
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

THE JPEG BLIND SPOT: EXPOSING A CRITICAL VUL-
NERABILITY IN DOCUMENT TAMPERING DETECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Current state-of-the-art document tampering detection models predominantly de-
rive their success from a reliance on low-level JPEG compression artifacts, par-
ticularly Block Artifact Grids (BAG), to localize forged regions. In this paper, we
expose a critical vulnerability inherent in this approach. We introduce novel BAG-
aware adversarial attacks for document forgery that are designed to exploit the lo-
cal statistical properties of these artifacts. When evaluated on the largest available
document tampering benchmark, DocTamper, this attack catastrophically fools
existing methods, reducing their detection rate to no better than random chance.
This catastrophic failure reveals that these models fail to learn genuine semantic
representations of tampering and instead rely on highly superficial and easily by-
passed compression artifacts. Our work demonstrates a fundamental fragility in
current document forensic systems and underscores the urgent need for robustness
against such adversarial failures in security-critical applications.

1 INTRODUCTION

Document integrity is critical in high-stakes domains such as finance, government administration,
and academia, where even minor data manipulations by malicious actors can lead to serious in-
formation security risks (Verdoliva, 2020). At the same time, the rapid progress and widespread
availability of modern image editing technologies have made it increasingly convenient to create
such forgeries, necessitating efficient and robust methods for forgery detection (Nandanwar et al.,
2021; Pun et al., 2023; Wu et al., 2019).

Deep learning (DL) has recently emerged as the de facto standard for document forgery detec-
tion (Qu et al., 2023; Wang et al., 2022b; Riaz et al., 2025; Chen et al., 2025), achieving state-of-
the-art (SotA) performance on standard benchmarks (Qu et al., 2023; Wang et al., 2022b). However,
despite significant architectural improvements over their predecessors, most existing SotA DL-based
methods still largely rely on exploiting the frequency-domain artifact traces introduced by JPEG
compression, particularly discontinuities in the block artifact grids (BAGs) (Li et al., 2009), as dis-
criminative cues for detecting manipulated regions in the image.

While the above strategy is well-motivated, given that JPEG is a widely adopted compression al-
gorithm for storing images, we hypothesize that an over-reliance on frequency-domain traces intro-
duces a critical vulnerability in existing DL-based methods. JPEG compression operates on non-
overlapping 8×8 blocks, with discrete cosine transform (DCT) coefficients computed independently
for each block. These block-level features are then fed as input to the model in modern DL-based
document forgery detection methods as an additional modality apart from the image features in the
RGB-space (Qu et al., 2023; Riaz et al., 2025; Chen et al., 2025). We hypothesize that the Block-
wise DCT features induces biases in detectors towards JPEG-grid distortions. for detecting forged
regions, such as by simply validating the local block-level statistics (similar to the previous works Li
et al. (2009); Nikoukhah et al. (2020) which detect forgeries by detecting block-level grid validity)
rather than learning semantically meaningful, global representations of tampering.

To validate this hypothesis, we design two complementary adversarial attacks. First, a BAG-aware
copy–move forgery preserves local JPEG block statistics by extracting and replacing text patches
aligned to the 8 x 8 grid, thereby maintaining block artifact consistency across forged regions (see
Fig. 1a). Second, a Pad-Recompress-Crop (PRC) attack deliberately shifts the JPEG grid via pad–
recompress–crop, misaligning block boundaries with text glyphs and inducing atypical ringing ar-
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(a) Attack 1: GACM (b) Attack 2: PRC

Figure 1: Examples show the effectiveness of our proposed forgery attacks. (a) The Grid-Aligned
Copy–Move (GCAM)-based forgeries (left, red) preserves local JPEG block statistics compared to
the misaligned case (blue), ensuring BAG consistency and evading frequency-centric detectors as
can be seen from the predicted masks green (right). (b) The Pad–Recompress–Crop (PRC) attack
distorts the grid-alignment without making any visible changes to the input (left) but causes model
failures as shown by the predictions on the image before (middle) and after (right) the attack is
applied.

tifacts (see Fig. 1b). Together, these attacks expose the shortcut bias of existing models, which
fail to generalize beyond block-level cues and suffer widespread false positives under grid shifts.
Intuitively, if the models had learned robust global feature representations beyond the block-level
statistics, they should generalize over such manipulations; however, we show that this does not hold
true in existing SotA methods.

We evaluate our proposed forgery method on one of the largest available document tampering bench-
marks, DocTamper Qu et al. (2023), against several state-of-the-art deep learning-based document
tampering detection methods. Our results show that, with only a simple exploit of grid alignment,
our method can catastrophically fool existing SotA models, reducing their detection rates to as low
as 1% in some cases. Moreover, we demonstrate that this vulnerability can also be leveraged to
deliberately trigger false positives in existing methods, rendering them unreliable for deployment in
high-stakes domains.

The main contributions of this work are following:

• We introduce two complementary, adversarial tampering procedures targeting JPEG block-
grid shortcuts: (i) a BAG-aware, grid-aligned copy–move that preserves local JPEG statis-
tics, and (ii) a pad–recompress–crop (PRC) attack that deliberately shifts the block-artifact
grid without making any visible forgeries in the image.

• We evaluate our attacks on standard benchmarks and demonstrate that existing state-of-
the-art DL-based document forgery detectors can fail catastrophically under these attacks
(down to 1% detection) and that grid shifts can be used to trigger systematic false positives.

2 RELATED WORK

JPEG Forensics JPEG is the most widely adopted format for compressed images, and forensic
analysis based on its artifacts has a long history. Early works focused on detecting double JPEG
compression (Wang & Zhang, 2016; Fan & de Queiroz, 2003) and were later extended to tampering
localization (Barni et al., 2010; Chen & Hsu, 2008; Li et al., 2009). For example, Barni et al. (2010)
analyzed block-level statistics around suspected forgeries, while Chen & Hsu (2008) trained SVMs
to discriminate forged from authentic regions. Other approaches modeled the probability of double
compression at the DCT-block level Bianchi & Piva (2012) or extracted block artifact grids (BAGs)
to localize tampering via grid discontinuities Li et al. (2009). For a comprehensive overview of
classical approaches for JPEG-based forensics, see Verdoliva (2020).

Deep Learning for Forgery Detection Deep learning shifted the field toward end-to-end detectors
that combine RGB and frequency-domain or additional noise features. CNN-based approaches (Ba-
yar & Stamm, 2018; Zhou et al., 2018; Amerini et al., 2017) and hybrid two-stream models (Kwon
et al., 2021; Dong et al., 2022) demonstrated strong results on natural image tampering. More re-
cently, attention-based and transformer-based architectures (Liu et al., 2022; Wang et al., 2022a)
improved global reasoning but often lose sensitivity to subtle local artifacts. However, most of these
methods remain optimized only for natural images, where manipulations are larger and visually
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distinct, rather than document forgeries where edits are localized and text-like (Wu et al., 2019;
Nandanwar et al., 2021).

Deep Learning for Document Forgery Detection Since document forgeries are much more sub-
tle compared to natural images, recent models explicitly introduce frequency-domain feature fusion
strategies into deep neural networks for enhanced tampering detection. Abramova & Böhme (2016)
proposed a method for detecting copy-move tampering in document images based on double quan-
tization artifacts, however, this approach falls short when faced with multiple JPEG compressions.
Wang et al. (2022b) introduced a two-stream Faster R-CNN (Ren et al., 2015) combining RGB and
frequency features, but primarily targets SRNet-generated forgeries (Wu et al., 2019) rather than
careful copy-paste tampering. For instance, Document Tampering Detector (DTD) Qu et al. (2023)
is a recent state-of-the-art model a multi-modality Swin Transformer (Liu et al., 2021) model that
employs a Frequency Perception Head (FPH) to capture tampering clues from DCT coefficients and
a Multi-view Iterative Decoder (MID) to leverage multi-scale feature information from separte pixel-
domain and frequency-domain input streams. FFDN (Chen et al., 2025) propose the Wavelet-like
Frequency Enhancement (WFE) module for adaptive fusion of pixel-domain and frequency-domain
features and present current state-of-the-art performance on multiple document tampering bench-
marks. DocForgenet (Riaz et al., 2025) recently also propose to enchance feature fusion using
dual-cross stream networks that fuse the freuqency and pixel-levle features via cross-attention.

Despite several architectural advances, most of the current SotA methods primarily rely on the
block-level JPEG DCT coefficients for tampering detection. As we demonstrate in this work, this
dependency creates a fundamental vulnerability in these methods. That is, by designing forgeries
that preserve the local statistics of the DCT coefficients while during tampering, detectors can be
catastrophically misled. Our work is the first to systematically exploit this weakness and highlight
the need for more robust tampering detection methods.

3 PRELIMINARIES

3.1 JPEG COMPRESSION MODEL

The encoding process of JPEG compression can be summarized in three main steps:

1. The image is partitioned into 8× 8 non-overlapping blocks, and a 2D discrete cosine trans-
form (DCT) (Ahmed et al., 1974) is applied to each block independently to compute the
DCT coefficients.

2. The resulting DCT coefficients are quantized using a quantization matrix Q ∈ N8×8, the
values of which are determined according to the compression quality factor f ∈ [0, 100].

3. Finally, the quantized DCT coefficients are entropy-coded (e.g., using Huffman and run-
length encoding) in a lossless manner.

Formally, given an original uncompressed image block Iij , JPEG compression followed by decom-
pression with a quality factor f can be expressed as

I′ij = IDCT(D(Qf (DCT(Iij)))) + ε, (1)

whereQf (·) denotes quantization with quality-dependent matrix Q,D(·) denotes the corresponding
dequantization, and ε accounts for rounding and truncation errors during decoding.

The above expression applies to a single 8× 8 block at position (i, j). The full decompressed image
is obtained by concatenating all reconstructed blocks:

Cf (I) =
⋃
i,j

I′ij . (2)

Because quantization is performed independently across blocks, horizontal and vertical disconti-
nuities emerge at block boundaries, commonly referred to as block artifacts. In image forensics,
inconsistencies in block artifact grids between authentic and tampered regions provide strong cues
for manipulation. Figure 2 illustrates this effect.
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Figure 2: (a) A standard copy–move disrupts the block artifact grid, leaving forensic traces of tam-
pering. (b) Our BAG-aware copy–move aligns the tampered text with the underlying 8 × 8 grid,
preserving per-block DCT statistics.

4 METHODOLOGY

Let I ∈ R3×H×W be an input document image in RGB space. Then, for a standard copy–move
image tampering setup (Li et al., 2009; Qu et al., 2023; Wang et al., 2022b), let a source tampering
region be defined by the bounding box bs = (xs, ys, w, h) and a target tampering location be de-
fined by the bounding box bt = (xt, yt, w, h), where each bounding box is specified by its top-left
coordinates (x, y) and width w and height h. The copy–move operator Π, which crops the source
region and pastes it at the target location, can then be defined as follows:

Π(I, bs, bt):,i,j =

{
I:, i−yt+ys, j−xt+x, xt ≤ j < xt + w, yt ≤ i < yt + h,

I:,i,j , otherwise.
(3)

That is, the pixels inside the target bounding box bt are replaced by the corresponding pixels from the
source bounding box bs, while all other image pixels remain unchanged. Following prior works (Li
et al., 2009; Qu et al., 2023; Wang et al., 2022b), we assume that after the copy-move operation is
applied, the image again undergoes one or multiple JPEG compressions with a set of quality factors
F = {f1, f2, . . . , fn} and stored, resulting in the final tampered image I ′:

I ′ = (Cfn ◦ · · · ◦ Cf1)(Π(x, bs, bt)) (4)

Assuming a deep forgery detector fθ : R3×H×W → [0, 1]H×W that outputs a tampering probability
map ŷ = fθ(I

′) for the forged image I ′, a generalized copy-move forgery can be modeled as
constrained adversarial attack Zhou et al. (2022) that aims to minimize the detector’s response over
all desired tampered regions bt ∈ T :

min
bs∈S, bt∈T

∑
bt∈T

∑
(i,j)∈P(bt)

ŷi,j , (5)

where
P(bt) = {(i, j) | xt ≤ j < xt + w, yt ≤ i < yt + h}.

Whereas S and T denote the desired candidate sets of source and target forgery regions. Directly
solving Eq. equation 5 is intractable for two reasons. First, selecting appropriate candidate bounding
boxes (bs, bt) is nontrivial: the forger must identify semantically meaningful text regions that can
be imperceptibly aligned with the target regions in RGB space, and the coordinates and sizes of
these boxes can vary arbitrarily, leading to an exponentially large search space. Second, in realistic
scenarios the forger does not have white-box access to the model fθ, making direct evaluation of ŷ
infeasible. While the first difficulty can be substantially mitigated using modern OCR tools, which
we also employ to define the set of source candidates S, the second limitation persists. To circumvent
this, we propose tackling the problem indirectly by exploiting structural biases of modern detectors
fθ, such as their over-reliance on frequency-domain DCT features for tampering detection.
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Figure 3: As shown, compared to standard copy-move setup, GACM first aligns the source text
boxes {b1, b2, . . . , bn} to the closest grid frontiers and then paste them to target tampering locations
also aligned with the grid of the target locations. Each cell of the grid is of size 8× 8.

Algorithm 1 Attack 1: Grid-Aligned Copy–Move (GACM)

Require: Image I ∈ R3×H×W ; OCR bounding boxes SOCR = {(xi, yi, wi, hi, confi)}Ni=1; JPEG
quality factors F = {f1, . . . , fn}; target tampering box bt; bounding box confidence threshold
τconf; size match threshold τarea

Ensure: Forged image I ′, mask M
1: fn SNAP8(b) := (8⌊x/8⌋, 8⌊y/8⌋, 8⌈w/8⌉, 8⌈h/8⌉), where b = (x, y, w, h) ▷ Align box to

8-pixel grid
2: S ←

{
SNAP8(b)

∣∣ (b, conf) ∈ SOCR ∧ conf ≥ τconf ∧
}

▷ Filter OCR boxes by confidence
and overlap

3: b̄s ← argmin b̄s∈S̄
b̄s ̸=b̄t

|area(b̄s)− area(b̄t)| ▷ Select source box with similar size to target

s.t. min(area(b̄s),area(b̄t))
max(area(b̄s),area(b̄t))

≥ 1− τarea, IoU(b̄s, b̄t) ≤ ϵ

4: Icm ← Π(I, b̄s, b̄t) ▷ Copy–move patch from b̄s to b̄t
5: M ← 0; Ω← [xt : xt + w)× [yt : yt + h); M(Ω)← 1 ▷ Update mask for tampered region
6: I ′ ← (Cfn ◦ · · · ◦ Cf1)(Icm) ▷ Apply JPEG compression pipeline
7: return I ′,M

4.1 ATTACK 1: GRID-ALIGNED COPY–MOVE (GACM)

As described in Section 3.1, JPEG compression operates independently on 8×8 blocks, and modern
forgery detectors Qu et al. (2023); Riaz et al. (2025); Chen et al. (2025); Kwon et al. (2021) exploit
quantization artifacts localized within these blocks as strong cues for tampering detection. Building
on this observation, we propose the Grid-Aligned Copy–Move (GACM) forgery attack, which aligns
tampering with the underlying JPEG block structure to minimize detectable inconsistencies (see
Figure 3). A complete pseudocode for our algorithm is defined in Algorithm 1. For OCR-detected
text boxes, both source and target regions are snapped to the 8×8 JPEG grid, ensuring that pasted
content coincides exactly with block boundaries. Formally, for a bounding box b = (x, y, w, h), we
define

A(x, y, w, h) =
(
8
⌊
x
8

⌋
, 8

⌊
y
8

⌋
, 8

⌈
w
8

⌉
, 8

⌈
h
8

⌉ )
,

and select source and target boxes bs and bt of similar area with low overlap with known forgeries,
setting b̄s = A(bs) and b̄t = A(bt). Then for a given target tampering region bt, we search for
boxes bs in the source candidate set S that aligns with the target bt in terms of size and background
similarity. The source box bs is then copied to the target box bt by applying the copy-move operator
(see Eq. 3) to perform the tampering. Finally, the manipulated image is recompressed using the same
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Algorithm 2 Attack 2: Grid Shift via Pad–Recompress–Crop (PRC)

Require: Image I ∈ R3×H×W ; shift policy π (fixed or random); JPEG qualities q = [q1, . . . , qm];
padding mode ϕ ∈ {edge, const, reflect}; optional SSIM floor τssim

Ensure: Grid-shifted image I ′

1: (∆x,∆y)← π, with (∆x,∆y) ∈ {0, . . . , 7}2 \ {(0, 0)}
2: Ip ← Pad I with (∆x,∆y) using mode ϕ ▷ Pad
3: Ic ← (Cfn ◦ · · · ◦ Cf1)(Ip) ▷ Recompress
4: I ′ ← Ic[∆y : ∆y +H, ∆x : ∆x+W ] ▷ Crop
5: return I ′

(or divisibility-compatible) JPEG quality factors as described in Eq. 4, maintaining quantization
alignment and preserving BAG consistency.

4.2 ATTACK 2: GRID SHIFT VIA PAD–RECOMPRESS–CROP (PRC)

While the GACM attack aims to minimize detector responses on target tampered regions, modern
detectors’ reliance on frequency-domain block artifacts suggests a complementary vulnerability. If
these models discriminate forged from unaltered regions based on slight misalignments in the JPEG
block grid, then deliberately introducing small global grid distortions could trigger the detector to
classify many pixels as manipulated. Intuitively, this can be viewed as another type of adversarial
attack that solves the inverse problem to Eq. 5: rather than minimizing detector responses, we seek
to maximize the predicted tampering probability across the entire image. Formally, let ∆x,∆y
define the grid shifts in horizontal and vertical directions, respectively, then Pad–Recompress–Crop
(ΠPRC) operator for grid shift is defined as follows:

ΠPRC(I,∆x,∆y) = R∆x,∆y ◦ Cq ◦ P∆x,∆y(I),

where P∆x,∆y pads the image on the left and top by (∆x,∆y) pixels, and R∆x,∆y crops these pixels
after JPEG recompression step described in Eq. 4. Applying this operator produces the attacked
image

I ′ = ΠPRC(I,∆x,∆y) (6)

The PRC attack is then formulated as an optimization over the grid shift (∆x,∆y):

max
∆x,∆y

∑
(i,j)∈I′

fθ(I
′)i,j , s.t. (∆x,∆y) ̸= (0, 0), 0 ≤ ∆x ≤ 7, 0 ≤ ∆y ≤ 7. (7)

By carefully selecting (∆x,∆y), the Pad–Recompress–Crop (PRC) attack aims to exploits the
model’s sensitivity to grid misalignment, with the goal of producing as many false-positive tam-
pering predictions as possible. Full pseudocode for the PRC attack is provided in Algorithm 2.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets For all experimental evaluation, we use DocTamper (Qu et al., 2023), the largest pub-
licly available dataset for document tampering detection. DocTamper contains a total of 170k tam-
pered document images in English and Chinese languages, with tampering done on the dataset using
various methods such as copy-move, splicing, and generation. For evaluation, it provides a training
set of 120k samples, a primary testing set D-TestingSet with 30k samples, and two cross-domain
testing sets DocTamper-FCD with 2k samples and DocTamper-SCD with 18k samples. All images
in the dataset are pre-forgered and stored uncompressed, with pixel-level annotations of tampered
text regions provided as ground-truth masks. It is worth mentioning that the DocTamper-FCD split
is derived from the Noisy Office Dataset (Castro-Bleda et al., 2019), while DocTamper-SCD split
comes from HUAWEI Cloud dataset (Huawei Cloud, 2022), and therefore even within the testing
splits there is a diverse sample distribution.
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Models. We evaluate our proposed forgery attacks on three state-of-the-art forgery detectors that
all rely on frequency-domain DCT features as one of their primary cues for localizing the tampered
regions. Specifically, we consider (a) DTD Qu et al. (2023), (b) DocForgeNet Riaz et al. (2025), and
(c) FFDN Chen et al. (2025). These methods represent the current best-performing approaches on
DocTamper and exemplify the block-artifact–guided family of detectors. For all our experiments,
we directly use publicly released training checkpoints for each of these models.

Evaluation Protocol. We report pixel-wise Precision (P), Recall (R), and F1-score (F) on the Doc-
Tamper benchmark using its three standard splits: D-TestingSet, DocTamper-FCD, and DocTamper-
SCD. Following Qu et al. (2023), test images undergo 1–3 JPEG recompressions with quality factors
≥ 75 using the public seed. We compare the original DocTamper tampering against our Grid-
Aligned Copy–Move (GACM) retampering that snaps source/target boxes to the JPEG 8×8 grid
prior to the same recompression schedule. Since DocTamper does not provide original images and
only the forged ones, we re-tamper these existing forged images using GACM and report the final
evaluation metrics for GACM without considering the initially forged areas.

Implementation Details. To evaluate our proposed GACM attack on the complete dataset, we
obtain the source (S) and target (T ) boxes for all dataset splits using the Tesseract OCR (Kay, 2007),
and randomly select target and source boxes (excluding those already forged in DocTamper (Qu
et al., 2023)) based on the similarity of their sizes with a given threshold. We also ensure background
consistency between target and source boxes using a similar threshold. This is done to maintain
legibility in RGB space and to allow full exploitation of the DCT streams by the models. With this
protocol, we generate grid-aligned tamperings on all three testing splits defined in the DocTamper
dataset, resulting in a new attack benchmark dataset for consistent evaluation of our attacks across
different models.

5.2 QUANTITATIVE EVALUATION: GACM AND PRC

Table 1 shows the results of our proposed document forgery attacks GACM and PRC, where we
compare the performance of different document forgery detectors on original DocTamper tamper-
ings vs the image tampering done using our attacks. The evaluation metrics are computed as de-
scribed in Section 5.1. As evident from the results, the detection performance of these methods is
remarkable under the standard protocol but drops significantly in case of our proposed GACM and
PRC attacks across all the test splits. The performance drop on the the Doctamper-FCD test split is
particularly noticeable, with both DTD Qu et al. (2023) and DocForgeNet Riaz et al. (2025) models
failing catastrophically on both attacks, with F1-scores dropping to as low as 3.1%. FFDN , on the
other hand, showed considerably higher robustness against our tampering attacks compared to its
coutnerparts, which suggests that it may have learned better representations. However, it is worth
mentioning that FFDN additionally employs a Visual Enhancement Module (VFM) module which
adaptively fuses the RGB and frequency-domain features in an attempt to reduce its reliance on
the frequency-domain features and therefore its imrpoved robustness is justified. However, it still

Table 1: Quantitative comparison of the GACM forgery attack on the three testing splits of Doc-
Tamper dataset (Qu et al., 2023). P, R, and F denote the pixel-wise precision, recall, F1-scores. Our
proposed GACM forgery attack effectively bypasses detection by existing state-of-the-art DL-based
document forgery detection methods as evident by the considerable drop in F1 scores.

Method Forgery Method D-TestingSet DocTamper-FCD DocTamper-SCD

P R F P R F P R F

DTD (Qu et al., 2023)
DocTamper Tampering 0.752 0.701 0.726 0.783 0.742 0.762 0.698 0.701 0.700
GACM (ours) 0.410 0.167 0.237 0.140 0.017 0.031 0.710 0.289 0.411
PRC (ours) 0.266 0.942 0.314 0.003 0.195 0.007 0.201 0.503 0.225

DocForgeNet (Riaz et al., 2025)
DocTamper Tampering 0.802 0.751 0.774 0.845 0.801 0.822 0.701 0.739 0.720
GACM (ours) 0.400 0.185 0.253 0.160 0.024 0.042 0.776 0.356 0.488
PRC (ours) 0.129 0.852 0.205 0.292 0.471 0.065 0.252 0.476 0.248

FFDN (Chen et al., 2025)
DocTamper Tampering 0.960 0.928 0.944 0.948 0.921 0.934 0.859 0.851 0.856
GACM (ours) 0.811 0.459 0.586 0.689 0.295 0.406 0.800 0.615 0.696
PRC (ours) 0.851 0.902 0.805 0.922 0.511 0.658 0.831 0.639 0.722
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Figure 4: Qualitative comparison of the GACM forgery attack across different state-of-the-art de-
tection methods on the DocTamper dataset (Qu et al., 2023).

performs considerably worse in comparison to its baseline performance on the standard tampering
setup which highlights the effectiveness of our attacks even in case of adaptive fusion. Overall, the
pattern supports our hypothesis that existing DL-based forgery detection models may have been re-
lying on the local validity of the block-level DCT features instead of learning more global semantic
representations of tampering.

5.3 QUALITATIVE ANALYSIS: GACM AND PRC

Fig 4 shows the qualitative results of the GACM tampering attack, where we compare the perfor-
mance of different document forgery detectors on randomly selected samples from the three test
splits of the DocTamper dataset Qu et al. (2023). We see the effectiveness of our grid-aligned re-
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Figure 5: Qualitative comparison of the PRC forgery attack across different state-of-the-art detection
methods on the DocTamper dataset (Qu et al., 2023).

tampering approach where state-of-the-art models like DTD and DocForgeNet show a catastrophic
failure to detect any such forgeries even thou they are visually easy to detect. This shows there inher-
ent dependency on shortcut representation learning relying on DCT grid-artifact signal for tampering
detection. Such failures are also visible for FFDN but far less than the other two models as FFDN
architecture use wavelet like feature enhancement and do not entirely depend on DCT signal for the
tampered region detection.

Fig 5 shows a different approach to our attack. Knowing the models reliance on DCT signal for
grid-artifacts inconsistencies we can exploit them by manipulating the grid. Via PRC we show that
grid shift causes the models to foolishly trigger multiple tamperings even thou the document is not
tampered in those regions at all. This result is again much more visible on state-of-the-art models
that have heavy reliance on DCT features whereas for FFDN it still helps in diminishing the model’s
localizations.

6 CONCLUSIONS

We have introduced two novel adversarial forgery attacks that exploit the over-reliance of state-of-
the-art document forgery detectors on frequency-domain DCT features. Our experiments demon-
strate that with minor grid-manipulation, existing SotA document tampering detection methods can
be catastrophically fooled, with detection rates reduced to near-random levels, and that grid manipu-
lations can systematically trigger false positives, leaving these models unreliable. In future, it could
be interesting to investigate the applicability of our attacks on natural image forgery detectors.

7 BROADER IMPACT

Our work highlights critical safety and reliability concerns in current state-of-the-art document
forgery detection systems, showing that over-reliance on block-level JPEG artifacts can be exploited
to bypass automated safeguards. These vulnerabilities have direct implications for security and fair-
ness, as malicious actors could selectively manipulate documents or trigger false positives, poten-
tially affecting individuals or organizations disproportionately. By exposing these weaknesses, our
research encourages the development of more robust, alignment-conscious systems that prioritize
semantically grounded representations, enhancing societal trust in AI-mediated document verifica-
tion. In addition, our proposed forgery attacks can serve as a new form of evaluation benchmark for
future research to audit the overall robustness of forgery detection models.

9
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