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Abstract

Spiking Neural Networks (SNNs) seek to mimic the spiking behavior of biological1

neurons and are expected to play a key role in the advancement of neural computing2

and artificial intelligence. The efficiency of SNNs is often determined by the3

neural coding schemes. Existing coding schemes either cause huge delays and4

energy consumption or necessitate intricate neuron models and training techniques.5

To address these issues, we propose a novel Stepwise Weighted Spike (SWS)6

coding scheme to enhance the encoding of information in spikes. This approach7

compresses the spikes by weighting the significance of the spike in each step of8

neural computation, achieving high performance and low energy consumption. A9

Ternary Self-Amplifying (TSA) neuron model with a silent period is proposed for10

supporting SWS-based computing, aimed at minimizing the residual error resulting11

from stepwise weighting in neural computation. Our experimental results show12

that the SWS coding scheme outperforms the existing neural coding schemes in13

very deep SNNs, and significantly reduces operations and latency.14

1 Introduction15

Spiking Neural Networks (SNNs) are known as the third generation of neural network models16

inspired by the biological structures and functions in the brain [32]. Unlike traditional Artificial17

Neural Networks (ANNs) that use continuous activation functions, SNNs incorporate discrete spiking18

events, enabling them to capture temporal dynamics and process information in a manner that closely19

mimics the brain’s functioning [31]. This event-driven paradigm aligns with the brain’s energy-20

efficient computation and has the potential for more efficient and lower-power computing systems.21

[33].22

Various coding schemes have been proposed to describe neural activities, including rate coding and23

temporal coding [9]. Rate coding counts the number of spikes fired within a broad time window24

[23, 3, 18, 6], which effectively mitigates the impact of short-term interference on the signal. It was25

widely accepted in the early days and typically outperformed temporal coding [11, 34, 4, 29, 20].26

However, the rate coding scheme disregards the information in the temporal domain of the input27

spike sequence and requires many pulses to represent the input signal value, making it an inefficient28

coding method that negates the low-power benefits of SNN. Due to the functional similarity to the29

biological neural network, spiking neural networks can embrace the sparsity found in biology and30

are highly compatible with temporal coding [31, 33, 27, 28, 21, 15]. Temporal coding relies on31

the specific timing or patterns of input spikes, allowing for greater information capacity in a single32

pulse. However, it requires a large number of time steps to provide fine-grained timing, which33

increases inference latency. Its sensitivity to variations in spike timing also makes it more vulnerable34

to temporal jitter or delays [25, 24]. Additionally, decoding temporal-coded information usually35

requires more complex neuron models [30, 36] and training methodologies [17, 26].36
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In the study of the temporal information dynamics of spikes, Kim et al. [16] discovered a phenomenon37

of temporal information concentration in SNNs. It is found that after training, information becomes38

highly concentrated in the first few timesteps. Based on this observation, we hypothesize that, from39

the perspective of the postsynaptic neuron, the first arriving spikes contain more information and40

require stronger responses. Consequently, we propose a mechanism whereby the neuron augments41

its own membrane potential with a specific coefficient prior to processing the subsequent input.42

This enhancement serves to increase the importance of preceding pulses on neurons, which is why43

the spikes are designated as Stepwise Weighted Spikes (SWS). Nevertheless, the amplification of44

the membrane potential makes it difficult for neurons to reduce its value through traditional "soft45

reset" (i.e. subtracted by an amount equal to the firing threshold), which can result in residual errors46

after neuron firing. To address this issue, we make the membrane potential reduced by a magnitude47

exceeding the threshold after firing. As a result, the membrane potential has both positive and negative48

residual values, which will generate both positive and negative spikes. This neuron is designated as a49

Ternary Self-Amplifying (TSA) neuron. To further reduce the error caused by the weighting process,50

a silent period is incorporated into the TSA neuron, allowing it to receive more input information51

before firing. We perform the classification tasks with SWS-based SNN on MNIST, CIFAR10, and52

ImageNet. The results show that the SWS coding scheme can achieve better performance with much53

fewer coding and computing steps. Even in very deep SNN, SWS coding scheme still performs well54

and achieves similar accuracy to the ANN with the same structure. Our major contributions to this55

paper can be summarized as follows:56

• We propose the SWS coding scheme, which enables easy implementation of SNNs with57

low energy consumption and high accuracy. The stepwise weighting process enhances58

the information-carrying capacity of the preceding pulses, greatly reducing the number59

of coding spikes. Negative pulses are introduced in SWS coding to ensure an accurate60

information transmission.61

• A novel TSA neuron model is proposed. TSA neuron progressively weights the input by62

augmenting its residual membrane potential before receiving the subsequent spike. The63

introduction of negative residual membrane potential and negative thresholds enhances the64

accuracy of the model’s output.65

• A silent period is added to TSA neuron to markedly improve accuracy at minimal latency66

cost. By adjusting the silent period step and coding step, SWS-based SNNs can exhibit67

performance advantages in different aspects, improving the flexibility of applications.68

2 Related work69

SNNs use spike sequences to convey information, making the encoding of real data into pulses a70

crucial step. Currently, the mainstream schemes of neural coding are rate coding and temporal coding71

[9, 33, 32]. Rate coding represents different activities with the number of spikes emitted within72

a specific time window. Due to its simplicity, rate coding is commonly used in deep learning of73

SNNs. However, it distributes information uniformly across a large number of spikes, resulting in an74

inefficient transmission process that increases network latency and energy consumption. Numerous75

researchers have proposed solutions to optimize inference latency in rate coding. Han et al.[11]76

proposed a "soft reset" spiking neuron model that retains a residual membrane potential after firing77

to better mimic the ReLU functionality. They demonstrated near lossless ANN-SNN conversion by78

using 2-8 times fewer inference time steps. Still, a delay of thousands of steps is required in large79

datasets or deep networks. In [14], Hu et al. reduced the encode time steps by converting a quantized80

low-precision ANN to a rate-coded SNN. They also proposed a layer-wise fine-tuning mechanism81

to minimize the inference latency. However, their neuron model and the subsequent fine-tuning82

algorithm are relatively complex. Furthermore, in deeper neural networks such as ResNet56, a 1.5%83

drop in accuracy can be observed. The above rate encoding solutions are limited because they do not84

consider the significance of each spike.85

In [15], Kim et al. proposed phase coding, which assigns different weights to spikes based on their86

time phase. However, the transmission amount of information is bounded by the global phase, which87

causes inefficiency in hidden layers, resulting in a latency of up to three thousand steps for a 32-layer88

network. Burst coding [21] attempts to overcome this issue by introducing burst spikes, which89

utilize Inter-Spike Interval (ISI). Burst spikes are capable of conveying more information quickly and90

accurately by inducing Post-Synaptic Potential (PSP) dramatically. Nevertheless, it is still deficient91
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Table 1: Common symbols and their meanings in this paper.

Symbol Meaning

Sl
i(t) The spike train fired by the ith neuron in the lth layer

ul
i(t) The membrane potential of the ith neuron in the lth layer

zli(t) The integrated inputs to the ith neuron in the lth layer
V l
th The firing threshold of the neurons in the lth layer
θl The amplitude of the spikes fired by the neurons in the lth layer

in terms of latency and efficiency. Rueckauer and Liu [27] proposed an efficient temporal encoding92

scheme where the analog activation values of the ANN neurons are represented by the inverse Time-93

To-First-Spike (TTFS) in the SNN neurons. Their new spiking network model generates 7-10 times94

fewer pulses by utilizing temporal information carried by a single spike. However, as pointed out95

in [10], TTFS coding scheme incurs expensive memory access and computational overhead, which96

diminishes the benefit of reduced pulse count. Furthermore, TTFS necessitates a large number of time97

steps to differentiate between various time points, which also increases network latency. Han and98

Roy [10] proposed the Temporal-Switch-Coding (TSC) scheme, in which each input image pixel is99

represented by two spikes, and its intensity is proportional to the timing between the two pulses. Their100

results showed a reduction in energy expenditure. However, TSC coding requires a large number of101

time steps to provide distinguishable time intervals, rendering it an ineffective approach to addressing102

the issue of the long latency.103

Overall, rate coding employs a large number of pulses to encode information, which results in a104

considerable energy overhead and inference delays. On the other hand, temporal coding allows for105

greater information capacity in a single spike, but this does not reduce the computing latency as a106

precise time point or period can be identified only with a sufficient number of time steps. Therefore,107

new neural coding schemes should be developed.108

3 Stepwise weighted spike coding scheme109

3.1 Stepwise weighting110

The spike train Sl
i(t) of the ith neuron in the lth layer can be expressed as follows:111

Sl
i(t) =

∑
t
l,(f)
i ∈F l

i

θlδ(t− t
l,(f)
i ) (1)

where δ(t) is the Dirac delta function, θl is the spike amplitude of the lth layer, which is usually set112

to the same value as the firing threshold. f is the index of the spike in the sequence, and F l
i denotes a113

set of spike times which satisfies the firing condition:114

t
l,(f)
i : ul

i(t
l,(f)
i ) ≥ V l

th (2)

where ul
i(t) denotes the membrane potential and V l

th denotes the firing threshold of the neurons in115

the lth layer.116

Our basic idea is to amplify the membrane potential before the receipt of the subsequent input, which117

amplifies and prolongs the impact of the preceding input spikes on membrane potential, emulating the118

phenomenon of information concentration identified in [16]. For clarity, the meanings of important119

symbols are provided in table 1. The action of a neuron in SWS-SNN can be described as follows:120

ul
j(t) = βul

j(t− 1) + zlj(t)− Sl
j(t) (3)

where β is the amplification factor which should be greater than one, zlj(t) denotes the PSP (i.e.121

integrated inputs):122

zlj(t) =
∑
i

ωl
ijS

l−1
i (t) + blj (4)

where ωij is the synaptic weight and blj is the bias. Begin with the initial value ul
j(0) = 0 and123

iteratively apply eq. (3) for each subsequent value until ul
j(n) and substitute eq. (1) and eq. (4) into it,124
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Figure 1: (a) Illustration of the stepwise weighting process. The meanings of the symbol zlj(t), u
l
j(t)

and Sl
j(t) can be found in table 1. The blue dotted line represents the membrane potential prior to the

spike firing, and the black exponential function-like dotted line is employed to illustrate the trend of
membrane potential amplification. (b) A V l

th equal to θl results in residual errors, leaving a lot of
information unencoded. (c) V l

th is set to 1
2θ

l, which increases the possibility to fire spikes early to
better limit the residual. (d) Use negative spikes to correct the excessively emitted information.

eq. (3) can be written as:125

ul
j(n) = βnul

j(0) +

n∑
τ=1

βn−τzlj(τ) =
∑

t
l−1,(f)
i

∑
i

n∑
τ=1

βn−τωl
ijθ

l−1δ(τ − t
l−1,(f)
i ) + βn−τ blj (5)

Note that Sl
j(t) is set to zero for simplicity. From eq. (5), it can be seen that the stepwise augment of126

the membrane potential results in the spike input at time t
l−1,(f)
i encoding the value θl−1βn−t

l−1,(f)
i .127

This process is thus referred to as stepwise weighting, and βn−t
l−1,(f)
i serves as the weight. The128

earlier the input pulse, the greater its ability to carry information. This solves the problem of excessive129

encoding steps in previous schemes, allowing faster information transmission.130

3.2 Residual error131

Stepwise weighting effectively assigns more weight to earlier arriving pulses, but it also makes spike132

generation more tricky. To ensure that input information is efficiently encoded and transmitted to133

the next layer, the residual membrane potential should be minimized after neural computation is134

completed. The stepwise weighting, however, amplifies the residual potential from the previous135

time step. If zlj(t) remains high in subsequent steps, reducing the membrane potential becomes136

challenging, as shown in fig. 1(b). This vicious cycle ultimately leads to a persistently high membrane137

potential, indicating that a substantial amount of information remains unencoded.138

We refer to this phenomenon as residual error. One contributing factor is that the threshold is set139

too high, resulting in a pulse being emitted only when the membrane potential exceeds the value θl.140

While this prevents excessive information transmission, it results in missed opportunities to bring141

down ul
j(t) by firing a spike.142

To address this issue, we propose setting the firing threshold V l
th to 1

2θ
l. This adjustment facilitates143

pulse generation and reduces the residual membrane potential. After the neuron firing, the membrane144

potential is subtracted by θl, which leads to the emergence of a negative residual that will be stepwise145
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Figure 2: (a) Uncertainty in the input distribution leads to residual errors. (b) The silent period allows
more information to be known when firing pulses. Ts is set to 1 here. V l

th is amplified by βTs , and the
original threshold is represented by a gray solid line. The orange dashed line represents the amount of
membrane potential reduction after firing. (c) The silent period also avoids some unnecessary spikes
and increases sparsity. Without the silent period, since ul

j(1) exceeds the original threshold, a pulse
will be generated at t = 1, which will later be corrected by another negative spike. (d) The impact of
the silent period on network latency. The output spike sequences corresponding to different inputs
are drawn in blocks of different colors. The pulses drawn in the spike sequence are for illustrative
purposes only.

weighted over time. The coefficient 1/2 is selected as it is capable of controlling both positive and146

negative residuals within a narrow and balanced range. A negative threshold −V l
th is introduced into147

the neuron model, which initiates a negative spike when the membrane potential falls below this148

threshold. This mechanism allows the excessively emitted information to be corrected by the negative149

spike, as shown in fig. 1(d). Given the above characteristics, we designate this neuron model as a150

TSA neuron.151

3.3 Silent period152

Another contributing factor to residual error is the imbalanced distribution of zlj(t). A burst input of153

zlj(t) at time point τ results in a sharp rise in membrane potential, making it difficult for subsequent154

spikes to reduce it, as shown in fig. 2(a).155

This can be addressed by incorporating a silent period Ts into the TSA neuron model. The neurons156

only integrates input and performs stepwise weighting, but are not allowed to fire in the first Ts157

steps. This enables the acquisition of more known information before spike generation, resulting158

in increased accuracy, as illustrated in fig. 2(b). Since the preceding input information has been159

amplified by βTs after the silent period, V l
th also needs to be adjusted accordingly, which is set to160

βTs

2 θl. Similarly, after firing, the membrane potential should be subtracted by θlβTs . Note that the161

fired spike amplitude remains unchanged, that is, θl.162

The impact of the silent period on network latency is shown in fig. 2(d). The output results for163

different input sequences are distinguished by blocks of different colors. It can be observed that164

as network depth increases, the silent period accumulates, leading to a higher output latency. The165

inference latency of SWS-SNN can be calculated as follows:166

Tinf = Tc + Ts · LTSA (6)
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where Tinf is the inference delay, Tc is the coding time steps, Ts is the length of the silent period and167

LTSA is the number of TSA neuron layers. The neuron model in other coding schemes yields a zero168

Ts, leading to an output delay equal to the coding time step, which is consistent with the definition in169

the previous scheme. From fig. 2(d), it can be seen that different input sequences are processed in a170

pipeline-like manner, and the value of Tc + Ts determines the throughput rate of SWS-SNN.171

3.4 Input encoding172

According to eq. (5), the value that can be losslessly encoded under the SWS coding scheme can be173

expressed as follows:174

Aj =

Tc∑
τ=1

aτj · θ0βTc−τ (7)

where Aj denotes the encoded value. aτj ∈ {−1, 0, 1} indicates the type of the output spike at time τ :175

1 for a positive pulse, −1 for a negative pulse and 0 for no pulse. Tc denoted the time steps used for176

encoding. The weight βTc−τ results from the stepwise weighting process described in section 3.1. θ0177

denotes the spike amplitude of the input encoding layer, which can be assigned an appropriate value178

based on the range to be encoded.179

According to eq. (7), given a fixed Tc and θ0, the distribution of Aj is determined by β. Setting β to180

2 is reasonable, as it ensures Aj is evenly distributed within the codable range. Compared to rate181

coding, which necessitates 2Tc coding steps to encode the same range with same precision, SWS182

coding significantly enhances coding efficiency. Note that with the introduction of negative pulses,183

setting β to 3 can also achieve a uniform distribution of Aj and offers even more values for accurate184

encoding compared to β = 2.1 When β is less than 2, the distribution of Aj becomes denser at185

smaller values, which may be suitable for encoding data that follows a similar distribution.186

For static image classification tasks, the pixel value pj can be encoded by applying a constant input187

z0j (t) to the TSA neuron. Considering the stepwise weighting process, we can write:188

pj =

Tc∑
τ=1

∣∣z0j ∣∣βTc−τ (8)

where
∣∣z0j ∣∣ denotes the amplitude of the constant input z0j (t). Solve for

∣∣z0j ∣∣ and we have:189

z0j (t) =

Tc∑
σ=1

pj∑Tc

τ=1 β
Tc−τ

· δ(t− σ) (9)

Given that z0j (t) is a constant at each step, Ts can be set to 0 for the encoding layer. However, the190

neuron must await Ts time steps after the completion of an encoding. This allows neurons in the191

subsequent layer to complete the previous neural computing before receiving the next encoded input.192

4 Experiments193

In this section, we convert quantized ANNs to SWS-based SNNs2 and conduct experiments on194

MNIST, CIFAR10, and ImageNet. Firstly, an overview of SWS-SNN’s performance across various195

datasets is provided. Subsequently, the network’s inference latency and energy consumption is196

compared with other spike coding schemes. Finally, an ablation study is conducted to investigate the197

impact of lowered thresholds and silent periods on reducing residuals and enhancing accuracy.198

ANNs used for conversion are all quantized to 8 bits. β is set to 2 in the experiments to ensure that199

codable values are evenly distributed. Compared to β = 3, a smaller amplification factor reduces the200

impact of residual errors, resulting in more accurate output.201

1Setting β to 2 introduces some coding redundancy. E.g., a1
j = 1, a2

j = −1 and a1
j = 0, a2

j = 1 encodes the
same amount of information.

2Details of the conversion process can be found in appendix A.1 and appendix A.2
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Table 2: Performance on CIFAR10 and ImageNet.

Category Methods Architecture Time
Step Ts

SNN
Acc ∆Acc†

C
IF

A
R

10
Directly
Learning

STBP-tdBN[35] ResNet-19 6 - 93.16% -
TET[5] ResNet-19 6 - 94.50% -

ANN-SNN

TTRBR[20] ResNet-18 64 - 95.04% −0.13%
DSR[19] PreAct-ResNet-18 20 - 95.24% -

Calibration[18] VGG-16 256 - 95.79% +0.05%
OPI[1] VGG-16 256 - 94.49% −0.08%

Opt Conversion[4] ResNet-20 128 - 93.56% +1.25%

ANN-SNN SWS (ours) ResNet-18 8 1 95.67% +0.22%
VGG-16 8 2 95.86% −0.04%

Im
ag

eN
et

Directly
Learning

TET[5] SEW-ResNet-34 4 - 68.00% -
STBP-tdBN[35] SEW-ResNet-34 4 - 67.04% -
SEW Resnet[8] SEW-ResNet-152 4 - 69.26% -

ANN-SNN

Hybrid training[26] ResNet-34 250 - 61.48% −8.72%
Spiking ResNet[13] ResNet-50 350 - 72.75% −2.70%

QCFS[2] VGG-16 64 - 72.85% −1.44%
Fast-SNN[14] VGG-16 7 - 72.95% −0.41%

COS[12] ResNet-34 8 - 74.17% −0.05%
RMP-SNN[11] ResNet-34 4096 - 69.89% −0.75%

TTRBR[20] ResNet-50 512 - 75.04% −0.98%

ANN-SNN SWS (ours)

VGG-16 8 2 75.27% −0.11%
ResNet-34 8 2 76.10% −0.08%

Inception-v3 8 2 76.70% −0.70%
ResNet-50 8 2 80.34% −0.35%

ResNeXt101_32x8d 8 1 81.32% −1.17%
ResNeXt101_32x8d 8 2 82.06% −0.42%

† ∆Acc = AccSNN − AccANN

4.1 Overall performance202

For simple classification tasks such as CIFAR10, our proposed SWS coding scheme has a faster203

inference speed than other ANN-SNN models while achieving similar classification accuracy, or has204

higher classification accuracy than direct learning at similar inference speeds. For example, ResNet18205

with SWS improves throughput seven times over [20] while simultaneously improving accuracy.206

Although the network in [5] has a slightly higher throughput, its accuracy is 1.17% lower than our207

scheme. To fully test the potential of our proposed coding scheme, we conducted experiments on208

ImageNet using networks with various structures. The experimental results demonstrate that SWS209

coding has distinct advantages on extremely deep SNNs. Our SWS-based ResNet50 and ResNeXt101210

achieved over 80% accuracy on ImageNet with only eight coding steps. The model in [12] achieves211

an almost lossless conversion with eight time steps. However, their method has to adjust the resting212

potential of neurons layer by layer, and the calibration effect for deeper networks is unclear. In [14],213

the original ANN needs to be quantized to 3 bits, resulting in a larger conversion loss. Directly trained214

SNNs typically achieve higher throughput, but their accuracy still requires improvement. In addition,215

the SWS coding scheme is easy to implement. No further fine-tuning is required after the conversion.216

4.2 Accuracy vs. latency217

The comparison of latency results between SWS-SNN and other ANN-converted SNNs[1, 11, 10,218

4, 18, 2, 7] is illustrated in fig. 3. The latency of the network is calculated with eq. (6). In the219

counterpart models, the variation of delay is mainly caused by the changes in Tc. In contrast,220

Ts determines latency in deep SWS-SNNs. Therefore, SWS-SNN has an upper limit on latency:221

Tmax
inf = Tc(1 + LTSA), which causes our curve to terminate earlier in fig. 3.222

To ensure a fair comparison, we represent the ANN accuracy of each counterpart with dotted lines of223

the same color. The experimental results indicate that SWS-SNN can achieve optimal performance224

with minimal latency. Specifically, SWS-based VGG-16 can converge to the ANN performance225
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(b) VGG-16 on ImageNet
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Figure 3: Latency versus accuracy. The ANN accuracy of each compared SNN is marked by dotted
lines of the same colour. (a) VGG-16 on CIFAR10. (b) VGG-16 on ImageNet. (c) ResNet34 on
ImageNet.
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Figure 4: (a) Accuracy versus OPF with different combinations of Tc and Ts. (b) Comparison of
accuracy and energy consumption of SWS-SNN with other SNNs.

in the shortest time on CIFAR10 and reduce the inference latency on ImageNet by more than one226

order. Even though the silent period accumulates when the network gets deeper, the results in fig. 3(c)227

demonstrate that our scheme still achieves the fastest inference speed with the highest accuracy in a228

34-layer network. Note that Ts is set to the same value for each TSA layer for simplicity, resulting in229

discontinuous Tinf values. This causes a sharp drop in accuracy at smaller delays.230

4.3 Operation counting231

To compare the energy consumption of SWS-SNN with SNNs under other encoding schemes, we232

adopt the method as in [29, 27, 28] to count operations:233

OPF = (Tc + Ts)NTSA +

LTSA∑
l=1

Tsl+Tc∑
τ=Tsl+1

f l
outn

l(τ) (10)

where OPF (Operations Per Frame) denotes the number of operations for the classification of one234

frame, Tc and Ts denotes the coding steps and the length of the silent period, respectively. LTSA235

denotes the number of TSA layers, f l
out denotes the fan-out of neurons in layer l, nl(t) denotes the236

number of spikes fired in layer l at time τ and NTSA denotes the number of TSA neurons. The237

first term on the right-hand side of the equation arises from the TSA’s requirement to amplify the238

membrane potential. Note that due to the accumulation of Ts over the network depth, the time period239

for counting nl(t) varies with l.240

Experiments were conducted on MNIST using LeNet-5. We varied the silent periods and adjusted241

the coding steps to study their effects on OPF. The results are presented in fig. 4(a). As indicated in242

eq. (10), reducing Tc lowers energy overhead. This presents a trade-off between energy consumption243

and inference accuracy, as fewer coding steps also reduce the number of values that can be accurately244

encoded. A larger Ts requires TSA neurons to perform more operations to amplify the membrane245

potential. On the other hand, it reduces the number of unnecessary pulse emissions. Overall, silent246

period has a negligible impact on OPF.247
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Figure 5: (a) The probability density of the residuals with/without a lowered V l
th and a silent period.

(b) Inference accuracy of SWS-ResNet18 on CIFAR10 with/without a lowered V l
th and a silent

period.

In fig. 4(b), the energy consumption of SWS-based SNN is compared with that of other SNNs. The248

experimental results demonstrate that our coding scheme can achieve a favorable balance between249

accuracy and energy consumption. The SWS coding scheme is superior to rate coding and temporal250

pattern coding in that it requires fewer operations and achieves higher accuracy. In TTFS encoding,251

each neuron fires at most one spike at a time, theoretically demanding the least OPF. With Tc = 4,252

SWS-SNN can achieve significantly higher accuracy with minimal increase in OPF. Note that if253

the ANN is quantized to a lower number of bits (e.g., 4 bits), the error caused by the reduced Tc254

can actually be compensated by the quantization algorithm, which can potentially result in a higher255

performance.256

4.4 Ablation study257

In section 3.2 and section 3.3, we proposed reducing the firing threshold and introducing a silent258

period to mitigate residual error. To assess the impact of these two adjustments, we conducted259

experiments on CIFAR10 using ResNet18. After the neural computation, the residuals (absolute260

values) of the TSA neurons were analyzed. We first scaled the residuals by 1/βTs to counteract the261

effect of membrane potential amplification caused by the silent period, and then normalized them in262

units of θl. The probability density of the residuals is shown in fig. 5(a).263

The results demonstrate that lowering V l
th shifts the residual distribution from around 0.5θl to264

approximately 0.25θl, corresponding to the quantization errors (i.e. rounding errors) under their265

respective thresholds. The addition of silent periods further concentrates the distribution and reduces266

large deviations. As can be seen from the green curve in fig. 5(a), setting Ts to 2 and V l
th to θl

/2267

makes the residuals almost all distributed around the quantization error. Compared to the red curve268

(without a lowered V l
th or a silent period), the residuals are greatly reduced, which fully proves the269

effectiveness of lowering the threshold and adding a silent period. The inference results on CIFAR10270

is shown in fig. 5(b). When setting V l
th to θl and Ts to zero, the network’s output is almost random.271

Lowering the threshold and adding a silent period improve the accuracy to 35.41% and 84.21%,272

respectively. Ultimately, the combination of both adjustments enabled SWS-ResNet18 to achieve an273

accuracy of 95.68% on CIFAR10.274

5 Conclusion275

In this work, we have proposed a novel SWS spike coding scheme. The stepwise weighting process276

enhances the information-carrying capacity of the preceding pulses, greatly reducing the number of277

time steps for encoding. Combined with a silent period, our proposed TSA neuron model solves the278

problem of residual errors and achieves fast and accurate information transmission. Our experimental279

results have demonstrated that SWS coding is highly effective in extremely deep SNNs and achieves280

state-of-the-art accuracy. The SWS coding scheme is also highly flexible and can adapt to various281

needs.282
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A Appendix387

A.1 Convert quantized ANNs to SWS-SNNs388

A pretrained ANN was first obtained from torchvision, which is part of the PyTorch[22] project, and389

then quantized into n bits following the Quantization-Aware Training (QAT) Workflow provided by390

PyTorch (8 bits in the actual experiment, with n bits used here for generality). The quantized ANN391

can be characterized by the parameters listed in table 3, and the basic idea of the conversion process is392

illustrated in fig. 6(a). The activations of the quantized ANN can be mapped to an integer Q between393

[0, 2n − 1] using a scaling factor C and a zero point Z. With the same weight and bias between Ql
i394

and Ql
o, the TSA layer can generate Sl, which encodes Ql

o, provided that Sl−1 encodes Ql
i and no395

residual error occurs. In the actual SNN, the pulse amplitude θl is normalized to 1. Therefore, the396

bias need to be further scaled to derive the final weight W l and bias bl for the SWS-SNN.397

Table 3: The notations and meanings of parameters in the quantized network.

Notation Meaning

X̂ l
i The quantized input of the lth layer

X̂ l
o The quantized output of the lth layer

Cl
i The scaling factor of the quantized input of the lth layer

Zl
i The zero point of the quantized input of the lth layer

Cl
o The scaling factor of the quantized output of the lth layer

Zl
o The zero point of the quantized output of the lth layer

Ŵ l The quantized weight of layer l
Cl

w The scaling factor of the quantized weight of layer l
Zl
w The zero point of the quantized weight of layer l
b̂l The bias of layer l

The derivation is as follows. After QAT, we have:398

Ŵ lX̂ l
i + b̂l = X̂ l

o, (11)

Ql
i =

X̂ l
i

Cl
i

+ Zl
i , (12)

Ql
o =

X̂ l
o

Cl
o

+ Zl
o, (13)

where Ql
i, Q

l
o represent the integers to which the quantized input and output are mapped, respectively.399

Substitute eq. (12) and eq. (13) into eq. (11), and we can write:400

Ŵ l(Ql
i − Zl

i)C
l
i + b̂l = (Ql

o − Zl
o)C

l
o, (14)

which gives:401

Ql
o = Ŵ lC

l
i

Cl
o

Ql
i +

b̂l

Cl
o

+ Zl
o −

Ŵ lZl
iC

l
i

Cl
o

= W̃ lQl
i + b̃l,

(15)
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Figure 6: (a) Convert quantized ANNs to SWS-SNNs. Ql
i and Ql

o represent the integers to which X̂ l
i

and X̂ l
o are mapped, respectively. W̃ l and b̃l denotes the weight and bias to get Ql

o from Ql
i. W

l and
bl denotes the weight and bias in SWS-SNN. The process of transferring weights and biases from
the quantized ANN to SWS-SNN is indicated by white arrows. The core of the conversion is that
the distribution of the integer Ql

o is known and can be easily encoded by Sl. (b) Process the input
pixels to encode by pulses with an amplitude of 1. P̄ denotes the original pixel value, P denotes the
mapped value and P̃ denotes the value after scaled by 1/θ0.

where402

W̃ l = Ŵ lC
l
i

Cl
o

, (16)

b̃l =
b̂l

Cl
o

+ Zl
o −

Ŵ lZl
iC

l
i

Cl
o

. (17)

As seen in eq. (15), with the weight and bias set to W̃ l and b̃l respectively, the layer outputs Ql
o when403

receiving Ql
i. The pulse amplitude θl can be set to any value as long as the codable range calculated404

by eq. (7) covers [0, 2n − 1]. Then we have:405

W l = W̃ l θ
l−1

θl
= Ŵ lC

l
i

Cl
o

θl−1

θl
(18)

Considering the membrane potential amplification, bl can be calculated as follows:406

bl =
1∑Tc

τ=1 β
Tc−τ

b̃l =
1∑Tc

τ=1 β
Tc−τ

(
b̂l

Cl
o

+ Zl
o −

Ŵ lZl
iC

l
i

Cl
o

) (19)

Once the Tc, β and θl (θl−1 is given by the previous layer) have been determined, all values on the407

right side of eq. (18) and eq. (19) are known. Consequently, Wl and bl in the SWS-SNN can be408

readily calculated from the weight and bias of the quantized ANN.409

After configuring the weights and biases as described above, the input pixel must be encoded into a410

pulse sequence with an amplitude of 1 as well. This process is illustrated in fig. 6(b). First, map the411

pixel value to [0, 2n − 1] using C0
i and Z0

i obtained from QAT. Assuming this range can be encoded412

by SWSs with an amplitude of θ0, scaling the pixel value by 1/θ0 allows the use of a sequence with413

θ0 = 1 for encoding. Finally, encode the scaled pixels following section 3.4, and the required input414

spike sequence is obtained.415

A.2 Details for QAT416

QAT is the quantization method that typically results in the highest accuracy. We basically follows417

the workflow provided by PyTorch. The default QAT quantization configuration is chosen to specify418

the kind of fake-quantization inserted after weights and activations. We choose Stochastic Gradient419

Descent (SGD) optimizer in QAT, with the value of momentum set to 0.9 and the learning rate set to420

1× 10−4 since the weights only need to be fine-tuned. QAT is done for 12 epochs and 20 batches in421

each epoch. We freeze the batch norm mean and variance estimates after three epochs and freeze the422

quantizer parameters (scaling factor and zero point) after another two epochs.423
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NeurIPS Paper Checklist424

1. Claims425

Question: Do the main claims made in the abstract and introduction accurately reflect the426

paper’s contributions and scope?427

Answer: [Yes]428

Justification: Stepwise weighting enhances the encoding of information in spikes, as is429

proved in eq. (5) in section 3.1. Our proposed SWS coding scheme achieves high perfor-430

mance and low energy consumption, which is supported by our experimental results in431

section 4. The TSA neuron model effectively minimizes the residual error, which can be432

proved from the ablation study in section 4.4.433

Guidelines:434

• The answer NA means that the abstract and introduction do not include the claims435

made in the paper.436

• The abstract and/or introduction should clearly state the claims made, including the437

contributions made in the paper and important assumptions and limitations. A No or438

NA answer to this question will not be perceived well by the reviewers.439

• The claims made should match theoretical and experimental results, and reflect how440

much the results can be expected to generalize to other settings.441

• It is fine to include aspirational goals as motivation as long as it is clear that these goals442

are not attained by the paper.443

2. Limitations444

Question: Does the paper discuss the limitations of the work performed by the authors?445

Answer: [Yes]446

Justification: The inclusion of silent periods can lead to increased latency, as noted in447

section 3.3, which is a limitation we’ve found so far. However, our experimental results448

demonstrate that our delay performance still surpasses that of other SNNs.449

Guidelines:450

• The answer NA means that the paper has no limitation while the answer No means that451

the paper has limitations, but those are not discussed in the paper.452

• The authors are encouraged to create a separate "Limitations" section in their paper.453

• The paper should point out any strong assumptions and how robust the results are to454

violations of these assumptions (e.g., independence assumptions, noiseless settings,455

model well-specification, asymptotic approximations only holding locally). The authors456

should reflect on how these assumptions might be violated in practice and what the457

implications would be.458

• The authors should reflect on the scope of the claims made, e.g., if the approach was459

only tested on a few datasets or with a few runs. In general, empirical results often460

depend on implicit assumptions, which should be articulated.461

• The authors should reflect on the factors that influence the performance of the approach.462

For example, a facial recognition algorithm may perform poorly when image resolution463

is low or images are taken in low lighting. Or a speech-to-text system might not be464

used reliably to provide closed captions for online lectures because it fails to handle465

technical jargon.466

• The authors should discuss the computational efficiency of the proposed algorithms467

and how they scale with dataset size.468

• If applicable, the authors should discuss possible limitations of their approach to469

address problems of privacy and fairness.470

• While the authors might fear that complete honesty about limitations might be used by471

reviewers as grounds for rejection, a worse outcome might be that reviewers discover472

limitations that aren’t acknowledged in the paper. The authors should use their best473

judgment and recognize that individual actions in favor of transparency play an impor-474

tant role in developing norms that preserve the integrity of the community. Reviewers475

will be specifically instructed to not penalize honesty concerning limitations.476
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3. Theory Assumptions and Proofs477

Question: For each theoretical result, does the paper provide the full set of assumptions and478

a complete (and correct) proof?479

Answer: [Yes]480

Justification: The membrane potential amplification enhances the information-carrying481

capacity of the preceding pulses and is proved in eq. (5).482

Guidelines:483

• The answer NA means that the paper does not include theoretical results.484

• All the theorems, formulas, and proofs in the paper should be numbered and cross-485

referenced.486

• All assumptions should be clearly stated or referenced in the statement of any theorems.487

• The proofs can either appear in the main paper or the supplemental material, but if488

they appear in the supplemental material, the authors are encouraged to provide a short489

proof sketch to provide intuition.490

• Inversely, any informal proof provided in the core of the paper should be complemented491

by formal proofs provided in appendix or supplemental material.492

• Theorems and Lemmas that the proof relies upon should be properly referenced.493

4. Experimental Result Reproducibility494

Question: Does the paper fully disclose all the information needed to reproduce the main ex-495

perimental results of the paper to the extent that it affects the main claims and/or conclusions496

of the paper (regardless of whether the code and data are provided or not)?497

Answer: [Yes]498

Justification: We set specific random number seeds when conducting experiments to ensure499

that all the results of section 4 are reproducible.500

Guidelines:501

• The answer NA means that the paper does not include experiments.502

• If the paper includes experiments, a No answer to this question will not be perceived503

well by the reviewers: Making the paper reproducible is important, regardless of504

whether the code and data are provided or not.505

• If the contribution is a dataset and/or model, the authors should describe the steps taken506

to make their results reproducible or verifiable.507

• Depending on the contribution, reproducibility can be accomplished in various ways.508

For example, if the contribution is a novel architecture, describing the architecture fully509

might suffice, or if the contribution is a specific model and empirical evaluation, it may510

be necessary to either make it possible for others to replicate the model with the same511

dataset, or provide access to the model. In general. releasing code and data is often512

one good way to accomplish this, but reproducibility can also be provided via detailed513

instructions for how to replicate the results, access to a hosted model (e.g., in the case514

of a large language model), releasing of a model checkpoint, or other means that are515

appropriate to the research performed.516

• While NeurIPS does not require releasing code, the conference does require all submis-517

sions to provide some reasonable avenue for reproducibility, which may depend on the518

nature of the contribution. For example519

(a) If the contribution is primarily a new algorithm, the paper should make it clear how520

to reproduce that algorithm.521

(b) If the contribution is primarily a new model architecture, the paper should describe522

the architecture clearly and fully.523

(c) If the contribution is a new model (e.g., a large language model), then there should524

either be a way to access this model for reproducing the results or a way to reproduce525

the model (e.g., with an open-source dataset or instructions for how to construct526

the dataset).527

(d) We recognize that reproducibility may be tricky in some cases, in which case528

authors are welcome to describe the particular way they provide for reproducibility.529
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In the case of closed-source models, it may be that access to the model is limited in530

some way (e.g., to registered users), but it should be possible for other researchers531

to have some path to reproducing or verifying the results.532

5. Open access to data and code533

Question: Does the paper provide open access to the data and code, with sufficient instruc-534

tions to faithfully reproduce the main experimental results, as described in supplemental535

material?536

Answer: [No]537

Justification: Code will be released when the paper is accepted.538

Guidelines:539

• The answer NA means that paper does not include experiments requiring code.540

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/541

public/guides/CodeSubmissionPolicy) for more details.542

• While we encourage the release of code and data, we understand that this might not be543

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not544

including code, unless this is central to the contribution (e.g., for a new open-source545

benchmark).546

• The instructions should contain the exact command and environment needed to run to547

reproduce the results. See the NeurIPS code and data submission guidelines (https:548

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.549
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• Depending on the country in which research is conducted, IRB approval (or equivalent)738

may be required for any human subjects research. If you obtained IRB approval, you739

should clearly state this in the paper.740

• We recognize that the procedures for this may vary significantly between institutions741

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the742

guidelines for their institution.743

• For initial submissions, do not include any information that would break anonymity (if744

applicable), such as the institution conducting the review.745

20


	Introduction
	Related work
	Stepwise weighted spike coding scheme
	Stepwise weighting
	Residual error
	Silent period
	Input encoding

	Experiments
	Overall performance
	Accuracy vs. latency
	Operation counting
	Ablation study

	Conclusion
	Appendix
	Convert quantized ANNs to SWS-SNNs
	Details for QAT


