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ABSTRACT
This paper presents the KCL-SAIR team’s contribution to the GE-

NEA Challenge 2023. As this year’s challenge addressed gesture

generation in a dyadic context instead of a monadic one, our aim

was to investigate how the previous state-of-the-art approach can be

improved to be more applicable for the generation of both speaker

and listener behaviours. The presented solution investigates how

taking into account the conversational role of the target agent dur-

ing training and inference time can influence the overall social

appropriateness of the resulting gesture generation system. Our

system is evaluated qualitatively based on three factors, including

human likeness, appropriateness for agent speech, and appropriate-

ness for interlocutor speech. Our results show that having separate

models for listener and speaker behaviours could have potential,

especially to generate better listener behaviour. However, the under-

lying model structures between the speaker and listener behaviour

should be different, building on previous state-of-the-art monadic

and dyadic solutions.

CCS CONCEPTS
• Human-centered computing→ HCI theory, concepts and
models; Empirical studies in interaction design; User studies.
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1 INTRODUCTION
The generation of non-verbal behaviours in order to accompany

the speech of both embodied agents and social robots enhances

their perceived acceptance. Due to its importance, there has been a
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growing effort related to this line of research in the past years [1, 9,

10, 13, 17, 23, 25]. Agents employing gestures during communication

allows them to add emphasis to the information they convey and to

express their intentions or emotions. It is important to differentiate

between monadic and dyadic settings when generating behaviours.

In a monadic setting the agent exists alone, while in a dyadic one,

its behaviour should be related to an interlocutor’s, as it participates

in a dynamic exchange taking turns speaking and listening.

Previous work established a state-of-the-art approach for gen-

erating gestures in a monadic setting based on an agent’s speech

and text information [9]. To extend this method to a dyadic set-

ting, the interlocutor’s verbal and non-verbal signals should also be

taken into account. However, the listener and speaker behaviours

of agents are significantly different [2, 6]; the listener is much

more passive and occasionally mimics the speaker gestures with de-

layed synchrony. Therefore, this problem could benefit from a split

training approach, where gesture generation in a dyadic context is

broken down into listener and speaker behaviours.

Motivated by the importance of gesture generation for both vir-

tual and embodied agents and the stark difference between listener

and speaker behaviours in a dyadic context, this paper investigates

the effect of training and employing multiple gesture generation

models based on the speaker status of the agent. The qualitative

assessments of our contribution show that compared to the simple

dyadic extension of previous state-of-the-art [9], this technique is

on par with several model improvement based techniques and the

previous baseline.

2 BACKGROUND AND PRIORWORK
In recent years there has been a growing interest in the research

area of co-speech gesture generation for virtual [3, 5, 27] and em-

bodied [22, 24] agents. The approach to gesture generation can be di-

vided into two groups: rule-based [8] and data-driven approach [13,

24]. With the rule-based approach, the association of text or speech

and gestures are pre-defined by a set of rules [8]. Consequently,

this approach can only produce gestures in pre-designed contexts.

With the data-driven approach, the relationship between gestures

and text or speech is captured by end-to-end learning frameworks.

Several studies used an Encoder-Decoder [5] architectures, Gen-

erative Adversarial Networks (GANs) [22, 26, 27] or Conditional

GANs (cGAN) which were designed with Convolutional Neural

Networks [24].

To foster the development of more appropriate gesture genera-

tion, GENEA Challenge 2023 [14] provides a dataset and a platform

to create and evaluate non-verbal behaviour generation solutions.

https://doi.org/XXXXXXX.XXXXXXX
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The organisers provided a refined and split dataset based on the

Talking With Hands 16.2 M [16] data. Moreover, they provided a

baseline model [9, 18] which was adapted from the monadic gesture

generation winner of a previous year’s challenge.

In dyadic interaction, an essential aspect of co-speech gestures is

the dynamic exchange of non-verbal signals between two partners

for adapting to interacting social norms [15] and building a common

ground [19]. As a result, the work presented in this paper will shed

light on this important aspect. Specifically, our solution described

below builds upon the baseline provided for the challenge [9] and

investigates the effect of training separate speaker and listener

gesture models. This approach is supported by the work of Alibali

et al. [2] and Binder [6] who explored the non-verbal behaviour of

speakers and listeners in a conversation. Alibali et al. [2] state that

the listener behaviour can be limited to back-channel feedbacks

such as nodding, saying "uh-huh", and occasional head movement

indicating that something is not clear. Similarly, Binder [6] found

that listeners also exhibit behavioural synchrony which plays a

significant role in the positive perception of conversation partners.

Based on their research, due to the stark difference between the

behaviour expected from speakers and listeners, we believe the

training of separate speaker and listener models is a promising

avenue.

3 DATA AND DATA PROCESSING
The solution presented in this paper is using the training and valida-

tion sets of the TalkingWith Hands 16.2 M dataset presented by Lee

et al.[16]. Using the same training and validation practices of the

monadic motion generation solution proposed by Chang et al.[9],

our solution utilises the speaker identity, text, audio, and motion

information of the main-agent. In addition, the interlocutor’s text,

audio, and motion information is also used in order to extend the

baseline to a dyadic setting.

Following the preprocessing practices presented by Chang et

al. [9], we produce a mel spectogram and MFCC features, as well

as audio prosody features such as audio intensity, pitch, and their

derivatives. To process text data, a FastText word embedding [7]

is generated with 300 dimensions. As for the motion input data,

we use the joint angle information provided in the dataset and

extract information for 25 joints, 19 and 6 for the upper- and lower-

body joints respectively. The joint angles were parameterised with

exponential map [11]. Finger motion data was not used due to its

reliability in the dataset, and we also use a root position of the body,

resulting in 26 ∗ 3 = 78 features, 3 dimensions (i.e., 3D orientation

information) for each joint information. This feature engineering

was kept consistent with the one described by the state-of-the-art

in order to provide a reliable comparison to the baseline method

of Chang et al.[9] and to observe the direct effect of our sample

selection method described below.

4 METHOD
Our method is primarily based on the baseline method proposed by

Chang et al. [9]. This solution used a Tacotron2 [21] based archi-

tecture that was aimed to align speech features with gestures. This

sequence-to-sequence approach was extended to use the interlocu-

tor’s motion, audio, text, and speaker identity features as inputs to

appropriate it to a dyadic context. Due to the increased input size,

the original model’s [9] hyperparameters were individually tuned

as described in the challenge description paper [14].

Regarding our core contribution, we introduced the training

of two separate models, constructed based on the baseline model

structure. When training and validating the models, in one case,

when selecting training samples, the speaker identity labelling of

the agent was used to determine when the agent was speaking. This

information was acquired from the dataset by concatenating the

text input with the speaker_id using the same sample generation

pipeline as the IVI baseline did [9]. If the sampling window yielded

a non-zero sum of the resulting feature array, the agent was con-

sidered speaking. If both the main agent and the interlocutor were

speaking, we consider the agent as ‘speaking’.

Only training samples with speech were used to train a speaking

model (SM) which was validated on samples where the agent was

speaking. Similarly, our second model was trained and validated

solely on samples where the speaker identity indicated that the

agent was listening, resulting in a trained listener model (LM). In

the dataset, there are some instances when both the agent and the

interlocutor are speaking. These samples were used to train the SM,

as the required gestures should still be appropriate for the agent

providing expressions to support its speech.

The models were trained on the training set of the Talking With

Hands 16.2M dataset [16] with the same hyperparameters as es-

tablished in the challenge description paper [14], however, the

batch size was reduced to 32 from the original 64 due to computa-

tional constraints. The full parameter list can be found at [18] in

Tacotron2/common/hparams_dyadic.py.
Our models were trained until convergence, as stated in [18],

around 20 to 30 thousand epochs. SM converged after 28𝑘 iterations,

while LM converged by the 30𝑘 mark.

The training was performed on a Dell XPS 15, i9-13900H (14

cores, up to 5.40GHz Turbo), 32GB RAM, NVIDIA GeForce RTX

4070 - 8GB. Training and validation took around 16 and 18 hours

for the SM and LM respectively.

During inference, both models were loaded into the ‘gener-

ate_all_gestures.py’ script provided by [18]. Outputs were gener-

ated frame by frame, selecting SM or LM depending on the speaker
identity of the agent as described above. The resulting outputs were

converted to joint angles utilising the built-in functions provided

by the evaluation script.

A representation of the training and testing of the proposed

models can be seen in Figure 1. The source code of our solution,

adapted from the [18] repository can be found at [20].

5 EVALUATION
The evaluation was performed with the other GENEA Challenge

2023 submissions by the organisers as presented in [14]. The pro-

vided test set was formatted the same way as the training and

validation sets of the Talking With Hands 16.2 M dataset [16] with

the exception of the agent not having the motion samples for this

split. The agent gestures were generated as described above, in

Section 4.

Due to the lack of ground truth data, features such as Average

Precision Error (APE), difference in Acceleration, and Jerk were not
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Figure 1: A representation of how speaker identity-based
sampling was introduced to train and test two models: one
trained on speaker data; and one trained on listener data.

measured. Instead, the resulting dyadic gestures were evaluated

with regard to Human Likeness, Appropriateness for agent speech,

and Appropriateness for the interlocutor in a large-scale crowd-

sourced subjective evaluation. Human likeness measures whether

the generated gesture resembles real human gestures. The appropri-

ateness of the agent and interlocutor speech evaluations measure

whether the generated gestures look natural with regard to the

respective speaker. In the following sections, they are also referred

to as monadic and dyadic appropriateness. Notably, appropriateness
scores were measured by pairing the gestures generated for the cor-

rect speech segments, but also by pairing and showing mismatched

speech-gesture stimuli pairs to participants.

For further details regarding the evaluation please refer to the

main Challenge description paper [14].
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Figure 2: Box plot visualising the ratings distribution in the
human-likeness study. Red bars are the median ratings (each
with a 0.05 confidence interval); yellow diamonds are mean
ratings (also with a 0.05 confidence interval). Box edges are at
25 and 75 percentiles, while whiskers cover 95% of all ratings
for each condition. Conditions are ordered by descending
sample median rating.

6 RESULTS AND DISCUSSION
This section reports the three aspects of the qualitative evaluation

performed on our solution. In the following sections, the proposed

solutions will be labelled SA-SL, the baseline method’s [9] monadic

version is labelled BM, and the dyadic BD. Finally, the ground truth
gestures recorded in the original dataset [16] are labelled NA (i.e.,

natural). Our proposed solution is labelled SD.

6.1 Human Likeness
Based on the responses of 200 participants, the median ratings be-

tween different conditions were analysed based on Mann-Whitney

U tests, which is an unpaired non-parametric test. After acquiring

the p-values, they were adjusted for multiple comparisons with the

Holm-Bonferroni method [12].

The rating distribution of the human-likeness test and the sig-

nificance of pairwise differences between conditions can be seen in

Figure 2 and 3 respectively.

Based on the results, only 12 condition pairs out of the overall

105 were significantly different at 𝛼 = 0.05. Regarding our solution,

its conditions were not different from other generated gestures

in the set of {BD, BM, SD, SH}. However, they were statistically

different from the set of {SE, SJ, SL}. This means that our solution

achieved the same human likeness scores as SH, and the dyadic

and monadic baselines. Finally, it was rated better with regard to

human-likeness compared to SA, SB, SC, SI, and SK.

Based on these results, specifically examining human-likeness,

we can say that our proposed approach does not hinder performance

compared to the benchmarks. However, using speaker and listener

models alone is not enough in a dyadic setting, as indicated by the

significantly better-performing set of {SE, SF, SG, SJ, SL} models, and
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Figure 3: Significance of pairwise differences between con-
ditions. White means that the condition listed on the y-axis
rated significantly above the condition on the x-axis, black
means the opposite (y rated below x), and grey means no
statistically significant difference at the level 𝛼 = 0.05 after
Holm-Bonferroni correction [12]. Conditions are listed in
the same order as in Figure 2.

the significantly higher mean and median human-likeness scores

of the ground truth.

6.2 Appropriateness for agent speech
The appropriateness for agent speech (i.e., monadic appropriate-

ness) was evaluated with 600 participants who contributed 36 rat-

ings to this part of the study, with every condition receiving at

least 1766 scores. The scores represent a mean appropriateness

score (MAS), which is calculated by converting user responses to

a 5-point scale ranging from −2 to 2. The MAS are shown in Ta-

ble 1(a) and represented in Figure 4(a). Furthermore, similar to the

human-likeness evaluation, the pairwise comparison of solutions

can be seen in Figure 5(a). To compare the performance of different

solutions, Welch’s t-test, an unpaired statistical test was used. To

correct the test results for multiple comparisons a technique called

the BH non-adaptive one-stage linear step-up procedure [4] was

used.

Based on the results, our solution is statistically different from

chance level performance (see dashed line in Figure 4(a)). The natu-

ral (NA) condition was significantly more appropriate compared

to all synthetic condiditons. Regarding the condition of our pro-

posed solution (SD), it was significantly more appropriate than the

condition sets of {SC, SL} and {SA, SB, SH}. Moreover, it was not

significantly different from the condition set of {BD, SE, SI, SK}. The

remaining 7 conditions and NA were found to be significantly more

appropriate than SD. As for preference comparison, SD was signif-

icantly more preferred than SC and SL, and it was less preferred

than conditions NA, SG, and SJ.

Furthermore, we can infer that our proposed solution can match

other conditions with regard to user preference when it comes to

monadic appropriateness. However, it fails to be distinguished from

BD. This might be due to BD being trained on all available samples,

while SD is only trained for dyadic cases on samples where the

agent is speaking. It could be that with an equal number of training

samples, its performance would show significant improvement.

However, it seems approaches focusing on model improvements

can improve monadic appropriateness more reliably.

6.3 Appropriateness for interlocutor speech
The appropriateness for interlocutor speech (i.e., dyadic appropri-

ateness) was evaluated with 600 participants who contributed 36

ratings to this part of the study, with every condition receiving at

least 993 scores. Just as in the case of the monadic appropriateness

evaluation, the scores are mean appropriateness scores and are

calculated as described in Section 6.2. The mean appropriateness

scores are shown in Table 1(b) and represented in Figure 4(b). The

pairwise comparison of solutions can be seen in Figure 5(b). The

comparative analysis and correction for multiple condition com-

parisons were performed the same way as presented in Section 6.2.

The results show that our condition (SD), with 7 other conditions,

{SE, SF, SI, BM, SJ, SC, SK}, is not significantly different from a

chance level performance (see dashed line in Figure 4(b)). As for

the pairwise comparison, once again NA was significantly more

appropriate than other conditions. Consequently, while our solution

was significantly less appropriate than NA, it was significantly more

appropriate than condition SH and on par with all other conditions.

It can be observed that regarding dyadic appropriateness, nu-

merous conditions failed to be significantly different from a chance

level score and, when compared to each other, they performed

without significant difference. Regarding our solution, this means

that despite addressing the problem in two predicting models, the

generated listener behaviour was not improved compared to other

approaches.

7 CONCLUSIONS AND TAKEAWAYS
This work presented an approach targeting a dyadic gesture gener-

ation problem utilising a Tacotron2-based solution. Based on the

different behaviours an agent is expected to exhibit while speak-

ing contrary to when it is listening, we investigated the effect of

training separate models for solving this task. Our solution used

the dyadic version of the model proposed by Chang et al. [9] and

was trained on the speaking and listening samples of the Talking

With Hands 16.2 M dataset [16]. Based on the GENEA Challenge

2023 [14] evaluation metrics, it did not perform significantly dif-

ferently from the dyadic baseline and a few other conditions with

regard to human-likeness, and monadic and dyadic behaviour ap-

propriateness.

We see as a possible improvement the individual tuning of hy-

perparameters of the dyadic baseline model for the two distinct

models we wish to produce. We believe that revising the input fea-

tures of the two models would also be worthwhile. We base this on

the observation that the monadic baseline (notably not using inter-

locutor features) performed better in the monadic appropriateness,

and similarly, the dyadic baseline (using all features) performed

better in the dyadic appropriateness evaluations. Perhaps if our

proposed models would reflect these changes in features, or refine

the current model structures based on the validation set, it could
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(a)Monadic appropriateness

Condi-

MAS

Pref. Raw response count

tion matched 2 1 0 −1 −2 Sum

NA 0.81±0.06 73.6% 755 452 185 217 157 1766

SG 0.39±0.07 61.8% 531 486 201 330 259 1807

SJ 0.27±0.06 58.4% 338 521 391 401 155 1806

BM 0.20±0.05 56.6% 269 559 390 451 139 1808

SF 0.20±0.06 55.8% 397 483 261 421 249 1811

SK 0.18±0.06 55.6% 370 491 283 406 252 1802

SI 0.16±0.06 55.5% 283 547 342 428 202 1802

SE 0.16±0.05 54.9% 221 525 489 453 117 1805

BD 0.14±0.06 54.8% 310 505 357 422 220 1814

SD 0.14±0.06 55.0% 252 561 350 459 175 1797
SB 0.13±0.06 55.0% 320 508 339 386 262 1815

SA 0.11±0.06 53.6% 238 495 438 444 162 1777

SH 0.09±0.07 52.9% 384 438 258 393 325 1798

SL 0.05±0.05 51.7% 200 522 432 491 170 1815

SC −0.02±0.04 49.1% 72 284 1057 314 76 1803

(b) Dyadic appropriateness

Condi-

MAS

Pref. Raw response count

tion matched 2 1 0 −1 −2 Sum

NA 0.63±0.08 67.9% 367 272 98 189 88 1014

SA 0.09±0.06 53.5% 77 243 444 194 55 1013

BD 0.07±0.06 53.0% 74 274 374 229 59 1010

SB 0.07±0.08 51.8% 156 262 206 263 119 1006

SL 0.07±0.06 53.4% 52 267 439 204 47 1009

SE 0.05±0.07 51.8% 89 305 263 284 73 1014

SF 0.04±0.06 50.9% 94 208 419 208 76 1005

SI 0.04±0.08 50.9% 147 269 193 269 129 1007

SD 0.02±0.07 52.2% 85 307 278 241 106 1017
BM −0.01±0.06 49.9% 55 212 470 206 63 1006

SJ −0.03±0.05 49.1% 31 157 617 168 39 1012

SC −0.03±0.05 49.1% 34 183 541 190 45 993

SK −0.06±0.09 47.4% 200 227 111 276 205 1019

SG −0.09±0.08 46.7% 140 252 163 293 167 1015

SH −0.21±0.07 44.0% 55 237 308 270 144 1014

Table 1: Summary statistics of user-study responses from both appropriateness studies (a - monadic; b - dyadic), with confidence
intervals for the mean appropriateness score (MAS) at the level 𝛼 = 0.05; “Pref. matched” identifies how often test-takers
preferred matched motion in terms of appropriateness after splitting ties. Conditions are ordered by MAS.

(a) NA SG SJ BM SF SK SI SE BD SD SB SA SH SL SC0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
ro

p
o
rt

io
n
 o

f 
an

n
ot

at
or

 p
re

fe
re

n
ce

s

Clear pref. matched Slight pref. matched No pref. Slight pref. mismatched Clear pref. mismatched

(b) NA SA BD SB SL SE SF SI SD BM SJ SC SK SG SH0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
ro

p
o
rt

io
n
 o

f 
an

n
ot

at
or

 p
re

fe
re

n
ce

s

Clear pref. matched Slight pref. matched No pref. Slight pref. mismatched Clear pref. mismatched

Figure 4: Bar plots visualising the response distribution in the appropriateness studies (a - monadic; b - dyadic). The blue bar
(bottom) represents responses where subjects preferred the matched motion, the light grey bar (middle) represents tied (“They
are equal”) responses, and the red bar (top) represents responses preferring mismatched motion, with the height of each bar
being proportional to the fraction of responses in each category. Lighter colours correspond to slight preference, and darker
colours to clear preference. On top of each bar is also a confidence interval for the mean appropriateness score, scaled to fit the
current axes. The dotted black line indicates chance-level performance. Conditions are ordered by mean appropriateness score.

achieve better results. Finally, we hypothesize that a conditional

GAN-based (cGAN) model could improve our models’ performance.

Consequently, we will benchmark its performance on this dataset,

and perform ablations for the splitting on the speaker and listener

models. This line of thought forms the basis of our planned future

work in relation to the GENEA Challenge and its dataset.
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