while the core extraction time is negligible.

Three key factors influence SEPAL’s execution time during the three main steps of the pipeline:

1. The core subgraph size: the more triples in the core subgraph, the longer the core embed-
ding. This explains the wide disparities between the core embedding times on Figure 5,
despite all the core subgraphs having roughly the same number of entities: YAGO4 core
subgraph is more dense (33M triples), compared to YAGO4.5 (7M triples) for instance. Of
course, the core embedding time also depends on hyperparameters such as the number of
training epochs.

2. The diameter of the knowledge graph: graphs with large diameters call for more dilation
steps during BLOCS’ subgraph generation, and dilation is more costly than diffusion be-
cause it requires checking node assignments. This explains why adding the taxonomies to
YAGO4 and YAGO4.5 drastically reduces the time required to run BLOCS, as shown on
Figure 5.

3. The total number N of entities in the graph: this number determines the size of the
embedding matrix. The communication cost of moving embedding matrices from CPU
to GPU, and vice versa, accounts for most of the propagation time, and increases with
N . It also increases with the amount of overlap between the outer subgraphs produced by
BLOCS, explaining the differences in propagation time between YAGO4.5 and YAGO4.5
+ taxonomy for instance.

Interestingly, the number of propagation steps K as little impact on the embedding propagation
time. The reason for this is that much of this time stems from the communication cost of loading the
embeddings onto the GPU, and not from performing the propagation itself.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

103 104 105

CPU RAM usage (MiB)

0

1

2

3

4

A
g

g
re

g
a
te

d
 p

e
rf

o
rm

a
n
ce

C
P
U

 c
a
p

a
ci

ty

SEPAL...

with BLOCS

with METIS

Knowledge graph

Mini YAGO3

YAGO3

YAGO4.5

Figure 6: Ablation study: replacing BLOCS with METIS.. Normalized R2 scores (same as Fig-
ure 2) aggregated across evaluation datasets (movie revenues, US accidents, US elections, housing
prices) for SEPAL with BLOCS and METIS are plotted against CPU RAM usage. BLOCS ne-
cessitates significantly less memory than METIS. We were not able to run SEPAL + METIS on
knowledge graphs larger than YAGO4.5, hitting CPU RAM limits.

A.3 BLOCS CANNOT BE REPLACED WITH METIS

To demonstrate the benefits of BLOCS over existing methods, we try to replace BLOCS with METIS
in our framework. The results are presented in Figure 6.

Two important points differentiate these methods:

1. Contrary to BLOCS, METIS outputs disconnected partitions (see Table 2). Given the struc-
ture of SEPAL, this results in zero-embeddings for entities not belonging to the core con-
nected component at propagation time. Interestingly, the presence of zero-embeddings
affects downstream scores very little, likely because most downstream entities belong to
the core connected component and are thus not impacted by this.

2. METIS does not scale as well as BLOCS in terms of CPU memory. Therefore BLOCS
remains an indispensable ingredient for graphs larger than YAGO4.5 (32M entities).

A.4 COMPARISON WITH NODEPIECE

SEPAL shares with NodePiece the fact that it embeds a subset of entities. Parallels can be drawn
between: a) the anchors of NodePiece and the core entities of SEPAL; b) the encoder function of
NodePiece and the embedding propagation of SEPAL. Yet, our approach differs from NodePiece in
several ways.

Neighborhood context handling. Both methods handle completely differently the neighborhood
of entities. NodePiece tokenizes each node into a sequence of k anchors and m relation types,
where k and m are fixed hyperparameters shared by all nodes. If the node degree is greater than
m, NodePiece downsamples randomly the relation tokens, and if it is lower than m, [PAD] tokens
are appended; both seem sub-optimal. In contrast, SEPAL accommodates any node degree and
uses all the neighborhood information, thanks to the message-passing approach that handles the
neighborhood context.

Additionally, NodePiece’s tokenization relies on an expensive BFS anchor search, unsuitable for
huge graphs. On our hardware, we could not run the vanilla NodePiece (PyKEEN implementation)
on graphs bigger than Mini YAGO3 (129k entities). For YAGO3 and YAGO4.5, we had to run an
ablated version where nodes are tokenized only from their relational context (i.e., k = 0, studied in
the NodePiece paper with good results), to skip the anchor search step.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

0 1 2 3 4
Cumulative normalized mean cross-validation score (R2)

DistMult + NodePiece

DistMult + SEPAL 5 min

9 min

Mini YAGO3 (129k entities, 1.1M triples)
Evaluation dataset

Movie revenues
US accidents
US elections
Housing prices

Figure 7: Comparing SEPAL with NodePiece on Mini YAGO3.

Training procedure. At train time, NodePiece goes through the full set of triples at each epoch
to optimize both the anchors’ embeddings and the encoder function parameters, necessitating many
gradient computes and resulting in long training times for large graphs. On the contrary, SEPAL
performs mini-batch gradient descent only on the triples of the core subgraph, which provides sig-
nificant time savings. To illustrate this, Figure 7 compares the performance of SEPAL and vanilla
NodePiece on Mini YAGO3, showing that SEPAL outperforms NodePiece on downstream tasks
while being nearly two times quicker.

Embedding propagation to non-anchor/non-core entities. To propagate to non-anchor entities,
NodePiece uses an encoder function (MLP or Transformer) that has no prior knowledge of the
relational structure of the embedding space, and has to learn it through gradient descent. On the
contrary, SEPAL leverages the model-specific relational structure to compute the outer embeddings
with no further training needed.

A.5 OTHER CORE SELECTION STRATEGIES

SEPAL selects the core entities based on degree. This is convenient for two reasons:

1. Degree is inexpensive to compute, ensuring the core extraction phase to be fast (see Fig-
ure 5);

2. It yields very dense core subgraphs. Indeed, while they contain η% of the entities of the full
graph, they gather around 4η% of all the triples (Table 4). This allows the training on the
core to process a substantial portion of the graph triples, resulting in richer representations.

However, a problem is that some relation types may not be included in the core subgraph.

A.5.1 RELATION-BASED CORE SELECTION STRATEGY

To deal with the relational coverage issue, we introduce another method for selecting the core sub-
graph. It is based on the relations: for each relation type, select the edges with the top η% degree
(sum of degrees of head and tail) and keep the corresponding entities, then select the largest con-
nected component of the induced subgraph.

This approach enhances relational coverage but, as a counterpart, yields a sparser core subgraph
(Table 4). For YAGO4 and Freebase, the datasets on which the problem arises, switching from
degree-selection to relation-selection increases the number of relation types in the core from 61 to
75 (over 76) on YAGO4, and from 5,363 to 14,266 (over 14,665) on Freebase. Some relation types
are still missing because they were not present in the largest connected component of the induced
subgraph.

Performance-wise, Figure 8 shows the impact of the core selection strategy. Simply using the degree
appears to consistently give better than relation-based core selection results on downstream tasks.
This is probably due to a richer core subgraph, containing more triples to train good core embeddings
(Table 4). However, the sparser core resulting from the relation selection strategy also makes it faster,
as there are fewer triples during core training.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Relation
Degree

Mixed
23 min
9 min

5 min

YAGO3 (2.6M entities, 5.6M triples)

Relation
Mixed

Degree 2 h
4 h
3 h

YAGO4.5 (32M entities, 75M triples)

Mixed
Degree 4 h

3 h

YAGO4.5 + taxonomy (50M entities, 128M triples)

Relation
Mixed

Degree 12 h
7 h
5 h

YAGO4 (38M entities, 250M triples)

0 1 2 3 4
Cumulative normalized mean cross-validation score (R2)

Mixed
Degree 4 h

7 h

YAGO4 + taxonomy (67M entities, 320M triples)

Evaluation dataset
Movie revenues
US accidents
US elections
Housing prices

Figure 8: Performance of SEPAL+DistMult for our three core selection strategies: degree, relation,
and mixed.

A.5.2 MIXED CORE SELECTION STRATEGY

The relation-based core selection strategy still presents two significant drawbacks: it triggers a per-
formance drop compared to the degree-based approach, and some relations are still missing in the
core. For this reason, we introduce a ”mixed” core selection strategy, aiming to get the best of both
worlds.

The mixed core selection strategy proceeds in four main steps:

1. Degree selection: Sample the nodes with the top ηn degrees.

2. Relation selection: Sample the edges with the top ηe degrees (sum of degrees of head and
tail) for each relation type, and keep the corresponding entities.

3. Merge: Take the union of these two sets of entities.

4. Reconnect: If the induced subgraph has several connected components, add entities to
make it connected to the core. This is done using a breadth-first search (BFS) with early
stopping from the node with the highest degree of each given connected component (except
the largest) to the largest connected component. For each connected component (except the
largest), a path linking it to the largest connected component is added to the core subgraph.

This way, each relation type is guaranteed to belong to the core subgraph, by design. Table 4 shows
that it is indeed the case experimentally, even for Freebase which has 14,665 relation types.

This method features two hyperparameters ηn and ηe, the proportions for node and edge selections,
controlling the size of its output subgraph. The values we used are provided in Table 4 for each
dataset.

Regarding performance, Figure 8 reveals that the mixed strategy helps bridge the gap between the
degree and relation selection strategies. It consistently performs better than the simple relation-based
strategy and concedes little to the degree-based approach. Furthermore, one can adjust the values of
ηn and ηe to control the trade-off between downstream performance and relation coverage.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Table 4: Effect of core selection strategies: Number of entities and triples inside the core subgraph
and the proportion of the full graph they represent (in parentheses). ηn and ηe are the hyperparam-
eters for nodes and edges, respectively. Column #Rel gives the number of relation types present in
the core compared to the total number of relation types in the knowledge graph. We highlight in red
the cases where some relations are missing. Column Time gives the measured computation time for
core selection.

Strategy #Rel #Entities #Triples Time

Degree (ηn = 5%) 37/37 126 k (4.9%) 1.0 M (18.5%) 17 s
Relation (ηe = 2.5%) 37/37 132 k (5.2%) 565 k (10.1%) 20 s

YA
G

O
3

Mixed (ηn, ηe = 2.5%, 1.5%) 37/37 121 k (4.7%) 733 k (13.1%) 20 s

Degree (ηn = 3%) 62/62 932 k (2.9%) 7.2 M (9.6%) 2 min
Relation (ηe = 2%) 62/62 700 k (2.2%) 2.5 M (3.3%) 5 min

YA
G

O
4.

5

Mixed (ηn, ηe = 1.5%, 1%) 62/62 1.1 M (3.3%) 5.7 M (7.5%) 6 min

Degree (ηn = 3%) 61/76 1.1 M (3.0%) 33 M (13.4%) 8 min
Relation (ηe = 1%) 75/76 1.7 M (4.6%) 20 M (8.2%) 20 min

YA
G

O
4

Mixed (ηn, ηe = 1.5%, 0.5%) 76/76 1.4 M (3.8%) 28 M (11.1%) 11 min

Degree (ηn = 3%) 64/64 1.5 M (3.0%) 13 M (9.9%) 4 min
Relation (ηe = 1%) 64/64 1.2 M (2.4%) 3.6 M (2.8%) -

YA
G

O
4.

5
+

ta
xo

Mixed (ηn, ηe = 1.5%, 0.5%) 64/64 1.2 M (2.5%) 8.3 M (6.5%) 5 min

Degree (ηn = 2%) 64/78 1.3 M (2.0%) 41 M (12.8%) 9 min
Relation (ηe = 1%) 78/78 2.1 M (3.3%) 43 M (13.6%) -

YA
G

O
4

+
ta

xo

Mixed (ηn, ηe = 1%, 0.5%) 78/78 1.5 M (2.3%) 32 M (10.1%) 12 min

Degree (ηn = 2%) 5,363/14,665 1.7 M (2.0%) 15 M (4.4%) 9 min
Relation (ηe = 1%) 14,266/14,665 2.1 M (2.5%) 11 M (3.3%) -

Fr
ee

ba
se

Mixed (ηn, ηe = 1%, 0.5%) 14,665/14,665 1.9 M (2.3%) 14 M (4.1%) -

Table 5: Scalability and performance of clustering methods: whether each method experimen-
tally complies with requirements R1 and R2, as well as computation time and RAM usage on mini-
yago3. This table extends table 2.

a. Mini YAGO3
R1

(connected)
R2

(bounded size) Time RAM usage

BLOCS ✓ ✓ 1.8 s 0.702 GB
METIS ✗ ✓ 7.24 s 1.35 GB
Infomap ✗ ✗ 93.5 s 1.31 GB
LE ✗ ✓ 82.8 s 1.24 GB
LPA ✗ ✗ 7.05 s 1.24 GB
Leiden ✓ ✗ 4.13 s 1.24 GB
Louvain ✓ ✗ 7.92 s 1.26 GB
Spectral Clustering ✗ ✗ 52 s 4.68 GB

A.6 CLUSTERING COMPARISON ON MINI YAGO3

Comparing subgraph extraction (clustering) methods on mini YAGO3 (Table 5) is interesting to add
spectral clustering to the comparison, as it does not run on larger graphs.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Table 6: Additional statistics on the knowledge graph datasets used. MSPL stands for Mean Shortest
Path Length. The LCC column gives the percentage of entities of the graph that are in the largest
connected component.

Maximum
degree

Average
degree MSPL Diameter Density LCC

Mini YAGO3 65 711 12.6 3.3 11 1e-4 99.98%
YAGO3 934 599 4.0 4.2 23 2e-6 97.6%
YAGO4.5 6 434 121 4.5 5.0 502 1e-7 99.7%
YAGO4.5 + taxonomy 6 434 122 5.0 4.0 5 1e-7 100%
YAGO4 8 606 980 12.9 4.5 28 3e-7 99.0%
YAGO4 + taxonomy 32 127 569 9.4 3.4 6 1e-7 100%
Freebase 10 754 238 4.9 4.7 100 6e-8 99.1%

B STATISTICS ON KNOWLEDGE-GRAPH DATASETS

More statistics on the knowledge graph datasets are given in Table 6. Maximum and average degree
figures highlight the scale-free nature of real-world knowledge graphs. The values for mean shortest
path length (MSPL) and diameter (the diameter is the longest shortest path) are provided for the
largest connected component (LCC). They are remarkably small, given the number of entities in the
graphs. Contrary to other datasets, YAGO4.5 and Freebase contain ‘long chains’, which account for
their larger diameters.

The density D is the ratio between the number of edges |E| and the maximum possible number of
edges:

D =
|E|

|V |(|V | − 1)

where |V | denotes the number of nodes.

The LCC statistics show that for each knowledge graph, the largest connected component regroups
almost all the entities.

C DOWNSTREAM TASKS

We use 4 downstream tasks adapted from Cvetkov-Iliev et al. (2023) who also investigate
knowledge-graph embeddings to facilitate machine learning. The specific target values predicted
for each dataset are the following:

US elections : predict the number of votes per party in US counties.
Housing prices : predict the average housing price in US cities.
US accidents : predict the number of accidents in US cities.
Movie revenues : predict the box-office revenues of movies.

For each dataset, we use scikit-learn’s Histogram-based Gradient Boosting Regression Tree (Pe-
dregosa et al., 2011) as regression estimator to predict the target value. The embeddings are the
only features fed to the estimator, except for the US elections dataset for which we also include the
political party. For embedding models outputting complex embeddings, such as RotatE, we simply
concatenate real and imaginary parts before feeding them to the estimator.

The rows of the tables corresponding to entities not found in the knowledge graph are filled with
NaNs as features for the estimator. This enables to compare the scores between different knowledge
graphs (see Figure 2) to see the benefits obtained from embedding larger graphs.

The metric used is the R2 score, defined by:

R2 = 1−
∑N

i=1(yi − ŷi)
2∑N

i=1(yi − ȳ)2

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Table 7: Number of rows in the downstream tables.
US elections Housing prices US accidents Movie revenues

Number of rows 13 656 22 250 20 332 7 398

Table 8: Proportion of entities in the downstream tables that were matched to an entity of the knowl-
edge graph.

Mini
YAGO3 YAGO3 YAGO4.5 YAGO4.5

+ taxonomy YAGO4 YAGO4
+ taxonomy Freebase

Housing prices 19.1% 92.2% 99.7% 99.7% 99.1% 99.8% 85.6%
Movie revenues 27.7% 62.3% 99.4% 99.4% 99.4% 99.5% 89.1%
US accidents 21.1% 87.3% 97.6% 97.6% 96.8% 98.0% 78.6%
US elections 74.1% 99.3% 99.0% 99.0% 99.1% 99.1% 98.3%

where N is the number of samples (rows) in the target table, yi is the target value of sample i, ŷi is
the value predicted by the estimator, and ȳ is the mean value of the target variable.

To get the ”Cumulative normalized mean cross-validation score” presented on Figure 2, we proceed
as follows:

1. Mean cross-validation score: for each model1 and evaluation dataset, R2 scores are aver-
aged over 5 repeats of 5-fold cross-validations.

2. Normalized: for each evaluation dataset, we divide all the scores by the score of the best-
performing model on this dataset. This makes the scores more comparable between the
different evaluation datasets.

3. Cumulative: for each model, we sum its scores across every evaluation dataset. As there
are 4 evaluation datasets, the highest possible score for a model is 4. Getting a score of 4
means that the model beats every model on every evaluation dataset.

Table 7 gives an overview of the sizes of the downstream tasks, and table 8 gives the proportion of
entities in these tables that are described in the different knowledge graphs.

D SEPAL HYPERPARAMETERS

D.1 LIST HYPERPARAMETERS FOR SEPAL’S

Here, we list the hyperparameters for SEPAL. Table 9 gives the values of those who depend on the
dataset.

• Proportion of core nodes η: the idea is to select it large enough to ensure good core
embeddings, but not too large so that core embeddings fit in the GPU memory. Figure 9
shows the experimental effect of varying this parameter;

• Stopping diffusion threshold h: it is probably the hardest hyperparameter to tune, as it
depends on the graph structure. Tuning is done empirically by monitoring the proportion of
unassigned entities during the BLOCS algorithm. h is chosen equal to the proportion that
starts to stagnate during BLOCS’ diffusion regime. A bad choice of h can make BLOCS
intractable;

• Number of propagation steps K: it is chosen high enough to ensure reaching the remote
entities (otherwise, they will have zeros as embeddings). Taking K equal to the graph’s
diameter guarantees that this condition is fulfilled. However, for graphs with long chains,
this may slow down SEPAL too much. In practice, choosing K at 2–3 times the Mean
Shortest Path Length (MSPL) usually embeds most entities effectively;

1A ”model” is the combination of a method (e.g. DistMult, DGL-KE, etc.) and a knowledge graph on which
it is trained.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Table 9: SEPAL dataset-specific hyperparameters used.
Mini

YAGO3 YAGO3 YAGO4.5 YAGO4.5
+ taxonomy YAGO4 YAGO4

+ taxonomy Freebase

η 5% 5% 3% 3% 3% 2% 2%
h 0.8 0.77 0.6 0.8 0.55 0.8 0.55
K 5 15 50 20 20 20 15
nepoch 12 18 24 32 28 32 24
b 512 2048 8192 8192 8192 8192 8192

0.02 0.04 0.06 0.08 0.10
Core proportion

0

1

2

3

4

Ag
gr

eg
at

ed
 p

er
fo

rm
an

ce

Knowledge graph
YAGO3
YAGO4
YAGO4.5

Figure 9: Effect of core proportion η on SEPAL’s performance, with the degree core selection strat-
egy.

• Subgraph maximum size m: we use m = 4 · 106. The idea is to use the largest value for
which it is possible to fit the subgraph’s embeddings in the GPU memory;

• Embedding dimension d: we use d = 100 (except for complex embedings, where d =
50);

• Number of epochs for core training nepoch: see Table 9;

• Batch size for core training b: see Table 9;

• Number p of negative samples per positive for core training: we use p = 100.

D.2 EXPERIMENTAL STUDY OF HYPERPARAMETER EFFECT

Now we study experimentally the effect of varying the proportion η of entities in the core. Figure 9
shows that increasing η tends to improve embedding quality for downstream tasks. However, the
effect seems to be plateauing relatively fast for YAGO3 (not much improvement between η = 5%
and η = 10%). For other datasets (YAGO4.5, YAGO4), it is not possible to explore larger values
of η because the core subgraph would not fit in the GPU memory. Moreover, decreasing η makes
SEPAL run faster, as the core embedding phase accounts for a substantial share of the total execution
time (Figure 5). There is, therefore, a trade-off between time and performance.

E EXPERIMENTAL SETUP

Baseline implementations. We apply SEPAL to DistMult, and compare to PyKEEN (Ali et al.,
2021c), NodePiece, PBG, and DGL-KE authors’ implementations, and to FastRP. The version of
NodePiece we use for datasets larger than Mini YAGO3 is the ablated version where nodes are to-
kenized only from their relational context. For all the baseline clustering algorithms, we used the
implementations from the igraph package (Csardi, 2013) except for METIS and Spectral Cluster-
ing, for which we used the torch-sparse and scikit-learn (Pedregosa et al., 2011) implementations,
respectively.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Computer resources. For PBG and FastRP, experiments were carried out on a machine with 48
cores and 504 GB of RAM. DistMult, DGL-KE, NodePiece, and SEPAL were trained on Nvidia
V100 GPUs with 32 GB of memory. The clustering benchmark was run on a machine with 72 CPU
nodes and 376 GB of RAM.

F METHODOLOGICAL DETAILS

F.1 METHODOLOGY FOR FIGURE 3

Figure 3 displays GPU RAM usages for SEPAL with or without BLOCS. These values are theoreti-
cal and were computed using the following procedure:

• For SEPAL with BLOCS: we took the size of the largest subgraph generated by BLOCS
and computed the memory footprint of its embeddings, given their dimension (d = 100)
and the data type used (float32).

• For SEPAL without BLOCS: we took the size of the full knowledge graph and similarly
computed the memory footprint of its embeddings.

SEPAL without BLOCS on YAGO4 and YAGO4.5 could not be computed on our hardware because
the embeddings of these graphs exceed our GPU memory capacity, so we had to extrapolate the
values. Regarding the memory, we simply computed the requirements using the same procedure as
above. Regarding the performance, we kept the same values as their with-BLOCS counterparts as
the results on Mini YAGO3 and YAGO3 show that performance does not vary much when removing
BLOCS.

F.2 METHODOLOGY FOR TABLE 2

Table 2 shows the experimental compliance of several partitioning algorithms to the specific require-
ments of our method.

The criterion to validate requirement R1 (connected) is that all the output subgraphs have only one
connected component.

For requirement R2 (bounded size), the criteria are: 1) No subgraph should be bigger than twice the
average subgraph size 2) No subgraph should be smaller than half the average subgraph size.

Additionally, we consider both requirements to be failures for trivial partitionings: one subgraph
with all the entities, or N subgraphs with one entity each.

24

	Introduction
	Related work: embedding and scalability in knowledge graphs
	Graph-embedding methods
	Scaling graph algorithms
	Scaling knowledge-graph embedding

	SEPAL: expanding from a core subgraph
	Splitting large graphs with BLOCS
	Separating core optimization and outer propagation

	Experimental study
	Knowledge graph datasets
	Evaluating node features on downstream regression tasks
	Evaluating BLOCS
	Outer performance

	Discussion and conclusion
	Additional results
	Extended results: more embedding models, more datasets
	Execution time breakdown
	BLOCS cannot be replaced with METIS
	Comparison with NodePiece
	Other core selection strategies
	Relation-based core selection strategy
	Mixed core selection strategy

	Clustering comparison on mini YAGO3

	Statistics on knowledge-graph datasets
	Downstream tasks
	SEPAL hyperparameters
	List hyperparameters for SEPAL's
	Experimental study of hyperparameter effect

	Experimental setup
	Methodological details
	Methodology for Figure 3
	Methodology for Table 2

