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Abstract— Scientists often search for phenomenon of interest
while exploring new environments. Autonomous vehicles are
deployed to explore such areas where human-operated vehicles
would be costly or dangerous. Online control of autonomous
vehicles for information-gathering is called adaptive sampling
and can be framed as a Partially Observable Markov Decision
Process (POMDPs) that uses information gain as its principal
objective. While prior work focuses largely on single-agent
scenarios, this paper confronts challenges unique to multi-agent
adaptive sampling, such as avoiding redundant observations,
preventing vehicle collision, and facilitating path planning
under limited communication. We start with Multi-Agent Path
Finding (MAPF) methods, which address collision avoidance
by decomposing the multi-agent path planning problem into a
series of single-agent path planning problems. We present an
extension to these methods called information-driven MAPF
which addresses multi-agent information gain under limited
communication. First, we introduce an admissible heuristic that
relaxes mutual information gain to an additive function that can
be evaluated as a set of independent single agent path planning
problems. Second, we extend our approach to a distributed
system that is robust to limited communication. When all agents
are in range, the group plans jointly to maximize informa-
tion. When some agents move out of range, communicating
subgroups are formed and the subgroups plan independently.
Since redundant observations are less likely when vehicles are
far apart, this approach only incurs a small loss in information
gain, resulting in an approach that gracefully transitions from
full to partial communication. We evaluate our method against
other adaptive sampling strategies across various scenarios,
including real-world robotic applications. Our method was
able to locate up to 200% more unique phenomena in certain
scenarios, and each agent located its first unique phenomenon
faster by up to 50%.

I. INTRODUCTION

Adaptive sampling methods have been applied to the task
of locating phenomena of interest [1]. These methods frame
the problem as maximizing the mutual information gain as
reward in a Partially Observable Markov Decision Process
(POMDP). State-of-the-art approaches address this problem
as a single-agent formulation, however they do not explore
multi-agent scenarios to the same fidelity.

The multi-agent extension has additional requirements to
ensure efficient sampling over the single-agent version. First,
we must ensure that agents gather mutually informative
observations. Multiple agents observing the same area leads
to ineffective exploration when the environment is static.
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Second, agents must plan their paths without constant com-
munication. Finally, agents must plan conflict-free paths to
avoid collisions with each other.

In Multi-Agent Path Finding (MAPF), algorithms focus
on the problem of planning conflict-free paths for multiple
agents from their start locations to their goals. A funda-
mental strategy in MAPF involves decoupling multi-agent
path planning using individual single-agent path planners,
then identifying and resolving conflicts through Conflict-
Based Search. While we do have a coupled, multi-agent path
planning problem like MAPF, the multi-agent POMDP is
coupled through the reward function, as opposed to collision
conflicts. This is because the reward from each agent’s
observations depends on the observations from other agents.
Further, MAPF techniques are ill-equipped to solve adaptive
sampling problems as these techniques require additional
goal specification beyond a reward function. However, we
still draw inspiration from the MAPF approach by intro-
ducing a decoupled, admissible heuristic. Building from this
heuristic design, we propose a method to efficiently solve
the coupled multi-agent POMDP problem. We show that
this heuristic guides our search over the multi-agent POMDP
without the need to calculate our computationally demanding
reward. This enables coordinated actions among agents to
optimize collective information gain.

Additionally, we demonstrate that, if we enforce con-
straints on the range of communication, we can operate in
a distributed manner without the requirement for a central
computing node. We achieve this by solving the coupled
multi-agent planning problem whenever agents are within
communication range of each other, and otherwise employ a
single-agent forward search procedure that runs independent
of other agents. This results in a near-optimal solution
because agents often make redundant observations while they
are near each other, and once two agents enter communica-
tion range, by exchanging all previous observations they will
not return to areas that they had previously observed.

Current state-of-the-art approaches in multi-agent adaptive
sampling do not use an information-driven POMDP formu-
lation, which is crucial for modelling stochastic observations
and the coupled nature of the reward function. Unlike multi-
agent reinforcement learning-based methods which treat the
reward as a deterministic function that can be calculated
in a decoupled manner [2], [3], [4], the information-driven
POMDP approach can account for the fact that an individ-
ual’s agent’s observations are only valuable if they are not
redundant. Other strategies assume an intermediate model
that can be updated in a decoupled manner, which makes
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the computation of the reward function more efficient [5],
[6], [7]. While these mimic some types of adaptive sampling
scenarios, past work has shown that the mutual information
gain objective is ideal for the problem of locating phenomena
of interest [8], [9], [10].

Alternative approaches have utilized a Monte-Carlo Tree
Search (MCTS) approach to the information gathering prob-
lem, both in the single-agent case [11] and the multi-agent
case [5]. MCTS approximates information yield by sampling
potential paths and observations available to the agents.
However, multiple agents introduces both a exponentially
large state space, as well as multiple local minima and
maxima as different routes for agents can yield similar
information gains, potentially causing MCTS to miss paths
closer to the optimum due to the limited sample size.

To give an overview of the rest of the paper, first in Section
II we define the multi-agent adaptive search problem. In
Section III, we describe our solution in two parts: the action
loop for the agents, and a description of the search algorithm
used to perform multi-agent search. This is found in Section
III-A which includes a proof of our approach’s correctness
through the lens of heuristic search. Lastly, in Section IV
we present the experiments that we have run comparing our
algorithm to similar information-driven search techniques.

II. ADAPTIVE SEARCH

At a high level, we address the problem of multiple
autonomous agents travelling in an environment to maximize
the number of detected phenomena of interest over a fixed
mission duration. We assume that the agents can commu-
nicate without loss of information when they are within a
range r of each other or there is no communication between
the agents otherwise. This limited communication paradigm
divides our problem into two distinct modes: planning for
the agents when they operate independently and planning for
agents when they can communicate. When the agents operate
outside the communication range, no additional coordination
is necessary. Hence, our novelty lies in handling scenarios
where an agent operates while communicating with other
agent(s) in order to tackle the redundancy problem mentioned
prior.

The concept of adaptive search operates under the premise
that the mission duration is insufficient for a comprehensive
exploration of the environment. Therefore, it is crucial for
agents to gather information through measurements and
utilize these findings to inform their future actions. In a
multi-agent scenario with limited communication capabili-
ties, agents should harness the measurements obtained by
their counterparts to swiftly identify and disregard unpromis-
ing regions, while directing their focus towards exploring
promising areas in detail.

For the purpose of notation, we denote any random vari-
able as X , with a specific value indicated by x. Additionally,
superscript notation signifies time, while subscript notation
signifies agents or locations. Therefore, Xt

i,j represents a
random variable associated with location i and agent j at
time step t.

A. Environment Structure

We use similar environment structure E as in [1], where
we model the presence of a target phenomenon at each
location as a distinct discrete random variable Xi ∀ i ∈ [1, n]
where n is the number of distinct discrete locations in the
environment. For each location, we have a random variable
Ui, which represents whether the agent detects a feature
associated with the phenomenon at location i. We assume
that Xi is conditionally independent of all phenomenons at
other locations given the associated cell’s feature Ui thereby
forming a Markov Random Field (MRF). Further, we use
Yi as the noisy counterpart of the feature random variable
Ui and represent the underlying MRF between the features
using a gaussian process GP(m(x), k(x, x′)) where m(x) is
the mean function and k(x, x′) is the kernel function of the
gaussian process.

B. MA-POMDP formulation

Given the discretized environment structure E and building
upon [1], we formulate our problem as a discrete finite-
horizon POMDP Mj for each agent aj . This POMDP
is defined by a 8-tuple {Sj ,Aj , Tj ,Ωj ,Oj , R, γ, δ}. Each
observation taken by agent aj at location i up to time step
t is denoted as y0:tj . The state space of agent j, sj ∈ Sj ,
is formed by combining the observation, feature probability
function ({p(ui | y0:tj )}ni=1), and phenomenon probability
function ({p(xi | y0:tj )}ni=1). The action space Aj consists
of discrete movements such as up, down, left, right, or
idle at the current location. However, given the objective of
exploring the environment within a limited mission duration,
we only consider the idle action when other actions are
infeasible. Additionally, Tj : Sj × Aj → Sj represents a
deterministic transition function. The observation space Ωj

is continuous, while Oj : Sj ×Aj × Ωj → [0, 1] represents
the observation probability function which is defined as the
distribution over Yi at a location i. The reward function R is
designed to maximize information gain. Further, since we
are dealing with a finite-horizon mission, we set γ = 1
to emphasize the importance of identifying phenomena of
interest throughout the planning horizon δ. Finally, for the
sake of brevity we will represent the timesteps associated
with the planning horizon δ i.e t + 1 : t + δ be represented
by τ .

C. Reward Function

Our reward function is inspired by [1] Sections 4.4 and
4.5 and is defined as,

R = I({Xi}ni=1;Y
τ
j | y0:tj ) ≈

n∑

i=1

I(Xi;Y
τ
j | y0:tj )

for an agent aj over a planning horizon δ. The information
objective is defined as,

I(Xi;Y
τ
j | y0:tj ) = EY τ

j

[
DKL(pXi|Y τ

j ,y0:t
j
∥pXi|y0:t

j
)
]

The phenomenon probability function is defined as,
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Fig. 1: Probability phenomenon function for P1 = P2 = 0.5
to demonstrate the effect of ũ on the posterior distribution
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where P1, P2 and ũ are user-defined parameters. Here
µ and Σ define the posterior distribution of Ui given the
observation history y0:tj as governed by the underlying
gaussian process forming the feature probability function.
To compute the expectations we use the 5th order Gauss-
Hermite quadrature.

To give intuition about the shape and effect of the param-
eters of the phenomenon probability function, ũ is treated as
a threshold for how confident we must be in our observation
of the phenomenon to treat the phenomenon as more likely
present than not, and then P1 and P2 are weights assigned
to give more credence to the case when the measurement
value is above or below the threshold respectively. This is
visualized in Figure 1 from [1].

This reward function uses the mutual information between
the random variables associated with the target phenomenon
of interest and the observations made by the agents. That is
to say, we are incentivizing the agents to take actions so that
resultant observations raises their localization confidence of
the target phenomena.

III. METHODOLOGY

Our approach as outlined in Algorithm 1 builds on the idea
of distributed and online execution. Given an environment
structure E , a set of agents A where each agent aj is
governed by their independent POMDP Mj and time t since
the mission began, our approach first identifies the set of
agents that are nearby a specific agent This implies that
for each agent ai we identify a subset of agents Ni who
lie within the communication range r by computing the
Manhattan distance d between their current positions (lines
2-3). However, note that an agent can be part of multiple
other agents’ neighborhood set. To circumvent the problem
of duplicating path planning efforts for such agents, we
identify the minimal disjoint sets given the agent neighbor-
hoods (lines 4-5) where each subset λk represents the agents

that are within the communication range r of each other.
Consequently, for each minimal disjoint set λk we instantiate
a MULTI-AGENT SEARCH that implements A* search over
the joint state space of the agents within that set (lines 5-
6). For the agents that are not in communication range r of
any other agent in the map, we leverage a forward search
idea inspired by [11] to plan their paths (lines 7-8). After
extracting the immediate actions of all agents, we execute
them and collect new observations to inform future planning
efforts (lines 9-10). Note that over time, Λ evolves which
implies that if λk = {a1, a2} at timestep t, the agents a1
and a2 may drift apart in the next timestep t+ 1 collapsing
λk. In such a scenario, agent a1 and a2 will perform single-
agent search from timestep t + 1 wherein each agent can
utilize the other agents’ observations up until timestep t.
However, subsequent observations from timestep t + 1 will
not be shared between the agents a1 and a2 as they would
be expected to plan their paths independently.

Algorithm 1 High-level overview of the approach
Input Environment E , Agents A = {a1, . . . , ak}

Mission Duration H , Communication Range r

1: while t ≤ H do
2: for all ai ∈ A do
3: Ni ← {aj | d(ai, aj) ≤ r}
4: Λ← Extract minimal disjoint sets from

{Ni | i ∈ {1, . . . k}}
5: for all λk ∈ Λ do
6: Πλk

← MULTI-AGENT SEARCH(λk, E)
7: for all ak /∈ Λ do
8: Πak

← SINGLE-AGENT SEARCH(ak, E)
9: for all ai ∈ A do

10: Execute Πai
and collect observation ωai

11: t← t+ 1

A. Multi-Agent Search

When two or more agents come within communication
range of each other, we form a corresponding bubble λk. An
agent ak ∈ λk becomes the lead actor who instantiates the
multi-agent search process for the agents in the bubble. This
process performs an informed A* search over the joint state
space of these agents and generates viable actions for each
of them. To do this, we form a new state s̃ = {ỹ0:t, {p(ui |
ỹ0:t)}ni=1, {p(xi | ỹ0:t)}ni=1} where ỹ0:t = {y0:tj | aj ∈ λk}
represents the combined observation history of the agents in
the bubble. Further, the action space for this search process
is represented by aj∈λk

Aj . The frontier states of our A*
search are ordered by the priority function f(s) = g(s) +
h(s). Here g(s) represents the expected information gain
between the phenomenon of interest and the joint distribution
of the observations made by the agents in the bubble up to the
planning horizon δ conditioned on the combined observation
history of these agents. More specifically let Y τ

λk
represent

the random variables associated with the joint distribution



of the observations made by the agents up to the planning
horizon, then the g-function is defined as follows:

g(s) =

n∑

i=1

I(Xi;Y
τ
λk
| ỹ0:t)

h(s) represents the optimistic admissible heuristic function
defined as the sum of the maximum mutual information gain
between the phenomenon of interest and the distribution of
observations made by that agent acting independently up to
the planning horizon δ conditioned on the combined obser-
vation history of the agents in the bubble. More specifically,
let

hτ
j =

n∑

i=1

I(Xi;Y
τ
j | ỹ0:t)

represent the expected mutual information gain between the
phenomenon of interest and the distribution over observa-
tions taken by agent aj up to the planning horizon, then

h(s) =
∑

aj∈λk

hτ
j

To ensure that the A* search returns optimal paths for the
agents within λk, we need to ensure that the h-function is
admissible. Since we are interested in a receding horizon
plan, we search over a tree where an admissible heuristic is
sufficient to ensure optimality of the A* search process. Our
heuristic is provably admissible for environments where it is
known that the target phenomenon Xi is a direct cause of the
(noisy) observation Yi. To demonstrate that our heuristic is
admissible, we must show that our heuristic is an optimistic
estimate of the reward we could receive starting from any
given state. Or, more specifically for our scenario, we must
show that the maximum, multi-agent information gain from
a given state will always be less than or equal to our heuristic
estimate for that state.

Lemma 1: Given the definitions of g(s) and h(s), h(s) ≥
g(s)

Proof: Expanding the g-function for a given bubble λk,

g(s) =
n∑

i=1

I(Xi;Y
τ
λk
| ỹ0:t)

=

n∑

i=1

[
I(Xi;Y

τ
λk,1
| ỹ0:t) + I(Xi;Y

τ
λk,2
| Y τ

λk,1
, ỹ0:t)

+ . . .+ I(Xi;Y
τ
λk,m

| (Y τ
λk,1

, . . . Y τ
λk,m−1

), ỹ0:t)
]

= hτ
1 +

n∑

i=1

[
I(Xi;Y

τ
λk,2
|Y τ

λk,1
, ỹ0:t) + . . .

+ I(Xi;Y
τ
λk,m
|(Y τ

λk,1
, . . . Y τ

λk,m−1
), ỹ0:t)

]

Here, Y τ
λk,j

represents the random variable associated with
the observations of agent aj ∈ λk up to the planning horizon
δ and m = |λk|. Comparing terms between this and the
h-function defined earlier, we observe that the first term
cancels out. To establish the required relationship between
the g and h-functions, it is enough to show that ∀j ∈
[2,m], hτ

j ≥
∑n

i=1 I(Xi;Y
τ
λk,j

| (Y t+1
λk,1

...Y t+1
λk,j−1

), ỹ0:t).
Without loss of generality, for j = 2 we need to show

that hτ
2 ≥ ∑n

i=1 I(Xi;Y
τ
λk,2

| Y τ
λk,1

, ỹ0:t). Examining
I(Xi;Y

τ
λk,2

| Y τ
λk,1

) while omitting ỹ0:t for brevity we
observe that,

I(Xi;Y
τ
λk,2
| Y τ

λk,1
) = I(Y τ

λk,2
;Xi | Y τ

λk,1
)

= I(Xi;Y
τ
λk,2

)− I(Y τ
λk,2

;Y τ
λk,1

)

+ I(Y τ
λk,2

;Y τ
λk,1
| Xi)

where we use the symmetry of mutual information along
with the chain-rule for conditional mutual information. This
implies that,

I(Xi;Y
τ
λk,2

) = I(Xi;Y
τ
λk,2
| Y τ

λk,1
)

+ I(Y τ
λk,2

;Y τ
λk,1

)− I(Y τ
λk,2

;Y τ
λk,1
| Xi)

Under the MRF describing our environment structure, we
model Y τ

λk,1
and Y τ

λk,2
as being caused by the respective

phenomenon random variables present at their respective ob-
servation locations. These observations are collected nearby
each other by virtue of the agents being within the commu-
nication radius which implies that they will correlate with
Xi. Based on these criteria we can conclude that Xi can
be considered as the common cause of Y τ

λk,1
and Y τ

λk,2
.

Since we know that mutual information between two random
variables P and R decreases when it is conditioned on
another random variable Q where Q is the common cause
of both P and R, we can state that I(Y τ

λk,2
;Y τ

λk,1
) ≥

I(Y τ
λk,2

;Y τ
λk,1
| Xi). Thus, this means that I(Y τ

λk,2
;Y τ

λk,1
)−

I(Y τ
λk,2

;Y τ
λk,1

| Xi) ≥ 0, and therefore I(Xi;Y
τ
λk,2

|
Y τ
λk,1

) ≤ I(Xi;Y
τ
λk,2

). This proves our intermediate ob-
jective of showing hτ

2 ≥
∑n

i=1 I(Xi;Y
τ
λk,2

| Y τ
λk,1

, ỹ0:t)

where hτ
2 =

∑n
i=1 I(Xi;Y

τ
2 | ỹ0:t). Note that λτ

k,2 = λτ
2 .

Extending this reasoning over j ∈ [2,m] we can see that
h(s) ≥ g(s).

With the admissibility of our heuristic function, we ensure
optimal path generation for the agents inside a bubble λk.
However, the key challenge we encounter is that computation
of the multi-agent information gain g is very compute
intensive because it requires iterating through all different
combinations of potential observations for agents inside
bubble over the planning horizon δ. Additionally, as our
actions space grows exponentially with the number of agents
inside the bubble, we generate a larger number of states for
every search state that we choose to expand. To mitigate this
issue, we leverage our optimistic heuristic computations to
ignore states that will never be expanded.

To compute h(s) for any given state s, we compute the
maximum information gain we can receive from taking each
action from s, effectively computing h(c) ∀c ∈ C where C is
the set of the children that one can reach from the state
s according to the aj∈λk

Aj . We use these h(c) values
to order the children in s for generation. Let C̃ ⊆ C be
the set of states for which we have computed g(c). We
continue to calculate g(c) for argmaxc∈C\C̃ h(c) until g(s)+
maxc∈C\C̃ h(c) < maxc∈C̃ g(c). At this point, we know that
the maximum information gain we could receive from the
remaining states will be less than the information gain we
can guarantee from taking a different action, and therefore



will never need to be expanded. Using this observation we
can reduce the number of times we compute g(s) for any
given state s.

The MULTI-AGENT SEARCH algorithm presented in Al-
gorithm 2 operates by starting with a bubble λk and the
environment E . It aggregates observations within the bubble
to form a new state s̃ by concatenating the observations
from all agents within the bubble, computing both g and
h values for it (lines 1-2). This state is added to an open list
Q, and variables for tracking the highest information gain
I∗ and corresponding best actions π∗ are initialized (lines
3-4). The algorithm proceeds in an A* manner, selecting
and removing states from the open list based on their f -
value, aiming to maximize information gain (line 6). If a
state’s f -value doesn’t surpass the current maximum gain
I∗, the algorithm concludes, returning the optimal actions
π∗ found (lines 7-8). Otherwise, for states at the planning
horizon δ with higher f -values, it updates the maximum gain
I∗ and actions π∗ (lines 9-11). For states not at the planning
horizon δ, it evaluates their descendants in order. Note that,
when computing the h-value of a state, we also compute the
information gain received from every child reachable from
that state which allows us to order these children (line 13). If
a descendant’s optimistic f -value is higher than the current
maximum gain (line 15), the descendant is added to the open
list for further consideration (lines 16-17). Finally we repeat
this process until the open list is exhausted. Note that t(s)
returns the timestep of the state s.

Algorithm 2 MULTI-AGENT SEARCH

Input Agent Bubble λk = {a1, ...am | d(ai, aj) < r}
Environment E

1: ỹ0:t ← {y0:tai
| ai ∈ λk}

2: s̃← {ỹ0:t, {p(ui | ỹ0:t)}ni=1, {p(xi | ỹ0:t)}ni=1}
3: Q ← s̃
4: Initialize I∗ and π∗
5: while Q ≠ ∅ do
6: s̃← argmaxs̃∈Q(f(s̃))
7: if f(s̃) ≤ I∗ then
8: Return π∗

9: else if t(s̃) ≥ δ & I∗ ≤ f(s̃) then
10: I∗ ← f(s̃)
11: Update π∗

12: else if t(s̃) < δ then
13: for all ordered children c of s̃ ∈ aj∈λk

Aj do
14: t′ ← t(s̃) + 1
15: if I∗ ≤ g(s̃) + h(c) then
16: c̃← {ỹ0:t′ , {p(ui | ỹ0:t

′
)}ni=1,

{p(xi | ỹ0:t
′
)}ni=1}

17: Q ← Q∪ {c̃}

IV. EXPERIMENTS

Our experiments1 address the following questions to eval-
uate the effectiveness of our approach.

1Code is available at https://gitlab.com/mit-mers/info-mapf-public.git

Q1: Can our method demonstrate better performance
in identifying the number of phenomena of interest
compared to other methods?

Q2: Does the proposed approach address the issue of
redundant observations effectively?

Q3: Does the suggested approach effectively utilize the
proposed heuristic to avoid the computational complex-
ities involved in computing coupled reward function?

As there are currently no established state-of-the-art ap-
proaches for addressing information-guided MAPF, we eval-
uate our approach against ablations in addition to a more
involved approach that leverages MCTS. Specifically, we
compare our method against Single-Agent Vulcan (SA-V), an
approach where each agent plans its individual paths based
on the algorithm outlined in [1], along with a derived version
called Single-Agent Vulcan with Collision Avoidance (SA-
V-CA) that includes the necessary collision avoidance check.
Finally, we compare our approach with an MCTS-based
variant of our proposed approach (MA-MCTS-V) where we
estimate the reward from different actions based on random
rollouts. Similar to Algorithm 1, it performs an MCTS-based
search as opposed to using Algorithm 2 to estimate the value
of different branches of the search tree and takes decisions
based on those evaluations. This attempts to maximize the
multi-agent information gain directly, unlike the first two
algorithms which reason over single-agent information gain.

The experiments utilized established MAPF benchmarks2

[12] and were extended to include two real-world scenarios
derived from bathymetric maps. Tests were performed on the
standard empty 16x16, empty 32x32, maze 32x32, and dense
65x81 maps, alongside real-life scenarios in East Boston
Harbor and Galveston Bay based on NOAA surveys H10992
and H10638, respectively. In East Boston Harbor, the AUV
navigated at a consistent depth of 15 meters, using 15-meter
depth contours as obstacles. Similarly, in Galveston Bay, 2-
meter depth contours determined obstacle boundaries for the
AUV. Selected map examples are displayed in Figure 2.

Our experiments comprised 100 test runs each, featuring
randomly positioned agents denoted by |A| and simulated
measurement fields containing up to N target phenomena.
These tests varied in mission duration H and employed a
planning horizon (δ) of 2 and a communication range (r)
of 5. For the simulated fields, we used unit mean functions
and a kernel function k(x, x′) = θ1 exp−(∥x− x′∥22/θ22)
to define the Gaussian Process (GP). We adapted the re-
alistic scenarios to our discrete action space; East Boston
Harbor was discretized to cells of 0.0003◦ in latitude and
longitude, translating to a 25m step movement. Galveston
Bay’s discretization was set at 0.001◦ per cell, yielding a
step movement of approximately 100m. Information gain
calculations for our experiments used parameters ũ = 1.4,
P1 = 0.98, P2 = 0.002, σ = 0.2, with θ1 = 0.4 and
θ2 = 0.01 for MAPF benchmarks, and θ1 = 1.25, θ2 =
4 ∗ d◦ for realistic scenarios, where d◦ indicates the cell
size. Parameters ũ, P1, P2 are required for calculating the

2https://movingai.com/benchmarks/mapf/index.html



(a) Maze
(32x32)

(b) Dense
(65x81)

(c) Boston
Harbor

(d) Galveston
Bay

Fig. 2: Visualizations of MAPF Maps and Realistic Scenarios

phenomenon probability function, while σ accounted for the
measurement noise in GP .

Fig. 3: Total number of unique phenomena discovered by
all agents on the MAPF maps. On average, our algorithm
locates more phenomenon across all maps.

Figure 3 addresses Q1, showing that across different
MAPF maps, our proposed approach successfully discovers
more phenomena of interest within the same mission duration
while avoiding collisions with other agents. A similar trend
is also observed when we ran our approach on the real-
world bathymetry datasets as shown in Figure 6. Figure
4 addresses Q2, demonstrating that agents utilizing our
approach encounter their first unique phenomenon of interest
sooner compared to the alternative methods in MAPF maps.
This suggests that agents effectively leverage observations
from their counterparts to explore different map areas thereby
leading to efficient map exploration. Similar trends were
also observed on the real-world bathymetry datasets as well
as shown in Figure 5. Motivated by realistic scenarios,
figure 7 showcases the performance of the proposed method
compared to the baselines upon scaling the number of agents
and phenomenons. It can be seen that when agents utilize
our approach, the performance improvement is maintained
regardless of the scale of the problem at hand. Figure 8
addresses Q3, illustrating that our approach generates and
expands only a fraction of the maximum possible search

Fig. 4: Average number of steps until each agent locates its
first unique phenomenon on the MAPF maps. On average,
each agent finds new phenomena faster using our algorithm.

Fig. 5: Average number of steps until each agent locates
its first unique phenomenon on real bathymetry datasets. On
average, each agent finds unique phenomena faster using our
algorithm.

states, particularly noticeable in larger maps including real-
world bathymetry datasets where this ratio approaches zero.
This indicates that our approach efficiently decides optimal
paths for agents within communication range, leveraging our
proposed heuristic to significantly accelerate computation by
minimizing the need for complex, compute-intensive coupled
rewards.

To further validate the efficacy of our approach, we
conducted experiments on real hardware involving multiple
Turtlebots navigating an enclosed space with simulated mea-
surement fields 3.

V. CONCLUSION AND FUTURE WORK

In conclusion, this paper presents Multi-Agent Vulcan, a
novel approach designed for information-guided multi-agent
path finding problem where multiple agents are tasked to
identify as many phenomena of interest as possible within a

3https://info-mapf-mers.csail.mit.edu

https://info-mapf-mers.csail.mit.edu


Fig. 6: Total number of unique phenomena discovered by
all agents on real bathymetry datasets. On average, our
algorithm locates more phenomenon across all maps.

Fig. 7: Scalability experiment over 50 test runs on Galveston
Bay with larger number of agents and number of phe-
nomenons.

limited mission duration. We pose this as a receding horizon
MA-POMDP problem in a limited communication setting.
By decoupling multi-agent search into multiple single-agent
search like MAPF we define an admissible heuristic in the
reward space that allows us to leverage informed search
methods like A* to find optimal collision-free paths for the
agents. We compare our approach against existing adaptive
sampling methods inspired by [1] over multiple MAPF maps
and realistic scenarios derived from existing bathymetry
datasets. We further validate the advantage of our approach
on real-hardware testbeds that used a team of turtlebots to
navigate a given environment with simulated measurement
fields.

Our method demonstrates significant improvements in
our experiments, however a primary challenge remains the
compute-intensive estimation of the expected multi-agent
information gain (g(s)), especially as the number of agents
increases. Future work focuses on formulating an efficient es-
timator for g(s), estimating it through sample-based methods
instead of using exact computation. An efficient estimator
would result in significant speed up, and allow us to apply
our work to even larger multi-agent groups.

Fig. 8: Ratio of number of A* search states generated and
expanded compared to the maximum possible search states.
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