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ABSTRACT

Deep models for document tampering detection increasingly rely on multimodal
RGB+DCT architectures, implicitly assuming that JPEG block artifact grids
(BAG) provide stable cross forgery cues. In this paper, we show that this as-
sumption embeds a strong inductive bias that fails under minimal, adversari-
ally constructed perturbations. Unlike natural images, where JPEG alignment
is largely stochastic, document images contain sharply bounded glyph structures,
making grid-aligned manipulations trivial for an adversary. We formalize this phe-
nomenon through two complementary attacks. Grid-Aligned Forgery (GAF) pre-
serves local JPEG block statistics by aligning copy move, splicing, or generative
manipulations to the underlying 8×8 grid, removing the inconsistencies current
models depend on. Pad–Recompress–Crop (PRC) globally shifts the JPEG grid
while leaving RGB content unchanged, probing whether detectors meaningfully
fuse RGB and DCT features or merely memorize position dependent frequency
cues. To quantify these effects, we use two evaluation metrics, Attack Success
Rate (ASR) for missing forged regions and False Positive Area (FPA) for unin-
tended detections, which capture failure modes not measured by prior work. Eval-
uations on the DocTamper benchmark show that both attacks substantially degrade
performance across a range of state-of-the-art and robustness-oriented (including
adversarially robust) detectors, such as CAT-Net, DTD, FFDN, DocForgeNet, and
ADCD-Net. Our findings indicate that many existing models exhibit a strong bias
toward JPEG-grid statistics and highlight this as an opportunity for developing
more robust multimodal architectures for real world, security critical document
forensics.

1 INTRODUCTION

Document integrity is critical in high-stakes domains such as finance, government administration,
and academia, where even minor data manipulations by malicious actors can lead to serious infor-
mation security risks (Verdoliva, 2020). Meanwhile, the rapid progress and widespread availability
of modern image editing technologies have made it increasingly convenient to create such forgeries,
necessitating the development of efficient and robust methods for forgery detection (Nandanwar
et al., 2021; Pun et al., 2023; Wu et al., 2019).

Recent deep learning (DL)-based detectors (Qu et al., 2023; Wang et al., 2022b; Riaz et al., 2025;
Chen et al., 2025) have demonstrated strong performance on standard document tampering bench-
marks (Qu et al., 2023; Wang et al., 2022b). However, many of these methods still largely rely
on exploiting the frequency-domain artifact traces introduced by JPEG compression, particularly
the discontinuities in the block artifact grids (Li et al., 2009), as discriminative cues for detect-
ing manipulated regions in the image. While this strategy is well-motivated, given that JPEG is a
widely adopted compression algorithm for storing images, we hypothesize that an over-reliance on
frequency-domain traces introduces a critical vulnerability: instead of learning robust, semantically
meaningful evidence of tampering, models may overfit to local grid statistics and fail whenever
these statistics are preserved or systematically shifted. This reflects a problematic inductive bias
driven by the training data distribution and by the structure of JPEG compression, which operates
on non-overlapping 8× 8 image patches.
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(a) GAF Attack (b) PRC attack

Figure 1: Examples showing the effectiveness of our proposed forgery attacks. (a) The Grid-Aligned
Forgery (GAF) attack (red) preserves local JPEG block statistics and successfully evades detection
(green), in contrast to standard forgeries (blue). (b) The Pad–Recompress–Crop (PRC) attack (right)
triggers a considerable amount of false positives by introducing only a subtle grid misalignment, as
seen by the model’s predictions before (middle) and after the shift (right).

To examine this failure mode, we introduce two complementary adversarial forgery procedures.
(1) Grid-Aligned Forgery (GAF) aligns manipulated regions to the JPEG grid, preserving block-
level DCT statistics. Despite the manipulated content remaining visually obvious to humans, grid
preservation is often sufficient to bypass existing detectors. GAF generalizes across copy–move,
splicing, and generative forgeries. (2) Pad–Recompress–Crop (PRC) shifts the JPEG grid by min-
imal padding and recompression, yielding out-of-distribution DCT patterns while keeping RGB
content identical. PRC probes whether detectors have learned meaningful cross-modal correlations
or merely memorized block level statistics. In principle, a model with robust global representations
should remain invariant to such shifts, empirically, we show that this is not the case.

We evaluate our proposed methods on one of the largest available document tampering benchmarks,
DocTamper Qu et al. (2023), and compare them against several state-of-the-art deep learning–based
document-tampering detection methods. Across the DocTamper benchmark, both GAF and PRC
induce significant failures in SotA detectors, reducing detection rates to as low as 1% and enabling
systematic false positives. These results highlight a fundamental weakness in current architectures
stemming from an over reliance on JPEG-grid statistics rather than learning robust, semantically
grounded tampering cues. The main contributions of this work are following:

• We identify and formalize a critical inductive bias in JPEG-based forgery detectors arising
from block-level DCT features.

• We introduce two complementary adversarial procedures, GAF and PRC, that exploit this
bias through grid preservation and controlled grid shifts.

• We show that even minimal manipulations dramatically degrade SotA detectors, revealing
fundamental limitations in current multimodal JPEG–RGB document tampering detection
architectures.

2 RELATED WORK

JPEG Forensics. JPEG is the most widely adopted format for compressed images, and forensic
analysis based on its artifacts has a long history. Early works focused on detecting double JPEG
compression (Wang & Zhang, 2016; Fan & de Queiroz, 2003) and were later extended to tampering
localization (Barni et al., 2010; Chen & Hsu, 2008; Li et al., 2009). For example, Barni et al. (2010)
analyzed block-level statistics around suspected forgeries, while Chen & Hsu (2008) trained SVMs
to discriminate forged from authentic regions. Other approaches modeled the probability of double
compression at the DCT-block level Bianchi & Piva (2012) or extracted block artifact grids (BAGs)
to localize tampering via grid discontinuities Li et al. (2009). For a comprehensive overview of
classical approaches for JPEG-based forensics, see Verdoliva (2020).

Deep Learning for Forgery Detection. Deep learning shifted the field toward end-to-end detectors
that combine RGB and frequency-domain or additional noise features. CNN-based approaches (Ba-
yar & Stamm, 2018; Zhou et al., 2018; Amerini et al., 2017) and hybrid two-stream models (Kwon
et al., 2021; Dong et al., 2022) demonstrated strong results on natural image tampering. More re-
cently, attention-based and transformer-based architectures (Liu et al., 2022; Wang et al., 2022a)
improved global reasoning but often lose sensitivity to subtle local artifacts. However, most of these
methods remain optimized only for natural images, where manipulations are larger and visually
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distinct, rather than document forgeries where edits are localized and text-like (Wu et al., 2019;
Nandanwar et al., 2021).

Deep Learning for Document Forgery Detection. Since document forgeries are much more sub-
tle compared to natural images, recent models explicitly introduce frequency-domain feature fusion
strategies into deep neural networks for enhanced tampering detection. Abramova & Böhme (2016)
proposed a method for detecting copy–move tampering in document images based on double quan-
tization artifacts, however, this approach falls short when faced with multiple JPEG compressions.
Wang et al. (2022b) introduced a two-stream Faster R-CNN (Ren et al., 2015) combining RGB and
frequency features, but primarily targets SRNet-generated forgeries (Wu et al., 2019) rather than
careful copy-paste tampering. For instance, Document Tampering Detector (DTD) Qu et al. (2023)
is a recent state-of-the-art model a multi-modality Swin Transformer (Liu et al., 2021) model that
employs a Frequency Perception Head (FPH) to capture tampering clues from DCT coefficients
and a Multi-view Iterative Decoder (MID) to leverage multi-scale feature information from separate
pixel-domain and frequency-domain input streams. FFDN (Chen et al., 2025) builds on the DTD (Qu
et al., 2023) architecture by introducing a Vision Enhancement Module (VEM) and a Wavelet-like
Frequency Enhancement (WFE) module for adaptive fusion of pixel-domain and frequency-domain
features, and demonstrates state-of-the-art performance on multiple document tampering bench-
marks. DocForgenet (Riaz et al., 2025) recently also propose to enhance feature fusion using dual-
cross stream networks that fuse the frequency and pixel-level features via cross-attention. In addi-
tion, recent document-oriented models further extend multi-stream fusion. ADCD-Net (Wong et al.,
2025) introduces an adaptive DCT weighting mechanism to handle block misalignment and employs
hierarchical content disentanglement to reduce strong text–background bias, improving robustness
under resizing and recompression. Similarly, the RTM baseline ASC-Former (Luo et al., 2025)
leverages consistency-aware aggregation and gated cross-neighborhood attention to fuse RGB and
transformed-domain cues, demonstrating strong performance on manually edited, highly concealed
forgeries.

Despite several architectural advances, many current state-of-the-art document forgery detection
models remain fundamentally dependent on block-level JPEG grid artifacts for identifying tamper-
ing. While this approach proves effective for natural image forgery, where random operations such
as copy-move have only a 1/64 random chance of aligning with 8×8 JPEG block boundaries and
thereby introduce detectable grid artifacts, document images present fundamentally different char-
acteristics. In particular, the presence of discrete glyph structures with sharp foreground-background
transitions makes it feasible to execute grid-aligned tamperings while maintaining visual plausibil-
ity. Our work is the first to systematically exploit this domain-specific vulnerability, demonstrating
that current detection paradigms can be reliably circumvented and underscoring the critical need for
more robust document tampering detection frameworks.

3 PRELIMINARIES

3.1 JPEG COMPRESSION MODEL

The encoding process of JPEG compression can be summarized in three main steps (1) The image
is partitioned into 8× 8 non-overlapping blocks, and a 2D discrete cosine transform (DCT) (Ahmed
et al., 1974) is applied to each block independently to compute the DCT coefficients. (2) The
resulting DCT coefficients are quantized using a quantization matrix Q ∈ N8×8, the values of
which are determined according to the compression quality factor f ∈ [0, 100]. (3) Finally, the
quantized DCT coefficients are entropy-coded (e.g., using Huffman and run-length encoding) in a
lossless manner. Formally, given an original uncompressed image block Iij , JPEG compression
followed by decompression with a quality factor f can be expressed as

I′ij = IDCT(D(Qf (DCT(Iij)))) + ε, (1)

where Qf (·) denotes quantization with Q, D(·) denotes the corresponding dequantization, and ε
accounts for rounding and truncation errors during decoding. In standard JPEG compression, Eq. 1
is applied to a single 8 × 8 block at position (i, j) in the image and the full decompressed image is
obtained by concatenating all independently reconstructed blocks of the image:

Cf (I) =
⋃
i,j

I′ij . (2)
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Figure 2: (a) A standard forgery disrupts the block artifact grid, leaving forensic traces of tampering.
(b) Our proposed Grid-Aligned Forgery aligns the tampered text with the underlying 8 × 8 grid, in
an attempt to preserve the per-block DCT statistics.

Since quantization is performed independently across each 8× 8 block, horizontal and vertical dis-
continuities emerge at block boundaries, commonly referred to as block artifacts. In image forensics,
the inconsistencies in block artifact grids between authentic and tampered regions provide strong
cues for manipulation as illustrated in Fig. 2.

4 METHODOLOGY

Let It ∈ R3×H×W denote an input document image in RGB space. Then, for a standard image
tampering setup (Li et al., 2009; Qu et al., 2023; Wang et al., 2022b), let Is be a source image from
which the tampered content is obtained, together with a source bounding box bs = (xs, ys, w, h)
specifying the position and size of the region to be copied. Let a corresponding target bounding box
be bt = (xt, yt, w, h) specifying where this content is placed within the target image It. Then, let
Π be a unified forgery operator that crops the source region bs from Is and pastes it into the target
region of It:

Π(It, Is, bs, bt):,i,j =

{
Is:, i−yt+ys, j−xt+xs

, xt ≤ j < xt + w, yt ≤ i < yt + h,

It:,i,j , otherwise.
(3)

We consider three common types of forgeries in this work. For all types, the operator Π remains
identical; the only difference lies in how the source image Is is defined: (1) Copy–move: Is = It,
i.e., the source is the target image itself. (2) Splicing: Is ̸= It, i.e., the source is a different image
from which the tampered region is extracted. (3) Generative: Is is produced by generative or
rendering approaches. For details on how we perform splicing and generative forgeries, refer to
Appendix A. Following previous works (Li et al., 2009; Qu et al., 2023; Wang et al., 2022b), we
assume that after the forgery operation Π is applied, the image again undergoes one or multiple
JPEG compressions with a set of quality factors F = {f1, f2, . . . , fn} and stored, resulting in the
final tampered image I ′:

I ′ = (Cfn ◦ · · · ◦ Cf1)(Π(It, Is, bs, bt)) (4)

Assuming a deep forgery detector fθ : R3×H×W → [0, 1]H×W that outputs a tampering probability
map ŷ = fθ(I

′) over the forged image I ′, the tampering operation can be modeled as a constrained
adversarial attack (Zhou et al., 2022) that aims to minimize the detector’s response over the desired
tampered regions bt ∈ T :

min
bs∈S, bt∈T

∑
bt∈T

∑
(i,j)∈P(bt)

ŷi,j , (5)

where
P(bt) = {(i, j) | xt ≤ j < xt + w, yt ≤ i < yt + h}.

and S and T denote the desired candidate sets of source and target forgery regions, respectively.
However, solving this optimization problem directly is intractable for two reasons. First, selecting
appropriate candidate bounding boxes (bs, bt) is nontrivial: the forger must identify semantically
meaningful text regions bs from the source image Is that can be imperceptibly aligned with the
target regions bt in RGB space. Since the coordinates and dimensions of these boxes can vary
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Figure 3: As shown, compared to standard tampering setups, GAF first aligns the source text boxes
to the closest grid frontiers and then pastes them to target tampering locations also aligned with the
grid of the target locations. Each cell of the grid is corresponds to a size of 8× 8.

arbitrarily, this results in an exponentially large search space. Second, in realistic scenarios, the
forger lacks white-box access to the detector fθ, making direct evaluation of ŷ infeasible. While
the first difficulty can be substantially mitigated using modern OCR tools, which we also employ to
define the set of source candidates S, the second limitation persists. To circumvent this, we propose
tackling the problem indirectly by exploiting structural biases of modern detectors fθ, such as their
over-reliance on frequency-domain DCT features for tampering detection.

4.1 ATTACK 1: GRID-ALIGNED FORGERY (GAF)

JPEG compression operates independently on non-overlapping 8×8 blocks, and modern tamper-
ing detectors (Qu et al., 2023; Riaz et al., 2025; Chen et al., 2025; Kwon et al., 2021) rely heav-
ily on inconsistencies in block-level quantization artifacts as cues for manipulation. Building on
this observation, we introduce Grid-Aligned Forgery (GAF), an adversarial forgery procedure that
aligns manipulated regions exactly with the JPEG block structure to minimize detectable quanti-
zation mismatches (see Figure 3), with the complete pseudocode shown in Algorithm 1. For each
OCR-detected box b = (x, y, w, h), we align it to the JPEG grid using

SNAP8(b) =
(
8⌊x/8⌋, 8⌊y/8⌋, 8⌈w/8⌉, 8⌈h/8⌉

)
,

which snaps the top-left corner to the nearest 8-pixel boundary and expands the width/height to the
nearest grid-aligned size; only boxes with confidence above τconf are retained. Given a target re-
gion bt, we select a source box bs by choosing the candidate whose area best matches that of bt,

Algorithm 1 Attack 1: Grid-Aligned Forgery (GAF)

Require: Target Image It ∈ R3×H×W ; Source Image Is ∈ R3×H×W ; OCR bounding boxes
SOCR = {(xi, yi, wi, hi, confi)}Ni=1; JPEG quality factors F = {f1, . . . , fn}; target tampering
box bt; bounding box confidence threshold τconf; size match threshold τarea

Ensure: Forged image I ′, mask M
1: fn SNAP8(b) := (8⌊x/8⌋, 8⌊y/8⌋, 8⌈w/8⌉, 8⌈h/8⌉), where b = (x, y, w, h) ▷ Align box to

8-pixel grid
2: S ←

{
SNAP8(b)

∣∣ (b, conf) ∈ SOCR ∧ conf ≥ τconf
}

▷ Filter OCR boxes by confidence and
overlap

3: b̄s ← argmin b̄s∈S̄
b̄s ̸=b̄t

|area(b̄s)− area(b̄t)| ▷ Select source box with similar size to target

s.t. min(area(b̄s),area(b̄t))
max(area(b̄s),area(b̄t))

≥ 1− τarea, IoU(b̄s, b̄t) ≤ ϵ

4: I ′ ← (Cfn ◦ · · · ◦ Cf1)(Π(It, Is, b̄s, b̄t)) ▷ Copy–move patch from b̄s to b̄t
5: M ← 03×H×W ; M [yt : yt + h, xt : xt + w]← 1 ▷ Update mask for tampered region
6: return I ′,M
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Algorithm 2 Attack 2: Grid Shift via Pad–Recompress–Crop (PRC)

Require: Image I ∈ R3×H×W ; shift policy π (fixed or random); JPEG qualities q = [q1, . . . , qm];
padding mode ϕ ∈ {edge, const, reflect}

Ensure: Grid-shifted image I ′

1: (∆x,∆y)← π, with (∆x,∆y) ∈ {0, . . . , 7}2 \ {(0, 0)}
2: Ip ← Pad I with (∆x,∆y) using mode ϕ ▷ Pad
3: Ic ← (Cfn ◦ · · · ◦ Cf1)(Ip) ▷ Recompress
4: I ′ ← Ic[∆y : ∆y +H, ∆x : ∆x+W ] ▷ Crop
5: return I ′

subject to an area-ratio constraint (≥ 1 − τarea) and low spatial overlap (IoU ≤ ϵ), exactly follow-
ing Algorithm 1. The forgery operator Π(It, Is, bs, bt) copies content from bs into bt, and a binary
mask marks the manipulated region. To preserve block-wise artifact geometry (BAG), the manip-
ulated image is then recompressed using the same JPEG quality factors F = {f1, . . . , fn} as the
original acquisition pipeline. Algorithm 1 implements the copy–move variant (GAF-CM), while
the same grid-alignment principle extends to splicing (GAF-S) and generative scenarios (GAF-G)
by replacing the inserted content but always applying SNAP8 to maintain JPEG-block consistency
(see Appendix A for more details). Overall, GAF produces visually plausible forgeries while sig-
nificantly reducing the block-level inconsistencies exploited by state-of-the-art detectors, making it
a strong adversarial baseline.

4.2 ATTACK 2: GRID SHIFT VIA PAD–RECOMPRESS–CROP (PRC)

While the GAF attack aims to minimize detector responses on target tampered regions, modern
detectors’ reliance on frequency-domain block artifacts suggests a complementary vulnerability. If
these models discriminate forged from unaltered regions based on slight misalignments in the JPEG
block grid, then deliberately introducing small global grid distortions should trigger the detector to
classify many pixels as manipulated. Intuitively, this can be viewed as another type of adversarial
attack that solves the inverse problem to Eq. 5: rather than minimizing detector responses, we seek
to maximize the predicted tampering probability across the entire image. Formally, let ∆x,∆y
define the grid shifts in horizontal and vertical directions, respectively, then Pad–Recompress–Crop
(ΠPRC) operator for grid shift is defined as follows:

ΠPRC(I,∆x,∆y) = R∆x,∆y ◦ Cq ◦ P∆x,∆y(I),

where P∆x,∆y pads the image on the left and top by (∆x,∆y) pixels, and R∆x,∆y crops these pixels
after JPEG recompression step described in Eq. 4. Applying this operator produces the attacked
image

I ′ = ΠPRC(I,∆x,∆y) (6)

The PRC attack is then formulated as an optimization over the grid shift (∆x,∆y):

max
∆x,∆y

∑
(i,j)∈I′

fθ(I
′)i,j , s.t. (∆x,∆y) ̸= (0, 0), 0 ≤ ∆x ≤ 7, 0 ≤ ∆y ≤ 7. (7)

By carefully selecting (∆x,∆y), the Pad–Recompress–Crop (PRC) attack aims to exploits the
model’s sensitivity to grid misalignment, with the goal of producing as many false-positive tam-
pering predictions as possible if the model is biased towards the frequency-domain features. Algo-
rithm 2 provides the complete pseudocode for PRC attack.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We perform all evaluations on DocTamper (Qu et al., 2023), the largest publicly avail-
able dataset for document tampering detection. DocTamper provides 170k tampered English and
Chinese document images created using copy–move, splicing, and generative methods. The dataset
includes 120k training samples, a 30k primary test split (D-TestingSet), and two cross-domain test
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splits: DocTamper-FCD (2k images from the Noisy Office dataset (Castro-Bleda et al., 2019)) and
DocTamper-SCD (18k images from the HUAWEI Cloud dataset (Huawei Cloud, 2022)). All images
are pre-forged and the dataset supplies pixel-level annotations of tampered regions. The different
test sets exhibit substantial domain shift, allowing us to evaluate attack transferability under diverse
conditions.

Models. We evaluate our attacks on six state-of-the-art forgery detectors that rely heavily on DCT-
domain cues: CatNet (Kwon et al., 2021), DTD (Qu et al., 2023), DocForgeNet (Riaz et al., 2025),
FFDN (Chen et al., 2025), RTM (Luo et al., 2025), and ADCD-Net (Wong et al., 2025). These
models represent the strongest-performing systems on DocTamper and serve as canonical examples
of block-artifact–driven detection pipelines. We apply both proposed attack families, Grid-Aligned
Forgeries (GAF-CM, GAF-S, GAF-G) and Pad–Recompress–Crop (PRC), to assess their robust-
ness.

Evaluation Protocol. Following the DocTamper protocol (Qu et al., 2023), we subject each test
image to 1–3 JPEG recompressions with quality factors ≥ 75 and the standard public seed. We
report pixel-wise Precision (P), Recall (R), and F1-score (F) on all three test splits. To ensure a
fair and controlled comparison when evaluating our attacks, we keep the underlying forgery type
identical across all conditions. For the PRC attack, which does not introduce any new forgeries, we
compare model performance directly against the unattacked setting (referred to as No Attack) on the
original DocTamper forgeries (referred to as DocTamper). On the other hand, since the GAF attacks
introduce additional forgeries into the dataset, we compare the degradation in model performance
only on the forgeries created by our methods under two setups: without grid alignment (referred
to as No Attack under each forgery type), and with GAF applied (denoted GAF-CM, GAF-S, and
GAF-G for the copy-move, splicing, and generative cases respectively).

Attack Evaluation Metrics. For attack-specific evaluation, we define two additional metrics. To
measure the overall effectiveness of the GAF attacks (GAF-CM, GAF-S, and GAF-G) in degrading
the detector performance, we propose the attack success rate (ASR) metric1. We define ASRτ as the
total number of images on which the intersection-over-union (IoU) between the ground-truth and
the predicted pixels is less than a target threshold τ . We compute the ASR over multiple threshold
levels τ ∈ {0.0, ..., 0.5} and report the average ASR over all thresholds. The intuition behind this
is to quantify the tamperings bypassed by the detector under GAF. This indicates the effective con-
cealment of the forgery from the detector. Similarly, to evaluate the effectiveness of the PRC attack
in triggering false positives, we propose the False Positive Area (FPA) metric, which is computed
as the fraction of pixels that are incorrectly predicted as tampered by the model. FPA measures
the spatial extent of spurious tamper detections triggered by PRC, quantifying systemic false alarm
generation. We report the mean FPA across all images, where higher values indicate that the attack
successfully triggers more false positives.

Implementation Details. Because DocTamper provides only pre-forged images, we re-tamper them
using GAF-CM, GAF-S, and GAF-G. We snap all source and target boxes to the JPEG 8×8 grid
before applying the same recompression schedule. To obtain source and target boxes, we use
EAST (Zhou et al., 2017) to detect text regions and then select size-matched box pairs while ex-
cluding regions overlapping with DocTamper’s existing forgeries. This procedure preserves visual
legibility and ensures that DCT-stream cues remain exploitable by the detectors. For PRC, we use
the same evaluation metrics but substitute FPA for ASR to capture false-positive behavior.

5.2 QUANTITATIVE EVALUATION: GAF AND PRC

In Table 1, we present the quantitative evaluation results of our proposed attacks across all detectors
and test splits. Following the evaluation protocol described in Section 5, we compare each model
under the standard “No Attack” tampering setup against the three variants of Grid-Aligned Forgery
(GAF-CM, GAF-S, GAF-G) and the Pad–Recompress–Crop (PRC) attacks. We summarize our key
observations below.

GAF-CM and GAF-S. Across all three datasets, both GAF-CM and GAF-S induce substantial per-
formance degradation, as measured by F1 score decline and elevated ASR/FPA rates. For instance,

1Note that this ASR metric is specific to forgery localization and differs from the ASR commonly used in
adversarial robustness literature.
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Table 1: Performance of state-of-the-art document tampering detectors under our proposed adversar-
ial attacks. Results show severe performance degradation for most methods, including robustness-
oriented models such as ADCD-Net, under the GAF-CM and GAF-S attacks, demonstrating sys-
tematic over-reliance on JPEG grid statistics. For GAF-G, the performance decline is milder but
consistent.

TestingSet FCD SCD
Detection Model Attack Type Forgery Type P R F ASR/FPA P R F ASR/FPA P R F ASR/FPA

No Attack DocTamper Original 0.673 0.947 0.750 - 0.774 0.911 0.937 - 0.535 0.935 0.652 -
PRC DocTamper Original 0.544 0.731 0.624 0.011 0.568 0.604 0.595 0.042 0.437 0.726 0.546 0.009

No Attack Copy-Move 0.766 0.796 0.781 0.230 0.940 0.866 0.953 0.116 0.739 0.936 0.795 0.148
GAF-CM Copy-Move 0.744 0.550 0.633 0.570 0.810 0.415 0.549 0.890 0.695 0.524 0.594 0.508

No Attack Generative 0.871 0.736 0.798 0.153 0.911 0.939 0.874 0.007 0.869 0.698 0.774 0.083
GAF-G Generative 0.871 0.687 0.768 0.205 0.912 0.817 0.862 0.033 0.870 0.650 0.744 0.132

No Attack Splicing 0.828 0.946 0.937 0.151 0.939 0.942 0.941 0.114 0.804 0.824 0.814 0.112

CAT-Net

GAF-S Splicing 0.826 0.669 0.739 0.348 0.237 0.102 0.142 0.754 0.776 0.580 0.664 0.369

No Attack DocTamper Original 0.752 0.701 0.726 - 0.793 0.742 0.762 - 0.698 0.701 0.700 -
PRC DocTamper Original 0.057 0.823 0.107 0.177 0.094 0.215 0.121 0.094 0.057 0.749 0.105 0.111

No Attack Copy-Move 0.877 0.648 0.745 0.125 0.851 0.762 0.804 0.099 0.898 0.744 0.814 0.095
GAF-CM Copy-Move 0.446 0.298 0.357 0.512 0.304 0.029 0.054 0.845 0.686 0.381 0.490 0.439

No Attack Generative 0.953 0.479 0.638 0.143 0.948 0.782 0.857 0.045 0.942 0.470 0.627 0.172
GAF-G Generative 0.514 0.320 0.395 0.417 0.856 0.515 0.643 0.332 0.675 0.312 0.426 0.392

No Attack Splicing 0.928 0.752 0.831 0.068 0.839 0.737 0.785 0.101 0.933 0.791 0.856 0.057

DTD

GAF-S Splicing 0.572 0.472 0.517 0.310 0.237 0.102 0.142 0.754 0.727 0.499 0.592 0.276

No Attack DocTamper Original 0.802 0.751 0.774 - 0.945 0.801 0.822 - 0.701 0.739 0.720 -
PRC DocTamper Original 0.050 0.874 0.095 0.215 0.067 0.263 0.106 0.131 0.049 0.810 0.091 0.141

No Attack Copy-Move 0.886 0.734 0.803 0.074 0.860 0.843 0.851 0.066 0.900 0.835 0.866 0.044
GAF-CM Copy-Move 0.396 0.293 0.333 0.532 0.182 0.017 0.032 0.879 0.578 0.367 0.449 0.452

No Attack Generative 0.955 0.550 0.698 0.089 0.946 0.790 0.861 0.028 0.943 0.540 0.687 0.107
GAF-G Generative 0.432 0.302 0.355 0.428 0.931 0.457 0.590 0.390 0.563 0.299 0.390 0.403

No Attack Splicing 0.930 0.821 0.873 0.045 0.859 0.831 0.845 0.062 0.932 0.854 0.891 0.033

DocForgeNet

GAF-S Splicing 0.495 0.429 0.459 0.353 0.163 0.104 0.127 0.762 0.593 0.469 0.524 0.317

No Attack DocTamper Original 0.873 0.940 0.956 - 0.927 0.905 0.916 - 0.805 0.819 0.812 -
PRC DocTamper Original 0.783 0.723 0.752 0.001 0.766 0.661 0.710 0.002 0.747 0.723 0.735 0.001

No Attack Copy-Move 0.830 0.801 0.815 0.112 0.888 0.943 0.915 0.024 0.864 0.889 0.876 0.062
GAF-CM Copy-Move 0.633 0.495 0.549 0.399 0.369 0.273 0.314 0.645 0.667 0.566 0.613 0.346

No Attack Generative 0.890 0.567 0.693 0.185 0.939 0.952 0.946 0.004 0.899 0.623 0.736 0.122
GAF-G Generative 0.871 0.483 0.621 0.257 0.932 0.904 0.918 0.027 0.866 0.520 0.650 0.218

No Attack Splicing 0.808 0.654 0.723 0.247 0.903 0.942 0.922 0.018 0.821 0.720 0.766 0.194

FFDN

GAF-S Splicing 0.686 0.462 0.552 0.422 0.544 0.421 0.475 0.477 0.675 0.465 0.550 0.421

No Attack DocTamper Original 0.745 0.701 0.722 - 0.794 0.699 0.739 - 0.643 0.682 0.662 -
PRC DocTamper Original 0.650 0.637 0.644 0.002 0.678 0.560 0.613 0.003 0.605 0.652 0.628 0.003

No Attack Copy-Move 0.674 0.641 0.657 0.251 0.702 0.693 0.698 0.228 0.712 0.757 0.734 0.173
GAF-CM Copy-Move 0.553 0.453 0.498 0.428 0.460 0.350 0.398 0.531 0.570 0.542 0.556 0.367

No Attack Generative 0.876 0.581 0.699 0.157 0.937 0.806 0.867 0.016 0.899 0.662 0.762 0.079
GAF-G Generative 0.959 0.522 0.649 0.201 0.929 0.755 0.933 0.028 0.879 0.592 0.708 0.126

No Attack Splicing 0.931 0.758 0.793 0.146 0.772 0.791 0.781 0.117 0.945 0.802 0.823 0.108

RTM

GAF-S Splicing 0.931 0.728 0.776 0.159 0.676 0.594 0.627 0.271 0.943 0.770 0.805 0.128

No Attack DocTamper Original 0.789 0.823 0.806 - 0.866 0.770 0.815 - 0.690 0.799 0.740 -
PRC DocTamper Original 0.785 0.856 0.819 0.003 0.953 0.634 0.728 0.004 0.631 0.730 0.677 0.004

No Attack Copy-Move 0.815 0.498 0.618 0.154 0.930 0.638 0.757 0.115 0.828 0.604 0.698 0.221
GAF-CM Copy-Move 0.782 0.403 0.532 0.219 0.897 0.289 0.436 0.291 0.813 0.494 0.607 0.307

No Attack Generative 0.926 0.544 0.685 0.137 0.986 0.953 0.970 0.041 0.914 0.608 0.730 0.128
GAF-G Generative 0.903 0.424 0.577 0.211 0.989 0.896 0.940 0.005 0.889 0.426 0.575 0.249

No Attack Splicing 0.892 0.489 0.632 0.183 0.938 0.701 0.802 0.075 0.900 0.582 0.707 0.178

ADCD-Net

GAF-S Splicing 0.877 0.397 0.547 0.253 0.917 0.466 0.618 0.167 0.894 0.497 0.639 0.240

on the TestingSet (Copy-Move), CAT-Net shows an F1 reduction from 0.781 to 0.633 (15% relative
decline), while the F1 on RTM degrades from 0.657 to 0.498 (24% decline). Notably, ADCD-
Net, despite its adaptive DCT-weighting module explicitly designed for adversarial robustness, also
demonstrates a considerable performance (F1) drop from 0.618 to 0.532 (14% decline). The vul-
nerabilities becomes more pronounced on the challenging FCD split, where the F1 for CAT-Net
plummets from 0.953 to 0.549, for RTM from 0.698 to 0.398, and for ADCD-Net from 0.757 to
0.436. The ASR metric further corroborates the effectiveness of our attacks in a unified manner.
CAT-Net’s ASR increases from 0.230 (No Attack) to 0.570 under GAF-CM and from 0.151 to
0.348 under GAF-S, indicating that substantially larger portions of forged pixels evade detection en-
tirely. DTD and DocForgeNet exhibit similar deterioration, with ASR values exceeding 0.50 across
multiple splits. Even robustness-oriented architectures such as RTM and ADCD-Net demonstrate
notable ASR increases (RTM: 0.251 → 0.428; ADCD-Net: 0.154 → 0.219 for Copy-Move). We
provide additional results under varying ASR thresholds in Appendix C. Overall, our findings on
GAF-CM/S attacks validate our central hypothesis that existing DCT-dependent architectures are
fundamentally biased toward frequency-domain compression artifacts rather than semantic tamper-
ing cues, exposing critical limitations in current forgery detection paradigms.

GAF-G. In contrast to GAF-S/CM, GAF-G produces consistent but milder degradation across all
models. This is expected as generative forgeries inherently disrupt JPEG history: the rendered text
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Figure 4: Qualitative comparison of the GAF attack across different state-of-the-art detection meth-
ods on the DocTamper dataset (Qu et al., 2023). Evidently, the GAFs (Green) evade detection at
a much higher rate compared to the original tampering ground truth (Red), especially in the Copy-
Move and Splicing scenarios, whereas they are less effective under Generative forgeries. Blue high-
lights True Positives (TP), and Yellow marks False Positives (FP).

patch carries mismatched quantization signatures, antialiasing patterns, and font-texture statistics
that cannot be aligned with the host document, even after grid snapping. These signatures pro-
vide detectors with residual cues to partially localize tampering, resulting in moderate performance

Figure 5: Qualitative comparison of the PRC forgery attack across different state-of-the-art detection
methods on the DocTamper dataset (Qu et al., 2023). The PRC attack leads to severe failure cases,
such as triggering a large number of false positives or causing complete failure to detect any forgery
across existing models. Red denotes the original tampering ground truth. Blue highlights True
Positives (TP), while Yellow marks False Positives (FP).
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declines. For instance, CAT-Net’s F1 drops from 0.798 to 0.768, DTD from 0.638 to 0.395, and
DocForgeNet from 0.693 to 0.621, primarily driven by reduced recall. This behavior confirms that
detectors rely on RGB inconsistencies only when generative content deviates from expected docu-
ment statistics, while JPEG frequency artifacts remain their dominant decision signal.

PRC. PRC results demonstrate a characteristic failure pattern reflected in the FPA column: detectors
such as DTD and DocForgeNet exhibit severe false-positive inflation (e.g., FPA 0.177 and 0.215 on
TestingSet), often predicting large portions of clean text as tampered. Models like CAT-Net, FFDN,
and RTM avoid this extreme behavior but still show clear F1 reductions driven by disrupted DCT
alignment. For example, CAT-Net drops from 0.750 to 0.624, FFDN declines from 0.956 to 0.752,
and RTM decreases from 0.722 to 0.644, while DTD and DocForgeNet collapse to 0.107 and 0.095.
For FFDN specifically, we conduct an ablation study (see Appendix B) to investigate the source of
its improved robustness. Our results suggest that FFDN’s Vision Enhancement Module (VEM) en-
ables more effective fusion of RGB and DCT features, which accounts for its superior performance
under attack. Overall, the PRC results reveal that even minimally invasive, content-preserving grid
shifts are sufficient to destabilize most detectors, either through large-scale over-detection or through
reduced reliability, underscoring JPEG-grid dependence as a pervasive vulnerability.

5.3 QUALITATIVE ANALYSIS: GAF AND PRC

The qualitative results in Fig. 4 and Fig. 5 corroborate our quantitative findings. Under GAF-CM and
GAF-S, DCT-reliant detectors (DTD, DocForgeNet) produce near-empty masks even for visually
obvious forgeries once block-level inconsistencies are removed, indicating dependence on JPEG
grid artifacts rather than visual evidence. FFDN demonstrates greater resilience through its broader
feature extraction. Conversely, PRC exposes a complementary failure mode: globally shifting the
JPEG grid triggers widespread false positives in DTD and DocForgeNet (consistent with high FPA in
Table 1), incorrectly marking extensive regions as tampered despite unchanged RGB content. While
CAT-Net, FFDN, and RTM avoid extreme false positives, they exhibit degraded masks. ADCD-Net
shows more stability, though some false positives persist. These observations reinforce that current
RGB+DCT detectors exhibit fragile dependence on JPEG grid statistics: when grids are perturbed,
detectors either miss genuine manipulations or hallucinate tampering in clean regions.

6 LIMITATIONS

While our attacks demonstrate significant vulnerabilities in state-of-the-art forgery detectors, several
limitations warrant discussion. GAF requires knowledge of the JPEG grid origin, an assumption
shared with standard copy-move benchmarks that operate on uncropped images. When the grid
position is unknown, PRC is explicitly designed for this scenario and does not require grid-origin
information. Both attacks fundamentally rely on JPEG compression history. If a forgery is created
entirely in lossless formats (e.g., PNG) without quantization structure, no exploitable JPEG grid
exists and our methods are inapplicable. However, current RGB+DCT detectors are likewise not
designed for such settings, and our focus remains on exposing vulnerabilities within JPEG-based
forgery detectors, which represent the dominant paradigm in document forensics.

7 CONCLUSIONS

This work introduces two novel adversarial forgery attacks that exploit the over-reliance of state-of-
the-art document forgery detectors on frequency-domain DCT features. Our experiments demon-
strate that minor grid manipulations can severely mislead existing detection methods, leading to
substantial performance degradation and systematic false positives. Our findings highlight critical
safety and reliability concerns with direct implications for security and trust: malicious actors could
selectively manipulate documents to evade detection, while the susceptibility to false positives could
undermine the reliability of verification systems. By exposing these vulnerabilities, our research
encourages the development of more robust document tampering detection systems that prioritize
semantically grounded representations. In addition, our proposed forgery attacks can serve as a new
form of evaluation benchmark for future research to audit the overall robustness of forgery detection
models.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES
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