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ABSTRACT

We introduce model folding, a novel data-free model compression technique that
merges structurally similar neurons across layers, significantly reducing the model
size without the need for fine-tuning or access to training data. Unlike existing
methods, model folding preserves data statistics during compression by leveraging
k-means clustering, and using novel data-free techniques to prevent variance
collapse or explosion. Our theoretical framework and experiments across standard
benchmarks, including ResNet18 and LLaMA-7B, demonstrate that model folding
achieves comparable performance to data-driven compression techniques and
outperforms recently proposed data-free methods, especially at high sparsity levels.
This approach is particularly effective for compressing large-scale models, making
it suitable for deployment in resource-constrained environments.

1 INTRODUCTION

Deep neural networks (DNNs) have emerged as a fundamental technology, driving progress across a
multitude of applications from natural language processing to computer vision. However, the deploy-
ment of these models in real-world settings is often constrained by the computational and memory
resources available, particularly on edge devices like smartphones and embedded systems (Wan et al.,
2020; Kumar et al., 2017; Chen et al., 2020). This limitation poses a significant challenge, as the
growing complexity and size of SOTA models demand increasingly substantial resources (Bommasani
et al., 2021; Chang et al., 2024; Rombach et al., 2022).

Conventional model compression techniques, such as pruning (Han et al., 2015; LeCun et al., 1989;
Li et al., 2016b; Hassibi et al., 1993) and quantization (Gupta et al., 2015; Zhou et al., 2017; Li et al.,
2016a), have been developed to mitigate this issue by reducing the model size and computational
requirements. These methods usually remove redundant or less critical parameters from the model,
thereby reducing the overall size and computational load. For example, pruning eliminates weights
that contribute minimally to the model’s output (Han et al., 2015; Li et al., 2016b). Quantization
reduces the precision of the weights and activations (Gupta et al., 2015), which decreases memory
usage and speeds up inference (Zhou et al., 2017). Despite their effectiveness, these approaches
often introduce a degradation in model performance, necessitating a phase of fine-tuning to maintain
the internal data statistics within the model (Jordan et al., 2022) and restore the original accuracy
levels (Frankle & Carbin, 2018; Hassibi et al., 1993; Frantar & Alistarh, 2022). This requirement can
be a significant drawback in scenarios where access to the original training data is limited.

Recent methods have sought to circumvent the need for extensive retraining or fine-tuning by
exploring alternatives to traditional approaches. Instead, several recent strategies build on model
merging techniques (Entezari et al., 2022; Ainsworth et al., 2023; Jordan et al., 2022) and achieve
(multi-)model compression by fusing similar computational units. For example, ZipIt! (Stoica et al.,
2024) merges two models of the same architecture by combining similar features both within and
across models. They provide both theoretical and empirical evidence suggesting that features within
the same model are more similar than those between models trained on different tasks. This method
avoids the need for retraining the compressed model but requires training data to match features based
on the similarity of their activations. Similarly, Yamada et al. (2023) examine various model merging
techniques and conclude that merged models require a dataset—such as a coreset—for effective
merging and to achieve high accuracy. This data is essential for adjusting internal data statistics
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Figure 1: Model compression and repair of data statistics. Left: Model folding pipeline is applied
layer-wise, consisting of three phases: weight tensor clustering and merging, and data statistics repair.
Right: To maintain accuracy, the data variances of compressed and uncompressed models must align
(i.e., the variance ratio must be close to 1), as variance collapse or explosion leads to suboptimal
performance. Our data-free and fine-tuning-free model folding methods (Fold-AR and Fold-DIR)
achieve performance comparable to data-driven statistics repair (Fold-R), while outperforming naive
statistics repair (Fold-naive) and the recently proposed IFM (Chen et al., 2023). All methods were
evaluated on a public ResNet18 checkpoint trained on CIFAR10. Lines connect the performance of
different methods at the same weight sparsity level, applied uniformly across all layers. Variance
ratio refers to the activation outputs in the last layer. A precise definition and analysis are in Sec. 3.

that are disrupted by weight fusion, such as updating the running mean and variance in BatchNorm
layers (Ioffe & Szegedy, 2015). The process involves a simple forward pass through the model and is
a well-established method to adapt models in low-resource environments (Leitner et al., 2023).

In contrast, IFM (Chen et al., 2023) offers a fully data-free and fine-tuning-free approach, utilizing
weight matching (Ainsworth et al., 2023) to iteratively merge similar hidden units, similar to Stoica
et al. (2024). However, despite a heuristic for preserving data statistics, we demonstrate that IFM
fails to maintain performance across standard architectures and for high sparsity. Other data-free
approaches, such as (Yin et al., 2020), generate synthetic images directly from the uncompressed
model for fine-tuning to restore pruned model accuracy. More related work is covered in Appendix N.

This paper presents a model compression technique, model folding, that exploits weight similarity
through three phases: neuron clustering, merging, and data statistics repair, summarized in Fig. 1 (left).
We demonstrate that k-means clustering provides a theoretically optimal and data-free method for
merging weights. Building on Jordan et al. (2022), which addresses variance collapse using REPAIR
with training data, we introduce two data-free alternatives: Fold-AR (folding with approximate
REPAIR) and Fold-DIR (folding with Deep Inversion-based REPAIR). Fold-AR estimates mean
correlations within clusters assuming independent inputs, while Fold-DIR uses Deep Inversion (Yin
et al., 2020) to synthesize a single batch of images for updating BatchNorm statistics via a forward
pass. Both methods maintain data statistics and prevent variance collapse or explosion to avoid
suboptimal compression performance, with Fold-AR standing out as a more resource-efficient option
while still significantly surpassing existing methods. Fig. 1 (right) shows that the highest accuracy
at any target sparsity is achieved when the mean variance ratio over the last layer between the
compressed and uncompressed models stays close to one. Our contributions are:

• We introduce model folding, a novel model compression technique that merges structurally
similar neurons within the same network to achieve compression. We provide both theoreti-
cal justification and empirical evidence demonstrating that k-means clustering is an optimal
and effective method for fusing model weights in a data-free manner.

• To enable data-free model compression, we adapt the REPAIR framework proposed by
Jordan et al. (2022) to address variance collapse of data statistics within a model after
layer compression. We introduce data-free and fine-tuning-free versions of REPAIR, that
effectively maintain model statistics and achieve high performance.

• We demonstrate that model folding surpasses the performance of SOTA model compression
methods which do not use data or fine-tune the pruned model, including recently proposed
IFM (Chen et al., 2023), and INN (Solodskikh et al., 2023), in particularly at higher levels
of sparsity and when applied to more complex datasets.
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• We use model folding on LLaMa-7B without utilizing data or post-tuning and achieve
comparable results to methods that require data and fine-tuning.

2 PRELIMINARIES

Our work is inspired by recent advances in two key areas: neuron alignment algorithms for fusing
model pairs in weight space, and data-driven methods for recovering from variance collapse in fused
models. Below, we summarize the relevant results from the literature.

Neuron alignment algorithms. Model merging involves combining the parameters of multiple
trained models into a single model, with a key challenge being the alignment of neurons across
these models, particularly when they are trained on different datasets or tasks. Neuron alignment
methods can be classified based on their dependency on the input data. Methods like the Straight
Through Estimator (STE) (Ainsworth et al., 2023), Optimal Transport (OT) (Singh & Jaggi, 2020)
and correlation-based activation matching (Li et al., 2015) require data for effective merging. In
contrast, weight matching (Yamada et al., 2023; Ainsworth et al., 2023) is a data-free method, making
it efficient in scenarios when training data is not available. In weight matching, neurons are aligned
by minimizing the L2 distance between the weight vectors of neurons across models. Given two
models with weight matrices WA and WB , the goal is to find a permutation P of the weights in
WB that minimizes the distance:

min
P
∥WA −PWB∥22,

where PWB denotes the weight matrix WB after applying the permutation P to align it with WA.
Once the optimal permutation is found, the models are merged by averaging the aligned weights:

Wmerged =
1

2
(WA +P∗WB) ,

where P∗ is the permutation that minimizes the L2 distance. Weight matching solves an instance of
the linear sum assignment problem (LSAP), usually solved by Hungarian algorithm (Kuhn, 1955)
as done in (Jordan et al., 2022; Ainsworth et al., 2023), to layer-wise align weight vectors. Unlike
merging different models, aligning neurons within a single model requires an acyclic matching graph,
a challenge not addressed by LSAP, which assumes disjoint task and worker sets. To overcome the
challenge Chen et al. (2023) and He et al. (2018) apply iterative approach greedily merging a pair
of the most similar neurons in each iteration. This work extends weight matching to align clusters
of similar neurons within the same model, remaining data-free. Appendix C provides more details
on the relationship between weight matching and model folding. We show that IFM is inferior to
clustering utilized by model folding as described in the next section.

Variance collapse and REPAIR. When interpolating between independently trained, neuron-aligned
networks, (Jordan et al., 2022) observed a phenomenon they termed variance collapse. This occurs
when the variance of hidden unit activations in the interpolated network significantly diminishes
compared to the original networks, leading to a steep drop in performance. To solve this issue, Jordan
et al. (2022) introduce the REPAIR method (Renormalizing Permuted Activations for Interpolation
Repair) which uses input data to recompute the internal data statistics.

REPAIR works by rescaling the preactivations of the interpolated network to restore the statistical
properties of the original networks. Specifically, it adjusts the mean and variance of the activations
in each layer of the interpolated network to match those of the corresponding layers in the original
networks. This is done by computing affine transformation parameters—rescaling and shifting
coefficients—for each neuron, ensuring that the mean and standard deviation of activations in the
interpolated network are consistent with those in the original models. REPAIR effectively mitigates
the variance collapse, enabling the interpolated network to maintain performance closer to that of
the original models. This technique has become essential in recent work to preserve model accuracy
after merging (Ainsworth et al., 2023; Yamada et al., 2023; Jolicoeur-Martineau et al., 2024). While
REPAIR relies on input data to preserve the network’s statistical properties, this paper proposes a
data-free alternative.
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Figure 2: Layer-wise correlation between matched channels in ResNet18 trained on CIFAR10.
For each layer, we use activation matching with L2 distance measure to greedily pair similar neurons.
Each subplot shows the correlation within all matched pairs.

3 MODEL FOLDING

In this section, we introduce model folding, a novel compression technique that reduces the compu-
tational complexity and size of neural networks by merging similar neurons in each layer without
requiring training data. As illustrated in Fig. 1 (left), model folding processes the network layer
by layer, involving filter clustering, merging, and correcting data statistics. Below, we present a
theoretical analysis of our approach, supported by empirical results on ResNet18 using CIFAR10.

3.1 CHANNEL CLUSTERING

Channel similarity. Neural networks trained with stochastic gradient descent (SGD) tend to have
many correlated hidden units, as illustrated in Fig. 2. Model folding exploits this observation, which
is related to the implicit bias of SGD. As discussed in (Gunasekar et al., 2017), SGD exhibits a
minimum norm bias, which can be viewed as a form of regularization when no explicit regularization
is used. In contrast to L1 regularization, which promotes sparsity, the minimum Euclidean norm
solution (L2 norm) penalizes large weights, encouraging smaller, more regular weights. This not
only prevents overfitting but also results in smoother decision boundaries (Bishop, 2006). While the
minimum norm solution does not directly enforce weight similarity, we empirically demonstrate in
Appendix D that it leads to effective model compression when applying similarity-based methods.
Recently published methods (Stoica et al., 2024; Chen et al., 2023) leverage the same observation.

Folding as a clustering problem. This work extends weight matching (Ainsworth et al., 2023),
which minimizes the L2 distance between weight vectors and operates without requiring training data.
Instead of finding pairs of similar neurons by solving the linear sum assignment problem (LSAP)
with a Hungarian algorithm (Kuhn, 1955) as done in (Jordan et al., 2022; Ainsworth et al., 2023), we
achieve channel matching using k-means clustering. In the following, we justify this approach as it
provides an optimal weight matrix approximation.

Given a neural network layer l with a weight matrix Wl ∈ Rn×m, we define the output of this layer
as yl = σ(Wlxl), where xl ∈ Rm is the input vector to this layer, yl ∈ Rn is the output vector, and
σ(·) is a non-linear activation function applied element-wise.

To reduce the number of outputs of layer l we cluster (fold) rows of Wl, i.e., k cluster centroids are
determined which serve as a prototype of the respective cluster of rows. All rows of a cluster are
replaced by their cluster centroid. This can be formulated as

Wl ≈ UM,

where M ∈ Rk×m contains the k < n cluster centroids and the cluster matrix U ∈ {0, 1}n×k

determines the membership of a row: u(i, j) = 1 if the i-th row of Wl belongs to the j-th cluster,
and u(i, j) = 0 otherwise.

As a measure of the approximation error when replacing the rows of Wl by k < n prototypes, we
use the Frobenius norm ∥ · ∥2F of the difference between Wl and the low-rank factorization UM:

J = ∥Wl −UM∥2F = tr(WlW
T
l ) + tr(UMMTUT )− 2tr(UMWT

l ).
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We determine the optimal matrix of cluster centroids by setting the derivative of J with respect to M
to zero:

M = (UTU)−1UTWl.
As a result, we can write

Wl ≈ UM = CWl with C = U(UTU)−1UT .

As mentioned above, we use k-means clustering for folding as this minimizes J by determining the
optimal clustering matrix U and the corresponding cluster centroids M , also see (Bauckhage, 2015).

Interdependence between layers. We will expand the above result to successive layers l and l + 1.
For simplicity of notation, we neglect the bias and get

yl+1 = σ(Wl+1σ(Wlxl)).

Following the above notation, we describe the folding of activations by some clustering matrix U
and C = U(UTU)−1UT . It is shown in Appendix B that the corresponding approximation satisfies

ỹl+1 = σ(Wl+1σ((CWl)xl) = σ((Wl+1C
T )σ((CWl)xl).

Adding up the individual folding costs Jl+1 = ∥WT
l+1 − CWT

l+1∥2F and Jl = ∥Wl − CWl∥2F
yields the combined approximation error Jl,l+1 = Jl+1+Jl for folding layer l which can be rewritten
as

Jl,l+1 = ∥Wl,l+1 −CWl,l+1∥2F with Wl,l+1 =
[
Wl |WT

l+1

]
.

If we perform k-means clustering on Wl,l+1 and use the resulting clustering matrix U in C =
U(UTU)−1UT , then the combined approximation error Jl,l+1 is minimized. This approach accounts
for the impact of compressing one layer on the next, leading to more efficient compression that
balances the process and preserves learned representations while reducing model size. Our folding
methods outperforms other methods experimentally, see Fig. 3 for a comparison to other clustering
methods and Iterative Greedy (greedy) adopted in SOTA.

Batch Normalization. Now, let us consider batch normalization in layer l represented by two
diagonal matrices Σs (scaling) and Σn (normalization), again neglecting the bias to reduce notation.
In this case, we get

yl+1 = σ(Wl+1σ(ΣsΣnWlxl)).
The folding of layer l can be distributed to the matrices Σs, Σn, and Wl in various ways, depending
on the chosen correction of the variance, see Sec. 3.2. For example, one can cluster each matrix
separately, leading to

ỹl+1 = σ((Wl+1C
T )σ((CΣs)(CΣn)(CWl)xl)).

Adding up the individual folding costs Jl+1, Js, Jn, and Jl for each of the matrices Wl+1, Σs, Σn

and Wl, respectively, yields the total approximation error Jtot = Jl+1 + Js + Jn + Jl for folding
layer l

Jtot = ∥Wtot −CWtot∥2F with Wtot =
[
WT

l+1 |Wl | diag(Σs) | diag(Σn)
]

If we perform k-means clustering on Wtot then the total approximation error Jtot is minimized. This
approach is used in the Deep Inversion (DI) REPAIR, see next section.

Instead, if we decompose the folding of layer l according to
ỹl+1 = σ((Wl+1C

T )σ((CΣs)(CΣnWl)xl)).

then the individual folding costs of Wl+1, Σs and the normalized weight matrix ΣnWl add up to

Jtot = ∥Wtot −CWtot∥2F with Wtot =
[
ΣnWl | diag(Σs) |WT

l+1

]
.

Again, if we perform k-means clustering on this combined matrix Wtot then the corresponding
total approximation error Jtot is minimized. This approach is used in the approximate REPAIR, see
Sec. 3.2. For completeness, we present in Appendix F how we handle residual connections.

Merging similar channels in each cluster. To fuse similar channels, various approaches have
been proposed in the literature, such as fusing weights for multitasking, which involves Hessian
calculations (He et al., 2018), or by combining the matched weights into a single channel (Chen
et al., 2023). (Matena & Raffel, 2022) introduces Fisher-weighted averaging based on the Laplace
approximation for merging weights, while (Jin et al., 2023) suggests computing a regression mean,
which is both computationally efficient and scalable for merging multiple models. In our approach,
we use above formulation of the optimization problem as k-means clustering and use a simple mean
to compute the cluster centroids.
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3.2 MAINTAINING DATA STATISTICS IN A COMPRESSED MODEL

Variance collapse and variance overshooting. We use the conceptual framework in (Jordan et al.,
2022) to analyze the performance of model compression methods. We use the following definition.

Figure 3: k-means (KM) outperforms other clus-
tering methods: Spectral Clustering (SC), Ag-
glomerative Clustering (AC) with different linkage
criteria and Iterative Greedy (greedy) used to com-
press ResNet18 trained on CIFAR10. Data-based
REPAIR was used to restore data statistics after
clustering for all methods.

Definition 1 (Variance ratio). Consider a neural
network f(x,Θ) with layer activations {xl}L1
and its compressed version f̃(x,Θ) with activa-
tions {x̃l}L1 . The variance ratio of the l-th layer
is:

µ

[
Var(x̃l)

Var(xl)

]
=

1

|xl|

|xl|∑
k=1

Var(x̃l,k)

Var(xl,k)
.

We observe not only variance collapse but also
variance overshooting phenomena. Specifically,
when data statistics are not accurately corrected
after channel merging, as in IFM, variance over-
shooting can occur, leading to network perfor-
mance decline. Fig. 4 shows layerwise variance
ratio between the compressed and uncompressed
networks. Staying close to 1 is essential to miti-
gate both phenomena. This highlights the critical need for precise statistical corrections during model
merging.

Fold-AR: Folding with approximate REPAIR. In the context of model compression, particu-
larly when using folding as a clustering method, it is crucial to ensure that the compressed model
maintains accurate data statistics. This is especially important for layers involving operations like
BatchNorm, where maintaining the correct statistical properties of activations is vital for model
performance (Jordan et al., 2022; Yamada et al., 2023).

In the following explanation of the data-free approximate REPAIR, we neglect biases for ease of
notation. Following the previous section, we consider folding of the normalized weight matrix with

zl = CΣnWlxl

using the post-activation output xl of the previous layer and the input zl to the scaling matrix Σs. A
cluster c is defined by the column of the clustering matrix U , i.e., all values zl(i) with u(i, c) = 1
belong to cluster c. Moreover, by definition of C, all values zl(i) belonging to a single cluster c
equal the centroid ẑl(c) of the cluster, i.e., the average of all values ΣnWlxl belonging to this cluster.
More formally,

∀u(i, c) == 1 : zl(i) = ẑl(c)

∀1 ≤ c ≤ k : ẑl(c) =
1

Nc

∑
i∈Ic

x̃l(i),

where Ic = {i : u(i, c) = 1} denotes the indices of all values belonging to cluster c, Nc = |Ic|
denotes the number of values in the cluster, and x̃l = ΣnWlxl. The batch normalization using Σn

ensures that the variances of all x̃l(i) equal 1. The averaging over all x̃l(i) belonging to a single
cluster destroys this property and leads to the observed variance collapse. We will describe various
methods to compensate this loss in variance, at first the data-free approximate REPAIR (Fold-AR).

The variance of the cluster centroid ẑl(c) of cluster c is given by

Var(ẑl(c)) =
1

N2
c

∑
i∈Ic

Var(x̃l(i)) +
∑

i,j∈Ic;i ̸=j

Cov(x̃l(i), x̃l(j))

 ,

which further simplifies to Var(ẑl(c)) = 1
N2

c

[
Nc + (N2

c −Nc)E[c]
]
, where E[c] is the mean corre-

lation within the cluster. To prevent variance collapse, we aim for Var(ẑl(c)) = 1, which would occur
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Figure 4: Variance collapse and overshooting
on ResNet18 with CIFAR10. The goal is to align
the layer-wise variance in the compressed network
to that of the uncompressed model. Naive aver-
aging of statistics (Fold-Naive) leads to variance
collapse (Jordan et al., 2022), while IFM over-
shoots. Fold-AR and Fold-DIR closely match the
performance of the data-driven REPAIR (Fold-R).
Layer-wise sparsity is 0.5.

Figure 5: Data-free folding methods with ap-
proximate REPAIR (Fold-AR) and Deep In-
version (Yin et al., 2020) (Fold-DIR) and on
ResNet18 with CIFAR10 at various weight spar-
sity levels, uniformly distributed across layers.
Fold-DIR performs similarly to the data-based
REPAIR (Fold-R). Both Fold-AR and Fold-DIR
surpass IFM (Chen et al., 2023) by a significant
margin.

if E[c] = 1, meaning all channels in the cluster are fully correlated. However, as E[c] < 1 typically,
we multiply each cluster centroid by a scaling parameter assuming an average cluster correlation E[c]

ẑl(c)← ẑl(c)
Nc√

Nc + (N2
c −Nc)E[c]

.

Suppose now that the covariance matrix Σxl
of the output xl of the previous layer is available and

that we define the normalized weight matrix W̃l = ΣnWl with rows w̃l(i). Then the correlation
E[c] can be computed as:

E[c] =
1

N2
c −Nc

∑
i,j∈Ic;i ̸=j

w̃l(i)Σxl
w̃T

l (j)√
(w̃l(i)Σxl

w̃T
l (i))(w̃l(j)Σxl

w̃T
l (j))

.

In the absence of data, E[c] can be estimated by assuming that the output values xl of the previous
layer are uncorrelated. As the individual variances of x̃l(i) equal 1 we obtain

E[c] =
1

N2
c −Nc

∑
i,j∈Ic;i̸=j

w̃l(i)w̃
T
l (j)√

(w̃l(i)w̃T
l (i))(w̃l(j)w̃T

l (j))
.

We term this approach to maintain the data statistics within the model folding with approximate
REPAIR (Fold-AR). This approach helps to ensure that the statistical properties of the data are
preserved even after model compression, maintaining the performance of the network while reducing
its size. Fig. 5 shows how the performance of Fold-AR compares to the data-driven REPAIR (Fold-R)
and surpasses the SOTA data-free methods.

Fold-DIR: Correcting data statistics with deep inversion. Deep Inversion (DI) (Yin et al., 2020)
is a technique that synthesizes realistic images directly from a pre-trained neural network without
requiring access to the original data. The process involves inverting the model by optimizing random
noise to produce class-conditional images that match the statistics of the data the model was trained
on (Mordvintsev et al., 2015). DI leverages the BatchNorm layers within the network, which store
the running mean and variance of activations during training. By using these stored statistics as a
regularization term in

R(x̂) = Lclass(x̂, t) +
∑
l

∥µ(x̂l)− µ(xl)∥22 +
∑
l

∥Var(x̂l)− Var(xl)∥22 + ∥x̂∥
2
2 + ∥x̂∥TV ,

DI ensures that the generated images have similar statistical properties to the original training data,
thus producing high-fidelity images. Here, µ(x̂l) and Var(x̂l) are the mean and variance of the feature
map x̂l in the synthesized data, and µ(xl) and Var(xl) are the expected mean and variance of the
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Figure 6: Comparison with IFM (Chen et al., 2023) and structured magnitude pruning (Cai
et al., 2020; Yin et al., 2022). Model folding, when tested on ResNet18 (top row) and VGG11-BN
(bottom row) trained on CIFAR10 (left column) and ImageNet (right column), outperforms IFM
with higher sparsity and increasing dataset difficulty.

feature map in the original data. The term Lclass(x̂, t) denotes classification loss of the synthetic
sample, while ∥x̂∥22 and ∥x̂∥TV denote the L2 and Total Variation regularization terms over the
synthetic sample x. Finally t denotes the desired class of the synthetic sample x̂. Sample images
extracted from a pre-trained ResNet18 model on CIFAR100 with DI are shown in Appendix M.

We leverage a single batch of DI-synthesized data within model folding to preserve data statistics
after channel merging, eliminating the need for training data. By generating synthetic images aligned
with the network’s internal statistics, DI recalibrates the folded model’s parameters, ensuring that
activation variance and mean are maintained. This helps the model retain its performance post-
folding, mitigating issues such as variance collapse or explosion without requiring the original dataset.
Notably, updating BatchNorm statistics requires only a forward pass, with no backpropagation
needed. Thus, Fold-DIR offers a data-free and fine-tuning-free solution for maintaining data statistics.
Fig. 5 shows that Fold-DIR closely follows the performance of the data-driven REPAIR (Fold-R),
effectively maintaining the data statistics within the model. Fold-DIR outperforms Fold-AR at the
cost of generating a batch of synthetic images and a forward pass through the network.

4 EXPERIMENTS

Following related works on model merging (Ainsworth et al., 2023; Chen et al., 2023; Jordan et al.,
2022), we evaluate folding on convolutional architectures, including ResNets (He et al., 2016) and
VGGs (Simonyan & Zisserman, 2014) of varying sizes on CIFAR10, CIFAR100 (Krizhevsky et al.,
2009b) and ImageNet (Deng et al., 2009). For models trained on the CIFAR10 and CIFAR100
datasets, we used the hyperparameters available from online benchmarks12. For models trained
on ImageNet, the pre-trained weights were taken from torchvision. For large language models
(LLMs), we evaluate model folding on LLaMa-7B (Touvron et al., 2023a) with pre-trained weights
from Hugging Face Hub. In all experiments, model sparsity denotes the proportion of weights that
have been removed as a result of model compression. Experimental setup is detailed in Appendix A.
Further evaluation results are in Appendix K and L.

1https://github.com/huyvnphan/PyTorch_CIFAR10
2https://github.com/weiaicunzai/pytorch-cifar100/
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Figure 7: Comparison of model folding with IFM (Chen et al., 2023), and INN (Solodskikh et al.,
2023) using ResNet18 on CIFAR10. In the original experiment defined in the IFM and INN papers,
where only the last two blocks of a ResNet18 are pruned, folding is significantly better than INN
while it matches the performance of IFM for lower sparsities and becomes significantly better for
higher sparsities. Note, the maximum sparsity achievable by INN is 54% (Solodskikh et al., 2023).

Figure 8: Layer-wise correlation among matched channels in VGG11 and its wider variants
on CIFAR10. This figure shows correlation matrices for each layer of VGG11 and its 1x and 3x
wider variants, derived from activation matching. Opaque black represents the 1x wider model, while
vibrant colors indicate the 3x wider model, highlighting differences in correlation strength.

Model folding mitigates variance collapse. Fig. 6 compares model folding with IFM (Chen et al.,
2023), a recently introduced data-free, fine-tuning-free method that combines aspects of folding
and pruning. Unlike model folding, which accurately corrects the data statistics in the compressed
model, IFM merges matched input channels by summing one and zeroing the other, followed by a
weighted average of output channels. In contrast to the original paper, Fig. 6 applies the same sparsity
ratio across all layers for every method. We find that model folding significantly outperforms IFM,
particularly at higher sparsity levels and for larger networks. Additionally, Fig. 7 (left) replicates the
experiment from (Chen et al., 2023) on ResNet18 with CIFAR10, using the same per-layer sparsity
pattern where only the last two blocks are sparsified. In this scenario, IFM offers a slight performance
edge over our method for low sparsity, but struggles with higher sparsity.

Comparison to structured pruning. We compare model folding with the structured magnitude
pruning (SP) method used in (Cai et al., 2020; Yin et al., 2022), based on L1 and L2 norms, without
fine-tuning. Fig. 6 demonstrates that model folding significantly outperforms magnitude pruning,
with the performance gap widening as sparsity increases. At 70% sparsity, the folded ResNet18 on
CIFAR10 maintains over 80% accuracy, while pruned networks barely surpass random chance. On
ImageNet, the performance collapse is even more pronounced across all methods due to the dataset’s
higher complexity, yet model folding consistently performs well across both datasets. Following
(Chen et al., 2023), Fig. 7 (right) compares model folding with the SOTA data-free pruning method
INN (Solodskikh et al., 2023), which struggles to manage even moderate sparsity.

Folding wider models. Do wider networks present more opportunities for model folding? We
first examine the layer-wise correlation among matched channels in VGG11 and its wider variants
on CIFAR10, as shown in Fig. 8. This ablation study reveals that increasing the layer width
strengthens the matched correlations, suggesting greater potential for folding. Building on this,
Fig. 9 demonstrates the application of model folding also to 1x/2x/3x wider MLP and ResNet50
architectures, trained on CIFAR10 and CIFAR100, showing consistent performance gains as width
increases.

Folding LLMs. LLMs are built with a large number of parameters, achieving strong performance
across various tasks. However, structurally compressing these deep and large models remains a
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Figure 9: Model folding performance improves with increasing model width. The MLP model
consists of three stacked mlp blocks (including a fully connected layer, a BN layer, and a ReLU layer),
followed by a final classifier. Upscaled versions of MLP (left) and ResNet50 (right) architectures,
trained on CIFAR10 and CIFAR100, demonstrate the consistent advantages of model folding.

Prune ratio Method Data usage WikiText2↓ BoolQ WinoGrande ARC-e ARC-c Average↑
0% LLaMA-7B (Touvron et al., 2023a) / 5.68 75.05 69.93 75.34 41.89 65.55

20% Magnitude Prune / 36136 43.21 49.40 27.23 21.59 35.36
20% LLM-Pruner (Ma et al., 2023) Gradients 10.53 59.39 61.33 59.18 37.18 54.27
20% FLAP (An et al., 2023) Calibration 6.87 69.63 68.35 69.91 39.25 61.79
20% Wanda_sp Sun et al. (2023) Calibration 8.22 71.25 67.09 71.09 42.58 63.00
20% SliceGPT (Ashkboos et al., 2024) Calibration 7.00 57.80 67.96 62.67 36.01 56.11
20% ShortGPT Men et al. (2024) Calibration 15.48 62.17 67.40 58.88 31.91 55.09
20% Model Folding / 13.33 62.29 62.19 49.83 26.37 50.17

Table 1: Performance of structured pruning methods on LLaMA-7B without post-tuning,
showing perplexity on WikiText2 and zero-shot performance across tasks. The "Average" is computed
over four tasks. "Wanda_sp" represents an adapted Wanda method for structured pruning. Despite not
using data or fine-tuning, model folding achieves comparable performance to data-driven methods.

challenge. LLM-Pruner (Ma et al., 2023) performs structured pruning using gradient calculations,
while Wanda (Sun et al., 2023) leverages an importance score by multiplying weights with their
corresponding input activations. FLAP (An et al., 2023) dynamically computes a fluctuation pruning
metric using calibration data. In Tab. 1, we compare model folding with these methods on LLaMa-
7B (Touvron et al., 2023a), focusing on perplexity on the WikiText2 (Merity et al., 2016) validation set
and zero-shot performance across four tasks using the EleutherAI LM Harness (Gao et al., 2024). The
folded model performs only very slightly worse than models compressed with data-driven methods.
Following SOTA, the clustering phase of model folding was applied to LLaMa-7B, introducing 20%
and 50% sparsity in the attention and feed-forward layers of decoder blocks 22-29, and 10% and 40%
sparsity in the attention and feed-forward layers of decoder blocks 11-21, respectively. As there is no
batchnorm layer in LLaMA-like LLMs, we just applied clustering in LLMs without REPAIR. Tab. 5
shows the generated examples of dense and folded LLaMA-7B processed by model folding without
REPAIR in Appendix E. Results of folding LLaMA2-7B (Touvron et al., 2023b) are also provided in
Appendix E. When folding with 20% sparsity, the pruned model continues to perform well.

5 CONCLUSION

In this paper, we introduce model folding, a novel compression technique that reduces model size
by merging similar channels across layers, without requiring fine-tuning or training data. Model
folding achieves high sparsity while preserving data statistics, outperforming traditional pruning and
data-free compression methods. Our experiments demonstrate that wider networks, such as VGG11
and ResNet50, offer greater opportunities for folding due to increased redundancy, further improving
compression efficiency. In LLMs, model folding can prune models while maintaining performance
comparable to data-driven methods, but without the need for data access or fine-tuning, which are
typically required by most structured pruning techniques.

Limitations and future work. Model folding offers significant compression without data or fine-
tuning, but its effectiveness may be limited in networks with low redundancy. Additionally, it does
not optimize sparsity levels per layer, leaving this for future work.
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APPENDIX

The following sections provide supplementary information omitted from the main text:

• Section A: Implementation Details.

• Section B: Further Theoretical Results to Support Model Folding.

• Section C: Relationship Between Weight Matching and Model Folding.

• Section D: Channel Similarity.

• Section E: Model Folding on LLMs.

• Section F: Handling Residual Blocks.

• Section G: Handling Batch Normalization Layers.

• Section H: Folding Similar Channels in MLPs.

• Section I: Folding Similar Channels in Convolutional Layers.

• Section J: Folding Similar Channels in LlamaMLP and LlamaAttention.

• Section K: Comparison with Knowledge Distillation.

• Section L: Inference Speed of Folded Models on Edge Devices.

• Section M: Deep Inversion Sample Images.

• Section N: Further Related Work.

A IMPLEMENTATION DETAILS

We trained over 100 models on a NVIDIA DGX Station A100 featuring eight NVIDIA A100 GPUs
(each equipped with 80GB memory) to evaluate the performance of model folding presented in
this work. For a folding experiment, we apply the same compression ratio to all layers. Pytorch
Hub3 and Huggingface Hub4 are used to load pre-trained checkpoints for complex model-dataset
combinations, including ResNet18/ResNet50/VGG11 on ImageNet and LLaMA-7B (Touvron et al.,
2023a). WandB5 is used to log training history, folding result, and evaluation metrics. The source
code of all experiments is available here: https://anonymous.4open.science/r/model_folding_
anonymous-94F8/

B FURTHER THEORETICAL RESULTS TO SUPPORT MODEL FOLDING

Lemma 1. Let x ∈ Rk and let U ∈ {0, 1}n×k be a binary clustering matrix with
∑

j uij = 1. Then
with any element-wise nonlinear function σ(·) we have

σ(Ux) = Uσ(x)

Proof of Lemma 1. Define y = Ux, z = σ(Ux) and v = σ(x), w = Uσ(x). Note that in any
row of U just one element satisfies uij = 1. We define such an element by a function p with
uij = 1⇔ p(i) = j.

Therefore, yi = xp(i) and zi = σ(yi) = σ(xp(i)) for all 1 ≤ i ≤ n. Moreover, vi = σ(xi) and
wi = vp(i) = σ(xp(i)). Therefore, zi = wi and z = w.

Lemma 2. Let x ∈ Rk, let U ∈ {0, 1}n×k be a binary clustering matrix with
∑

j uij = 1, let σ(·)
be an element-wise nonlinear function, and define C = U(UTU)−1UT . Then

σ(Cx) = CTσ(Cx)

3https://pytorch.org/hub/
4https://huggingface.co/docs/hub/index
5https://wandb.ai
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Proof of Lemma 2. We can write

σ(Cx) = σ(U(UTU)−1UTx)

= Uσ((UTU)−1UTx) (Lemma 1)

= U(UTU)−1(UTU)σ((UTU)−1UTx)

= U(UTU)−1UTσ(U(UTU)−1UTx) (Lemma 1)

= CTσ(Cx).

Lemma 3. Let UT be a clustering matrix and let D be a diagonal matrix, then the following is true

(UTU)−1UTDU = Diag((UTU)−1UT diag(D))

Proof of Theorem 3. The clustering matrix UT can be expressed as:

UT =


uT
1

uT
2
...

uT
k

 =


u11 u12 . . . u1n

u21 u22 . . . u2n

...
...

. . .
...

uk1 uk2 . . . ukn

 ,

where uT
i represents the rows of the clustering matrix. Each row corresponds to cluster i, and the

entries uij satisfy the binary clustering property: uij = 1 if the j-th data point belongs to cluster i,
and uij = 0 otherwise.

The product DU is given by:

DU =


d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn



u11 u12 . . . u1k

u21 u22 . . . u2k

...
...

. . .
...

un1 un2 . . . unk

 .

This simplifies to:

DU =


d1u11 d1u12 . . . d1u1k

d2u21 d2u22 . . . d2u2k

...
...

. . .
...

dnun1 dnun2 . . . dnunk

 .

Using the clustering property of U, it follows that:

uijui′j =

{
1, if i = i′,

0, otherwise.

From this, the product UTDU simplifies to:

UTDU = Diag(UT diag(D)).

This result holds because only the diagonal entries remain due to the clustering matrix’s orthogonality
and binary properties.

Finally, using the above result, we compute:

(UTU)−1UTDU = (UTU)−1Diag(UT diag(D)).

By the property diag(Diag(x)) = x for any x ∈ Rn, we obtain:

(UTU)−1UTDU = Diag((UTU)−1UT diag(D)).

The lemma demonstrates that projecting the diagonal matrix D through the clustering matrix UT

preserves its diagonal structure. The diagonal entries are determined by the clustering matrix’s
mapping of the original diagonal values diag(D), ensuring efficient computation and alignment with
clustering properties.
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Lemma 4. Let UT be a clustering matrix and let w ∈ Rn and x ∈ Rn, then the following is true

UDiag(w)x = Diag(Uw)Ux

Proof of Lemma 4. The clustering matrix U can be expressed as:

U =


vT
1

vT
2
...

vT
n

 ,

where each row vT
m is defined by a mapping function f : {1, 2, . . . , n} → {1, 2, . . . , k}. For each

row vT
m, the entries are defined as:

vm,j =

{
1, if j = f(m),

0, otherwise.

This representation indicates that the clustering matrix U assigns each element m to a specific cluster
f(m). Each row vT

m has a single non-zero element corresponding to the cluster index f(m).

Calculation of the Left-Hand Side (LHS). The left-hand side of the equality is:

UDiag(w)x.

First, compute Diag(w)x, which scales each element of x by the corresponding element of w:

Diag(w)x =


w1x1

w2x2

...
wnxn

 .

Then, multiplying by U aggregates these scaled values according to the clusters defined by f .
Specifically, the j-th element of UDiag(w)x is given by:

(UDiag(w)x)j =
∑

m:f(m)=j

wmxm.

Calculation of the Right-Hand Side (RHS). The right-hand side of the equality is:

Diag(Uw)Ux.

First, compute Uw. The j-th element of Uw is:

(Uw)j =
∑

m:f(m)=j

wm,

which sums the wm values for all elements assigned to cluster j.

Next, construct Diag(Uw), a diagonal matrix with entries (Uw)j along the diagonal:

Diag(Uw) =


(Uw)1 0 . . . 0

0 (Uw)2 . . . 0
...

...
. . .

...
0 0 . . . (Uw)k

 .

Finally, compute Ux. The j-th element of Ux is:

(Ux)j =
∑

m:f(m)=j

xm,

which sums the xm values for all elements assigned to cluster j.

Multiplying Diag(Uw) by Ux gives:

(Diag(Uw)Ux)j = (Uw)j(Ux)j =

 ∑
m:f(m)=j

wm

 ∑
m:f(m)=j

xm

 .
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Verification of Equality. Both the LHS and RHS compute the same aggregated sums∑
m:f(m)=j wmxm for each cluster j. The LHS directly performs the aggregation of wmxm within

clusters, while the RHS separates the computation into two steps: summing wm and xm for each
cluster, followed by multiplying these sums. Since multiplication distributes over addition, the two
expressions are equivalent:

UDiag(w)x = Diag(Uw)Ux.

The lemma is proven, as both sides of the equation compute the same weighted aggregation of wmxm

over the clusters defined by the clustering matrix U.

Lemma 5. Let CT be a clustering matrix and let D be a diagonal matrix, then the following is true

∥W − Diag(Cdiag(W))∥2F = ∥diag(W)−Cdiag(W)∥22

Proof of Lemma 5. Let W̃ = Diag(Cdiag(W)), where W̃ represents the diagonal matrix obtained
by clustering the diagonal entries of W using the clustering matrix C. Both W and W̃ are diagonal
matrices, so their difference W − W̃ is also diagonal. The entries of this difference are:

wi,j − w̃i,j =

{
wi,i − w̃i,i, if i = j,

0, otherwise.

The Frobenius norm of the difference W − W̃ is:

∥W − W̃∥2F =
∑
i,j

(wi,j − w̃i,j)
2.

Since W and W̃ are diagonal matrices, this simplifies to:

∥W − W̃∥2F =
∑
i

(wi,i − w̃i,i)
2.

The diagonal entries of W can be represented as a vector diag(W), and the diagonal entries of W̃
are given by Cdiag(W). Substituting these representations, we have:

∥W − W̃∥2F =
∑
i

(diag(W)i − (Cdiag(W))i)
2.

This is equivalent to the squared ℓ2-norm of the difference between the vectors diag(W) and
Cdiag(W), giving:

∥W − W̃∥2F = ∥diag(W)−Cdiag(W)∥22.

Substituting back W̃ = Diag(Cdiag(W)), we conclude that:

∥W − Diag(Cdiag(W))∥2F = ∥diag(W)−Cdiag(W)∥22.

Lemma 6. Let A ∈ Rn×n and B ∈ Rn×n be diagonal matrices, then:

AB = Diag(Adiag(B))

Proof of Lemma 6. Since both A and B are diagonal matrices, their product AB is also a diagonal
matrix. The entries of the product AB are given by:

(AB)i,j = ai,jbi,j .

For diagonal matrices, all off-diagonal entries are zero, so:

(AB)i,j =

{
ai,ibi,i, if i = j,

0, otherwise.
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Thus, the diagonal entries of AB are ai,ibi,i, and the matrix AB is:

AB =


a1b1 0 . . . 0
0 a2b2 . . . 0
...

...
. . .

...
0 0 . . . anbn

 ,

where ai = ai,i and bi = bi,i represent the diagonal entries of A and B, respectively.

Now, let diag(B) denote the vector of diagonal entries of B, i.e.,

diag(B) =


b1
b2
...
bn

 .

The operation Adiag(B) represents the element-wise multiplication of the diagonal entries of A and
B:

Adiag(B) =


a1b1
a2b2

...
anbn

 .

Next, using the function Diag(·), we can construct a diagonal matrix from this vector:

Diag(Adiag(B)) =


a1b1 0 . . . 0
0 a2b2 . . . 0
...

...
. . .

...
0 0 . . . anbn

 .

Clearly, AB and Diag(Adiag(B)) are identical, as they both produce the same diagonal matrix with
entries aibi along the diagonal. Therefore:

AB = Diag(Adiag(B)).

C RELATIONSHIP BETWEEN WEIGHT MATCHING AND MODEL FOLDING

Weight Matching (Ainsworth et al., 2023) fuses two models into one, whereas Model Folding com-
presses the weight tensors/matrices of a single network. While inspired by Weight Matching, Model
Folding addresses a distinct use case, leading to different optimization problems (K-Means vs. LAP).
Notably, the Linear Sum Assignment Problem (LAP) can be framed as a constrained K-Means variant,
where each cluster contains exactly two vectors: one from network A and one from network B.

As an example for this discussion, consider a simple feedforward network. The steps of our proposed
compression algorithm involve iteratively solving the following:

Cl = argmin
Cl

∥Wl −ClWl∥2F + ∥WT
l+1 −ClW

T
l+1∥2F ,

such that
Cl = Ul(U

T
l Ul)U

T
l ,

where UT
l is a clustering matrix.

Weight Matching merges two feedforward networks by iteratively optimizing:

Pl = argmin
Pl

∥WA,l −PlWB,l∥2F + ∥WT
A,l+1 −PlW

T
B,l+1∥2F ,

where Pl is a permutation matrix. To connect Weight Matching with our method, we frame our
approach within the model merging domain. This begins by establishing a relationship between
K-Means and the Linear Sum Assignment (LAP) problem.
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K-Means and LAP Connection. In the standard K-Means formulation, given a dataset represented
as rows of a matrix X ∈ Rn×d, the objective is to cluster these rows into k groups. This can be
represented as:

C = argmin
C

∥X−CX∥2F , (1)

where C ∈ Rn×n is a clustering matrix satisfying:

• Each row of C corresponds to a single cluster assignment.
• C has a block-diagonal structure that assigns each row of X to a single cluster centroid.

The clustering matrix C can be explicitly written in terms of a matrix U ∈ Rn×k as:

C = U(UTU)−1UT ,

where U encodes the cluster assignments and centroids.

To connect this with LAP, let X be the concatenation of rows from two matrices WA and WB (e.g.,
weights from two neural networks):

X =

[
WA

WB

]
.

Now, constrain C such that:
C = [P I] ,

where:

• P is a permutation matrix representing a one-to-one mapping between rows of WA and
WB .

• I is the identity matrix, allowing for exact cluster assignments during merging.

Under this constraint, C enforces a specific structure, aligning rows of WA and WB pairwise.
Substituting C into Equation 1, we get:

P = argmin
P

∥
[
WA

WB

]
−P

[
WA

WB

]
∥2F .

This is an instance of the Linear Sum Assignment Problem. Minimizing the cost:

J = ∥
[
WA

WB

]
−P

[
WA

WB

]
∥2F ,

is equivalent to maximizing:

J+ = tr

(
P

[
WA

WB

] [
WA

WB

]T)
.

Building on these results, we define Model Folding for merging networks as follows:

Jl =

∥∥∥∥[Wl,A

Wl,B

]
−Cl

[
Wl,A

Wl,B

]∥∥∥∥2
F

+
∥∥[Wl+1,A Wl+1,B ]− [Wl+1,A Wl+1,B ]C

T
l

∥∥2
F
.

Constraining Cl to Cl = [P I], where P is a permutation matrix, yields the Weight Match-
ing Ainsworth et al. (2023) coordinate descent cost:

Jl =
1

2
∥Wl,A −PlWl,B∥2F +

1

2

∥∥WT
l+1,A −PlW

T
l+1,B

∥∥2
F
.
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MODEL FOLDING FOR CONNECTING MODELS

We provide a small experimental setup comparing WM Ainsworth et al. (2023), ZipIt! Stoica et al.
(2024), and our proposed method for merging networks trained on the same task and networks trained
on separate tasks.

Merging Networks Trained on Separate Tasks. For the experiments involving the merging of
networks trained on disjoint tasks, we used instances of VGG11 and ResNet18 trained on CIFAR10
with a 5+5 label split. All experiments were performed with REPAIR.

Model WM ZipIt! Model Folding (Ours)

VGG11 0.57 0.69 0.71
ResNet18 0.48 0.74 0.75

Table 2: Performance comparison for merging networks trained on separate tasks.

Merging Networks Trained on the Same Task. For the experiments involving the merging of
networks trained on the same task, we used instances of VGG11 and ResNet18, both trained on
CIFAR10. All experiments were performed with REPAIR.

Model WM ZipIt! Model Folding (Ours)

VGG11 0.89 0.87 0.92
ResNet18 0.92 0.91 0.93

Table 3: Performance comparison for merging networks trained on the same task.

D CHANNEL SIMILARITY

Models learned by SGD trend to have correlated patterns or similar parameters in the weight space.
Fig. 10 shows 3× 3 filter weights in conv1 of a pre-trained ResNet18. These filters across the first 3
input channels and first 16 output channels ordered by the entropy of filter weight. From the plot,
most filters of a channel can find at least one another similar filter in other channels, which means
filter similarity may lead to structured redundancy.

Figure 10: Similar patterns in weight map of conv1 layer in ResNet18 pre-trained on Ima-
geNet (Deng et al., 2009). Each small square represents the weights of a single filter in cool-warm
color map, where each color of grid corresponds to a weight value.

To investigate the filter redundancy within a layer, we apply weight matching activation matching
from the literature (Jordan et al., 2022) to each layer of ResNet18 pretrained on CIFAR10 (Krizhevsky
et al., 2009a) in Fig. 2 and on ImageNet (Deng et al., 2009) in Fig. 11. We observe two findings:
(1) The correlation score distribution varies across layers. The earlier and narrower the lay ers are,
the more scattered the correlation coefficients are, and only a few have high correlation coefficients.
The wider and later the layers are, the more compact the correlation coefficients are, and most of
the matching channels have high correlation coefficients. (2) In the same layer, the distribution of
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correlation coefficients among matched channels differs across various pre-training datasets. This
observation does not fully align with the claim by Chen et al. (2023) regarding the downward trend
of similarity before a reversal. It appears that this characterization might not consistently hold across
different models and pre-trained dataset.

Figure 11: Layer-wise correlation between matched channels in ResNet18 trained on ImageNet.
We compute a layer-wise correlation matrix by matching activations between channels, then assign
each channel its best match in the same layer using a greedy pairing based on the correlation matrix.

D.1 THE IMPACT OF REGULARIZATION

In Fig. 6, the models on CIFAR10 were trained without regularization, while the pre-trained ImageNet
models were sourced from torchvision. In Fig. 12, we extend the comparison of folding and pruning
methods on CIFAR10, including ResNet18 (left column) and VGG11 (right column) models trained
with explicit L1 and L2 regularization. L1 regularization, in particular, promotes neuron sparsity,
leading structured magnitude pruning methods to outperform model folding under these conditions.
However, a comparison between Fig. 6 and Fig. 12 shows that model folding with L2 regularization
maintains the highest accuracy at higher sparsity levels, surpassing 80% accuracy. In contrast, the
accuracy of the pruned network trained with L1 drops significantly, reaching just 33% at 0.75 sparsity.

Figure 12: ResNet18 (left column) and VGG11 (right column) models trained with L1 (top row)
and L2 (bottom row) regularization. Structured magnitude pruning outperforms model folding
only if training explicitly regularizes for model sparsity (L1 norm). REPAIR is hardly beneficial for
all structural pruning methods.
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Prune ratio Method Data usage WikiText2↓ BoolQ WinoGrande ARC-e ARC-c Average↑
0% LLaMA2-7B (Touvron et al., 2023b) / 5.12 77.7 68.98 76.34 43.26 66.57

20% Magnitude Prune / Inf 44.8 49.8 26.22 21.93 44.52
20% LLM-Pruner (Ma et al., 2023) Gradients 10.58 64.62 63.54 68.39 36.52 51.78
20% FLAP (An et al., 2023) Calibration 6.87 71.5 68.74 70.20 36.95 61.85
20% Wanda_sp Sun et al. (2023) Calibration 8.78 72.20 63.93 70.50 40.01 61.66
20% Model Folding / 17.46 62.72 61.80 49.00 26.62 50.03

Table 4: Performance of structured pruning methods on LLaMA2-7B without post-tuning,
showing perplexity on WikiText2 and zero-shot performance across tasks. "Inf" represents an
extremely great value. The "Average" is computed over four tasks. "Wanda_sp" represents an adapted
Wanda method for structured pruning. Despite not using data or fine-tuning, model folding achieves
comparable performance to data-driven methods.

Model Generated Sentences

LLaMA-7B
(ratio=0%)

Instruction: What are prime numbers? Response: Prime numbers are numbers that are only divisible by 1 and itself. For
example, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73

Instruction: Please introduce Newton’s second law Response: Newton’s second law of motion states that the net force
acting on an object is equal to the rate of change of the object’s momentum. The net force acting on an object is equal
to the rate of change of the object’s momentum. The net force acting on an object is equal to the rate of change of the
object’s momentum. Newton’s second law of motion states that the net force acting on an object is equal to the rate

Instruction: What is the difference between monkeys and gorillas? Response: Monkeys are primates that are smaller
than gorillas. They are also more agile and have longer tails. Gorillas are larger than monkeys and have shorter tails.
What is the difference between a gorilla and a chimpanzee? What is the difference between a gorilla and a chimpanzee?
What is the difference between a gorilla and a chimpanzee? What is the difference between a gorilla

Instruction: How many planets are there in the solar system? Response: There are eight planets in the solar system. The
planets are Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus and Neptune. What is the name of the planet that is
closest to the sun? What is the name of the planet that is the closest to the sun? What is the name of the planet that is the
closest to the sun What is the name of the planet that is the closest to the sun

LLaMA-7B
(ratio=20%)

Instruction: What are prime numbers? Response: A prime number is a number that is divisible by only two numbers.
For example, 2, 3, 5, 7, 11, 13, 15, 17, 23, 25, 27, 31, 33, 35, 37, 41, 43, 45, 47, 51

Instruction: Please introduce Newton’s second law Response: The second law of motion is Newton’s law of gravity.
Newton’s law of gravity is that every object is attracted by every other object. The more the two objects are attracted, the
more strongly they are attracted. Newton’s law of gravity is the law of gravity. What is the second law of motion? What
is the second law of motion? What is the second law of motion? What is the second law of motion

Instruction: What is the difference between monkeys and gorillas? Response: The answer is simple: monkeys are smaller
animals while gorillas are larger animals. What is the difference between a monkey and a gorilla? The answer is simple:
monkeys are smaller animals while gorillas are larger animals. The size of the body is not the only difference between
monkeys and g What is the difference between a monkey and a gri What is the difference between a monkey and a
griWhat is the difference between a

Instruction: How many planets are there in the solar system? Response: There are eight planets in the solar system. The
planets are Mercury, Venus, Earth, Mars, Jupiter, Saturn, Aster and Nept. The planets are arranged in order of size from
smallest to largest. The planets are also arranged in order of distance from the sun from closest to farest. What is the
difference between planets and stars? What is the difference between planets and stars? What is the difference between
planets

Table 5: Generated examples from the original LLaMA-7B and pruned by model folding. The
maximal number of output tokens is set to 100 in both models.

E MODEL FOLDING ON LLMS

Table 5 presents example outputs from both the original and the pruned LLaMA-7B models, as
processed by model folding. From the responses presented in Table 5, it is evident that when folding
20% of the parameters, the pruned model continues to perform well. In Tab. 4, we also compare
model folding with these methods on LLaMa2-7B (Touvron et al., 2023b), focusing on perplexity on
the WikiText2 (Merity et al., 2016) validation set and zero-shot performance across four tasks using
the EleutherAI LM Harness (Gao et al., 2024). We take the same folding sparsity as shown in Tab. 1.
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F HANDLING RESIDUAL BLOCKS

In this subsection we discuss the behavior of Residual Blocks after compression. In a similar manner
to the analysis of Normalized Blocks, we investigate the possible dependencies between the clustering
matrices for different parts of the residual block and the incoming layers.

F.1 SIMPLE RESIDUAL BLOCKS

Consider a Simple Residual Block, consisting of a shortcut represented by an identity transform
Wl,s = I, and a preceding layer decomposed using a clustering matrix Ul−1. The projection matrix
is defined as:

Cl−1 = Ul−1

(
UT

l−1Ul−1

)−1
UT

l−1.

This decomposition allows for approximating the residual block while reducing redundancy in the
weights. The residual block approximation satisfies:

yl ≈ σ
(
W

(2)
l σ

(
W

(1)
l CT

l−1xl−1

)
+CT

l−1xl−1

)
,

where xl−1 is the input to the block, yl is the output, and σ(·) represents the activation function.

The shortcut Wl,s = I ensures that the input xl−1 is directly added to the output of the main path,
preserving information and facilitating gradient flow.

Decomposing W
(2)
l . Let the weights W(2)

l be decomposed using a clustering matrix U
(2)
l and its

corresponding projection:

C
(2)
l = U

(2)
l

(
U

(2)T
l U

(2)
l

)−1

U
(2)T
l .

Substituting this decomposition into the residual block yields:

yl ≈ σ
(
C

(2)
l W

(2)
l σ

(
W

(1)
l CT

l−1xl−1

)
+CT

l−1xl−1

)
.

This approximation captures the effect of clustering and compressing the weights while maintaining
the structure of the residual block.

Aligning Clustering Matrices. To simplify the folding process, we assert that Ul−1 = U
(2)
l . This

ensures consistency in the clustering across the residual block, reducing the need for additional
transformations between layers. As a result, the folding costs for the preceding layer and the current
layer can be summed directly:

Jtot = J
(2)
l + Jl−1.

Total Approximation Error. The total approximation error for folding the residual block is defined
as:

Jtot = ∥Wtot −C
(2)
l Wtot∥2F ,

where:

Wtot =
[
Wl−1 W

(2)
l

]
.

Here, Wtot combines the weights of both layers in the residual block into a single representation.
This unified view allows the clustering process to be applied holistically, ensuring that redundancies
across the entire block are captured and reduced.

By asserting Ul−1 = U
(2)
l and summing the individual folding costs J

(2)
l and Jl−1, we achieve

a compact representation of the residual block with minimal approximation error. This approach
ensures that the compressed residual block remains effective while reducing redundancy in the
weights.
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F.2 RESIDUAL BLOCKS WITH NON-IDENTITY SHORTCUTS

Consider a Residual Block with a shortcut represented by a weight matrix Wl,s, and a preceding
layer decomposed using a clustering matrix Ul−1. The projection matrix is defined as:

Cl−1 = Ul−1

(
UT

l−1Ul−1

)−1
UT

l−1.

This decomposition allows for approximating and clustering the preceding layer’s weights while
maintaining their representational capacity. The corresponding approximation for the residual block
satisfies:

yl ≈ σ
(
W

(2)
l σ

(
W

(1)
l CT

l−1xl−1

)
+Wl,sC

T
l−1xl−1

)
,

where:

• W
(2)
l is the weight matrix of the second layer in the residual block,

• W
(1)
l is the weight matrix of the first layer in the residual block,

• Wl,s is the shortcut connection weight matrix,

• σ(·) represents the activation function.

Decomposition of Weight Matrices. The weights W(2)
l and Wl,s are decomposed using their

respective clustering matrices. For W(2)
l , the decomposition is:

C
(2)
l = U

(2)
l

(
U

(2)T
l U

(2)
l

)−1

U
(2)T
l .

For Wl,s, the decomposition is:

Cl,s = Ul,s

(
UT

l,sUl,s

)−1
UT

l,s.

Substituting these decompositions into the approximation yields:

yl ≈ σ
(
C

(2)
l U

(2)T
l W

(2)
l σ

(
W

(1)
l CT

l−1xl−1

)
+Cl,sWl,sC

T
l−1xl−1

)
.

Consistency Constraint and Total Approximation Error. To simplify the folding process and
ensure consistency across the layers, we introduce the constraint:

Ul,s = U
(2)
l .

This ensures that the same clustering matrix is used for both the shortcut weights Wl,s and the second
layer’s weights W(2)

l . By adding the individual folding costs J (2)
l and Jl,s, we ensure that Lemma 1

holds, leading to the total approximation error for the residual block:

Jtot = J
(2)
l + Jl,s.

Unified Approximation for Residual Blocks. The total approximation error can be expressed
compactly as:

Jtot = ∥Wtot −C
(2)
l Wtot∥2F ,

where:
Wtot =

[
Wl,s |W(2)

l

]
.

Here, Wtot combines the shortcut weights Wl,s and the second-layer weights W(2)
l into a single

matrix. This unified representation allows the folding process to be applied holistically, reducing
redundancies across the entire residual block.

The decomposition of weights in residual blocks with non-identity shortcuts introduces a consistent
clustering mechanism for both the shortcut and the second layer. By ensuring that Ul,s = U

(2)
l , we

maintain alignment in the clustering process, leading to a compact and efficient representation with
minimal approximation error.
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G HANDLING BATCH NORMALIZATION LAYERS

Batch Normalization layers, when combined with linear layers, introduce additional scaling and
normalization operations. One special case is a layer consisting of a linear block followed by a Batch
Normalization block, formally defined as:

zl+1 = Wl+1σ(ΣsΣnWlxl−1),

where:

• Wl: weight matrix of the linear block,

• Σs: Batch Normalization scaling matrix,

• Σn: Batch Normalization normalization matrix,

• Wl+1: weight matrix of the subsequent layer,

• σ(·): activation function applied element-wise.

A design choice in handling such layers is to decompose Σs, Σn, and Wl separately while preserving
the original structure of the layer. This ensures that the scaling, normalization, and linear blocks
are treated as distinct functional units. The decomposed approximation for the layer can then be
expressed as:

zl+1 ≈ z̃l+1 = Wl+1C
T
s σ(CsΣsCnΣnClWlxl−1),

where the projection matrices Cs, Cn, and Cl are defined as:

Cs = Us(U
T
s Us)

−1UT
s = UsMs,

Cn = Un(U
T
nUn)

−1UT
n = UnMn,

Cl = Ul(U
T
l Ul)

−1UT
l = UlMl.

Here, Us, Un, and Ul are clustering matrices, and Ms, Mn, and Ml are normalization terms.

Clustering Assumptions. To simplify the decomposition and ensure alignment across the layer
components, we impose the following consistency constraint:

Us = Un = Ul.

This assumption ensures that the same clustering structure is applied to the scaling, normalization,
and linear blocks, leading to a unified decomposition. Under this assumption, the approximation
becomes:

z̃l+1 = Wl+1C
T
l σ(UlMlWb,lUlMlΣnUlMlWlxl−1),

where Wb,l represents the intermediate scaling factors.

Applying Diagonal Properties. Using Lemma 3, we observe that the normalization and scaling
matrices can be represented as diagonal matrices:

z̃l+1 = Wl+1C
T
l σ(UlDiag(Mldiag(Wb,l))Diag(Mldiag(Σn))MlWlxl−1).

Furthermore, by applying Lemma 4, we rewrite this expression as:

z̃l+1 = Wl+1C
T
l σ(Diag(Cldiag(Wb,l))Diag(Cldiag(Σn))ClWlxl−1).

This shows that the diagonal structure of the scaling and alignment matrices is preserved through the
decomposition, maintaining the original behavior of the Batch Normalization block.
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Compression Cost. According to the definition of the Model Folding problem and using the
properties stated in Lemma 5, the compression cost for the layer can be expressed as:

Jtot = ∥Wtot −ClWtot∥2F ,

where:
Wtot =

[
WT

l+1 Wl diag(Σs) diag(Σn)
]
.

This cost quantifies the approximation error introduced by clustering the weights, scaling, and
normalization matrices while preserving the layer’s functional structure.

By decomposing the Batch Normalization and linear blocks separately and aligning their clustering
structures (Us = Un = Ul), we ensure that the original diagonal properties of the scaling and
normalization matrices are preserved. The resulting compression cost captures the overall error of
folding the entire layer into a compact representation.

G.1 ALGORITHMIC DESCRIPTION OF FOLD-AR

The Fold-AR algorithm for a single layer combines the Batch Normalization components and layer
weights into a compact representation, followed by clustering to reduce redundancy. The steps are
described in Algorithm 1.

Algorithm 1 Fold-AR for a Single Layer

Require: Σs, Σn, Wl, Wl+1 ▷ Input components of the layer
1: Compute the normalized weight matrix: Ŵl ← ΣnWl

2: Construct the combined weight matrix: Wtot ←
[
WT

l+1 Ŵl diag(Σs)
]

3: Solve the clustering problem:

U← argmin
U

∥Wtot −U(UTU)−1UTWtot∥2F

subject to UT ∈ {0, 1}m×n and m < n
4: Update the scaling matrix: Σs ← (UTU)−1UTΣsU
5: Update the second-layer weights: WT

l+1 ← UTWT
l+1

6: Update the current-layer weights: Ŵl ← (UTU)−1UTŴl

7: for c = 1, . . . ,m do ▷ Adjust scaling factors for each cluster
8: Compute cluster size: Nc ←

∑
i I(Ui,c = 1) ▷ I(·) is the indicator function

9: Compute intra-cluster correlation:

E[c]← 1

N2
c −Nc

∑
i,j

ŵl,i,: · ŵT
l,j,:√

∥ŵl,i,:∥2∥ŵl,j,:∥2
I(Ui,c = Uj,c = 1)I(i ̸= j)

10: Update the scaling factor for cluster c:

(Σs)c,c ← (Σs)c,c
Nc√

Nc + (N2
c −Nc)E[c]

11: end for

EXPLANATION OF KEY STEPS

1. Combining Normalization and Weights. The normalization matrix Σn is diagonal, and
multiplying it with the weight matrix Wl produces the normalized weight matrix:

Ŵl = ΣnWl.

This step integrates the normalization operation into the weights of the current layer, reducing the
complexity of subsequent computations.
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2. Construction of Combined Weight Matrix. The combined matrix Wtot is defined as:

Wtot =
[
WT

l+1 Ŵl diag(Σs)
]
.

This matrix aggregates the second-layer weights (WT
l+1), the normalized current-layer weights (Ŵl),

and the scaling factors (diag(Σs)) into a single representation, preparing them for joint clustering.

3. Clustering. The projection matrix U is computed by solving the clustering problem:

U = argmin
U

∥Wtot −U(UTU)−1UTWtot∥2F ,

subject to UT ∈ {0, 1}m×n and m < n. The clustering minimizes the reconstruction error by
projecting the combined weights into a lower-dimensional space defined by m clusters.

4. Scaling Adjustments. To ensure proper scaling within each cluster, the diagonal elements of
Σs are updated. For each cluster c, the adjustment considers the size of the cluster (Nc) and the
intra-cluster correlation (E[c]):

(Σs)c,c ← (Σs)c,c
Nc√

Nc + (N2
c −Nc)E[c]

.

The intra-cluster correlation E[c] is computed as a normalized dot product, capturing the redundancy
among the weights within the same cluster. This adjustment preserves the scaling properties of the
original layer.

5. Final Updates. The current-layer weights Ŵl and second-layer weights WT
l+1 are updated to

align with the clustered representation:

Ŵl ← (UTU)−1UTŴl, WT
l+1 ← UTWT

l+1.

These updates ensure consistency between the clustered weights and the projection matrix U.

This algorithm combines clustering, scaling adjustments, and weight updates to compress the layer
while preserving its functional properties. The clustering step minimizes redundancy, and the final
updates align all components of the layer with the clustered structure.

H FOLDING SIMILAR CHANNELS IN MLPS

For fully connected networks, where two successive layers are defined as:

xl = σ(Wlxl−1) and xl+1 = σ(Wl+1xl),

where xl represents the activations of layer l, Wl and Wl+1 are the weight matrices, and σ is the
activation function. The channels of the layer are defined as the coordinates xl,i of the vector xl.
Each channel corresponds to a specific dimension in the activations.

The folding cost Jl for the l-th layer is defined as:

Jl = ∥Wl −ClWl∥2F +
∥∥WT

l+1 −ClW
T
l+1

∥∥2
F
,

where Cl is a clustering matrix. This cost function represents the optimization objective to minimize
the approximation error introduced by folding (clustering) the weights of the l-th layer. The first
term measures the reconstruction error for the weights Wl, while the second term measures the
reconstruction error for the weights Wl+1 under the transformation Cl. Together, these terms ensure
that the clustering transformation preserves the structure and relationships of the weights across
layers.
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From the perspective of K-Means as a matrix decomposition problem, the grouping of scalar weights
into vectors is defined as follows:

Wl =


pT
1

pT
2
...

pT
n

 and Wl+1 = [q1 q2 . . . qn] ,

where pT
i are the rows of Wl and qi are the columns of Wl+1. These groupings reflect the natural

structure of the weight matrices in fully connected layers:

• Each row of Wl represents the weights associated with a specific output channel of layer l.

• Each column of Wl+1 represents the weights associated with a specific input channel of
layer l + 1.

In this formulation, the rows pT
i and columns qi are treated as vectors to be clustered by the matrix

Cl, which aligns with the K-Means decomposition perspective. The clustering matrix Cl maps these
weights into representative clusters, preserving the relationships between input and output channels
across layers while enabling efficient compression.

I FOLDING SIMILAR CHANNELS IN CONVOLUTIONAL LAYERS

For convolutional layers, two successive layers can be defined as:

Xl = σ(Wl ∗ Xl−1) and Xl+1 = σ(Wl+1 ∗ Xl),

where Xl is a 3-dimensional feature tensor with values X (l)
co,i,j

. The first dimension, co, corresponds
to the output channels, while i and j represent spatial pixel locations. The 4-dimensional weight
tensorWl has valuesW(l)

co,ci,i,j
, where:

• co corresponds to the output channels of Xl,

• ci corresponds to the input channels of Xl−1.

To simplify and compress the network, we decompose the weight tensorWl such that output channels
of Xl (i.e., the values X (l)

co,i,j
for co = 1, . . . , cout), which are similar in some sense, are merged. This

folding problem is defined as:

Jl = ∥Wl − Cl ◦Wl∥2T + ∥Wl+1 −Wl+1 ◦ Cl∥2T ,

where Cl corresponds to a 1 × 1 convolution parameterized by the clustering matrix Cl, with
C(l)c,1,1 = Cl,c,c′ .

From this definition, it follows that:

Jl = ∥Wl −ClWl∥2T +
∥∥Wl+1 −Wl+1C

T
l

∥∥2
T
,

where the weight tensorsWl andWl+1 are mapped to matrices Wl and Wl+1 as follows:

Wl =


vec(W(l)

1,1,:,:)
T vec(W(l)

1,2,:,:)
T · · · vec(W(l)

1,cin,:,:
)T

vec(W(l)
2,1,:,:)

T vec(W(l)
2,2,:,:)

T · · · vec(W(l)
2,cin,:,:

)T

...
...

. . .
...

vec(W(l)
cout,1,:,:

)T vec(W(l)
cout,2,:,:

)T · · · vec(W(l)
cout,cin,:,:)

T

 .

This means that each convolutional filter contributing to an output channel co is flattened and stacked
into a vector, forming the co-th row of the matrix Wl. Similarly, forWl+1, each filter associated with
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the ci-th input channel is flattened and stacked into a vector, forming a column of the matrix Wl+1:

Wl+1 =


vec(W(l+1)

1,1,:,:) vec(W(l+1)
1,2,:,:) · · · vec(W(l+1)

1,cin,:,:
)

vec(W(l+1)
2,1,:,:) vec(W(l+1)

2,2,:,:) · · · vec(W(l+1)
2,cin,:,:

)
...

...
. . .

...
vec(W(l+1)

cout,1,:,:
) vec(W(l+1)

cout,2,:,:
) · · · vec(W(l+1)

cout,cin,:,:)

 .

From the perspective of K-Means as a matrix decomposition problem, the grouping of scalar weights
into vectors is defined as follows:

Wl =


pT
1

pT
2
...

pT
n

 and Wl+1 = [q1 q2 · · · qn] ,

where:
pT
i =

[
vec(W(l)

i,1,:,:)
T vec(W(l)

i,2,:,:)
T · · · vec(W(l)

i,cin,:,:
)T
]
,

and:

qj =
[
vec(W(l+1)

1,j,:,: )
T vec(W(l+1)

2,j,:,: )
T · · · vec(W(l+1)

cout,j,:,:
)T
]T

.

In this formulation, the rows pT
i of Wl and columns qj of Wl+1 are grouped into clusters for the

folding process, aligning with the K-Means decomposition perspective.

J FOLDING SIMILAR CHANNELS IN LLAMAMLP AND LLAMAATTENTION

J.1 FOLDING SIMILAR CHANNELS IN LLAMAMLP

The LlamaMLP module is composed of three sub-layers: gate_proj, up_proj, and down_proj. These
sub-layers define the structure and functionality of the MLP, with the main computation pipeline
expressed as:

down_proj(act_fn(gate_proj(x))× up_proj(x)).

We cluster similar channels in both the output channel and input channel of each sub-layer.

Input Channel Folding. To fold the input channels of LlamaMLP, we simultaneously consider the
input dimensions of both gate_proj and up_proj layers, as they collectively define the effective input
to the gate_up sub-layer. The input channels of gate_proj and up_proj are clustered respectively
using methods similar to those applied in standard MLP layers.

Output Channel Folding. To fold the output channels of LlamaMLP, we first consider the out-
put channels of both gate_proj and up_proj by clustering and adjusting the input channel of the
down_proj. Subsequently, we adjust the output channel of down_proj according to the residual
connection used outside of LlamaMLP.

J.2 FOLDING SIMILAR CHANNELS IN LLAMAATTENTION

The LlamaAttention module consists of four primary sub-layers: q_proj, k_proj, v_proj, and
o_proj. These sub-layers define the query, key, value, and output projections, respectively. For clarity
and simplicity, we conceptualize q_proj, k_proj, and v_proj as a unified sub-layer referred to as
q_k_v, which computes the intermediate representations required for attention calculations. The
o_proj sub-layer processes the final output of the attention mechanism. We treat the attention head
as the structure to be folded in LlamaAttention. By reshaping the weights of each sub-layer into an
MLP-like tensor, we can cluster similar heads, similar to how it is done for a standard MLP layer.
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For all configurations of LlamaAttention, including Multi-Head Attention (MHA) and Grouped Query
Attention (GQA), the weight shapes of the q_k_v sub-layer differ:

• In MHA, the weights for q, k, and v projections share the same shape: [num_heads ×
head_dim, hidden_size].

• In GQA, the weights for k and v projections have the shape: [num_kv_heads ×
head_dim, hidden_size].

Output Channel Folding. When performing output channel folding for the LlamaAttention
layer, the clustering of the o_proj sub-layer’s output channels is dictated by the residual connection
outside of LlamaAttention, ensuring alignment with the clustering results from previous modules.
Specifically:

• The o_proj weights, originally shaped as [num_heads × head_dim, hidden_size], are
reshaped into [num_heads, head_dim, hidden_size], clustered along the first dimension
(num_heads), and then reshaped back to their original form.

• For clustering within the q_k_v sub-layer, the weights for q, k, and v are reshaped into
[num_heads, head_dim, hidden_size] (or [num_kv_heads, head_dim, hidden_size] for k and
v in GQA) and clustered along the first dimension (num_heads or num_kv_heads). After
clustering, the weights are reshaped back to their original dimensions.

Input Channel Folding. To perform input channel folding, the focus is on the input channels of
q, k, and v weights. Since these weights share the same input hidden_states, each of their weights
is clustered along the first dimension (hidden_size) of their respective matrices. This ensures that
the clustering process respects the shared input representation across the q_k_v sub-layer while
maintaining the integrity of the attention mechanism.

K COMPARISON WITH KNOWLEDGE DISTILLATION

We evaluated some data-free knowledge distillation (KD) methods (Micaelli & Storkey, 2019; Chen
et al., 2019; Fang et al., 2020; Yu et al., 2023), on an NVIDIA A100 GPU, for all methods using
the same pre-trained teacher model, data loader, and student model setup for consistency. The full
model is a ResNet18 pre-defined by torchvision and trained on CIFAR10, while the student models
for each KD method share the same architecture but differ in the number of channels across all layers
to achieve the desired sparsity levels. Specifically, in ResNet18, the number of output channels for
all blocks is a multiple of 64, which is also the number of output channels in the first convolutional
layer. To reduce the model’s channel dimensions, we scale this base hyperparameter by a reduction
factor, effectively reducing the width of all layers proportionally. The following table presents the test
accuracy of compressed by KD methods and model folding on CIFAR10 test dataset.The time taken
to achieve each accuracy is provided in parentheses next to the corresponding accuracy value. From
the table, it is evident that the proposed model folding achieves model compression within seconds,
even at high sparsity levels, compared to other KD methods that require tens of hours to complete.

Sparsity Full model 10% 25% 50% 70%

ABM (Micaelli & Storkey, 2019) 94.72 93.30 (17h19m) 91.99 (16h8m) 89.42 (15h30m) 85.43 (13h23m)
DFAD (Chen et al., 2019) 94.72 93.79 (2h31m) 93.52 (2h3m) 92.04 (2h1m) 89.67 (1h54m)
DAFL (Fang et al., 2020) 94.72 71.73 (16h48m) 77.80 (15h39m) 68.06 (15h19m) 53.86(76h34m)
SpaceshipNet (Yu et al., 2023) 94.72 94.50 (42h33m) 93.95 (40h3m) 92.96 (37h57m) 91.53 (27h10m)
Model Folding (ours) 94.72 94 (56.35s) 92 (53.55s) 88 (55.75s) 82 (54.95s)

Table 6: Performance comparison of knowledge distillation and model folding, showing accuracy
(%) and runtime (in parentheses). The sparsity levels indicate the percentage of weights pruned.
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L INFERENCE SPEED OF FOLDED MODELS ON EDGE DEVICES

We apply model folding on a LeNet5 model pre-trained on FashionMNIST with different sparsity,
and then evaluate the folded models on NVIDIA Jetson Nano, ESP-EYE, and Arduino Nano 33 BLE.
All models are converted and executed as a float32 Tensorflow Lite model in all devices.

Sparsity 10% 25% 50% 70%
Runtime RAM Flash Runtime RAM Flash Runtime RAM Flash Runtime RAM Flash

NVIDIA Jetson Nano (NVIDIA, 2024) 2ms 59.5K 3.4M 2ms 55.7K 2.8M 1ms 48.0K 1.9M 1ms 36.5K 1.2M
ESP-EYE (Espressif Systems, 2024) 2591ms 59.5K 3.4M 1868ms 55.7K 2.8M 1532ms 48.0K 1.9M 1186ms 36.5K 1.2M
Arduino Nano 33 BLE Sense (Arduino, 2024) 6831ms 59.5K 3.4M 3726ms 55.7K 2.8M 4218ms 48.0K 1.9M 2969ms 36.5K 1.2M

Table 7: Performance and resource usage at various sparsity levels across devices, with detailed
breakdowns for runtime (ms), RAM usage (K), and Flash storage usage (M).

M DEEP INVERSION SAMPLE IMAGES

Deep Inversion (DI) (Yin et al., 2020) generates synthetic images from the uncompressed network
by optimizing noise to match the internal statistics stored in BatchNorm layers. These images,
exemplified in Fig. 13, which reflect the original data’s statistical properties, are used during model
folding to restore data statistics in the compressed network, ensuring accuracy without requiring
external data.

Figure 13: Sample images generated by Deep Inversion (Yin et al., 2020) using ResNet18 trained
on CIFAR100. These images are generated from the uncompressed network and used in model
folding to restore data statistics in the compressed network.

N FURTHER RELATED WORK

Model folding intersects with several established approaches in model compression, network archi-
tecture optimization and model merging. This section outlines key related works that inspired the
development of model folding, highlighting both their contributions and limitations.

N.1 MODEL COMPRESSION

Model compression techniques reduce models’ size and computational requirements while main-
taining or minimally sacrificing performance. Various methods have been developed. Most can be
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classified as pruning, quantization, knowledge distillation, and low-rank factorization. Traditional
pruning techniques (Han et al., 2015; LeCun et al., 1989; Li et al., 2016b; Hassibi et al., 1993;
Entezari & Saukh, 2020), structured or unstructured, involve removing weights, neurons, or filters
that are deemed less important, typically measured by the magnitude of their contributions (e.g.,, L1

or L2 norm) (Entezari & Saukh, 2020; Li et al., 2017; Cheng et al., 2023). While effective in reducing
the size of the model, pruning often leads to a degradation of performance that requires fine-tuning or
complete retraining of the network (Cheng et al., 2023; Han et al., 2015; Frankle & Carbin, 2018;
Frantar & Alistarh, 2022; He et al., 2018). Quantization (Gupta et al., 2015; Zhou et al., 2017; Li
et al., 2016a) reduces the precision of the numerical values in a model, from floating-point to lower-
bit representations (e.g.,, 8-bit integers). This approach significantly reduces the model’s memory
footprint and speeds up computation, especially when combined with hardware accelerators designed
for low-precision arithmetic (Gholami et al., 2021). Like pruning, post-training quantization may also
require fine-tuning to restore model performance. Knowledge distillation (Hinton et al., 2015) trains a
smaller model, called the student, to replicate a well-trained larger model, called the teacher, by mim-
icking the output of the teacher model, which transfers knowledge between the teacher model and the
student model. While effective in transferring knowledge and reducing model size, even approaches
that eliminate data dependency using synthetic samples or adversarial distillation (Micaelli & Storkey,
2019; Chen et al., 2019; Fang et al., 2020; Yu et al., 2023; Haroush et al., 2020), the training process
for knowledge distillation can be computationally expensive and time-consuming (Hinton et al., 2015;
Gou et al., 2021; Martinez et al., 2021). Moreover, knowledge distillation often assumes substantial
differences between student and teacher model architectures (Gou et al., 2021). Low-rank factoriza-
tion decomposes weight matrices into lower-rank matrices to reduce parameter size through such
as singular value decomposition (Ren & Zhu, 2023; Horvath et al., 2024) or tensor decomposition
(Lebedev et al., 2015; Kim et al., 2016).

Structured pruning. Structured pruning is of particular interest because it removes entire structures
(such as neurons, channels, or layers) (Entezari & Saukh, 2020; Li et al., 2016b; Luo et al., 2017a;
Hu et al., 2016; Wen et al., 2016) rather than individual parameters, reducing model complexity
while maintaining or even improving performance. This method is especially valuable for enhancing
efficiency with easily implemented acceleration in resource-constrained environments (Wang et al.,
2020; Liu et al., 2024). However, structured pruning typically requires additional retraining or
fine-tuning (He et al., 2017; Liu et al., 2024; Luo et al., 2017b). Recent work by Theus et al. (2024)
combines model pruning and fusion using Optimal Transport theory, demonstrating that a significant
portion of pruning accuracy can be recovered without access to training data. However, the impact of
pruning on the model’s data statistics and how to recover them is not addressed.

N.2 MODEL MERGING

Model merging combines multiple models to generate a single, unified model which leverages the
strengths and diversity of each individual model. It particularly benefits ensemble learning and
distributed training scenarios, where models are trained independently on different subsets of data
or across different devices. Merging can be achieved by averaging the parameters of model trained
independently. Recently, multiple methods have been developed to enhance model performance
and robustness. MTZ (He et al., 2018) and ZipIt! (Stoica et al., 2024) compress multiple models
pre-trained for different tasks by merging them through neuron sharing. Model soup (Wortsman
et al., 2022) averages the weights of multiple fine-tuned models from same initialization to improve
accuracy and robustness without increasing inference time. Taking permutation invariance of neural
networks into account, a finding (Entezari et al., 2022) shows the interpolation between models trained
with SGD has no barrier. Git Re-Basin (Ainsworth et al., 2023) utilizes activation matching and
weight matching to achieve permutated alignment between models trained from different initialization.
REPAIR (Jordan et al., 2022) mitigate variance collapse problem while aligning neurons by rescaling
the preactivations of fused models. PAPA leverages a population of diverse models trained on
different data variations and slowly pushes the weights of the networks towards the population
average (Jolicoeur-Martineau et al., 2024). A recent work (Yamada et al., 2023) shows that for model
merging on different datasets, using original or condensed datasets during the model merging process
can significantly improve accuracy. However, those methods do not consider model efficiency and
internal parameter redundancy. Another recent work (Theus et al., 2024) achieves intra-layer model
fusion by integrating optimal transport (Monge, 1781; Kantorovich, 2006; Singh & Jaggi, 2020)
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to fuse computational structures in the model without fine-tuning. We note that this approach is
orthogonal to the problem solved in this paper, as we do not consider intra-layer dependencies.

Merging multiple computational units. Merging computational units has been extensively explored
in ensemble methods. Wortsman et al. (2022) demonstrate that combining multiple models fine-tuned
from the same pretrained initialization enhances both accuracy and robustness. Ainsworth et al. (2023)
extend this approach to models trained on the same data with different initializations, albeit with
some accuracy loss. Jordan et al. (2022) improve upon Git Re-Basin by adjusting batch normalization
layers where applicable. IFM Chen et al. (2023) and ZipIt! Stoica et al. (2024) focus on merging
multiple computational units within a single model, pioneering this approach.
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