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ABSTRACT

The Vision Transformer (ViT) has gained prominence for its superior relational
modeling prowess. However, its global attention mechanism’s quadratic com-
plexity poses substantial computational burdens. A common remedy spatially
groups tokens for self-attention, reducing computational requirements. Nonethe-
less, this strategy neglects semantic information in tokens, possibly scattering
semantically-linked tokens across distinct groups, thus compromising the effi-
cacy of self-attention intended for modeling inter-token dependencies. Motivated
by these insights, we introduce a fast and balanced clustering method, named
Semantic Equitable Clustering (SEC). SEC clusters tokens based on their global
semantic relevance in an efficient, straightforward manner. In contrast to tradi-
tional clustering methods requiring multiple iterations, our method achieves token
clustering in a single pass. Additionally, SEC regulates the number of tokens per
cluster, ensuring a balanced distribution for effective parallel processing on current
computational platforms without necessitating further optimization. Capitalizing
on SEC, we propose a versatile vision backbone, SECViT. Comprehensive experi-
ments in image classification, object detection, instance segmentation, and seman-
tic segmentation validate to the effectiveness of SECViT. Remarkably, SECViT
attains an impressive 84.3% image classification accuracy with only 27M param-
eters and 4.6G FLOPs, without the need for for additional supervision or data.
Moreover, SEC can be conveniently and swiftly applied to multimodal large lan-
guage models (MLLM), such as LLaVA, to serve as a vision language connector,
effectively accelerating the model’s efficiency while maintaining unchanged or
better performance.

1 INTRODUCTION

Since its inception, the Vision Transformer (ViT)(Dosovitskiy et al., 2021) has drawn considerable
interest from the research community due to its robust modeling prowess. However, the quadratic
complexity of Self-Attention leads to significant computational overhead, thus constraining the prac-
ticality of ViT. A variety of strategies have been devised to alleviate this computational load, the
most prevalent of which involves token grouping, thereby constraining the attention span of each
token(Liu et al., 2021; Dong et al., 2022; Wang et al., 2022b; Tu et al., 2022).

Specifically, the Swin-Transformer (Liu et al., 2021) partitions tokens into multiple small windows,
restricting token attention within each window. The CSWin-Transformer (Dong et al., 2022) adopts
a cross-shaped grouping, endowing each token with a global receptive field. MaxViT (Tu et al.,
2022) amalgamates window and grid attention, facilitating intra-window tokens to attend to their
counterparts in other windows. However, these methods, solely reliant on spatial positioning, ne-
glect token semantics, potentially restricting the self-attention’s capacity to model semantic depen-
dencies. To mitigate this, DGT (Liu et al., 2022a) employs k-means clustering for query grouping,
considering the semantic information of tokens for enhanced feature learning. Nonetheless, the iter-
ative nature of k-means clustering and the potential for uneven token counts per cluster can impact
the efficiency of parallel attention operations.

Given these considerations, an optimal token partitioning scheme should efficiently segregate to-
kens, incorporate semantic information, and efficiently utilize computational resources (e.g., GPU).
In response, we introduce a simple, fast and equitable clustering approach named Semantic Equi-
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(a) Window Partition (b) Dynamic Group by k-means (c)Semantic Equitable Clustering
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Figure 1: Comparison among Window Partition, Dynamic Group by k-means, and Semantic Equi-
table Clustering. Our Semantic Equitable Clustering incorporates image semantics while maintain-
ing efficient clustering, eliminating the need for iterative processes such as in k-means. Furthermore,
it enables equi-partitioning of tokens, promoting efficient GPU processing without necessitating ad-
ditional CUDA optimization.

table Clustering (SEC). SEC segments tokens based on their relevance to global semantic infor-
mation. Specifically, we employ global pooling to generate a global token encapsulating global
semantic information. The similarity between this global token and all other tokens is then com-
puted, reflecting global semantic relevance. Upon obtaining the similarity matrix, tokens (excluding
the global token) are sorted by similarity scores, and the tokens with similar scores are grouped into
clusters, ensuring uniform token distribution across clusters. As depicted in Fig. 1, SEC comprehen-
sively considers token semantics and completes the clustering process in a single iteration, unlike
the multi-iteration k-means. The resulting clusters, containing an equal number of tokens, can be
processed in parallel by the GPU efficiently.

Figure 2: Left: Top-1 accuracy v.s. FLOPs on ImageNet-1K of resent SOTA models. Right:
Comparison among different vision language connectors on LLaVA-1.5

Building upon Semantic Equitable Clustering (SEC), we introduce the Semantic Equitable Cluster-
ing Vision Transformer (SECViT), a versatile vision backbone that is adaptable to a wide spectrum
of downstream tasks. As demonstrated in Fig. 2, SECViT exhibits significant performance im-
provements compared to previous state-of-the-art (SOTA) models. Impressively, SECViT attains an
accuracy of 84.3% utilizing merely 4.6GFLOPS, without the need for additional training data or
supervision. This superior performance is maintained across different model scales. Furthermore,
SECViT proves its proficiency in downstream tasks, including but not limited to, object detection,
instance segmentation, and semantic segmentation.

Beyond vision tasks, we also apply SEC to multimodal large language models (MLLM) such as
LLaVA-1.5 (Liu et al., 2023b) to serve as an efficient vision language connector. Specifically, we
use SEC to cluster the vision tokens, and then merge all the tokens at corresponding positions within
each cluster into a single token. Experiments demonstrate that this approach significantly enhances
the efficiency of LLaVA-1.5 while improving the model’s performance.
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2 RELATED WORKS

Vision Transformer. The Vision Transformer (ViT) (Dosovitskiy et al., 2021) is considered a
powerful visual architecture. Many works have improved the Vision Transformer, including en-
hancing its training efficiency and reducing its computational cost (Liu et al., 2021; Dong et al.,
2022; Touvron et al., 2021; Jiang et al., 2021; Zhu et al., 2023b). DeiT (Touvron et al., 2021) uses
distillation loss and incorporates extensive data augmentation methods into the ViT training process.
Hierarchical structures represented by PVT (Wang et al., 2021a; 2022a; Si et al., 2022; Guo et al.,
2022; Xia et al., 2022) reduce the number of tokens in global attention by downsampling the keys
and values (KV), thereby low the computational cost. In addition to them, some methods directly
prune tokens based on their importance, retaining important tokens (Rao et al., 2021; Liang et al.,
2022). This reduces the number of tokens and subsequently lowers the computational cost of the
model. Another highly representative approach is to group all tokens such that each token can only
attend to tokens within its own group (Liu et al., 2021; Dong et al., 2022; Zhu et al., 2023b; Ding
et al., 2022; Liu et al., 2022a). This method also significantly reduces the computational cost of
self-attention.

Grouping-Based Vision Transformer. Most grouping-based attention mechanisms perform
grouping based on spatial structure (Liu et al., 2021; Dong et al., 2022; Tu et al., 2022; Ding et al.,
2022; Liu et al., 2022a). Specifically, the Swin-Transformer (Liu et al., 2021) divides all tokens into
equally sized windows based on their spatial positions, where each token can only attend to tokens
within its own window. This significantly reduces the model’s computational cost. In addition to di-
viding tokens into small windows along the spatial dimension, DaViT (Ding et al., 2022) also splits
channels into multiple groups along the channel dimension. Unlike the above methods that only
consider positional information for grouping, DGT (Liu et al., 2022a) takes semantic information
into account by using k-means clustering to group the queries.

Vision Language Connector. The vision language connector is a critical component in
MLLMs (Liu et al., 2023b; Cha et al., 2024; Jaegle et al., 2021). It aligns vision tokens with lan-
guage tokens. Typical vision language connectors include MLP (Liu et al., 2023b), Resampler (Bai
et al., 2023), C-Abstractor (Cha et al., 2024), and others. Although MLP performs well, it intro-
duces a significant number of vision tokens, which hampers the model’s efficiency. On the other
hand, connectors like Resampler improve the model’s efficiency, but at the cost of reduced perfor-
mance. Unlike these methods, our proposed SEC consider the semantic information of each token
and significantly enhances the model’s efficiency while maintaining its performance.

3 METHOD

3.1 OVERALL ARCHITECTURE

The overall architecture of SECViT is shown in Fig. 3(a). SECViT consists of four stages with
downsampling factors of 1

4 , 1
8 , 1

16 , and 1
32 , respectively. This structural design facilitates downstream

tasks, such as object detection, in constructing feature pyramids. A SECViT block is composed of
three modules. For each block, the input tensor Xin ∈ RC×H×W is fed into the CPE to introduce
the positional information. Then, The Self-Attention based on the Semantic Equitable Clustering
(SEC) is employed to serve as the token mixer. The final FFN is utilized to integrate channel-wise
information of tokens.

Beyond the design of the backbone, we also utilize SEC in the design of the Vision Language
Connector in MLLM (Liu et al., 2023b). For the vision tokens output by ViT, we use SEC to cluster
the tokens. For each position corresponding to a cluster, we use attentive pooling to merge them into
a single token, thereby reducing the number of vision tokens. The process is shown in Fig. 3(b).

3.2 SEMANTIC EQUITABLE CLUSTERING

As previously mentioned, the design objectives of Semantic Equitable Clustering are threefold: 1)
Fully consider the semantic information contained in different tokens during clustering. 2) Unlike
k-means and other clustering methods that require multiple iterations, Semantic Equitable Cluster-
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ing can complete clustering in a single step. 3) Ensure an equal number of tokens in each cluster
to facilitate parallel processing on GPUs. In the following paragraphs, we will describe in detail
how our Semantic Equitable Clustering achieves these three objectives. And the whole process is
illustrated in the Fig. 3(c).

Single Clustering Center Related to Semantics. K-means is relatively complex for two reasons.
First, it has multiple cluster centers, and each token needs to calculate its distance to each cluster
center to determine its cluster membership. Second, the determination of each cluster center in
K-means is not precise and requires multiple iterations to accurately establish the cluster centers.

To address these two issues, we first discard the use of multiple cluster centers and instead calculate
the distance between each token and a single center. Based on each token’s distance to this center,
we divide the tokens into different intervals. Then, to ensure that our chosen center contains the most
comprehensive semantic information, we directly use the result of average pooling of all tokens as
the center token. This is because, in most vision foundation models, the output of the average pool
is assumed to contain the richest semantic information and is thus used for classification (Liu et al.,
2021; Dong et al., 2022; Chu et al., 2023; Fan et al., 2023). Specifically, the process for determining
the cluster center is shown in Eq. 1:

Q = WQX,K = WKX,V = WV X,

kc = Pool(K).
(1)

Where WK is a learnable matrix. kc is the determined cluster center. X is the set of input tokens.

Distance Metric Suitable for ViT. Unlike the Euclidean distance calculation used in the K-
means algorithm for computing the distance between tokens, during the actual computation of Self-
Attention, similarity between query and key is computed through dot product. To better adapt to
the characteristics of Self-Attention, we also measure the distance between tokens using a method
similar to dot product. Specifically, we calculate the cosine similarity between the cluster center
and each token, and then sort the tokens according to the magnitude of the computed results. The
specific process is shown in Eq. 2:

sim =
K · kc

||K|| · ||kc||
,

idx = argsort(sim),

Q∗ = Q[idx],K∗ = K[idx], V ∗ = V [idx].

(2)

Where sim is the similarity matrix between K and kc, the argsort(sim) returns the indices of sim
sorted in descending order. Q∗,K∗, V ∗ are Q,K, V rearranged according to argsort(sim).

Equally Partition Tokens based on Distance. The obtained Q∗, K∗, and V ∗ from the previous
step have been sorted based on their distances to the cluster center. For the design of vision back-
bone, we directly group them, so tokens with similar distances to the cluster center are classified
into the same cluster. This allows us to directly control an equal number of tokens in each cluster.
This process can be clearly illustrated in Fig. 3(c) and denoted as follows:

Qm = Q∗[m×N : (m+ 1)N ],

Km = K∗[m×N : (m+ 1)N ],

Vm = V ∗[m×N : (m+ 1)N ].

(3)

where N is the basic token number of each cluster for equal partition and m is the index of the
cluster

Based on the above steps, we have completed the clustering process that captures semantic infor-
mation in the image with minimal sorting cost. Moreover, compared to K-means, we have achieved
equi-partitioning of each cluster. After clustering is completed, we apply standard Self-Attention to
the tokens within each cluster, thereby completing the interaction of information between tokens:

Ym = Attn (Qm,Km, Vm) . (4)

For the design of vision language connector, we group the tokens according to their similarity, and
the tokens within each group are interleaved, as shown in Eq. 5:

Qn = Q∗[n : N : L],Kn = K∗[n : N : L], Vn = V ∗[n : N : L]. (5)
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Figure 3: (a) Illustration of SECViT (b) Applying SEC to vision language connector. (c) Illustration
of Semantic Equitable Clustering for ViT and Vision Language Connector.

in which L is the token’s sequence length, n is the index of group tokens. N is the basic token
number of each cluster. After obtaining the token groups, we perform pooling on Q to effectively
reduce the number of tokens input to the LLM, with each group’s output becoming a single token,
as shown in Eq 6.

Yn = Attn(Pool(Qn),Kn, Vn). (6)

3.3 DIFFERENCE BETWEEN SEC AND EVIT.

We use the most representative example, EViT (Liang et al., 2022), to illustrate the differences
between SEC and other methods based on the similarity between the global token and other tokens.

Pruning v.s. Clustering. Most similarity-based methods, such as EViT, are pruning methods, where
tokens with low similarity to the [cls] token are merged during the forward process, thereby reducing
the number of tokens and decreasing computational cost. In contrast, our proposed SECViT employs
a clustering-based approach, performing attention operations within each cluster.

The role of the [cls] token. In methods like EViT, the [cls] token serves as a measure of importance
of a token. Each token computes its similarity to the [cls] token, with higher similarity tokens
deemed more important. The less important tokens are abandoned. In contrast, in SEC, the [cls]
token (obtained by average pooling over all tokens) measures similarity between tokens. Each token
computes its similarity score to the [cls] token; tokens with similar scores are considered to be more
similar and grouped into one cluster. Attention is calculated only within the same cluster.

Models Params(M) FLOPs(G) Throughput(imgs/s) Acc(%) AP b APm mIoU

DeiT-S 22 4.6 3204 79.8 44.5 40.1 43.0
EViT-DeiT-S(keeprate=0.9) 22 4.0 3428 79.8 not suitable not suitable not suitable
SEC-DeiT-S(num cluster=2) 22 4.3 3226 80.6(+0.8) 47.9(+3.4) 43.1(+3.0) 48.0(+5.0)
SEC-DeiT-S(num cluster=4) 22 4.1 3412 80.5(+0.7) 47.7(+3.2) 42.7(+2.6) 47.5(+4.5)
SEC-DeiT-S(num cluster=8) 22 3.9 3528 80.1(+0.3) 46.7(+2.2) 42.0(+1.9) 46.4(+3.4)

Table 1: Comparison of EViT (Liang et al., 2022) and SEC.

Different adaptability to vision models/MLLMs. In pruning methods like EViT, during the
model’s forward pass, the number of tokens gradually decreases. Although reducing tokens does
not impact classification tasks, it prevents the feature map from being restored to its original shape.
This makes it difficult for EViT to be directly used with classic frameworks like SemanticFPN for
downstream dense prediction tasks . In SEC, we simply group the tokens without changing their
quantity, thereby preserving the integrity of the feature map. This ensures that SEC can be easily
applied to downstream tasks. In Tab. 1, we use DeiT (Touvron et al., 2021) as the baseline. Without
introducing any other tricks, just by applying SEC to DeiT, we form SEC-DeiT and compare it with
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EViT-DeiT. We conducted image classification, object detection, instance segmentation and seman-
tic segmentation based on SEC-DeiT-S. SEC not only accelerates the model but also enhances its
performance. Beyond the vision tasks, we also compare the EViT with our SEC on MLLM, details
can be found in the Tab. 8.

4 EXPERIMENTS

We first make strict comparison with hierarchical/plain baselines. Then we conduct experiments on
a wide range of vision tasks for SECViT, including image classification, object detection, instance
segmentation, and semantic segmentation. We also verify the role of SEC in MLLM based on
LLaVA-1.5 (Liu et al., 2023b). More details, experiments, and comparison of models’ efficiency
can be found in the Appendix.

4.1 SEC FOR VISION MODELS

Strict Comparison with Baselines. We select two baselines: hierarchical backbone Swin-
Transformer (Liu et al., 2021) and plain backbone DeiT (Touvron et al., 2021) to make a comparison
with our SEC based model. In the comparison models (SEC-Swin and SEC-DeiT), we merely sub-
stitute the attention mechanism in the original model with our SEC based Self-Attention and without
introducing any other modules. As shown in Tab. 2, we conduct experiments on image classification,
object detection, insatance segmentation and semantic segmentation, the simple replacement of the
attention mechanism yields significant advantages in both performance and efficiency.

Model Params(M) FLOPs(G) Throughput(imgs/s) Acc(%) AP b APm mIoU

DeiT-S 22 4.6 3204 79.8 44.5 40.1 43.0
EViT-DeiT-S(keeprate=0.9) 22 4.0 3428 79.8 not suitable not suitable not suitable
SEC-DeiT-S(num cluster=4) 22 4.1 3412 80.5(+0.7) 47.7(+3.2) 42.7(+2.6) 47.5(+4.5)

DeiT-B 86 17.6 1502 81.8 – – –
SEC-DeiT-B 86 14.8 1682 82.4(+0.6) – – –

Swin-T 29 4.5 1723 81.3 43.7 39.8 44.5
SEC-Swin-T 29 4.8 1482 83.8(+2.5) 48.3(+4.6) 43.4(+3.6) 49.3(+4.8)

Swin-S 50 8.8 1006 83.0 45.7 41.1 47.6
SEC-Swin-S 50 9.2 804 85.0(+2.0) 50.2(+4.5) 44.7(+3.6) 51.3(+3.7)

Table 2: Comparison with Hierarchy/Plain baselines.

Model Params(M) FLOPs(G) Method PT epoch Acc(%)

Swin-B 88 15.4 Supervised – 83.5
ConvNeXt V2-B 88 15.4 Supervised – 84.3

SEC-Swin-B 88 16.2 Supervised – 85.3

Swin-B 88 15.4 SimMIM 800 84.0(+0.5)
ConvNeXt V2-B 88 15.4 FCMAE 800 84.6(+0.3)

SEC-Swin-B 88 16.2 SimMIM 800 85.9(+0.6)

Table 3: Comparison with baselines on self-supervised setting.

In addition to the supervised
scenario, we also train the
model with SimMIM (Xie
et al., 2022) in the self-
supervised scenario. As
shown in Tab. 3, SEC also
performs exceptionally well in
the self-supervised scenario.

Image Classification. We
compare our SECViT with numerous state-of-the-art models, the results are shown in Tab.4. We
adopt the training strategy proposed in DeiT (Touvron et al., 2021), with the only supervision
is cross entropy loss. All of our models are trained from scratch for 300 epochs with the input
resolution of 224 × 224. SECViT consistently outperforms preceding models across all scales.
Notably, SECViT-S attains a Top1-accuracy of 84.3% with a mere 27M parameters and 4.6G
FLOPs. For larger models, SECViT-XL achieves a Top1-accuracy of 86.3% with 205M parameters
and 36.4G FLOPs. The comparison of the models’ efficiency can be found in Appendix.

Object Detection and Instance Segmentation. We utilize MMDetection (Chen et al., 2019) to
implement Mask-RCNN (He et al., 2017), Cascade Mask R-CNN (Cai & Vasconcelos, 2018), and
RetinaNet (Lin et al., 2017) to evaluate the performance of the SECViT. Tab. 5 and Tab. 6 show the
results of SECViT with different detection frameworks. The results show that SECViT performs
better than its counterparts in all comparisons.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Cost Model Parmas
(M)

FLOPs
(G)

Top1-acc
(%)

tin
y

m
od

el
∼

2.
5

G
PVTv2-b1 (2022a) 13 2.1 78.7

TCFormer-light (2022) 14 3.8 79.4
QuadTree-B-b1 (2022) 14 2.3 80.0

RegionViT-T (2022) 14 2.4 80.4
MPViT-XS (2022) 11 2.9 80.9

BiFormer-T (2023b) 13 2.2 81.4
CrossFormer-T (2022b) 28 2.9 81.5

FAT-B2 (2023) 14 2.0 81.9
GC-ViT-XT (2023) 20 2.6 82.0

SMT-T (2023) 12 2.4 82.2
SECViT-T 15 2.5 82.7

sm
al

lm
od

el
∼

4.
5

G

PS-ViT-B14 (2021) 21 5.4 81.7
DVT-T2T-ViT-19 (2021b) 39 6.2 81.9

ConvNeXt-T (2022b) 29 4.5 82.1
TCFormer (2022) 26 5.8 82.3

SG-Former-S (2023) 23 4.8 83.2
InternImage-T (2023) 30 5.0 83.5

GC-ViT-T (2023) 28 4.7 83.5
CMT-S (2022) 25 4.0 83.5

MaxViT-T (2022) 31 5.6 83.6
FAT-B3 (2023) 29 4.4 83.6
SMT-S (2023) 20 4.8 83.7

BiFormer-S (2023b) 26 4.5 83.8
SECViT-S 27 4.6 84.3

Cost Model Parmas
(M)

FLOPs
(G)

Top1-acc
(%)

ba
se

m
od

el
∼

9
.0

G

ConvNeXt-S (2022b) 50 8.7 83.1
NAT-S (2023) 51 7.8 83.7

Quadtree-B-b4 (2022) 64 11.5 84.0
MOAT-1 (2023) 42 9.1 84.2

InternImage-S (2023) 50 8.0 84.2
GC-ViT-S (2023) 51 8.5 84.3

BiFormer-B (2023b) 57 9.8 84.3
iFormer-B (2022) 48 9.4 84.6

SE-CoTNetD-152 (2022b) 56 26.5 84.6
SECViT-B 57 9.8 85.2

la
rg

e
m

od
el

∼
1
8
.0

G

CrossFormer-L (2022b) 92 16.1 84.0
Ortho-L (2022) 88 15.4 84.2
SMT-L (2023) 81 17.7 84.6

DaViT-B (2022) 88 15.5 84.6
SG-Former-B (2023) 78 15.6 84.7

iFormer-L (2022) 87 14.0 84.8
InterImage-B (2023) 97 16.0 84.9

GC-ViT-B (2023) 90 14.8 85.0
SECViT-L 101 18.2 85.7

X
L

m
od

el
∼

3
5
.0

G

ConvNeXt-L (2022b) 198 34.4 84.3
CoAtNet-3 (2021) 168 34.7 84.5
MaxViT-L (2022) 212 43.9 85.1
GC ViT-L (2023) 201 32.6 85.7

SECViT-XL 205 36.4 86.3

Table 4: Comparison with the state-of-the-art on ImageNet-1K classification.

Backbone Params
(M)

FLOPs
(G)

Mask R-CNN 3×+MS
AP bAP b

50AP
b
75APmAPm

50APm
75

NAT-T (2023) 48 258 47.8 69.0 52.6 42.6 66.0 45.9
GC-ViT-T (2023) 48 291 47.9 70.1 52.8 43.2 67.0 46.7

SMT-S (2023) 40 265 49.0 70.1 53.4 43.4 67.3 46.7
CSWin-T (2022) 42 279 49.0 70.7 53.7 43.6 67.9 46.6

InternImage-T (2023) 49 270 49.1 70.4 54.1 43.7 67.3 47.3
SECViT-S 45 262 51.6 72.5 55.9 45.6 69.9 48.8

NAT-S (2023) 70 330 48.4 69.8 53.2 43.2 66.9 46.4
InternImage-S (2023) 69 340 49.7 71.1 54.5 44.5 68.5 47.8

SMT-B (2023) 52 328 49.8 71.0 54.4 44.0 68.0 47.3
CSWin-S (2022) 54 342 50.0 71.3 54.7 44.5 68.4 47.7

SECViT-B 75 371 52.8 73.6 57.7 46.4 70.8 49.9

Backbone Params
(M)

FLOPs
(G)

Cascade Mask R-CNN 3×+MS
AP bAP b

50AP b
75AP

mAPm
50APm

75

NAT-T (2023) 85 737 51.4 70.0 55.9 44.5 67.6 47.9
GC-ViT-T (2023) 85 770 51.6 70.4 56.1 44.6 67.8 48.3

SMT-S (2023) 78 744 51.9 70.5 56.3 44.7 67.8 48.6
UniFormer-S (2022a) 79 747 52.1 71.1 56.6 45.2 68.3 48.9

CSWin-T (2022) 80 757 52.5 71.5 57.1 45.3 68.8 48.9
SECViT-S 83 741 54.1 72.8 58.6 47.0 70.3 51.0

NAT-S (2023) 108 809 51.9 70.4 56.2 44.9 68.2 48.6
GC-ViT-S (2023) 108 866 52.4 71.0 57.1 45.4 68.5 49.3
CSWin-S (2022) 92 820 53.7 72.2 58.4 46.4 69.6 50.6

UniFormer-B (2022a) 107 878 53.8 72.8 58.5 46.4 69.9 50.4
SECViT-B 114 849 55.4 74.1 59.9 47.8 71.7 51.7

Table 5: Comparison with other backbones using ”3×+MS“ schedule on COCO.

Backbone Params
(M)

FLOPs
(G)

Mask R-CNN 1× Params
(M)

FLOPs
(G)

RetinaNet 1×
AP b AP b

50 AP b
75 APm APm

50 APm
75 AP b AP b

50 AP b
75 AP b

S AP b
M AP b

L

PVTv2-B1 (2022a) 33 243 41.8 54.3 45.9 38.8 61.2 41.6 23 225 41.2 61.9 43.9 25.4 44.5 54.3
FAT-B2 (2023) 33 215 45.2 67.9 49.0 41.3 64.6 44.0 23 196 44.0 65.2 47.2 27.5 47.7 58.8

SECViT-T 34 221 47.8 69.5 52.5 43.0 66.7 46.3 24 202 45.8 66.8 49.2 29.1 49.8 60.9
CMT-S (2022) 45 249 44.6 66.8 48.9 40.7 63.9 43.4 44 231 44.3 65.5 47.5 27.1 48.3 59.1

MPViT-S (2022) 43 268 46.4 68.6 51.2 42.4 65.6 45.7 32 248 45.7 57.3 48.8 28.7 49.7 59.2
STViT-S (2023) 44 252 47.6 70.0 52.3 43.1 66.8 46.5 – – – – – – – –
FAT-B3 (2023) 49 – 47.6 69.7 52.3 43.1 66.4 46.2 39 – 45.9 66.9 49.5 29.3 50.1 60.9

SECViT-S 45 262 49.9 70.9 54.7 44.6 68.3 47.7 35 240 48.4 69.4 52.0 31.3 53.3 63.8
ScalableViT-B (2022) 95 349 46.8 68.7 51.5 42.5 65.8 45.9 85 330 45.8 67.3 49.2 29.9 49.5 61.0
InternImage-S (2023) 69 340 47.8 69.8 52.8 43.3 67.1 46.7 – – – – – – – –

STViT-B (2023) 70 359 49.7 71.7 54.7 44.8 68.9 48.7 – – – – – – – –
SECViT-B 76 371 51.5 72.9 56.7 45.4 69.9 48.7 63 349 49.3 70.3 52.9 32.0 53.8 64.8

Focal-B (2021) 110 533 47.8 70.2 52.5 43.2 67.3 46.5 101 514 46.3 68.0 49.8 31.7 50.4 60.8
CSwin-B (2022) 97 526 48.7 70.4 53.9 43.9 67.8 47.3 – – – – – – – –

InternImage-B (2023) 115 501 48.8 70.9 54.0 44.0 67.8 47.4 – – – – – – – –
SECViT-L 119 550 52.0 73.5 57.3 46.3 70.6 49.8 105 527 50.2 71.4 53.9 33.2 54.5 66.3

Table 6: Comparison to other backbones using ”1×“ schedule on COCO.

Semantic Segmentation. We utilize Semantic FPN (Kirillov et al., 2019) and UperNet (Xiao et al.,
2018) to validate our SECViT’s performance, implementing these frameworks via MMSegmenta-
tion (Contributors, 2020). The results of semantic segmentation can be found in the Tab. 7. All the
FLOPs are measured with the input resolution of 512 × 2048, except the group of the SECViT-T,
which are measured with the input resolution of 512× 512. SECViT achieves the best performance
in all settings.
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Semantic FPN

Backbone Params(M) FLOPs(G) mIoU(%)

PVTv2-B1 (2022a) 18 34 42.5
FAT-B2 (2023) 17 32 45.4

EdgeViT-S (2022) 17 32 45.9
SECViT-T 18 34 47.2

DAT-T Xia et al. (2022) 32 198 42.6
CSWin-T (2022) 26 202 48.2
FAT-B3 (2023) 33 179 48.9

SECViT-S 30 180 49.6
DAT-S (2022) 53 320 46.1

RegionViT-B+ (2022) 77 459 47.5
CSWin-S (2022) 39 271 49.2

SECViT-B 60 291 50.7
DAT-B (2022) 92 481 47.0

CrossFormer-L (2022b) 95 497 48.7
CSWin-B (2022) 81 464 49.9

SECViT-L 103 475 52.2

UperNet

Backbone Params(M) FLOPs(G) mIoU(%)

DAT-T (2022) 60 957 45.5
InternImage-T (2023) 59 944 47.9

MPViT-S (2022) 52 943 48.3
SMT-S (2023) 50 935 49.2

SECViT-S 56 936 50.6
DAT-S (2022) 81 1079 48.3

InterImage-S (2023) 80 1017 50.2
MPViT-B (2022) 105 1186 50.3
CSWin-S (2022) 65 1027 50.4

SECViT-B 86 1048 52.2
Swin-B (2021) 121 1188 48.1

GC ViT-B (2023) 125 1348 49.2
DAT-B (2022) 121 1212 49.4

InternImage-B (2023) 128 1185 50.8
CSWin-B (2022) 109 1222 51.1

SECViT-L 131 1256 53.8

Table 7: Comparison with the state-of-the-art on ADE20K.

4.2 SEC FOR MLLM

SEC can greatly facilitate the design of vision language connectors in MLLMs. First, we con-
duct a rigorous comparison between SEC and various baseline vision language connectors based on
LLaVA-1.5. Then, we compare LLaVA-1.5+SEC with several popular contemporary MLLMs.

Strict Comparison with Baselines. In Tab. 8, we strictly compare various commonly used vision
language connectors, including MLP, Resampler (Bai et al., 2023), Pooling, and EViT (Liang et al.,
2022), which has achieved success in the design of ViT. Among these, MLP is the original design
in LLaVA-1.5 (Liu et al., 2023b), capable of achieving good results. However, it incurs significant
computational cost due to the excessive vision tokens. To address this issue, some connectors at-
tempt to use fewer vision tokens to accelerate LLaVA-1.5. Nonetheless, these adjustments inevitably
lead to performance degradation. The results in Tab. 8 show that using SEC can effectively acceler-
ate the training of LLaVA-1.5 without causing performance degradation, and can even improve the
performance of LLaVA-1.5 to a certain extent.

Model Connector V-T Num Time Speed TextVQA GQA VQAv2 POPE MME

LLaVA-1.5 MLP 576+1 21h 1.0× 58.2 62.0 78.5 86.1 1510.7

LLaVA-1.5+Resampler Resampler 288+1 14h 1.5× 52.1 56.8 76.0 83.1 1393.2
LLaVA-1.5+EViT MLP+EViT 288+1 14h 1.5× 54.6 60.0 77.9 84.3 1483.2
LLaVA-1.5+SEC MLP+SEC 288+1 14h 1.5× 60.1 63.5 78.9 87.7 1510.7

LLaVA-1.5+Resampler Resampler 256+1 13h 1.6× 51.6 56.0 75.2 82.7 1387.2
LLaVA-1.5+Pool MLP+Pool 256+1 13h 1.6× 52.4 57.6 76.4 83.3 1415.5
LLaVA-1.5+EViT MLP+EViT 256+1 13h 1.6× 52.8 59.6 77.1 83.7 1443.7
LLaVA-1.5+SEC MLP+SEC 256+1 13h 1.6× 59.6 63.2 78.6 87.1 1505.2

LLaVA-1.5+Resampler Resampler 192+1 11h 1.9× 50.1 55.2 74.3 82.7 1337.6
LLaVA-1.5+EViT MLP+EViT 192+1 11h 1.9× 51.6 58.6 76.3 83.1 1427.6
LLaVA-1.5+SEC MLP+SEC 192+1 11h 1.9× 57.7 62.7 78.4 86.7 1500.1

LLaVA-1.5+Resampler Resampler 144+1 10h 2.1× 47.6 54.6 72.0 81.9 1293.7
LLaVA-1.5+Pool MLP+Pool 144+1 10h 2.1× 50.0 56.2 73.6 81.9 1310.7
LLaVA-1.5+EViT MLP+EViT 144+1 10h 2.1× 51.2 58.0 76.0 83.1 1393.6
LLaVA-1.5+SEC MLP+SEC 144+1 10h 2.1× 56.8 62.0 78.0 86.1 1487.1

Table 8: Comparison of different vision language connectors on LLaVA-1.5. “V-T Num” denotes
the quantity of visual tokens. The computation expense is impacted by V-T Num, with larger values
resulting in higher costs. “Speed” refers to the comparative training velocity relative to LLaVA-1.5.
“Time” is the training time.

Comparison with Popular MLLMs. In Tab. 9 and Tab. 10, we compare LLaVA-1.5 equipped
with SEC as a vision-language connector with other MLLMs. It is evident that SEC not only en-
hances the performance of MLLMs across various benchmarks but also significantly improves the
efficiency of the models. This fully demonstrates the effectiveness of SEC in extracting visual in-
formation.
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Model LLM Connector V-T Num Res TextVQA GQA VQAv2 VisWiz SQAimg Speed (↑)

7B LLM

Shikra (Chen et al., 2023) Vicuna-7B MLP 257 224 - - 77.4 - - -
IDEFICS-9B (Laurençon et al., 2024) LLaMA-7B Cross Attn 257 224 - 38.4 50.9 35.5 - -
Qwen-VL (Bai et al., 2023) Qwen-7B Resampler 256 448 - 59.3 78.8 35.2 67.1 -
Qwen-VL-Chat (Bai et al., 2023) Qwen-7B Resampler 256 448 - 57.5 78.2 38.9 68.2 -

LLaVA-1.5 (Liu et al., 2023a) Vicuna-7B MLP 577 336 58.2 62.0 78.5 50.0 66.8 1.0×
LLaVA-1.5+SEC (ours) Vicuna-7B MLP+SEC 257 336 59.6 63.2 78.9 52.8 69.6 1.6×
13B LLM

InstructBLIP (Dai et al., 2023) Vicuna-13B Q-Former 32 224 - 49.5 - 33.4 63.1 -
BLIP-2 (Li et al., 2023) Vicuna-13B Q-Former 32 224 - 41.0 41.0 19.5 61.0 -

LLaVA-1.5 (Liu et al., 2023a) Vicuna-13B MLP 577 336 61.2 63.3 80.0 53.6 71.6 1.0×
LLaVA1.5+SEC (ours) Vicuna-13B MLP+SEC 257 336 62.3 64.3 80.0 54.7 72.0 1.7×

Table 9: Results on General VQA tasks.

Model LLM Connector V-T Num Res POPE MMB MM-Vet Speed (↑)

7B LLM

MiniGPT-4 (Zhu et al., 2023a) Vicuna-7B Resampler 32 224 72.2 24.3 22.1 -
mPLUG-Owl2 (Ye et al., 2024) LLaMA2-7B Resampler 32 224 - 49.4 - -

LLaMA-AdapterV2 (Gao et al., 2023) LLaMA2-7B LLaMA-Adapter 257 224 - 41.0 31.4 -
Shikra (Chen et al., 2023) Vicuna-7B MLP 257 224 - 58.8 - -
Qwen-VL (Bai et al., 2023) Qwen-7B Resampler 256 448 - 38.2 - -
Qwen-VL-Chat (Bai et al., 2023) Qwen-7B Resampler 256 448 - 60.6 - -

LLaVA-1.5 (Liu et al., 2023a) Vicuna-7B MLP 577 336 86.1 64.3 31.1 1.0×
LLaVA1.5+SEC (ours) Vicuna-7B MLP+SEC 145 336 86.1 68.4 31.7 2.1×
13B LLM

MiniGPT-4 (Zhu et al., 2023a) Vicuna-13B Resampler 32 224 - - 24.4 -
BLIP-2 (Li et al., 2023) Vicuna-13B Q-Former 32 224 85.3 - 22.4 -

LLaVA-1.5 (Liu et al., 2023a) Vicuna-13B MLP 577 336 86.2 67.7 36.1 1.0×
LLaVA-1.5+SEC (ours) Vicuna-13B MLP+SEC 145 336 86.4 69.2 37.3 2.2×

Table 10: Results on benchmark designed for MLLMs.

4.3 VISUALIZATION OF SEC

To further understand the working mechanism of SEC, we visualize some clustering results for
SECViT. As shown in Fig. 4, the left side presents the clustering results of vision tokens at different
stages of the model. From the clustering results, we analyze that in the shallow layers, the model
distinguishes fine-grained features well, while in the deeper layers, it captures global semantic fea-
tures effectively. The right side shows the Grad-CAM diagrams at different stages of the model,
from which we can draw similar conclusions to the clustering results.

stage1 stage2 stage3 stage2 stage3 stage4
Clustering Results Grad-CAM

stage1

Figure 4: Visualization for SEC.
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4.4 ABLATION STUDY

In this section, we present some of the ablation study results for SEC, and more results can be found
in the Appendix.

Number of Vision Tokens in Each Clusters. The number of vision tokens has a significant impact
on the performance and speed of the model. We thoroughly investigate the effect of the number of
vision tokens on SECViT. As shown in Tab. 11, the number of vision tokens in each cluster greatly
influences the model’s performance. Specifically, in downstream dense prediction tasks, having too
few tokens in each cluster leads to substantial performance degradation. When the number of tokens
in each cluster is too large, the model’s performance does not see a significant improvement, but its
speed decreases.

V-T num Params(M) FLOPs(G) Throughput(imgs/s) Acc(%) AP b APm mIoU

98 15 2.5 2004 82.7 47.8 43.0 47.2

196 15 3.1 1722 83.0(+0.3) 48.2(+0.4) 43.4(+0.4) 47.5(+0.3)
64 15 2.5 1946 82.7(+0.0) 47.8(+0.0) 42.8(-0.2) 46.9(-0.3)
49 15 2.4 2102 82.6(-0.1) 47.5(-0.3) 42.7(-0.3) 47.7(-0.5)
24 15 2.3 2186 82.0(-0.7) 45.9(-1.9) 40.6(-2.4) 44.6(-2.6)

Table 11: Effect of the number of vision tokens in each cluster. “V-T num” means the number of
vision tokens in each cluster. The experiments are conducted based on SECViT-T.

Number of Vision Tokens Outputs by SEC. MLLM is quite sensitive to the number of vision
tokens. We conduct a detailed exploration based on LLaVA-1.5 regarding the number of vision to-
kens output by SEC, as shown in Tab. 12. The first row represents the speed and performance of the
original LLaVA-1.5 without using SEC. Compared to LLaVA-1.5, employing SEC effectively re-
duces the number of vision tokens and improves training efficiency. As the number of vision tokens
decreases, the model’s performance shows a slight decline, but its efficiency is further enhanced.

V-T num Time Speed TextVQA GQA VQAv2 POPE MM-Vet

576+1 21h 1.0× 58.2 62.0 78.5 86.1 31.1

288+1 14h 1.5× 60.1(+1.9) 63.5(+1.5) 78.9(+0.4) 87.7(+1.6) 33.2(+2.1)
256+1 13h 1.6× 59.6(+1.4) 63.2(+0.3) 78.6(+0.1) 87.1(+1.0) 32.7(+1.6)
192+1 11h 1.9× 57.7(-0.5) 62.7(+0.7) 78.4(-0.1) 86.7(+0.6) 32.1(+1.0)
144+1 10h 2.1× 56.8(-1.4) 62.0(+0.0) 78.0(-0.5) 86.1(+0.0) 31.7(+0.6)

Table 12: Effect of the number of vision tokens outputs by SEC. “V-T num” means the number
of vision tokens output by SEC. The experiments are conducted based on LLaVA-1.5 (Liu et al.,
2023b).

5 CONCLUSION

We propose a simple and straightforward clustering method for vision tokens—Semantic Equitable
Clustering (SEC). This method assigns each token to a cluster by calculating the similarity between
each token and a global token, and completes the whole clustering process in only one step. Our
clustering method takes into account the semantic information contained in the tokens, and ensures
an equal number of tokens in each cluster, facilitating efficient parallel processing on modern GPUs.
Based on Semantic Equitable Clustering, we designed SECViT, a versatile vision backbone that
achieves impressive results across various vision tasks, including image classification, object de-
tection, instance segmentation, and semantic segmentation. Besides, SEC can also be conveniently
applied to multimodal large lan- guage models (MLLM) to serve as a vision language connector and
benefits the model’s efficiency.
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A APPENDIX

The appendix mainly includes three sections: detailed experimental settings of the models, more
experiments and comparison of models’ efficiency, analysis of some clustering failure cases.

A.1 EXPERIMENTAL DETAILS

SECViT’s Architectures. SECViT’s architecture details are illustrated in Table 13. In SECViT,
we adopt four 3 × 3 convolutions to embed the input image into tokens, batch normalization and
GELU are used after each convolution. 3 × 3 convolutions with stride 2 are used between stages
to reduce the feature resolution. 3 × 3 DWConvs are adopted in CPE. For all models, we set the
number of clusters in the first three stages to 32, 8, and 2, respectively.

Model Blocks Channels Heads Ratios Params(M) FLOPs(G)

SECViT-T [2, 2, 9, 2] [64, 128, 256, 512] [2, 4, 8, 16] 3 15 2.5
SECViT-S [4, 4, 18, 4] [64, 128, 256, 512] [2, 4, 8, 16] 3 27 4.6
SECViT-B [4, 8, 26, 9] [80, 160, 320, 512] [2, 4, 8, 16] 3 57 9.8
SECViT-L [4, 8, 26, 9] [112, 224, 448, 640] [4, 8, 14, 20] 3 101 18.2

SECViT-XL [6, 12, 28, 12] [128, 256, 512, 1024] [4, 8, 16, 32] 3 205 36.4

Table 13: Detailed Architectures of our models.

Image Classification. We adopt the training strategy proposed in DeiT (Touvron et al., 2021),
with the only supervision is cross entropy loss. All of our models are trained from scratch for 300
epochs with the input resolution of 224 × 224. The AdamW is used with a cosine decay learning
rate scheduler and 5 epochs of linear warm-up. The batch-size is set to 1024, respectively. We
apply the same data augmentation and regularization used in DeiT (Touvron et al., 2021), including
RandAugment (Cubuk et al., 2020) (randm9-mstd0.5-inc1) , Mixup (Zhang et al., 2018) (prob = 0.8),
CutMix (Yun et al., 2019) (prob = 1.0), Random Erasing (prob = 0.25), and Exponential Moving
Average (EMA) (Polyak & Juditsky, 2019). The maximum rates of increasing stochastic depth
(Huang et al., 2016) are set to 0.1/0.15/0.4/0.5/0.65 for SECViT-T/S/B/L/XL.

Object Detection and Instance Segmentation. We apply RetinaNet (Lin et al., 2017), Mask-
RCNN (He et al., 2017), and Cascaded Mask R-CNN (Cai & Vasconcelos, 2018) as the detection
frameworks based on the MMDetection (Chen et al., 2019). All of our models are trained with “1
×” (12 training epochs) and “3 × +MS” (36 training epochs with multi-scale training) settings. For
the “1 ×” setting, images are resized to the shorter side of 800 pixels while the longer side is within
1333 pixels. For the “3 × +MS”, multi-scale training strategy is used to randomly resize the shorter
side of images between 480 to 800 pixels. For both frameworks, we use the AdamW with the initial
learning rate of 1e-4. For RetinaNet, we set the weight decay to 1e-4. While for Mask-RCNN and
Cascaded Mask R-CNN, we set it to 5e-2.

Semantic Segmentaion. Based on MMSegmentation (Contributors, 2020), we implement Uper-
Net (Xiao et al., 2018) and SemanticFPN (Kirillov et al., 2019) to evaluate our models’ performance
on semantic segmentation. For UperNet, we follow the previous setting of Swin-Transformer (Liu
et al., 2021) and train the model for 160k iterations with the input size of 512 × 512. For Seman-
ticFPN, we also use the input resolution of 512× 512 but train the models for 80k iterations.

A.2 MORE EXPERIMENTAL RESULTS.

Efficiency Comparison. In Tab. 14, we compare the inference efficiency of various models in
detail. From this, we can see that the ViT based on SEC demonstrates the best performance-speed
tradeoff.

Different Methods for Merging Vision Tokens. For MLLM, SEC uses an interleaved merge
token approach to reduce the number of vision tokens. Conversely, we also explore a sequential
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Model Params(M) FLOPs(G) Throughput(imgs/s) Top1-Acc(%)

DeiT-S (2021) 22 4.6 3204 79.8
EViT-DeiT-S (keeprate=0.9) (2022) 22 4.0 3428 79.8

SEC-DeiT-S (num cluster=4) 22 4.1 3412 80.5

DeiT-B (2021) 86 17.6 1502 81.8
SEC-DeiT-B 86 14.8 1682 82.4

PVTv2-b1 (2022a) 13 2.1 2204 78.7
TCFormer-light (2022) 14 3.8 417 79.4

MPViT-XS (2022) 11 2.9 1496 80.9
BiFormer-T (2023b) 13 2.2 1634 81.4

CMT-XS (2022) 15 1.5 1476 81.8
GC-ViT-XT (2023) 20 2.6 1308 82.0

SMT-T (2023) 12 2.4 638 82.2
SECViT-T 15 2.5 2004 82.7

Swin-T (2021) 29 4.5 1723 81.3
PS-ViT-B14 (2021) 21 5.4 1986 81.7

DVT-T2T-ViT-19 (2021b) 39 6.2 1268 81.9
SGFormer-S (2023) 23 4.8 952 83.2

CMT-S (2022) 25 4.0 846 83.5
CSwin-S (2022) 35 6.9 972 83.6
SMT-S (2023) 20 4.8 356 83.7

BiFormer-S (2023b) 26 4.5 766 83.8
SEC-Swin-T 29 4.8 1482 83.8
SECViT-S 27 4.6 998 84.3

Swin-S (2021) 50 8.8 1006 83.0
SGFormer-M (2023) 39 7.5 598 84.1

SMT-B (2023) 32 7.7 237 84.3
BiFormer-B (2023b) 57 9.8 498 84.3

MaxViT-S (2022) 69 11.7 546 84.5
CMT-B (2022) 46 9.3 447 84.5

iFormer-B (2022) 48 9.4 688 84.6
SEC-Swin-S 50 9.2 804 85.0
SECViT-B 57 9.8 504 85.2

Swin-B (2021) 88 15.5 768 83.5
CSWin-B (2022) 78 15.0 660 84.2
SMT-L (2023) 80 17.7 158 84.6

SGFormer-B (2023) 78 15.6 388 84.7
iFormer-L (2022) 87 14.0 410 84.8
MaxViT-B (2022) 120 23.4 306 84.9

SEC-Swin-B 88 16.2 696 85.3
SECViT-L 101 18.2 398 85.7

Table 14: Comparison of models’ efficiency. Throughputs are measured on a single A100 with the
batch size of 64.

merge token method to achieve a similar reduction. The comparison of these two methods is shown
in Tab. 15. The direct sequential merge token approach may result in the loss of critical visual
information, significantly degrading the model’s performance.

Method V-T num Time Speed TextVQA GQA VQAv2 POPE MM-Vet

Interleaved 288+1 14h 1.5× 60.1 63.5 78.9 87.7 33.2
Sequential 288+1 14h 1.5× 52.8(-7.3) 57.1(-6.2) 75.7(-3.2) 81.7(-6.0) 27.6(-5.6)

Interleaved 144+1 10h 2.1× 56.8 62.0 78.0 86.1 31.7
Sequential 144+1 10h 2.1× 47.2(-9.6) 53.6(-8.4) 71.7(-6.3) 80.0(-6.1) 22.3(-9.6)

Table 15: Different methods for merging vision tokens.
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stage1 stage2 stage3 stage1 stage2 stage3
Cluster results Grad-CAM

Figure 5: Failure cases of SECViT.

A.3 FAILURE CASES AND LIMITATION.

A possible drawback of SEC might be that determining the cluster based on its similarity to the
global token is a bit too simplistic, and therefore cannot precisely categorize the tokens when the
environment is too complex (e.g., the target object is too small or the target object and background
have very similar colors). This is more evident in the shallow features of the SECViT. However,
our method is much faster than clustering methods such as K-means and achieves better results
compared to methods like window partition that consider only spatial information. This advantage
outweighs the shortcomings of SEC to a certain extent. Additionally, as the layers deepen, SECViT
captures semantic information more accurately. The failure cases are shown in the Fig. 5.

16


	Introduction
	Related works
	Method
	Overall Architecture
	Semantic Equitable Clustering
	Difference between SEC and EViT.

	Experiments
	SEC for vision models
	SEC for MLLM
	Visualization of SEC
	Ablation Study

	Conclusion
	Appendix
	Experimental Details
	More experimental Results.
	Failure Cases and Limitation.


