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ABSTRACT

A fundamental challenge in physics-informed machine learning (PIML) is the
design of robust PIML methods for out-of-distribution (OOD) forecasting tasks.
These OOD tasks require learning-to-learn from observations of the same (ODE)
dynamical system with different unknown ODE parameters, and demand accurate
forecasts even under out-of-support initial conditions and out-of-support ODE
parameters. We propose a solution for such tasks, defined as a meta-learning
procedure for causal structure discovery. In 3 different OOD tasks, we show that
the proposed approach outperforms existing PIML and deep learning methods.

1 INTRODUCTION

Physics-informed machine learning (PIML) (e.g., (Willard et al., 2020; Xingjian et al., 2015; Lusch
et al., 2018; Yeo & Melnyk, 2019; Raissi et al., 2018)) seeks to combine the strengths of physics and
machine learning models and has achieved substantial success in tasks where the test data comes
from the same distribution as the training data (in-distribution tasks). This paper considers an out-
of-distribution (OOD) change in the initial system state and unknown parameters of the dynamical
system, possibly with different train and test distribution supports (illustrated in Figure 1(a,b)). In this
setting, we observe that existing state-of-the-art PIML models perform significantly worse than their
performance in-distribution. This is because the standard ML part of PIML, which tends to learn
spurious associations, performs poorly in our OOD setting. We then propose a promising solution:
Combine meta learning with causal structure discovery to learn an ODE model that is robust to OOD
initial conditions and can adapt to OOD parameters of the dynamical system.

Contributions. Our contributions are: (i) We show that state-of-the-art PIML and deep learning
methods fail in test examples with OOD initial conditions and/or OOD system parameters, (ii) We
proposed a hybrid transductive-inductive learning framework for ODEs via meta learning, where we
consider each training and test example/trajectory as separate tasks (transductive), but consider them
dependent such that the knowledge can be transferred (inductive), and (iii) In order to learn an ODE
that is robust to OOD changes in initial conditions (non-overlapping training and test distribution
supports), we define a family of structural causal models and perform a structural causal search in
order to find the correct model for our task (assumed to be in the family). The proposed method is
then empirically validated using three commonly-used simulated physics tasks in OOD scenarios.

2 DYNAMICAL SYSTEM FORECASTING AS A META LEARNING TASK

We formally describe the task of forecasting a dynamical system with a focus on the OOD scenarios.

Definition 1 (Dynamical system forecasting task). In what follows we describe our task:

1. Training data (Figure 1(a)): In training, we are given a set of M experiments, which we will
denote as M tasks. Task i ∈ {1, . . . ,M} has an associated (hidden) environment e(i). Different
tasks can have the same environment. Let T (i) := X

(i)
t0 , . . . ,X

(i)
t
T (i)

denote the noisy observations
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Figure 1: (a) Training data consists of multiple observations from the same dynamical system with different
parameters W (i)∗. (b) At test, given observations till tr (red solid), we predict the future observations till tT
(gray dashed). The initial conditions and the unknown ODE parameters can be OOD in test. (c) Shows OOD
failure of a standard sequence model for dynamical system forecasting. (d) Transductive PIML methods are not
able to transfer knowledge from training tasks to a test task with different W ∗. (e) Inductive PIML methods use
a neural network to correct a known physics model that faces OOD robustness issues similar to (c).

of our dynamical system, with X
(i)
t := x

(i)
t + ε

(i)
t , where

dx
(i)
t

dt
= ψ(x

(i)
t ;W (i)∗, ξ∗) , (1)

{t0, . . . , tT (i)} are discrete time steps, x(i)
t ∈ Rd is the (hidden) state of the system at time t

during task i, ε(i)t are independent zero-mean Gaussian noises, ψ is an unknown deterministic
function with task-dependent parameters W (i)∗ and global task-independent parameters ξ∗, both
hidden. Distribution of initial conditions x

(i)
t0 ∼ P (Xt0 |E = e(i)) and of hidden parameters

W (i)∗ ∼ P (W ∗|E = e(i)) for task i may depend on its environment e(i).

2. Test data (Figure 1(b)): At test, we are given noisy observations of the initial sequence
T̃ (M+1) := X

(M+1)
t0 , . . . ,X

(M+1)
tr , where r is generally small, of the dynamical system

dx
(M+1)
t

dt
= ψ(x

(M+1)
t ;W (M+1)∗, ξ∗)

with initial condition x
(M+1)
t0 ∼ P (Xt0 |E = e(M+1)) and (unknown) system parameters

W (M+1)∗ ∼ P (W ∗|E = e(M+1)). Our task is to predict X(M+1)
tr+1

, . . . ,X
(M+1)
t
T (M+1)

.

3. OOD initial conditions and system parameters: Initial conditions (resp. ODE parameters) in
training can be different from initial conditions (resp. ODE parameters) in test with possibly
non-overlapping support due to the presence of a test environment unseen in training.

In summary, we are given training trajectories that may have (a) different initial conditions, and (b)
different unknown ODE system parameters. We observe a test trajectory with OOD initial condition
and OOD parameters from time t = t0, . . . , tr and we wish to forecast its future after time tr.

3 RELATED WORK & THEIR LIMITATIONS

Next we describe different classes of existing approaches that are commonly used for the dynamical
system forecasting and their inherent challenges out-of-distribution.
Neural network methods. Standard deep learning methods tend to fail when the test distribution
of the inputs are different from that observed in training (Wang et al., 2021a; Geirhos et al., 2020).
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An MLP’s OOD failure can be traced to an absence of appropriate activation functions within
the architecture (Xu et al., 2021). Figure 1(c) depicts a similar experiment for dynamical system
forecasting using NeuralODE: model approximates the target sine function in the training domain
(green) but predicts a linear function outside the training domain. Thus, we need algorithmic
alignment (i.e., to include appropriate basis functions) to make accurate forecasts in OOD tasks.
Physics-informed machine learning (PIML). To precisely study the OOD challenges of PIML
methods, we categorize them into inductive and transductive methods based on requirements over
ODE parameters W ∗. In PIML, transductive inference methods treat training and test examples as
unrelated tasks. For instance, SINDy (Brunton et al., 2016) and related methods (Martius & Lampert,
2016; Raissi, 2018), learn the ODE equation based on a dictionary of basis functions for a specific
parameter W (i)∗. However, they do not transfer knowledge learnt in training to predict test examples
with a different W (j)∗. This forces these methods to learn only over initial observations of the test
task alone, often leading to poor performance (Figure 1(d)). On the other hand, inductive inference
focuses on learning rules from the training data that can be applied to unseen test examples, but are
fragile OOD since the learned rules are not guaranteed to work outside the training data scope. For
example, APHYNITY (Yin et al., 2021) is an inductive method that augments a neural network to a
known incomplete physics model where the parameters of the physics model are predicted inductively
using a recurrent network. These methods are able to learn from training tasks with different ODE
parameters W (i)∗ (Figure 1(e)). However, both their network network components fail OOD.

With these key reasons identified for the fragility of existing methods to OOD scenarios, we propose
an approach (MetaPhysiCa) that outputs more robust predictions OOD.

4 PROPOSED APPROACH: METAPHYSICA

Not causally related
to future states

Figure 2: Structural Causal Model

We describe the dynamical system using a determin-
istic structural causal model (Peters et al., 2022) with
measurement noise over the observed states. The
causal diagram is depicted in Figure 2 in the plated
notation iterating over time.

Let fk(·; ξk) : Rd → R, 1 ≤ k ≤ m, be m lin-
early independent basis functions each with a sepa-
rate set of parameters ξk

∗ acting on an input state
x
(i)
t ∈ Rd. Examples of such basis functions include

trigonometric functions, polynomial functions, etc.
The corresponding outputs from these functions are
z
(i)
k,t := fk(x

(i)
t ; ξk). The derivative dx

(i)
t,j/dt for a par-

ticular dimension j ∈ {1, . . . , d} is only affected by
a few (unknown) basis function outputs z(i)k,t (green arrows in Figure 2) and is a linear combination of
these selected basis functions with coefficients W (i)∗. Finally, the derivatives dictate the next state
of the dynamical system. We observe the dynamical system with independent additive measurement
noise X

(i)
t := x

(i)
t + ε

(i)
t , where ε

(i)
t ∼ N (0, σ2

εI). We assume that we are given the collection
of m possible basis functions with unknown ξ and no prior knowledge of which {fk}mk=1 causally
influence dx

(i)
t /dt. The need for basis functions stems from our analysis in Section 3, where we show

that appropriate basis functions must be incorporated within the architecture for OOD extrapolation.

4.1 META LEARNING & MODEL ARCHITECTURE

Given the training data, our goal is three-fold: (a) discover the true underlying causal structure,
i.e., which of the edges zk,t → dxt,j/dt exist for j = 1, . . . , d, (b) learn the global parameters ξ

that parameterize basis functions, and (c) learn the task-specific parameters W (i)∗. We propose a
meta-learning framework that introduces structure parameters Φ that are shared across tasks and
task-specific coefficients W (i) that vary across the tasks

dX̂
(i)
t

dt
= (W (i) ⊙ Φ)F (X̂

(i)
t ; ξ) , (2)

where ⊙ is the Hadamard product, F (X̂(i)
t ; ξ) :=

[
f1(X̂

(i)
t ; ξ1) · · · fm(X̂

(i)
t ; ξm)

]T
are outputs

from the basis functions, Φ ∈ {0, 1}d×m are the learnable parameters governing the global causal
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structure such that Φj,k = 1 iff edge zk,t → dxt,j/dt exists in Figure 2, W (i) ∈ Rd×m are task-
specific parameters that act as coefficients in linear combination of the selected basis functions.

Next we describe a procedure to obtain the structure parameters Φ using a score-based causal structure
discovery approach (e.g., Huang et al. (2018)). We wish to find the minimal causal structure, i.e.,
with the least number of edges, that also fits the training data. A sparse structure for Φ implies fewer
terms in the RHS of the learnt equation for the derivatives in Equation (2). We use the log-likelihood
of the training data with ℓ1-regularization term to induce sparsity that is known to perform well for
general causal structure discovery tasks (Zheng et al., 2018). The prediction error is given by

R(i)(W (i),Φ, ξ) :=
1

T (i) + 1

t
T (i)∑
t=t0

||X̂(i)
t −X

(i)
t ||22 ,

where X̂(i)
t = X

(i)
t0 +

∫ t

t0
(W (i) ⊙Φ)F (X̂

(i)
τ ; ξ)dτ are the predictions from integrating Equation (2).

However, since the training tasks could have been obtained under different environments (not i.i.d.),
standard causal discovery approaches (e.g., (Zheng et al., 2018)) are not guaranteed to learn the
correct causal structure. They may output a structure that is optimal for an environment with large
number of training tasks but suboptimal for others. We use a modified V-REx regularization (Krueger
et al., 2021) to learn a structure that minimizes the prediction error across all tasks simultaneously.

Similar to standard meta-learning objectives (Finn et al., 2017; Franceschi et al., 2018), our optimiza-
tion objective is a bi-level objective that optimizes Φ and ξ in the outer-level, and the task-specific
parameters W (i) in the inner-level as follows

Φ̂, ξ̂ = argmin
Φ,ξ

1

M

M∑
i=1

R(i)(Ŵ (i),Φ, ξ) + λΦ||Φ||1 + λRExVariance({R(i)(Ŵ (i),Φ, ξ)}Mi=1)

s.t. ,∀i, Ŵ (i) = argmin
W (i)

R(i)(W (i),Φ, ξ) , (3)

where λΦ and λREx are hyperparameters. Implementation details are provided in Appendix B.

4.2 TRANSDUCTIVE TEST-TIME ADAPTATION

Finally, given a test task T̃ (M+1) = (X
(M+1)
t0 , . . . ,X

(M+1)
tr ) with the unknown ground-truth pa-

rameters W (M+1)∗ ∼ P (W ∗|E = e(M+1)), we adapt the learnt model’s task-specific parameters
W (M+1) by optimizing the following while keeping Φ̂, ξ̂ fixed

Ŵ (M+1) = argmin
W (M+1)

1

tr + 1

tr∑
t=t0

||X̂(M+1)
t −X

(M+1)
t ||22 (4)

where X̂(M+1)
t = X

(M+1)
t0 +

∫ t

t0
(W (M+1)⊙ Φ̂)F (X̂

(M+1)
τ ; ξ̂)dτ are the predictions obtained using

the optimal values Φ̂, ξ̂. This allows the model to learn the OOD ground truth parameters W (M+1)∗

while using the meta-model Φ̂ (selected basis functions) learnt during training fixed.

5 SUMMARY OF RESULTS & CONCLUSIONS

A detailed description of the experiments is presented in Appendix A, here we summarize the
results. We evaluate MetaPhysiCa in 3 synthetic forecasting tasks (ODEs) from the literature (Yin
et al., 2021; Wang et al., 2021a), namely, Damped pendulum system, Predator-prey system and
Epidemic modeling, all adapted to our OOD scenarios with OOD initial conditions Xt0 and OOD
ODE parameters W ∗. Comparing MetaPhysiCa against six baselines spanning standard deep
learning (Chen et al., 2018), meta learning (Wang et al., 2021b; Kirchmeyer et al., 2022), and
physics-informed machine learning (Brunton et al., 2016; Martius & Lampert, 2016; Yin et al., 2021),
we observe that MetaPhysiCa performs the best OOD across all datasets achieving 2× to 28×
lower OOD errors than the best baseline. The performance gains stem from two factors: (i) The
optimal meta-model Φ̂ learns the ground truth ODE for all 3 dynamical systems (Appendix C.1), and
(ii) task-specific parameters are adapted separately to each OOD test task (Appendix C.2).
Conclusions. We considered the OOD task of forecasting a dynamical system (ODE) under new
initial conditions and new ODE parameters. We showed that existing PIML methods do not perform
well in these tasks and proposed MetaPhysiCa that is significantly more robust than the baselines.
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Supplementary Material of “MetaPhysiCa: OOD Robustness in
Physics-informed Machine Learning”

A EMPIRICAL EVALUATION

We evaluate MetaPhysiCa in synthetic forecasting tasks based on 3 different dynamical systems
(ODEs) from the literature (Yin et al., 2021; Wang et al., 2021a) adapted to our OOD scenario, namely,
(i) Damped pendulum system, (ii) Predator-prey system and (iii) Epidemic model. We compare
against the following approaches: (a) NeuralODE (Chen et al., 2018), a deep learning method for
learning ODEs, (b) DyAd (Wang et al., 2021b) (modified for ODEs), that adapts to different training
tasks with a weakly-supervised encoder, (c) CoDA (Kirchmeyer et al., 2022), that learns to modify
its parameters to each environment with a low-rank adaptation, (d) APHYNITY (Yin et al., 2021),
that augments a known incomplete physics model with a neural network, (e) SINDy (Brunton et al.,
2016), a transductive PIML method that uses sparse regression to learn linear coefficients over a
given set of basis functions, (f) EQL (Martius & Lampert, 2016), a transductive PIML method that
uses sin, cos and other basis functions within a neural network and learns a sparse model. Additional
implementation details about the models is presented in Appendix B.
Dataset generation. As per Definition 1, for each dynamical system, we simulate the respective
ODE to generate M = 1000 training tasks each observed over regularly-spaced discrete time
steps {t0, . . . , tT } 1 where ∀l, tl = 0.1l. For each training task T (i), i = 1, . . . ,M , we sample
an initial condition X

(i)
t0 ∼ P (Xt0 |E = e) where E = e is the training environment. Similarly,

we sample different W (i)∗ ∼ P (W ∗|E = e) for each training task i. At OOD test, we generate
M ′ = 200 test tasks by simulating the respective dynamical system over timesteps {t0, . . . , tr},
where again ∀l, tl = 0.1l. For each test task j = 1, . . . ,M ′, we sample test initial conditions
X

(j)
t0 ∼ P (Xt0 |E = e′) and test ODE parameters W (j)∗ ∼ P (W ∗|E = e′), where E = e′ is the

test environment. We consider two OOD scenarios: (a) (OOD Xt0 .) when only the initial conditions
are OOD, and (b) (OOD Xt0 and W ∗.) when initial conditions and ODE parameters are OOD.
The latter can induce completely different test supports for both the initial conditions and the ODE
parameters. The test distribution of the dynamical system parameters W ∗ is kept the same for
“OOD Xt0” scenario but is shifted for “OOD Xt0 and W ∗” scenario.

Our data generation process is succinctly depicted in Table 1. For each dataset, the second column
shows the state variables Xt and the unknown parameters W ∗. The three columns “ID”, “OOD Xt0”
and “OOD Xt0 and W ∗” depict the distributions of the initial condition and ODE parameters in the
respective scenarios. For clarity, we show the values for Wparam in the table such that in-distribution
W (i)∗ ∼ U(Wparam, 2Wparam) and out-of-distribution W (i)∗ ∼ U(2Wparam, 3Wparam).

Damped pendulum system (Yin et al., 2021). The state Xt = [θt, ωt] ∈ R2 describes the angle
made by the pendulum with the vertical and the corresponding angular velocity at time t. The true
(unknown) function ψ describing this dynamical system is given by dθt

dt = ωt,
dωt

dt = −α∗2 sin(θt)−
ρ∗ωt where W ∗ = (α∗, ρ∗) are the dynamical system parameters. We simulate the ODE over time
steps {t0, . . . , tT } with ∀l, tl = 0.1l, T = 100 in training and over time steps {t0, . . . , tr} in test with
r = 1

3T . In training, the pendulum is dropped from initial angles θ(i)t0 ∼ U(0, π/2) with no angular
velocity, whereas in OOD test, the pendulum is dropped from initial angles θ(j)t0 ∼ U(π − 0.1, π) and
angular velocity ω(j)

t0 ∈ U(−1, 0).

Predator-prey system (Wang et al., 2021a). We wish to model the dynamics between two species
acting as prey and predator respectively. We adapt the experiment by Wang et al. (2021a) to our out-of-
distribution forecasting scenario according to Definition 1. Let p and q denote the prey and predator
populations respectively. The ordinary differential equations describing the dynamical system is given
by dp

dt = α∗p−β∗pq , dqdt = δ∗pq−γ∗q , where W ∗ = (α∗, β∗, γ∗, δ∗) are the (unknown) dynamical
system parameters. We simulate the ODE over time steps {t0, . . . , tT } with ∀l, tl = 0.1l, T = 100 in
training and over time steps {t0, . . . , tr} in test with r = 1

3T . We generate M = 1000 training tasks

1In our experiments, we let T (i) = T constant for all tasks for simplicity of implementation but the proposed
method is not restricted to this case.
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Datasets State variables ID OOD Xt0 OOD Xt0 and W ∗

Damped pendulum Xt = (θt, ωt)
θ0 ∼ U(0, π/2) θ0 ∼ U(π − 0.1, π) θ0 ∼ U(π − 0.1, π)
ω0 = 0 ω0 ∼ U(−1, 0) ω0 ∼ U(−1, 0)

W ∗ = (α, ρ) αparam = 1, ρparam = 0.2

Predator prey system Xt = (pt, qt)
p0 ∼ U(1000, 2000) p0 ∼ U(100, 200) p0 ∼ U(100, 200)
q0 ∼ U(10, 20) q0 ∼ U(10, 20) q0 ∼ U(10, 20)

W ∗ = (α, β, γ, δ) αparam = 1, βparam = 0.06, γparam = 0.5, δparam = 0.0005

Epidemic modeling Xt = (St, It, Rt)
S0 ∼ U(9, 10) S0 ∼ U(90, 100) S0 ∼ U(90, 100)
I0 ∼ U(1, 5) I0 ∼ U(1, 5) I0 ∼ U(1, 5)
R0 = 0 R0 = 0 R0 = 0

W ∗ = (β, γ) βparam = 4, γparam = 0.4

Table 1: Description of the dataset generation process. For each dataset, Xt denotes the state variable
of the dynamical system and W ∗ denotes its parameters. Column “ID” represents in-distribution
initial states while the last two columns represent the two out-of-distribution scenarios. In-distribution
ODE parameters W (i)∗ are sampled from a uniform distribution W (i)∗ ∼ U(Wparam, 2Wparam)

and the out-of-distribution ODE parameters are sampled as W (i)∗ ∼ U(2Wparam, 3Wparam). For
example, in the damped pendulum dataset, in-distribution parameters are sampled as α(i)∗ ∼
U(αparam, 2αparam) = (1, 2) and ρ(i)∗ ∼ U(ρparam, 2ρparam) = (0.2, 0.4) for each task i. Sim-
ilarly, the out-of-distribution ODE parameters (in the last column) are sampled as α(i)∗ ∼
U(2αparam, 3αparam) = (2, 3) and ρ(i)∗ ∼ U(2ρparam, 3ρparam) = (0.4, 0.6).

with different initial prey and predator populations with prey p(i)t0 ∼ U(1000, 2000) and predator
q
(i)
t0 ∼ U(10, 20) for each i = 1, . . . ,M . At OOD test, we generate M ′ = 200 out-of-distribution

(OOD) test tasks with different initial prey populations p(j)t0 ∼ U(100, 200) but the same distribution
for predator population q(j)t0 ∼ U(10, 20).

Epidemic modeling (Wang et al., 2021a). We adapt the experiment by Wang et al. (2021a) to our
out-of-distribution forecasting scenario according to Definition 1. The state of the dynamical system
is described by three variables: number of susceptible (S), infected (I) and recovered (R) individuals.
The dynamics is described using the following ODEs: dS

dt = −β SI
N , dIdt = β SI

N − γI, dRdt = γI ,
where W = (β, γ) are the (unknown) dynamical system parameters and N = S + I + R is the
total population. We simulate the ODE over time steps {t0, . . . , tT } with ∀l, tl = 0.1l, T = 100 in
training and over time steps r = 1

10T . We generate M = 1000 training tasks with different initial
populations for susceptible (S) and infected (I) individuals, while the number of initial recovered
(R) individuals are always zero. In training, we sample S(i)

t0 ∼ U(9, 10) and I(i)t0 ∼ U(1, 5) for each
i = 1, . . . ,M . At OOD test, we generate M ′ = 200 out-of-distribution test tasks with a different
initial susceptible population, S(j)

t0 ∼ U(90, 100), while keeping the same distribution for infected
population.

Results. We repeat our experiments 5 times with random seeds and report in-distribution (ID) and
out-of-distribution (OOD) normalized root mean squared errors (NRMSE), i.e., RMSE normalized
with standard deviation of the ground truth. Figures 3 to 5 show the errors and example predictions
from all models for the three datasets respectively. The first column of Tables 3d, 4a, 5a shows
in-distribution results while the last two columns show the respective OOD scenarios. NeuralODE,
DyAd, CoDA and APHYNITY use neural network components and are able to learn the in-distribution
task well with low errors. However, the corresponding errors OOD are high as they are unable to
adapt to OOD initial conditions and OOD parameters. Example OOD predictions (Figures 3c, 4c
and 5c) from these methods show that they have not learnt the true dynamics of the system. For
example, for epidemic modeling (Figure 4c), most models predict trajectories very similar to training
trajectories even though the number of susceptible individuals is 10× higher in OOD test. SINDy
and EQL cannot use the training data and are fit on the test observations alone (see Figure 1(d)).
Thus, they are unable to identify an accurate analytical equation from these few test observations,
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(c) Predictions of θt under OOD Xt0

Test NRMSE ↓
Methods ID OOD Xt0 OOD Xt0 and W ∗

Standard Deep Learning
NeuralODE (Chen et al., 2018) 0.083 (0.033) 0.591 (0.119) 0.717 (0.210)

Meta Learning
DyAd (Wang et al., 2021b) 0.078 (0.051) 0.834 (0.263) 0.804 (0.267)
CoDA (Kirchmeyer et al., 2022) 0.052 (0.032) 0.764 (0.201) 1.011 (0.226)

Physics-informed Machine Learning
APHYNITY (Yin et al., 2021) 0.097 (0.020) 0.970 (0.384) 1.159 (0.334)
SINDy (Brunton et al., 2016) NaN∗ NaN∗ NaN∗

EQL (Martius & Lampert, 2016) NaN∗ NaN∗ NaN∗

MetaPhysiCa (ours) 0.049 (0.002) 0.070 (0.011) 0.181 (0.012)

(d) Normalized RMSE ↓ of test predictions from different methods in-distribution and two OOD scenarios.
NaN∗ indicates that the model returned errors during test-time predictions, for example, because the learnt ODE
was too stiff (numerically unstable) to solve.

Figure 3: (a) Predict pendulum motion from noisy observations: (i) in-distribution, when dropped from acute
angles and (ii) OOD w.r.t initial conditions and parameters, when a different pendulum is dropped from nearly
vertical angles. (b, c) shows example ground truth curves (blue stars) in- and out-of-distribution along with
predictions from different models. While most tested methods perform well in-distribution, only MetaPhysiCa
(orange) closely follows the true curve OOD and all other methods are terribly non-robust. (d) Standard deep
learning methods and physics-informed machine learning methods fail to forecast accurately out-of-distribution.
On the other hand, MetaPhysiCa outputs up to 4× more robust OOD predictions.

resulting in prediction issues due to stiff ODEs. MetaPhysiCa performs the best OOD across all
datasets achieving 2× to 28× lower NRMSE OOD errors than the best baseline.
Qualitative analysis. MetaPhysiCa’s performance gains stem from two factors: (i) The optimal
meta-model Φ̂ learns the ground truth ODE (possibly reparameterized) for all 3 dynamical systems
(shown in Appendix C.1), and (ii) the model adapts its task-specific parameters separately to each
OOD test task. The former is key for robustness over OOD initial states (via algorithmic alignment)
and the latter helps to be robust over OOD parameters W ∗. We further show in an ablation study
(Appendix C.2) that sparsity regularization (i.e., ||Φ||1) and test-time adaptation (Equation (4)) are
the most important components of MetaPhysiCa; OOD performance degrades significantly without
either.

B IMPLEMENTATION DETAILS

In what follows, we describe implementation details of MetaPhysiCa and the baselines.

B.1 METAPHYSICA

Figure 6 shows a schematic diagram of MetaPhysiCa and the corresponding training/test procedures.
Recall from Equation (2) that the proposed model is defined as

dX̂
(i)
t

dt
= (W (i) ⊙ Φ)F (X̂

(i)
t ; ξ) , (5)

where ⊙ is the Hadamard product and
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Test Normalized RMSE (NRMSE) ↓
Methods ID OOD Xt0 OOD Xt0 and W ∗

Standard Deep Learning
NeuralODE (Chen et al., 2018) 0.005 (0.000) 1.139 (0.031) 1.073 (0.102)

Meta Learning
DyAd (Wang et al., 2021b) 0.006 (0.001) 1.147 (0.044) 1.207 (0.202)
CoDA (Kirchmeyer et al., 2022) 0.004 (0.001) 1.341 (0.389) 1.090 (0.274)

Physics-informed Machine Learning
APHYNITY (Yin et al., 2021) 0.151 (0.150) 0.544 (0.249) 0.898 (0.211)
SINDy (Brunton et al., 2016) 1.999 (0.046) 2.746 (0.476) NaN∗

EQL (Martius & Lampert, 2016) NaN∗ NaN∗ NaN∗

MetaPhysiCa (Ours) 0.009 (0.004) 0.019 (0.002) 0.100 (0.080)

(a) Test NRMSE ↓ for different methods. NaN∗ indicates that the model returned errors during test.
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(c) Predictions under OOD Xt0

Figure 4: (Epidemic model results) (a) MetaPhysiCa outputs 28× and 9× more robust OOD predictions
for the two OOD scenarios respectively. (b, c) shows example ground truth curves (blue stars) in- and out-of-
distribution along with corresponding predictions. Only MetaPhysiCa (orange) closely follows the true curve
OOD.

Test Normalized RMSE (NRMSE) ↓
Methods ID OOD Xt0 OOD Xt0 and W ∗

Standard Deep Learning
NeuralODE (Chen et al., 2018) 0.193 (0.024) 1.056 (0.141) 0.969 (0.172)

Meta Learning
DyAd (Wang et al., 2021b) 0.244 (0.025) 1.088 (0.373) 1.025 (0.403)
CoDA (Kirchmeyer et al., 2022) NaN∗ NaN∗ NaN∗

Physics-informed Machine Learning
APHYNITY (Yin et al., 2021) 0.421 (0.332) 3.937 (1.686) 1.281 (0.457)
SINDy (Brunton et al., 2016) NaN∗ NaN∗ NaN∗

EQL (Martius & Lampert, 2016) NaN∗ NaN∗ NaN∗

MetaPhysiCa (Ours) 0.049 (0.008) 0.129 (0.030) 0.434 (0.128)

(a) Test NRMSE ↓ for different methods. NaN∗ indicates that the model returned errors during test.

0.0 2.5 5.0 7.5 10.0
t

0.0

2.5

5.0

7.5

10.0

Pr
ey

 p

MetaPhysiCa NeuralODE Aphynity SINDy* DyAd EQL* True

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10
t

0.0

2.5

5.0

7.5

10.0

Pr
ey

 p

0 2 4 6 8 10
t

0.0

2.5

5.0

7.5

10.0

Pr
ed

at
or

 q

(b) In-distribution predictions
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(c) Predictions under OOD Xt0

Figure 5: (Predator-prey results) (a) MetaPhysiCa outputs 8× and 2× more robust OOD predictions
in the two OOD scenarios respectively. (b, c) shows example ground truth curves (blue stars) in- and out-of-
distribution along with corresponding predictions. While most tested methods perform well in-distribution, only
MetaPhysiCa (orange) closely follows the true curve OOD.

• F (X̂(i)
t ; ξ) :=

[
f1(X̂

(i)
t ; ξ1) · · · fm(X̂

(i)
t ; ξm)

]T
is the vector of outputs from the basis func-

tions with parameters ξ,
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Figure 6: Schematic diagram of MetaPhysiCa and corresponding training/test methodologies. We
observe M trajectories in training from the same dynamical system with different initial conditions
and ODE parameters. In training, Φ, denoting the causal structure, is shared among all tasks
i = 1, . . . ,M , while W (i) are the task-specific parameters. Predicted derivatives for task i over time
t = t0, . . . , tT are obtained from Equation (2) using the parameters Φ,W (i) and the basis functions
F (X

(i)
t ; ξ). During test, we adapt W (M+1) over the observations of the test trajectory from time

t0, . . . , tr, keeping the learnt causal structure Φ̂ fixed.
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• Φ ∈ {0, 1}d×m are the learnable parameters governing the global causal structure across all tasks
such that Φj,k = 1 iff edge zk,t → dxt,j/dt exists,

• W (i) ∈ Rd×m are task-specific parameters that act as coefficients in linear combination of the
selected basis functions.

In our experiments, we use polynomial and trigonometric basis functions, such that

F (X̂
(i)
t ; ξ) :=[
1 X̂

(i)
t,1 . . . X̂

(i)
t,d︸ ︷︷ ︸

polynomial order 1

X̂
(i)2
t,1 . . . X̂

(i)
t,l−1X̂

(i)
t,l . . . X̂

(i)2
t,d︸ ︷︷ ︸

polynomial order 2

sin(ξ1,1X̂
(i)
t,1 + ξ1,2) . . . sin(ξd,1X̂

(i)
t,d + ξd,2)︸ ︷︷ ︸

trigonometric

]T

.

Equation (3) describes a bi-level objective that optimizes the structure parameters Φ and the global
parameters ξ in the outer-level, and the task-specific parameters W (i) in the inner-level as follows

Φ̂, ξ̂ = argmin
Φ,ξ

1

M

M∑
i=1

R(i)(Ŵ (i),Φ, ξ) + λΦ||Φ||1 + λRExVariance({R(i)(Ŵ (i),Φ, ξ)}Mi=1)

s.t. Ŵ (i) = argmin
W (i)

R(i)(W (i),Φ, ξ) ∀i = 1, . . . ,M ,

where λΦ and λREx are hyperparameters. As discussed in the main text, the jointly optimizing
Φ, ξ and W (i), i = 1, . . . ,M, instead of alternating SGD resulted in comparable performance with
considerable computational benefits. We use the following joint optimization objective to approximate
Equation (3),

Φ̂, ξ̂, Ŵ (1), . . . , Ŵ (M) = argmin
Φ,ξ,W (1),...,W (M)

1

M

M∑
i=1

R(i)(W (i),Φ, ξ) + λΦ||Φ||1 (6)

+ λRExVariance({R(i)(W (i),Φ, ξ)}Mi=1)

In practice, we use squared loss directly between the predicted and estimated ground truth derivatives
instead ofR(i), i.e., R̃(i)(W (i),Φ, ξ) = 1

T (i)+1

∑t
T (i)

t=t0 ||dX̂(i)
t /dt−dX(i)

/dt||22, which leads to a stable
learning procedure with better accuracy in-distribution and OOD. We perform a grid search over the
following hyperparameters: regularization strengths λΦ ∈ {10−4, 10−3, 5 × 10−3, 10−2}, λREx ∈
{0, 10−3, 10−2}, and learning rates η ∈ {10−2, 10−3, 10−4}. We choose the hyperparameters that
result in sparsest model (i.e., with the least ||Φ̂||0) while achieving validation loss within 5% of the
best validation loss in held-out in-distribution validation data.

B.2 NEURALODE (CHEN ET AL., 2018)

The prediction dynamics corresponding to the latent NeuralODE model is given by dX̂t

dt =

Fnn(X̂t, z≤r;W1) where z≤r = Fenc(Xt0 , . . . ,Xtr ;W2) encodes the initial observations using
a recurrent neural network Fenc (e.g., GRU), and Fnn is a feedforward neural network. The model
is trained with an ODE solver (dopri5) and the gradients computed using the adjoint method (Chen
et al., 2018). We perform a grid search over the following hyperparameters: number of layers for Fnn,
L ∈ {1, 2, 3}, size of each hidden layer of Fnn, dh ∈ {32, 64, 128}, size of the encoder representation
z≤r, dz ∈ {32, 64, 128}, batch sizes B ∈ {32, 64}, and learning rates η ∈ {10−2, 10−3, 10−4}.

B.3 DYAD (MODIFIED FOR ODES) (WANG ET AL., 2021B)

DyAd, originally proposed for forecasting PDEs, uses a meta-learning framework to adapt to different
training tasks by learning a per-task weak label. We modify their approach for our ODE-based
experiments. Since we do not assume the presence of weak labels for supervision for adaptation,
we use mean of each variable in the training task as the task’s weak label. We use NeuralODE
as the base sequence model for the forecaster network. The forecaster network takes the initial
observations as input and forecasts the future observations while being adapted with the encoder
network. The encoder network is a recurrent network (GRU in our experiments) that takes as input
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the initial observations and predicts the weak label. The last layer representation from the encoder
network is used to adapt NeuralODE via AdaIN (Huang & Belongie, 2017). We perform a grid
search over the following hyperparameters: size of hidden layers for the forecaster and encoder
networks dh ∈ {32, 64, 128}, number of layers for the forecaster network, L ∈ {1, 2, 3}, batch sizes
B ∈ {32, 64}, and learning rates η ∈ {10−2, 10−3, 10−4}.

B.4 APHYNITY (YIN ET AL., 2021)

APHYNITY assumes that we are given a (possibly incomplete) physics model ϕ(·,Θphy) with
parameters Θphy. When the training data may consist of tasks with different W (i)∗, APHYNITY
predicts the physics parameters with respect to the task i inductively using a recurrent neural
network Gnn from the initial observations of the system as Θ̂(i)

phy = Gnn(Xt0 , . . . ,Xtr ;W2). Then,
APHYNITY augments the given physics model ϕ with a feedforward neural network component Fnn

and defines the final dynamics as dX̂
(i)
t

dt = ϕ(X̂
(i)
t ; Θ̂

(i)
phy) + Fnn(X̂

(i)
t ;W1). APHYNITY solves a

constrained optimization problem to minimize the norm of the neural network component while still
predicting the training trajectories accurately. The model is trained with an ODE solver (dopri5) and
the gradients computed using the adjoint method (Chen et al., 2018). In our experiments, we provide
APHYNITY with simpler physics models:

• For damped pendulum system, we use a physics model that assumes no friction: dθt
dt = ωt,

dωt

dt =

−α2
phy sin(θt) where Θphy = αphy is the physics model parameter.

• For predator-prey system, we use a physics model that assumes no interaction between the two
species: dp

dt = αphyp ,
dq
dt = −γphyq where Θphy = (αphy, γphy) are the physics model parameters.

• For epidemic model, we use a physics model that assumes the disease is not infectious: dS
dt =

0, dIdt = −γI, dRdt = γI , where Θphy = γphy is the physics model parameter.

In each dataset, APHYNITY needs to augment the physics model with a neural network component
for accurate predictions.

We perform a grid search over the following hyperparameters: number of layers for Fnn, L ∈ {1, 2, 3},
size of each hidden layer of Fnn, dh ∈ {32, 64, 128}, batch sizes B ∈ {32, 64}, and learning rates
η ∈ {10−2, 10−3, 10−4}.

B.5 SINDY (BRUNTON ET AL., 2016)

SINDy uses a given dictionary of basis functions to model the dynamics as dX̂t

dt = Θ(X̂t)W where
Θ is feature map with the basis functions (such as polynomial and trigonometric functions) and W is
simply a weight matrix. SINDy is trained using sequential threshold least squares (STLS) for sparse
weights W . We perform a grid search over the following hyperparameters: threshold parameter
used in STLS optimization, τ0 ∈ {0.005, 0.01, 0.05, 0.1, 0.2, 0.5}, and the regularization strength
α ∈ {0.05, 0.01, 0.1, 0.5}.

B.6 EQUATION LEARNER (MARTIUS & LAMPERT, 2016)

Equation learner (EQL) is a neural network architecture where each layer is defined as follows with
input x and output o

z = Wx+ b

o = (f1(z1), f2(z2), . . . , g1(zk, zk+1), g2(zk+2, zk+3), . . . , ) ,

where fi are unary basis functions (such as sin, cos, etc.) and gi are binary basis functions
(such as multiplication). We use id, sin and multiplication functions in our implementation. EQL
is trained using a sparsity inducing ℓ1-regularization with hard thresholding for the final few
epochs. We perform a grid search over the following hyperparameters: number of EQL lay-
ers, L ∈ {1, 2}, number of nodes for each type of basis function, h ∈ {1, 3, 5}, regulariza-
tion strength α ∈ {10−1, 10−2, 10−3, 10−4, 10−5}, batch sizes B ∈ {32, 64}, and learning rates
η ∈ {10−2, 10−3, 10−4}.
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Datasets State variables Ground truth ODE Learnt ODE (from Φ)

Damped pendulum Xt = (θt, ωt)
dθt
dt = ωt

dθt
dt =W1ωt

dωt

dt = −α∗2 sin(θt)− ρ∗ωt
dωt

dt =W2 sin(θt) +W3ωt

Predator prey system Xt = (pt, qt)
dpt

dt = α∗pt − β∗ptqt
dpt

dt =W1pt +W2ptqt
dqt
dt = δ∗ptqt − γ∗qt

dqt
dt =W3ptqt +W4qt

Epidemic modeling Xt = (St, It, Rt)

dSt

dt = −β∗ StIt
St+It+Rt

dSt

dt =W1StIt
dIt
dt = β∗ StIt

St+It+Rt
− γ∗It

dIt
dt =W2StIt +W3I

2
t +W4ItRt

dRt

dt = γ∗It
dRt

dt =W5StIt +W6I
2
t +W7ItRt

Table 2: (Qualitative analysis.) Ground truth dynamical system vs learnt ODE in the meta-model Φ.
Recall that Φ ∈ {0, 1}d×m dictates which of the basis functions affect the output dXt/dt. The weights
Wl in the learnt ODE column are learnable parameters that are optimized via test-time adaptation
in Equation (4). MetaPhysiCa learns the exact ground truth ODE for Damped pendulum and
Predator-prey system, and a reparameterized version of the true ODE for epidemic modeling
task.

C ADDITIONAL RESULTS

C.1 QUALITATIVE ANALYSIS

Recall from Equation (2) that the proposed model is defined as

dX̂
(i)
t

dt
= (W (i) ⊙ Φ)F (X̂

(i)
t ; ξ) , (7)

where F (X̂(i)
t ; ξ) is the vector of outputs from the basis functions, Φ ∈ {0, 1}d×m are the learnable

parameters governing the global causal structure across all tasks, and W (i) ∈ Rd×m are task-specific
parameters that act as coefficients in linear combination of the selected basis functions.

After training, the ODE learnt by the model can be easily inferred by checking all the terms in Φ that
are greater than zero, i.e., Φj,k > 0 implies fk(xt; ξk) → dxt,j/dt exists in the causal graph. In other
words, RHS of learnt ODE for dxt,j/dt contains the basis function fk(xt; ξk).

Table 2 shows the ground truth ODE and the learnt ODE for the three experiments. For each
learnt ODE, we also depict the learnable parameters Wl that can be adapted using Equation (4)
during test-time. For damped pendulum and predator-prey system, the RHS terms in the learnt
ODE exactly matches ground truth ODE, and from Figures 3 and 5, it is clear that the method is
able to accurately adapt the learnable parameters Wl during test-time. For epidemic modeling task,
MetaPhysiCa learns a reparameterized version of the ground truth ODE. For example, MetaPhysiCa
learns dRt

dt = W ′
aItSt + W ′

bI
2
t + W ′

cItRt, which can be written as dRt

dt = WaIt (the ground
truth ODE) if W ′

a = W ′
b = W ′

c, because St + It + Rt = N is a constant denoting the total
population. While the learnt reparameterized ODE is more complex because it allows different
values for W ′

a,W
′
b,W

′
c, the test-time adaptation of these learnable parameters with the initial test

observations results in them taking the same values.

C.2 ABLATION RESULTS

We present an ablation study comparing different components of MetaPhysiCa in Table 3. Table
shows out-of-distribution test NRMSE for MetaPhysiCa without each individual component on the
three dynamical systems (OOD w.r.t Xt0). We observe that sparsity regularization (i.e., ||Φ||1) and
test-time adaptation are the most important components. For two out of three tasks, the method
returns prediction errors without sparsity regularization.

When testing MetaPhysiCa without test-time adaptation, we simply use the mean of the task-specific
weights learnt for training tasks as the task-specific weight for the given test trajectory, i.e., ŴM+1 =
1
M

∑
i W

(i). This results in high OOD errors showing the importance of test-time adaptation. V-REx
penalty (Krueger et al., 2021) helps in some experiments and performs comparably in others.
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Test Normalized RMSE ↓ (OOD Xt0 )
Method Damped Pendulum Predator-Prey Epidemic Modeling

MetaPhysiCa 0.070 (0.011) 0.129 (0.030) 0.019 (0.002)
without ||Φ||1 NaN∗ 1.806 (0.736) NaN∗

without test-time adaptation 1.223 (0.741) 1.404 (3.794) 0.358 (0.554)
without V-REx penalty 0.070 (0.014) 0.129 (0.030) 0.042 (0.065)

Table 3: (Ablation.) Out-of-distribution test NRMSE for MetaPhysiCa without each individual
component on the three dynamical systems (OOD w.r.t. Xt0 alone). Sparsity regularization
(i.e., ||Φ||1) and test-time adaptation are the most important components, whereas the V-REx
penalty (Krueger et al., 2021) helps in some tasks, and performs comparably in others.
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