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Empowering Federated Graph Rationale Learning with
Latent Environments

Anonymous Author(s)
ABSTRACT
The success of Graph Neural Networks (GNNs) in graph classifi-
cation has heightened interest in explainable GNNs, particularly
through graph rationalization. This method aims to enhance GNNs
explainability by identifying subgraph structures (i.e., rationales)
that support model predictions. However, existing methods often
rely on centralized datasets, posing challenges in scenarios where
data privacy is crucial, such as in molecular property prediction.
Federated Learning (FL) offers a solution by enabling collaborative
model training without sharing raw data. In this context, Feder-
ated Graph Rationalization emerges as a promising research direc-
tion. However, in each client, the rationalization methods often
rely on client-specific shortcuts to compose rationales and make
task predictions. Data heterogeneity, characterized by non-IID data
across clients, exacerbates this problem, leading to poor predic-
tion performance. To address these challenges, we propose the
Environment-aware Data Augmentation (EaDA) method for Fed-
erated Graph Rationalization. EaDA comprises two main compo-
nents: the Environment-aware Rationale Extraction (ERE) module
and the Local-Global Alignment (LGA) module. The ERE mod-
ule employs prototype learning to infer and share abstract envi-
ronment information across clients, which are then aggregated
to form a global environment. This information is used to gen-
erate counterfactual samples for local clients, enhancing the ro-
bustness of task predictions. The LGA module uses contrastive
learning methods to align local and global rationale representa-
tions, mitigating performance degradation due to data heterogene-
ity. Comprehensive experiments on benchmark datasets demon-
strate the effectiveness of our approaches. Code is available at
https://anonymous.4open.science/r/Codes-of-EaDA-48DB/.
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1 INTRODUCTION
The recent success in Graph Neural Networks (GNNs) for graph
classification tasks have catalyzed significant interest in explain-
able GNNs [11, 14, 33, 39, 44]. Among them, graph rationalization
[34, 47] has garnered considerable attention. The objective of graph
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rationalization is to improve the explainability of GNNs by iden-
tifying a subgraph structure, referred to as the rationale, which
supports the model’s prediction results. For example, in molecular
property prediction, in judging whether Glutamic Acid (C5H9NO4)1
is slightly soluble in water, we extract the carboxy substructure
(−COOH ) as the rationale to support this prediction.

The reliance of existing graph rationalization methods on cen-
tralized datasets presents a misalignment with many critical graph
classification scenarios, particularly those where data privacy is
important. For instance, in molecular property prediction tasks,
academic institutions and pharmaceutical companies are often re-
luctant to share proprietary molecular datasets due to the intrinsic
value of intellectual property and chemical data. Federated Learning
(FL) [27, 42, 48] offers a promising avenue to address this challenge.
FL is a decentralized machine learning framework that enables mul-
tiple clients to collaboratively train local models, with only model
parameters being aggregated via a central server to form a global
model, thereby eliminating the need to exchange raw data.

Therefore, Federated Graph Rationalization emerges as a valu-
able research direction. Commonly, for a vanilla federated graph
rationalization method (Fed-vanillaGR), in each client, it first em-
ploys a rationale extractor to identify sufficient nodes (i.e., the sub-
graph) within the graph and then generate the corresponding node
representations. A predictor then produces the task results based
exclusively on the representations of these identified nodes. Finally,
the recognized subgraphs serve as the rationale supporting the pre-
diction results. On the server side, it aggregates the parameters of
the rationale extractor and predictor from each client and distributes
the aggregated parameters back to each client, thereby completing
the training of Fed-vanillaGR.

However, one of the primary obstacles in this direction is data
heterogeneity [41, 46]. Specifically, data heterogeneity refers to the
non-independent and identically distributed (non-IID) nature of
cross-client data in FL settings. This variation arises from factors
such as differences in data collection methodologies across clients,
leading to distinct environmental contexts (i.e., differing data dis-
tributions) at each client. In FL scenarios, data heterogeneity may
exacerbate the problem that current graph rationalization methods
are prone to exploit shortcuts for task prediction [2, 39]. Specif-
ically, for each client, the rationalization methods may leverage
client-specific shortcuts to make predictions. Among them, short-
cuts exhibit correlations with the task results but lack a causal
relationship, commonly referred to as spurious correlations. Spuri-
ous correlations (e.g., statistical correlation) are influenced by the
environment where the data resides, and alterations in this envi-
ronment can lead to the changes of spurious correlations, further
result in the prediction errors. Due to the distinct environments

1C5H9NO4 :
1
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of each client, the client-specific shortcuts learned are also differ-
ent. When local rationalization models are aggregated into a global
model, such inconsistencies may lead to significant performance
differences compared to models trained on centralized datasets.

To address this problem, Yue et al. [46] propose the FedGR
method, which leverages data augmentation methods to mitigate
the effects of data heterogeneity. Their approach assumes that the
environments across clients are unavailable. Then, by exploiting
the differences between the global and local models, they generate
shortcut conflicted data samples that do not conform to the current
client environment. Despite showing promising results, practical
applications of FedGR have revealed significant efficiency bottle-
necks. For example, training time is approximately 5 times longer
compared to the vanilla federated graph rationalization. A potential
reason for this inefficiency is that FedGR’s reliance on unavailable
environment assumptions necessitates the training of an additional
model to capture the differences between global and local models,
which then supports data augmentation. Then additional model
reducing the training efficiency ultimately. Considering that com-
putational resources in several clients may be limited in real-world
FL scenarios, the practical adoption of FedGR may be unavailable.
Therefore, we argue that this “data augmentation pattern” can be
further explored to improve the federated graph rationalization.

Along this research line, in this paper, different from previous
methods that assume the latent environment is unavailable, we
assume that the latent environment can be inferred and propose
an Environment-aware Data Augmentation (EaDA) method for
Federated Graph Rationalization. This method comprises two key
components: the Environment-aware Rationale Extraction (ERE)
module and the Local-Global Alignment (LGA) module. Specifi-
cally, in the ERE module, we recognize that the environments of
different client data vary. We initially employ a prototype learning
approach to infer the potential environment of each client, which
is then uploaded to the server. The uploaded environment infor-
mation, being abstracted prototype data, preserves the privacy of
the dataset. Upon collecting this information from each client, the
server merges the environment data to construct the global environ-
ment information (assuming N clients with T environments each,
the final number of merged global environment is N ×T ), which
is subsequently distributed to all clients. Once clients receive the
global environment information, we utilize an environment-aware
generator to map samples from the current environment to other en-
vironments, thus creating new counterfactual samples. Importantly,
as the environment does not affect task predictions, the labels of
the generated samples remain unchanged. By incorporating both
original and generated samples during model training, we can de-
rive more faithful task results. Additionally, to further mitigate the
data heterogeneity problem, the LGA module employs a contrastive
learning approach to align the global rationale with the local ratio-
nale subgraph representations. This collaborative learning strategy
allows local models to access global information, thereby allevi-
ating the performance degradation caused by data heterogeneity.
Consequently, more robust model parameters are provided during
model aggregation, resulting in a global model with enhanced per-
formance. Experiments over real-world benchmarks [18, 21] and
various synthetic datasets [39] validate the effectiveness of EaDA.

2 RELATED WORK
2.1 Graph Rationalization.
The remarkable advancements of Graph Neural Networks (GNNs)
[10, 12, 13, 25, 36] have catalyzed significant interest in the explain-
ability of graph classification tasks [3–6, 22]. Within this domain,
graph rationalization methods have emerged as a focal point. How-
ever, as demonstrated by [2], graph rationalizations are prone to
exploiting shortcuts in data for prediction. Therefore, current ap-
proaches primarily focused on how to compose faithful rationales
and further address the shortcut problems. For instance, DIR [39]
introduced a methodology for identifying invariant rationales by
disentangling input graphs into rationale and non-rationale sub-
graphs. They treated non-rationale subgraphs as distinct environ-
ments, combining them with rationales to generate counterfactual
samples for prediction. Building on this, subsequent methodologies
[9, 22, 24, 34] have been developed. Unlike DIR, which treated each
non-rationale graph as an environment, GIL [22] and C2R [47]
inferred local environments by clustering non-rationale represen-
tations within a mini-batch. Similarly, HSE [29] and EQuAD [43]
employed environment inference techniques to determine environ-
ment labels for each sample. Additionally, some studies focused on
restructuring rationalization methods to mitigate shortcut issues.
For example, DARE [45] introduced a self-guided rationalization
framework that captures comprehensive input information through
a disentanglement approach. GSAT [28] integrated information bot-
tleneck theory into the rationalization framework using a learned
stochasticity-reduced attention mechanism. DIVE [35] employed
subgraph diversity regularization to enhance variation in the ratio-
nale patterns identified by models.

While rationalization methods have been extensively studied
in centralized datasets, their application in FL scenarios remains
underexplored. FedGR [46] present the first federated graph ratio-
nalization method, leveraging the difference between global and
local models in FL to design difference-aware data augmentation
techniques. This approach can generate anti-shortcut data samples
for each client, thereby enhancing the effectiveness of rationaliza-
tion methods in FL scenarios.

2.2 Federated Learning.
Federated Learning (FL) algorithms have garnered significant at-
tention due to their capacity to address data security and privacy
concerns [26, 27, 37, 40, 42]. Among these algorithms, [30] intro-
duced a knowledge transfer method that leveraged actively selected
small public data to transfer high-quality knowledge within FL
frameworks while ensuring privacy guarantees. This approach rep-
resented a significant advancement in maintaining data privacy
without compromising on the quality of the learned models. Addi-
tionally, [31] proposed a selective knowledge sharing mechanism
for federated distillation, designed to identify and share accurate
and precise knowledge derived from local and ensemble predic-
tions. Recent research has also focused on eliminating spurious
correlations in training data, which can lead to biased models. For
instance, [8] proposed a FL framework aimed at mitigating spu-
rious correlations and preventing models from becoming biased
towards specific demographic groups. This framework addressed
fairness in model training, a critical aspect in deploying machine
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learning systems in diverse and sensitive applications. Similarly,
[41] introduced a bias-eliminating augmentation method within
the FL setting. By identifying and incorporating desirable causal
and shortcut attributes into augmented samples, this method aimed
to reduce spurious correlations and enhance the reliability of the
trained models.

3 PRELIMINARIES
3.1 Problem Formulation
In this subsection, we delineate a rigorous formalization of the
graph rationalization within FL scenarios. We consider a federated
setting consisting of N clients, denoted as {C1,C2, . . . ,CN }. Each
client has its own local graph datasets {D1,D2, . . . ,DN }. It is im-
perative to acknowledge the inherent diversity in data distributions
across these clients, underscoring the variability among them.

For each client Ck , every graph-label pair is encapsulated as
(Gk ,Yk ) ∈ Dk , where Gk = (V,T). Here, V denotes the set of
nodes while T signifies the set of edges. The local task of graph
rationalization involves a two-fold objective. Primarily, it entails
the acquisition of a mask variable Mk ∈ R |V | through a rationale
extractor function fsk (Gk ), alongside the derivation of node rep-
resentations HGk ∈ R |V |×d . Subsequently, the rationale subgraph
representation is computed via element-wise multiplication of the
mask variable and the node representations, denoted as Mk ⊙ HGk .
Finally, a predictor fpk (Mk ⊙ HGk ) is trained to furnish accurate
predictions.

The learning process revolves around the optimization of the
extractor function f ∗sk (·) and the predictor function f ∗pk (·), mini-
mizing the cross-entropy loss ℓ(·) over the graph-label pairs in the
client’s dataset Dk :

f ∗sk (·), f ∗pk (·) = arg min
fsk ,fpk

E(Gk ,Yk )∼Dk

[
ℓ
(
fpk

(
fsk (Gk )

)
,Yk

) ]
.

With a total ofT communication rounds, the overarching aim of
rationalization at the global level is to derive the rationale extractor
and predictor that fulfill the model aggregation process (i.e., Model
Aggregation in Figure 1):

Θ̂s =

N∑
k=1

|Dk |∑N
j=1 |Dj |

Θs
k , Θ̂

p =

N∑
k=1

|Dk |∑N
j=1 |Dj |

Θ
p
k , (1)

where Θ̂s represents the parameters of the global extractor fs (·), Θ̂p

represents the parameters of the global predictor fp (·). Conversely,
Θs
k denotes the parameters of the extractor fsk (·) in client Ck , and

Θ
p
k denotes the parameters of the predictor fpk (·).

3.2 Vanilla Federated Graph Rationalization
In this subsection, we present the details of vanilla federated graph
rationalization (Fed-vanillaGR), encompassing both the rationale
extractor and the predictor components.

3.2.1 Rationale Extractor in Fed-vanillaGR. For each client Ck ,
given (Gk ,Yk ) ∈ Dk , the process of generating rationales within
the rationale extractor fsk (·) entails a meticulous sequence of steps.
Initially, an encoder GNNm (·) orchestrates the transformation of
each node in graph Gk into a d-dimensional vector. Concurrently,

the extractor orchestrates the prediction of a probability distribu-
tion for the selection of each node as part of the rationale. This
distribution is denoted as:

M̃k = softmax (Wm (GNNm (Gk ))) ,

whereWm ∈ R2×d denotes a weight matrix.
Subsequently, the extractor samples binary values (0 or 1) from

the distribution M̃k =
{
m̃i
k

} |V |
i=1

to yield the mask variable M ={
mi
k

} |V |
i=1

. To ensure differentiability during sampling, the Gumbel-
softmax method [19] is employed:

mi
k =

exp
((

log
(
m̃i
k

)
+ qik

)
/τ
)

∑
t exp

((
log

(
m̃t
k

)
+ qtk

)
/τ
) ,

where τ denotes a temperature parameter, qik = − log
(
− log

(
uik

))
,

and uik is randomly sampled from a uniform distribution U (0, 1).
Following this, an additional GNN encoder, GNNG , is employed

to extract the node representation HGk from graph Gk . The ratio-
nale node representation is formulated as the element-wise product
of the binary rationale mask Mk and the node representation HGk ,
articulated as Mk ⊙ HGk . Similarly, the complement node repre-
sentation is computed as (1 − Mk ) ⊙ HGk , signifying the nodes
constituting the non-rationale.

3.2.2 Predictor in Fed-vanillaGR. The predictor fpk (·) encompasses
a readout function and a classifier. Initially, the readout function is
employed to derive the graph-level rationale hrk and complement
hek (i.e., the non-rationale) subgraph representations:

hrk = READOUT(Mk ⊙ HGk ),
hek = READOUT((1 − Mk ) ⊙ HGk ).

Finally, the classifier Φ(·) yields the task results solely based on
the rationale subgraphs:

Ŷrk = Φ
(
hrk

)
, Lk

r = E(Gk ,Yk )∼Dk

[
ℓ(Ŷrk ,Yk )

]
. (2)

3.2.3 Training and Inference. During training, a sparsity constraint
is imposed on the probability Mk of being selected as a rationale,
as proposed in [24], to achieve a controlled level of sparsity in the
generated rationale subgraphs:

Lk
sp =

������
1

|Mk |
|Mk |∑
i=1

mi
k − α

������ , (3)

where α ∈ [0, 1] is a predefined sparsity level. The overarching
objective of Fed-vanillaGR in each client Ck is expressed as:

Lk
rat = Lk

r + λspLk
sp . (4)

Upon completion of training by each client, the parameters of
the extractor and predictor are transmitted to the server, which
utilizes Eq(1) for parameter aggregation and distribution to finalize
the training process.

During inference, hr from the global server is employed to derive
task results.

3
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have garnered signi�cant attention due to their superior ability to
capture intricate molecular structures [9, 15, 18]. Among the no-
table advancements, [41] propose a versatile framework designed
to enhance the generalization capability of existing MRL techniques
against distribution shifts. This framework is notable for its ability
to incorporate any existing MRL method as a backbone, thereby
providing a robust and �exible approach to improving model perfor-
mance in varied conditions. In a di�erent approach, [46] introduce
a method that achieves invariant molecular representation against
distribution shifts by combining GNN encoding with residual vector
quantization. This technique e�ectively derives molecular represen-
tations in a latent discrete space, o�ering a novel solution to the chal-
lenges posed by distributional variance in molecular data. Moreover,
[45] pioneer the application of MRL in FL scenarios. Their method
addresses the issue of heterogeneous molecules across clients by
proposing an instance reweighting strategy, thereby mitigating
the discrepancies in molecular data distribution and improving the
overall robustness and e�ectiveness of federated learning models.

2.2 Federated Learning.
Federated Learning (FL) algorithms have garnered signi�cant at-
tention due to their capacity to address data security and privacy
concerns [26, 28, 35, 39, 42]. Among these algorithms, [30] intro-
duce a knowledge transfer method that leverages actively selected
small public data to transfer high-quality knowledge within fed-
erated learning frameworks while ensuring privacy guarantees.
This approach represents a signi�cant advancement in maintaining
data privacy without compromising on the quality of the learned
models. Additionally, [32] propose a selective knowledge sharing
mechanism for federated distillation, designed to identify and share
accurate and precise knowledge derived from local and ensemble
predictions. Recent research has also focused on eliminating spuri-
ous correlations in training data, which can lead to biased models.
For instance, [6] propose a FL framework aimed at mitigating spu-
rious correlations and preventing models from becoming biased
towards speci�c demographic groups. This framework addresses
fairness in model training, a critical aspect in deploying machine
learning systems in diverse and sensitive applications. Similarly,
[40] introduced a bias-eliminating augmentation method within
the FL setting. By identifying and incorporating desirable causal
and shortcut attributes into augmented samples, this method aims
to reduce spurious correlations and enhance the reliability of the
trained models. While these approaches have demonstrated promis-
ing results in tackling spurious correlations, the issue of shortcuts
in explainable methods within FL scenarios remains relatively un-
explored. Addressing this gap, our paper focuses on exploring how
to integrate explainability into MRL under FL scenarios.

3 RESULTS
3.1 Problem Formulation
In this subsection, we delineate a rigorous formalization of the
explainable molecule representation learning problem within FL
scenarios. We consider a federated setting consisting of N clients,
denoted as {C1,C2, . . . ,CN }, each endowed with its unique local

repository of molecular datasets {D1,D2, . . . ,DN }. It is imper-
ative to acknowledge the inherent diversity in data distributions
across these clients, underscoring the variability among them.

For each client Ck , every molecular graph-label pair is encap-
sulated as (Gk ,Yk ) 2 Dk , where Gk = (V,T). Here, V denotes
the set of nodes corresponding to the atoms constituting the mol-
ecule, while T signi�es the set of edges representing chemical
bonds. The local task of explainable molecule representation learn-
ing involves a two-fold objective. Primarily, it entails the acquisi-
tion of a mask variable Mk 2 R |V | through a rationale extractor
function fsk (Gk ), alongside the derivation of node representations
HGk 2 R |V |⇥d . Subsequently, the rationale subgraph represen-
tation is computed via element-wise multiplication of the mask
variable and the node representations, denoted as Mk � HGk . Fi-
nally, a predictor fpk (Mk � HGk ) is trained to furnish accurate
predictions.

The learning process revolves around the optimization of the
extractor function f ⇤sk

(·) and the predictor function f ⇤pk
(·), mini-

mizing the cross-entropy loss `(·) over the graph-label pairs in the
client’s dataset Dk :
f ⇤sk

(·), f ⇤pk
(·) = arg min

fsk ,fpk

E(Gk ,Yk )⇠Dk

⇥
`
�
fpk

�
fsk (Gk )

�
,Yk

� ⇤
.

With a total of T communication rounds, the overarching aim
of explainable molecule representation learning at the global level
is to derive the extractor and predictor that ful�ll the aggregation
process:

�̂s =

N’
k=1

|Dk |ÕN
j=1 |Dj |

�s
k , �̂

p =

N’
k=1

|Dk |ÕN
j=1 |Dj |

�
p
k , (1)

where �̂s represents the parameters of the global extractor fs (·),
�̂p represents the parameters of the global predictor fp (·). Con-
versely, �s

k denotes the parameters of the extractor fsk (·) in client
Ck , and �

p
k denotes the parameters of the predictor fpk (·).

3.2 FedXMRL: Federated Learning for
eXplainable Molecule Representation
Learning

In this subsection, as shown in Figure ??, we present the intricate ar-
chitecture of eXplainable Molecule Representation Learning within
the Federated Learning, termed FedXMRL, encompassing both the
rationale extractor and the predictor components.

3.2.1 Rationale Extractor in FedXMRL. For each client Ck , given
(Gk ,Yk ) 2 Dk , the process of generating rationales within the
rationale extractor fsk (·) entails a meticulous sequence of steps.
Initially, an encoder GNNm (·) orchestrates the transformation of
each node in graph Gk into a d-dimensional vector. Concurrently,
the extractor orchestrates the prediction of a probability distribu-
tion for the selection of each node as part of the rationale. This
distribution is denoted as:

M̃k = softmax (Wm (GNNm (Gk ))) ,
whereWm 2 R2⇥d denotes a weight matrix.

Subsequently, the extractor samples binary values (0 or 1) from

the distribution M̃k =
n
m̃i

k

o |V |
i=1

to yield the mask variable M =

……
ℒ c1
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Figure 1: The overall framework of EaDA. In each client, the solid lines indicate the process of the Environment-aware Ratio-
nale Extraction module, and the dashed represent the process of the Local-Global Alignment module.

4 ENVIRONMENT-AWARE DATA
AUGMENTATION FOR FEDERATED GRAPH
RATIONALIZATION

Although Fed-vanillaGR provides a feasible solution for exploring
the explainability of GNNs in FL scenarios, it still suffers from the
data heterogeneity and local shortcut problem, degrading the effec-
tiveness of Fed-vanillaGR. Therefore, in this section, as shown in
Figure 1, based on the Fed-vanillaGR framework, we further propose
an Environment-aware Data Augmentation (EaDA) for Federated
Graph Rationalization method, consisting of an environment-aware
rationale extraction module and a local-global alignment module.

4.1 Environment-aware Rationale Extraction
To mitigate the local shortcut problem, a logical approach is to
introduce a global environment to each client, thereby generating
more counterfactual samples and disrupting the spurious correla-
tions inherent in the local dataset by altering the data environment
of the training set. However, observing and obtaining the environ-
ment pose considerable challenges. Hence, we initially propose a
prototype learning-based method for inferring the environment.
Subsequently, the environment inferred from each client is trans-
mitted to the server for aggregation, thereby obtaining global en-
vironment information, which is then disseminated. Finally, the
data from the clients are mapped from their current environment to
the global environment, facilitating the synthesis of counterfactual
data through environment-aware generation to alleviate the local
shortcut problem.

4.1.1 Prototype learning-based Environment Inference. After de-
riving the rationale subgraph and its complement, we proceed to
infer the environment E. Specifically, as the complement subgraph
encapsulates the correlation of variances across different distribu-
tions, which are indicative of environment-discriminative features,
we leverage it to infer potential environments. Utilizing the con-
cept of prototype learning [7, 32], we generate several prototype

embeddings for the complement subgraphs, defining these embed-
dings as the environment information. In practical implementation,
within clientCk , given a batch

{(
Gk

i ,Yk
i )}B

i=1 and the correspond-

ing rationale and complement representations
{(

hirk , h
i
ek

)}B
i=1

, we
compute the prototype embeddings (i.e., the environment informa-
tion) as follows:

Ek = Prototype({hiek
}B
i=1), (5)

where Ek = {e1
k , e

2
k , . . . , e

T
k }, and we utilize the k-means clustering

algorithm [15, 22] as the Prototype(·) function in this study. Subse-
quently, we transmit the inferred environments from each client
to the server and merge them to obtain the global environment
E = {e1, e2, . . . , eN×T } (i.e., Environment Merger in Figure 1).

4.1.2 Environment-aware Generation. Upon receiving the global
environment message E = {e1, e2, . . . , eN×T }, for each client Ck ,
we train an environment-aware generator EG(·) to transform the lo-
cal rationale representation hirk to a novel environment distribution,
conditioned on the novel environment message ej :

hjrk = EG
(
hrk , e

j
)
, (6)

where ej is randomly sampled from E. In practical implementation,
we define EG(·) as the addition function (i.e., hjrk = hrk + ej ).
Through this approach, we enable the mapping of the local rationale
to other environments, thereby generating counterfactual samples
and disrupting the original data distribution.

4.1.3 Predictor. The predictor Φ(·) generates prediction results
by incorporating both the original graph representations and the
counterfactual ones. Importantly, it should be emphasized that the
environment does not directly influence task predictions. Therefore,
the labels of the counterfactual samples remain unchanged. The
prediction loss with counterfactual samples can be formulated as:

Ŷ
j
rk = Φ

(
hjrk

)
, L j

rk = E(Gk ,Yk )∼Dk

[
ℓ(Ŷ j

rk ,Yk )
]
. (7)
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Algorithm 1 Training process of EaDA
Server Executes:
Initialize the warm-up communication round Tw as 1, the com-
munication round Tc , the number of environment T for each
client, the epoch Ep, the numbers of clients N and the shared
global/local model f 0(·).
for each communication round t=1 to Tw +Tc do

for each client id k=1 to N in parallel do
if t ≤ Tw then

ClientUpdate(k ,f t−1
k (·)).

else
ClientUpdate(k ,f t−1

k (·),f t (·),E).
end if

end for
Receive all local updated model:

{
f tk (·)

}N
k=1

, and inferred

environments: {Ek }Nk=1.
Perform aggregation by Eq(1) to get f t+1(·).
Merge the inferred environments to achieve the global envi-

ronment information E = {e1, e2, . . . , eN×T }.
end for
ClientUpdate(k , f t−1

k (·), f t (·)=None, E=None):
for epoch e=1 to Ep do

if f t (·) is None then
Update local model by Eq(4).

else
# The environment-aware rationale extraction module.
1. Employ the prototype learning methods to infer the

environments Ek based on Eq(5).
2. Generate the counterfactual samples hjrk based on both

hrk and environments E with Eq(6).
3. Yield task results based on both original and counter-

factual samples with Eq(2) and Eq(7).
# The local-global alignment module.
4. Align the local rationale representations with the global

ones based on Eq(8).
5. Update local model with the two modules by Eq(9).

end if
end for

4.2 Local-Global Alignment
In addressing the challenge posed by data heterogeneity, inherent
to federated learning, we further introduce a local-global alignment
module. This module aims to align global rationale representa-
tions with their local counterparts through a contrastive learning
approach. By integrating global information into local training,
we effectively mitigate the local shortcut problem exacerbated by
data heterogeneity. Specifically, within client Ck , we employ the
following contrastive loss:

Lk
c = − log

exp
(
h⊤rk hr /τ

)
exp

(
h⊤rk hr /τ

)
+
∑

hek ∈E exp
(
h⊤rk hek /τ

) , (8)

where the global rationale representation hr serves as the positive
sample counterpart to the local hrk . Additionally, E encompasses

all complement representations within the mini-batch data. The
parameter τ represents a temperature parameter governing the
concentration of the distribution.

Minimizing Eq(8) enables the convergence of the global rationale
and the local rationale, enhancing their alignment. Moreover, it
facilitates the divergence of complement representations hek from
rationale representations hrk . This divergence ensures that com-
plement representations do not encapsulate rationale information,
thereby enhancing the effectiveness of environment inference by
the prototype learning-based method.

4.3 Training and Inference.
During the training, by recalling Eq(4) and Eq(8), the overall objec-
tive of EaDA in each client Ck is defined as :

Lk
EaDA = Lk

rat + λcLk
c +

N×T∑
j=1

L j
rk . (9)

The overall training algorithm of EaDA is presented in Algorithm 1.
In the inference phase, only hr that derived by the global server

is employed to yield task results.

5 EXPERIMENTS
In this section, to demonstrate the effectiveness of EaDA, we design
experiments to address the following research questions:
• RQ1: How effectively does EaDA perform in terms of task pre-

diction and rationale extraction?
• RQ2: For the different components and hyperparameters in EaDA,

respectively, what are their impacts on performance?
• RQ3: How scalable is EaDA as a federated learning (FL) model?
• RQ4: Can EaDA help other rationalization methods to improve

their performance?

5.1 Datasets

5.1.1 Synthetic Dataset. In this paper, we employ the Spurious-
Motif dataset [39, 44] as a synthetic benchmark for motif type
prediction. Each graph in the dataset contains two subgraphs: the
motif subgraphR and the base subgraphC . Among them,R serves as
the rationale for motif type prediction, including three types: Cycle,
House, and Crane, denoted as R = {0, 1, 2}. Conversely, C varies
according to the motif type and acts as a complement, consists of
three types: Tree, Ladder, and Wheel, represented as E = {0, 1, 2}.
Therefore, a graph in Spurious-Motif can be shown as House-Tree.
To introduce the shortcuts into this benchmark, during dataset
construction, the motif subgraph is sampled uniformly, while the
base subgraph is selected based on the probability P(C) = b × I(C =
R)+ 1−b

2 ×I(C , R), whereb controls the degree of shortcut presence,
with higher values indicating more pronounced shortcuts. This
study considers three datasets with b = {0.5, 0.7, 0.9}. To ensure
a fair evaluation, a de-biased (balanced) dataset is constructed for
the test set by setting b = 1

3 .

5.1.2 OGB. In this paper, for real-world applications, we make
experiments on the Open Graph Benchmark (OGB) [18], including
MolHIV, MolToxCast, MolBBBP, MolBACE, and MolSIDER. To en-
sure a fair evaluation, we initially adopt the default scaffold splitting
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Table 1: Performance on the Synthetic Dataset and Real-world Dataset in FL scenarios.

Spurious-Motif (ACC) OGB (AUC)
bias=0.5 bias=0.7 bias=0.9 MolHIV MolToxCast MolBBBP MolSIDER MolBACE

Fed-vanillaGR 0.3182 ± 0.0353 0.3681 ± 0.0359 0.3031 ± 0.0291 0.6985 ± 0.0155 0.6111 ± 0.0055 0.6339 ± 0.0142 0.5774 ± 0.0175 0.7058 ± 0.0334
FedDisC 0.4418 ± 0.0182 0.4481 ± 0.0381 0.3579 ± 0.0471 0.7212 ± 0.0201 0.6274 ± 0.0018 0.6561 ± 0.0121 0.5869 ± 0.0142 0.7253 ± 0.0290
FedCAL 0.4213 ± 0.0109 0.5289 ± 0.0087 0.4191 ± 0.0248 0.7039 ± 0.0113 0.6170 ± 0.0051 0.6575 ± 0.0076 0.5879 ± 0.0138 0.7248 ± 0.0212

FedGSAT 0.4281 ± 0.0328 0.5259 ± 0.0381 0.4194 ± 0.0338 0.7149 ± 0.0226 0.6255 ± 0.0030 0.6555 ± 0.0085 0.5952 ± 0.0082 0.7369 ± 0.0413
FedDARE 0.4483 ± 0.0193 0.4891 ± 0.0391 0.4288 ± 0.0977 0.7220 ± 0.0165 0.6289 ± 0.0059 0.6621 ± 0.0096 0.5886 ± 0.0113 0.7301 ± 0.0092
FedRGDA 0.4087 ± 0.0293 0.5089 ± 0.0198 0.4286 ± 0.0313 0.7246 ± 0.0085 0.6235 ± 0.0034 0.6605 ± 0.0157 0.5906 ± 0.0151 0.7282 ± 0.0301

FedGR 0.4610 ± 0.0289 0.5538 ± 0.0398 0.4977 ± 0.0315 0.7387 ± 0.0186 0.6316 ± 0.0054 0.6690 ± 0.0174 0.6017 ± 0.0202 0.7435 ± 0.0170

EaDA 0.5269 ± 0.0273 0.5892 ± 0.0163 0.5447 ± 0.0365 0.7611 ± 0.0084 0.6345 ± 0.0108 0.6713 ± 0.0077 0.6178 ± 0.0040 0.7743 ± 0.0073
EaDA-ERE 0.4344 ± 0.0138 0.5276 ± 0.0121 0.4302 ± 0.0288 0.7123 ± 0.0034 0.6148 ± 0.0025 0.6522 ± 0.0047 0.5882 ± 0.0032 0.7334 ± 0.0056
EaDA-LDA 0.4824 ± 0.0348 0.5677 ± 0.0225 0.5011 ± 0.0426 0.7536 ± 0.0164 0.6301 ± 0.0202 0.6667 ± 0.0122 0.6032 ± 0.0092 0.7597 ± 0.0230

(a) CAL (d) RGDA (e) SOTA in centralized scenarios and 
EaDA in FL scenarios

(c) DARE(b) GSAT

Figure 2: (a)-(d): Performance of rationalization methods in centralized scenarios. (e): The upper bound of FL methods, where
the SOTA results in centralized scenarios can be considered as the upper bound of rationalization in FL scenarios.

method in OGB to partition the datasets into training, validation,
and test sets. Notably, under this scaffold-based partition, the distri-
bution of the test and training sets significantly differs, indicating
different environments. In essence, the test set is out-of-distribution
relative to the training set.

Considering that the above datasets are all standard centralized
datasets, we employ the following method to partition the training
set across various clients to conform to the settings of FL scenarios.
Specifically, we distribute the constructed training dataset to N
clients using the unbalanced partition algorithm Latent Dirichlet
Allocation (LDA) [16, 17]. This approach involves generating a het-
erogeneous partition by sampling pi ∼ DirN (γ ), thereby allocating
a proportion pi,n of training instances for class i to each local client.
In this paper, for Spurious-Motif, N is set to 3 and γ to 3. For OGB,
we set N to 4 and γ to 4.

We also explore alternative dataset partitioning methods and
present the corresponding experimental results in section 5.6. The
comprehensive dataset description is available in Appendix A.

5.2 Comparison Methods
In this section, to validate the effectiveness of EaDA, we first com-
pare our method with several rationale-based methods: DisC [9],
GSAT [28], CAL [34], DARE [45], and RGDA [23]. These meth-
ods are adapted from centralized scenarios to FL scenarios by im-
plementing them within the Fed-vanillaGR framework. We name
these adaptations as FedDisC, FedGSAT, FedCAL, FedDARE, and Fe-
dRGDA, respectively. Besides, we also compare EaDA with FedGR
[46], which is the first federated graph rationalization method. Fur-
thermore, we implement two variants of EaDA: EaDA without
the environment-aware rationale extraction module (EaDA-ERE)

Table 2: Training speed of federated graph rationalizations.

Methods Training Speed
Fed-vanillaGR 1.00 ×

FedGR 4.72 ×
EaDA 1.11 ×

and EaDA without the local-global alignment module (EaDA-LGA).
Details of the comparison methods are shown in Appendix B.

5.3 Experimental Setup
During the evaluation phase, the AUC metric is utilized to assess the
task prediction performance of OGB and ACC is used in Spurious-
Motif. Since Spurious-Motif includes ground-truth rationales, we
can evaluate the precision of the extracted rationales on Spurious-
Motif with the Precision@5 metric. This metric measures the ac-
curacy of the top 5 extracted rationales by comparing them to the
ground-truth rationales. All methods, including the EaDA approach
and other comparison methods, undergo training on a single A100
GPU with 5 different random seeds. The reported test performance
comprises the mean results and standard deviations acquired from
the epoch that attains the highest validation prediction performance.
Several results of comparison methods in Table 1 are directly taken
from [46]. Detailed experimental and hyperparameter setups can
be found in Appendix C.

5.4 Overall Performance (RQ1)
5.4.1 Performance of the Task Prediction. To evaluate the effective-
ness of EaDA, a comparative analysis is conducted against various
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Figure 3: Results of Precision@5 between extracted ratio-
nales and the ground-truth rationales on Spurious-Motif.

(a) Performance of EaDA with
 different environments

(b) Performance of EaDA with
 different clients

Figure 4: (a) Varying the specified environment number k on
MolBACE. (b) Performance of EaDA with different number
of clients on MolBACE.

baseline methods in the task prediction and the experimental re-
sults are shown in Table 1 and Figure 2. Specifically, in Table 1,
For the rationalization baselines transferred from the centralized
scenario (e.g. FedCAL and FedRGDA), their performances are not
bad, and all of them are significantly improved compared to Fed-
vanillaGR. However, they don’t perform as good as FedGR and
EaDA, where both FedGR and EaDA are rationalization methods
specifically designed for FL scenarios. Compared to the state-of-the-
art (SOTA) method, FedGR, our model performs better across all
datasets, demonstrating the effectiveness of our prototype learning-
based environment inference method. Meanwhile, in Table 2, we
present the results of our experiments comparing the training speed
of EaDA with FedGR. The hardware setup for the experiments con-
sists of 12 cores of Intel(R) Xeon(R) Gold 5317 CPU and a single 40G
NVIDIA A100 Tensor Core GPU. From the results, we find EaDA
achieves an impressive training speed, approximately 4.25 times
the speed achieved by FedGR. This further illustrates the neces-
sity of EaDA’s assumption that the environment can be inferred,
compared to FedGR’s assumption of an unavailable environment.

5.4.2 Performance of the Rationale Extraction. Furthermore, to ex-
amine whether EaDA avoids composing rationales by extracting
shortcuts, we conduct experiments on Spurious-Motif, which in-
cludes ground-truth rationales. In Figure 3, we can observe that
as the degree of bias in the Spurious-Motif dataset changes, our
method consistently outperforms the baseline methods. This indi-
cates that EaDA effectively addresses data heterogeneity issues and
the exacerbated problem of local shortcut learning, enhancing the
faithfulness of rationale extraction.

5.4.3 Experimental Upper Bound of EaDA. In Figure 2, we also
report the performance of the rationalization baseline methods

in the centralized scenario across datasets. Meanwhile, we also
extract the optimal performance on each dataset and show it as
the SOTA results under the centralized scenario in Figure 2(e). This
result can be considered as the upper bound of the capability that
the method can achieve in the FL scenario. By comparing with
EaDA (The red line in Figure 2 (e)), we find that EaDA is very
close to this upper bound of capability on several datasets (our
approach even exceeds the bound in MolSIDER), illustrating the
necessity of introducing global information into local training, and
the effectiveness of the ERE and LDA modules that we designed.

5.5 Ablation Study (RQ2)
In this subsection, we validate the efficacy of each module proposed
in our paper and provide primary ablation studies for all of them.
Firstly, we compare EaDA with EaDA-LDA. In EaDA-LDA, we re-
move the LDA module, making it impossible to align the global
rationale with the local rationale information. As shown in Ta-
ble 1, this results in a decrease in the effectiveness of EaDA-LDA.
Additionally, due to the absence of the contrastive learning loss
constraint, the separated rationale and complement representations
are not fully disentangled. Consequently, it becomes possible for
the complement information to contain some of the rationale in-
formation. This leads to inaccurate environment inference using
the prototype learning-based method, affecting the aggregation
of global information and consequently impacting overall perfor-
mance. This analysis underscores the necessity of designing the
LDA module. Subsequently, we compare EaDA with EaDA-ERE.
From Table 1, it is evident that the effectiveness of EaDA-ERE de-
creases more significantly, indicating that the ERE module is more
crucial compared to the LDA module. Without information about
the environment, relying solely on the alignment of global rationale
and local rationale fails to break the spurious correlation between
the environment and labels in the data. Consequently, mitigating
the shortcut problem becomes challenging.

5.6 Sensitivity Analysis (RQ2)
5.6.1 EaDA with Different Dataset Partitioning Methods. In this
subsection, we initially investigate the sensitivity of EaDA to dif-
ferent federated dataset partitioning methods. To achieve this, we
deliberately create more unbalanced data distributions in our exper-
iments. For MolHIV, MolBBBP, MolBACE, all being binary classifi-
cation datasets where the labels are either 0 or 1, we intentionally
create class-unbalanced distributions among clients. The specific
data partitioning is depicted in Table 7. From the table, it’s evident
that after the repartitioning, the ratios of positive and negative
categories among the different clients exhibit significant variation.
Additionally, for MolToxCast and MolSIDER, both being multi-label
classification datasets with numerous categories, we opt to partition
the dataset based on the number of nodes in each graph. Specif-
ically, graphs with fewer nodes are assigned to one client, while
those with more nodes are allocated to another client. The details of
this data partitioning are presented in Table 7. Observing the table,
we note a substantial discrepancy in the number of nodes/edges
among graphs across different clients, indicating an unbalanced dis-
tribution among clients. Finally, utilizing the repartitioned datasets,
we conduct experiments with EaDA and other baseline methods.
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Table 3: Performance on the Real-world Dataset in FL scenarios with another partition method.

MolHIV MolToxCast MolBBBP MolSIDER MolBACE

Fed-vanillaGR 0.6877 ± 0.0180 0.5943 ± 0.0042 0.6232 ± 0.0118 0.5313 ± 0.0118 0.6832 ± 0.0248
FedDisC 0.7102 ± 0.0031 0.6082 ± 0.0031 0.6438 ± 0.0048 0.5423 ± 0.0193 0.7088 ± 0.0234
FedCAL 0.6987 ± 0.0130 0.5985 ± 0.0058 0.6489 ± 0.0032 0.5489 ± 0.0024 0.7123 ± 0.0387

FedGSAT 0.7083 ± 0.0034 0.6055 ± 0.0046 0.6518 ± 0.0024 0.5573 ± 0.0137 0.7177 ± 0.0303
FedDARE 0.6829 ± 0.0177 0.6021 ± 0.0049 0.6482 ± 0.0083 0.5498 ± 0.0294 0.7003 ± 0.0205
FedRGDA 0.7031 ± 0.0035 0.5953 ± 0.0060 0.6502 ± 0.0095 0.5512 ± 0.0078 0.7276 ± 0.0320

FedGR 0.7290 ± 0.0061 0.6179 ± 0.0159 0.6654 ± 0.0121 0.5697 ± 0.0028 0.7743 ± 0.0145

EaDA 0.7308 ± 0.0243 0.6206 ± 0.0104 0.6748 ± 0.0184 0.5735 ± 0.0039 0.7636 ± 0.0093

Table 4: Structural Generalizability of the ERE module. Each
rationalization method with ERE is highlighted in gray.

MolHIV MolToxCast MolBBBP MolSIDER MolBACE

FedGSAT 0.7149 0.6255 0.6555 0.5952 0.7369
+ERE 0.7490 (↑3.41%) 0.6023 (↓2.32%) 0.6693 (↑1.38%) 0.5994 (↑0.42%) 0.7543 (↑1.74%)

FedDARE 0.7220 0.6289 0.6621 0.5886 0.7301
+ERE 0.7511 (↑2.91%) 0.6304 (↑0.15%) 0.6704 (↑0.83%) 0.5904 (↑0.18%) 0.7539 (↑2.38%)

FedRGDA 0.7246 0.6235 0.6605 0.5906 0.7282
+ERE 0.7658 (↑4.12%) 0.6287 (↑0.52%) 0.6693 (↑0.88%) 0.5803 (↓1.03%) 0.7431 (↑1.49%)

The experimental results are summarized in Table 3. From these
experimental results, it is evident that EaDA consistently achieves
optimal performance even when the client dataset partitioning
method is altered. This experiment underscores the versatility of
our approach, demonstrating its efficacy across various federated
learning scenarios with differing data distributions.

5.6.2 EaDA with the Different Number of Inferred Environments.
We conduct parameter sensitivity experiments on the number k
of inferred environments in EaDA. The number of environments
is crucial for subsequent counterfactual generation methods and
forms the basis for mitigating shortcuts in our ERE method. Prop-
erly choosing k is essential for the effectiveness of the model, as
it determines the granularity of the environment partitioning and
impacts the ability to generate diverse counterfactual samples. To
explore the sensitivity of our methods to the parameter k , we vary
k and observe its impact on performance. Figure 4(a) illustrates the
performance of EaDA with different environment numbers k . The
figure clearly shows that the performance of our methods deteri-
orates when k is too small (e.g., k = 1) or too large (e.g., k = 15).
When k = 1, all training data are considered to be from a single
environment. This results in the poorest performance. The inabil-
ity to partition the training samples into multiple environments
means that the model fails to capture the underlying variations
and spurious correlations present in the data. Consequently, the
counterfactual generation is less effective, leading to suboptimal
performance. Besides, when k is too large (e.g., k = 15), the perfor-
mance also deteriorates. This can be attributed to over-partitioning
the training data into too many environments, leading to fragmen-
tation and difficulty in learning meaningful environment.

5.7 Scalability Analysis (RQ3)
Scalability is a crucial consideration in federated learning, and un-
derstanding how a method performs under increasing numbers of
clients is essential. Therefore, we explore how EaDA scales with

an increasing number of clients. As depicted in Figure 4(b), the
effectiveness of EaDA and other rationalization baseline methods
diminishes as the number of clients increases. However, even as
the number of clients grows, EaDA consistently outperforms the
other methods, maintaining a high AUC metric. For instance, at
N = 15 clients, EaDA exhibits only a 4.77% decrease in effective-
ness compared to its performance at N = 4, while Fed-vanillaGR
experiences an 8.96% decrease. These results highlight EaDA’s supe-
rior scalability in accommodating an increasing number of clients.
The ability of EaDA to maintain its performance with an increas-
ing number of clients can be attributed to its robust design. The
method incorporates both the environment-aware rationale extrac-
tion (ERE) module and the local-global alignment (LDA) module,
which together ensure effective handling of data heterogeneity and
alignment of global and local information. This design mitigates
the adverse effects of data fragmentation and distributional dis-
crepancies that typically arise in federated learning scenarios with
numerous clients.
5.8 Structural Generalizability of EaDA (RQ4)
Through ablation experiments, we find that our Environment-aware
Rationale Extraction (ERE) module significantly enhances EaDA’s
performance. This observation raises an intriguing research ques-
tion: Can our ERE module enhance the performance of other rationale-
based methods in federated learning scenarios? To address this ques-
tion, we integrate the ERE module into FedGSAT, FedCAL, Fed-
DARE, and FedRGDA and analyze the corresponding results. From
Table 4, it’s evident that incorporating our ERE module consis-
tently improves the performance of all rationale-based methods.
This finding suggests that our ERE module exhibits generalizabil-
ity and scalability, effectively enhancing the performance of other
rationale-based methods in federated learning scenarios.
6 CONCLUSION
In this paper, we proposed an Environment-aware Data Augmenta-
tion (EaDA) method for Federated Graph Rationalization, address-
ing challenges in data heterogeneity and the local shortcut problem.
This method comprised two key components: the Environment-
aware Rationale Extraction (ERE) module and the Local-Global
Alignment (LGA) module. The ERE module inferred and shared
abstracted environmental information among clients, allowing for
the generation of counterfactual samples to compose faithful ratio-
nales. The LGA module employed the contrastive learning method
to align local and global rationales, mitigating data heterogeneity.
Our method exhibited enhanced effectiveness compared to existing
rationalization approaches, as demonstrated through experiments
on both real-world and synthetic datasets.
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A DATA STATISTICS
To demonstrate the effectiveness of EaDA, we conduct experi-
ments several datasets. Specifically, for synthetic dataset, we use the
Spurious-Motif [39, 44]. For real-world dataset, we utilize the Open
Graph Benchmark (OGB) [18] and focus on the OGB-Mol datasets
available within OGB, including MolHIV, MolToxCast, MolBBBP,
MolBACE and MolSIDER, which provide diverse molecular prop-
erties for analysis and prediction. Details of dataset statistics are
summarized in Table 5 and Table 6.

Besides, Table 7 shows the dataset statistics for each client after
dividing the OGB using other dataset partitioning methods.

B COMPARISON METHODS
In this section, we present the details of our comparison methods:

• DisC [9]: Employs a disentangling method to learn causal and
shortcut substructures within graph data. By synthesizing coun-
terfactual training samples, DisC aims to further de-correlate
causal and shortcut variables, thereby mitigating the influence
of shortcuts.

• GSAT [28]: Introduces stochasticity to block label-irrelevant in-
formation and selectively identifies label-relevant subgraphs,
guided by the information bottleneck principle [1, 38].

• CAL [34]: Proposes the Causal Attention Learning (CAL) strat-
egy, which composes causal rationales and mitigates the con-
founding effect of shortcuts to achieve high generalization.

• DARE [45]: Introduces a self-guided method with a disentangle-
ment operation to encapsulate more information from the input
and extract rationales.

• RGDA [23]: Generates counterfactual samples using the bias
substructure, but lacks a disentanglement operation to ensure
the bias can be separated from the original input.

• FedGR [46]: Designs a difference-aware data augmentation method
to generate shortcut-conflicted samples for each client by assum-
ing the client environment is unavailable.

• EaDA-ERE: A variant of EaDA that removes the environment-
aware rationale extraction module. The objective of EaDA-ERE
is degraded from Eq(9) to Lk

ere− = Lk
rat + λcLk

c .
• EaDA-LDA: Achieved by excluding the local-global alignment

module from EaDA. Its objective is Lk
lda− = Lk

rat +
∑n×k
j=1 L j

rk .

C EXPERIMENTAL SETUPS
In all experimental settings, both the values of the hyperparameters
λsp and λc are set to 1.0. The hidden dimensionality d is 128 for the
OGB dataset and 32 for Spurious-Motif dataset. During the train-
ing process, we employ the Adam optimizer [20] with a learning
rate initialized as 1e-3 for the OGB and 1e-2 for Spurious-Motif.
The number of the inferred environment for each client is set to 5
for MolHIV and MolToxCast, and 10 for other OGB datasets, 3 for
Spurious-Motif. Following [46], we set the predefined sparsity α
as 0.1 for MolHIV, 0.5 for MolSIDER, MolToxCast, MolBBBP and
MolBACE, and 0.4 for other datasets. The communication roundTc
is 20 and the epoch in each communication is 10, totaling 200 itera-
tions. In this study, we employ GIN as the backbone to implement
both our methods and comparison methods.

D CASE STUDY
In this section, we make experiments on Spurious-Motif (b = 0.9)
to show the rationales extracted by EaDA. In Figure 5, each graph
comprises a motif type (such as Cycle, House, and Crane) and a base
(like Tree, Wheel, and Ladder). The highlighted navy blue nodes
indicate selected rationale nodes2. If there is an edge between two
identified nodes, it is visualized as a red line. From the figure, we
can find that EaDA effectively extracts more accurate rationales
for prediction, enhancing the model’s explainability and overall
performance.

(a) Cycle-Tree (b) House-Wheel (c) Crane-Ladder

Figure 5: Visualization of EaDA rationale subgraphs.

2In this paper, when the probability of predicting a node as part of rationales m̃i
exceeds 0.55, we consider the node as part of the rationales.
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Table 5: Statistics of Spurious-Motif Datasets. Among them, different clients share the same valid and test set.

Spurious-Motif
b=0.5 b=0.7 b=0.9

Client1/Client2/Client3/Val/Test 377/662/1961/3,000/6,000 377/662/1,961/3,000/6,000 377/662/1,961/3,000/6,000
Classes 3 3 3

Avg. Nodes 18.60/18.29/18.48/18.50/88.80 18.73/18.27/18.8/18.50/88.80 19.02/18.54/18.66/18.50/88.80
Avg. Edges 27.72/27.31/27.55/27.54/125.14 28.29/27.3/28.05/27.54/125.14 28.74/27.63/27.81/27.54/125.14

Table 6: Statistics of OGB Datasets.

MolHIV MolToxCast MolBACE

Client1/Client2/Client3/Client4/Val/Test 9,380/6,148/10,113/7,260/4,113/4,113 871/614/3,819/1,556/858/858 425/234/191/360/151/152
Classes 2 617 2

Avg. Nodes 25.31/25.32/25.15/25.27/27.79/25.27 16.41/16.86/16.63/16.91/26.17/28.19 33.81/33.91/33.28/33.33/37.23/34.82
Avg. Edges 54.19/54.2/53.89/54.15/61.05/55.59 32.91/33.93/33.45/33.99/56.09/60.71 73.06/73.13/71.87/72.09/81.3/75.11

MolBBBP MolSIDER

Client1/Client2/Client3/Client4/Val/Test 472/299/325/535/204/204 422/333/201/185/143/143
Classes 2 27

Avg. Nodes 22.44/22.15/22.34/22.81/33.20/27.51 28.85/30.96/30.97/29.7/43.24/53.27
Avg. Edges 48.42/47.53/48.05/49.19/71.84/59.75 60.53/64.77/64.87/62.25/91.85/112.66

Table 7: Statistics of OGB Datasets with an another partitioning method.

MolHIV MolBBBP MolBACE

Client1/Client2/Client3/Val/Test 1,000/30,500/1,401/4,113/4,113 1,062/200/369/204/204 900/150/160/151/152
Class Ratio (Positive(1): Negative(0)) among clients 500:500/500:30,000/232:1,169 1,000:62/100:100/269:100 300:600/100:50/80:80

Avg. Nodes 25.02/25.03/30.34/27.79/25.27 21.56/23.36/24.69/33.20/27.51 34.18/34.12/29.86/37.23/34.82
Avg. Edges 52.80/53.61/65.60/61.05/55.59 46.43/50.03/53.33/71.84/59.75 73.83/73.61/64.74/81.3/75.11

MolToxCast MolSIDER

Client1/Client2/Client3/Val/Test 3,000/2,000/1,860/858/858 400/500/241/143/143
Classes 617 27

Avg. Nodes 9.42/16.32/28.79/26.17/28.19 12.66/25.53/67.95/43.24/53.27
Avg. Edges 17.73/32.92/59.75/56.09/60.71 24.96/54.86/142.12/91.85/112.66
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