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ABSTRACT

Vector-Quantized Generative Models (VQGMs) have emerged as powerful tools
for image generation. However, the key component of VQGMs—the codebook
of discrete tokens—is still not well understood, e.g., which tokens are critical to
generate an image of a certain concept? This paper introduces Concept-Oriented
Token Explanation (CORTEX), a novel approach for interpreting VQGMs by
identifying concept-specific token combinations. Our framework employs two
methods: (1) a saliency-based method that analyzes token saliency value in indi-
vidual images, and (2) an optimization-based method that explores the entire code-
book to find globally relevant tokens. Experimental results demonstrate COR-
TEX’s efficacy in providing clear explanations of token usage in the generative
process, outperforming baselines across multiple pretrained VQGMs. CORTEX
not only improves VQGM transparency but also enables tasks such as targeted
image editing, offering valuable insights into the model’s internal representations.

1 INTRODUCTION

Vector-Quantized Image Generative Models (VQGMs) (Ramesh et al., 2021; Esser et al., 2021; Yu
et al., 2021; Jin et al., 2023) have become powerful tools for high-quality image generation using
discrete latent space representations. A critical component of these models is the codebook (Esser
et al., 2021), which acts as a learned dictionary of visual elements. This codebook stores a finite
set of discrete tokens, each representing various patterns or features within an image, such as tex-
tures, shapes, or object parts. During the generation process, the model selects tokens from this
codebook to compose the final image. However, these high-dimensional tokens are difficult to in-
terpret, making it challenging to understand how specific concepts are represented in the generative
process. Moreover, not all tokens contribute equally to the generation of a particular concept (e.g.,
object categories or visual attributes), leading to the need for methods that can distinguish between
concept-relevant and background tokens. Improving the interpretability of these tokens can provide
deeper insights into how VQGMs represent semantic concepts, enabling more precise control over
the generation process and facilitating tasks such as targeted image editing.

A straightforward approach to token interpretation may involve selecting tokens frequently appear-
ing in images generated for a specific concept/object (Blei et al., 2003). However, this naive method
often selects tokens that represent contextual or background elements, resulting in explanations clut-
tered with irrelevant information. This inability to differentiate between essential and non-essential
tokens hinders clear understanding of how the model represents specific concepts.

To address this issue, we draw on the Information Bottleneck principle (Tishby et al., 2000), which
focuses on compressing input data while retaining the most relevant information for a given task.
In the context of VQGMs, we apply this principle to identify and preserve the tokens that are most
informative for a specific concept, while filtering out those that contribute little to its representation.

In this paper, we propose CORTEX (Concept-Oriented Token Explanation), a novel framework that
interprets VQGMs by identifying concept-specific token combinations. CORTEX comprises two
methods: a saliency-based method that analyzes individual token importance for a given image and
an optimization-based method that explores the entire codebook to find globally relevant tokens for
a concept. By focusing on the most critical tokens and filtering out non-essential information, COR-
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TEX provides clearer, more interpretable explanations of how VQGMs generate specific concepts.
This, in turn, enables precise image manipulation and editing based on token-level representations.

Experimental results demonstrate the effectiveness of CORTEX according to the pretrained VQGM,
including ResNet and Vision Transformer architectures. Our saliency-based method consistently
identifies the most relevant tokens for concept-specific image generation, while the optimization-
based method allows targeted image editing by manipulating these tokens. Together, these methods
significantly enhance the transparency and controllability of VQGMs, providing valuable insights
into the model’s internal representations and offering practical tools for downstream generative
tasks. Our main contributions are summarized as follows:

• We propose a saliency-based method for input-dependent token explanation, which iden-
tifies concept-relevant tokens in generated images by leveraging an information extractor
based on the Information Bottleneck principle.

• We introduce an optimization-based method that explores the entire codebook to find
globally relevant tokens for concept explanation, utilizing the same information extractor
to optimize token combinations independent of specific inputs.

• Our experiments validate both token-based explanation methods, demonstrating their ef-
fectiveness in enhancing VQGM interpretability and enabling applications such as precise
image editing.

2 PRELIMINARY

2.1 VECTOR QUANTIZED IMAGE GENERATIVE MODEL

Vector Quantized Image Generative Models (VQGM) (Ramesh et al., 2021; Esser et al., 2021; Yu
et al., 2021; Jin et al., 2023) generate images via decoding from discrete tokens. These models are
typically designed for conditional generation and are capable of creating images based on given
concepts, such as text descriptions. During the image generation process, these models have three
key parts: a codebook that stores token information, a transformer that predicts tokens based on the
codebook and the concepts, and a decoder that turns tokens into images. It is worth noting that the
term “concept” refers to the “input condition” in conditional generation, which guides the image
generation process. The codebook plays a crucial role in VQGM by quantizing continuous high-
dimensional visual features into discrete tokens. It is obtained through training on a large volume of
image data to encode a diverse set of visual elements. However, tokens in the codebook are difficult
to interpret directly because they represent high-dimensional features extracted from image pixels,
capturing complex visual patterns that are not intuitively comprehensible to humans.

Let G be a VQGM model with a codebook C ∈ RK×d = [t0, . . . , tK−1]
⊤, where K is the total

number of unique tokens, and ti ∈ Rd is a d-dimensional vector representing the token i. The code-
book C can be viewed as a look-up table. To generate an image, the model first uses its transformer
to predict a sequence of m2 tokens according to the input concept. It then looks up each token’s
corresponding vector in the codebook. These vectors are arranged into a 3D tensor E ∈ Rd×m×m,
which we call the token-based embedding. Finally, the decoder transforms this embedding E into
an H ×H image, where H is typically larger than m. This E is central to our analysis, as it directly
shows how the model uses tokens to create images.

2.2 INFORMATION BOTTLENECK

The Information Bottleneck (IB) principle, introduced by (Tishby et al., 2000), provides a theoretical
framework for extracting relevant information from data. The core idea of IB is to compress an
input variable X into a representation T that retains maximal information about a target variable Y .
Formally, this is achieved by minimizing the following objective:

LIB = I(X;T )− βI(T ;Y ), (1)

where I(·; ·) denotes mutual information, and β > 0 is a hyperparameter that controls the trade-off
between compression (minimizing I(X;T )) and preservation of relevant information (maximizing
I(T ;Y )). This principle has found applications in various machine learning tasks (Tishby & Za-
slavsky, 2015; Hafez-Kolahi & Kasaei, 2019; Goldfeld & Polyanskiy, 2020), particularly in feature
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Figure 1: CORTEX comprises three key components: an Information Extractor and two explanation
methods. The saliency-based method identifies concept-relevant tokens for each individual image,
while the optimization-based method generates token combinations that represent the concept.

selection and representation learning, where it helps identify the most relevant features for a given
concept while discarding irrelevant or redundant information. In the context of our work, the IB
principle inspires our approach to extracting concept-specific tokens from VQGMs, focusing on the
most relevant tokens while filtering out unnecessary background tokens.

3 METHODOLOGY

3.1 OVERVIEW

We propose a novel framework for concept-specific token explanation in VQGMs, aiming to identify
the most relevant tokens within the discrete token space for a user-specified concept as the token-
based explanation. Here, a concept can refer to a certain aspect of image content, such as object
categories (e.g., “cat” or “dog”), visual attributes (e.g., “red” or “shiny”), or more abstract concepts
(e.g., “rural scene” or “urban scene”). Our approach is inspired by the Information Bottleneck prin-
ciple, focusing on extracting the most pertinent tokens to the concept while filtering out background
information. The core of our framework is an information extractor introduced in Section 3.2 that
predicts the concept of interest from token-based embedding E. It is important to note that since
our goal is to explain the behavior of VQGMs, all token-based embeddings E used in this study are
generated by the VQGM itself, rather than derived from real images.

Recognizing that users are often interested in explanations for images generated during inference, we
first introduce an input-dependent method based on saliency analysis in Section 3.3 to identify to-
kens that are most relevant to the concept in a specific image. Furthermore, we extend this approach
to a concept-level analysis by aggregating identified tokens across a diverse set of images associ-
ated with the concept Y . This aggregation yields a more comprehensive, yet still input-dependent,
view of how the model represents the concept across various instances. To complement the input-
dependent method, we also present an input-independent method in Section 3.4. This approach
identifies globally relevant token combinations for the concept by exploring the entire codebook,
rather than relying on sampled images. Through an optimization process, we select tokens that
best explain the user-specified concept Y , providing a comprehensive token-based explanation that
considers all possible combinations within the codebook.

3
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Both methods ultimately aim to obtain a token combination T ∗ which is the token-based explanation
of the concept Y . It represents a subset of tokens from the VQGM’s codebook that effectively
characterize or explain the given concept Y . This combination of tokens captures the essential
visual or semantic features that are associated with the concept to be explained.

3.2 INFORMATION EXTRACTOR

The Information Extractor serves as the cornerstone of our framework, designed to identify the most
relevant tokens for a given concept. This model operates on token-based embeddings E ∈ Rd×m×m,
generating predictions related to the concept of interest Y :

y = fY (E), (2)

where fY is a classification model specifically trained for predicting concept Y . It determines
whether the token-based embedding E contains the concept Y . For instance, if Y denotes a par-
ticular image label, then fY is a classifier capable of identifying the presence of that label in the
decoded image based on E. The output y represents the model’s prediction, indicating the likeli-
hood that E contains concept Y . The model’s architecture and training objective align closely with
the Information Bottleneck principle (Saxe et al., 2019; Shwartz-Ziv & Tishby, 2017). To accu-
rately predict or characterize the concept Y , the model must inherently focus on tokens and token
combinations that are most representative and relevant to Y , while minimizing their reliance on irrel-
evant input tokens. This behavior mirrors the core tenets of the Information Bottleneck framework:
maximizing information about the target variable while compressing the input.

Given an information extractor fY and a target concept Y , we aim to find the optimal token combi-
nation T ∗ that servers as the explanation of concept Y :

T ∗ = ϕ(fY , [E]), (3)

where the function ϕ selects the most relevant tokens based on the trained information extractor fY ,
the concept Y that needs to be explained, and optionally the input embeddings E. Specifically, ϕ
encompasses both our saliency-based and optimization-based approaches for token selection.

3.3 SALIENCY-BASED TOKEN EXPLANATION

As users are often interested in explanations of existing generated images, we first propose a input-
dependent method to identify the most relevant tokens in these images. This method uses saliency
analysis (Simonyan, 2013) to determine how each token in the input embedding E contributes to
the prediction of the concept Y . This approach allows us to pinpoint which specific tokens are most
crucial for representing the given concept in the context of a particular input image, providing a
fine-grained, instance-specific explanation of the model’s behavior.

Given an input token-based embedding E ∈ Rd×m×m, we compute the saliency score of each token
using the following equation:

∇̄E =
1

N

N∑
l=1

∇EfY (E+ ϵl), (4)

where fY (E) is the output of our information extractor for the concept Y , N is the number of
samples, and ϵl ∼ N (0, σ2I) with σ = α(max(E)−min(E)). The resulting ∇̄E ∈ Rd×m×m has
the same dimensions as E. We then calculate the Token Saliency Value (TSV) for each token ti in
the m × m grid. The TSV serves as a measure of the importance or relevance of the token to the
prediction of the concept Y , with higher values indicating stronger associations between the token
and the concept. TSV(ti) is computed by taking the maximum value across all d channels of the
gradient at the specific position corresponding to the token ti as follows:

TSV(ti) = max
1≤j≤d

|∇̄E(j, pi)|, (5)

where pi represents the position of token ti in the m ×m grid, and ∇̄E(pi, j) denotes the gradient
value at position pi in the j-th channel. This operation reduces the d-dimensional gradient vector
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at each token’s position to a scalar value, representing the token’s relevance to concept Y . After
calculating the TSVs, we identify relevant token combinations at two levels:

T ∗
image = Topn(ti : i ∈ 1, . . . ,m2, key = TSV),

T ∗
concept = Topk(

⋃
sampled images

T ∗
image, key = Freq). (6)

Here, T ∗
image represents the Top n tokens with the highest TSV for each specific image, providing an

image-specific explanation. T ∗
concept aggregates these image-specific sets across all sampled images

related to the concept and selects the k most frequent tokens, offering a concept-level explanation
for Y . It is important to note that while T ∗

concept provides a broader perspective, it is still input-
dependent, as it is derived from all generative images related to the concept Y . This dual-level
approach allows us to capture both instance-specific patterns (through T ∗

image) and concept-level
trends (through T ∗

concept) in how the model represents and utilizes key information for the concept Y .

3.4 OPTIMIZATION-BASED TOKEN EXPLANATION

The saliency-based method analyzes tokens in individual-generated images but may not effectively
explore the entire token space. To address this limitation, we propose an optimization-based, input-
independent approach to identify the most relevant token combinations that explain a specific con-
cept Y . Our method offers a global perspective by exploring all possible token combinations in the
codebook, relying solely on the information extractor fY rather than any specific input. Since we
optimize over the input, it can be arbitrary—such as random noise or any existing token-based em-
bedding. Building on previous work that uses input optimization for model interpretation (Nguyen
et al., 2016; Erhan et al., 2009; Yosinski et al., 2015), our approach uniquely focuses on optimizing
the token selection matrix instead of operating in the pixel space.

Given an information extractor fY and a target concept Y , we aim to find the optimal token com-
bination T ∗ that maximizes the model’s prediction for Y , as defined in Equation 3. This method is
independent of any specific input embedding, allowing us to explore the entire token space defined
by the codebook. We define a token selection matrix P ∈ Rm2×K , where m2 is the total number
of token positions in the embedding E, and K is the size of the codebook. Each row of P corre-
sponds to a token position in E and contains a probability distribution over the K possible tokens.
We apply a binary mask Mmask ∈ {0, 1}m2

, where Mmask is a one-dimensional vector of size m2.
Each element in Mmask corresponds to a row in P , with 1 indicating optimization for this token and
0 indicating a fixed position (keeping the original token unchanged). This selective optimization al-
lows us to target relevant positions in the token selection process. We employ the Gumbel-Softmax
technique (Jang et al., 2016) for differentiable token selection, as directly selecting discrete tokens
from the codebook is not differentiable. This technique transforms the discrete selection process into
a continuous, differentiable operation, enabling the use of gradient-based optimization algorithms
to find the optimal token combinations.

E = GumbelSoftmax(P, τ)× C, (7)

where GumbelSoftmax(P, τ) ∈ {0, 1}m2×K is a one-hot matrix representing the selected tokens,
τ is the temperature parameter, and C ∈ RK×d is the codebook matrix (details can be found in
Appendix A.2). The optimization of P is conducted using:

Pk+1 = Pk − η(∇PL(Pk)⊙MT
mask),

L(P ) = −fY (E) + α∥E∥22,
(8)

where α is a regularization parameter and η is the learning rate. After the optimization process
converges, we obtain the final selection matrix P ∗. The optimal token combination T ∗ is then
derived from P ∗ for the unmasked positions:

T ∗
concept = {tk : k = argmax

j
P ∗
i,j ,∀i where Mmask,i = 1}. (9)

This T ∗
concept represents the set of tokens in the unmasked positions, which best explains the target

concept Y according to our information extractor fY . This method provides a unique perspective by
identifying the most relevant tokens for explaining concept Y across all possible token combinations,
rather than being constrained to tokens from specific generated images. It reveals how the model
globally represents the concept, offering insights into the fundamental token combinations that best
characterize Y in the context of VQGMs.
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Table 1: Comparison of Information Extractor prediction accuracy (%).

Model Top 1 Top 3 Top 5 Top 10
CNN-based Extractor 53.07 71.37 77.73 84.65
ResNet-based Extractor 51.43 69.23 76.00 83.12

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Our proposed framework aims to explain concept-specific information in VQGMs over a diverse
range of concepts. Consistent with prior research (Chefer et al., 2021; Binder et al., 2016; Si-
monyan, 2013) we adopt the methodology of treating each category in the ImageNet (Deng et al.,
2009) challenge dataset as a distinct concept to be explained. The experiments are designed to ver-
ify that the token combinations selected by CORTEX are indeed the most relevant to the concept
(label) being explained. In this experiment, the information extractor fY is trained as an image clas-
sifier with 1,000 ImageNet categories. To ensure the robustness of our evaluation, we employ four
well-established pretrained classification models as benchmarks. The selected pretrained models in-
clude variants of ResNet (He et al., 2016) (ResNet18 and ResNet50) and Vision Transformer (ViT)
(Dosovitskiy, 2020) (ViT-B/16 and ViT-B/32). These models represent state-of-the-art approaches
in image recognition.

4.1.1 SYNTHETIC DATASET FOR TOKEN-BASED ANALYSIS

To elucidate the selected T ∗ from our proposed explanation method ϕ of VQGMs, we use a syn-
thetic data set generated by VQGAN (Esser et al., 2021), which encompasses the same categories
as ImageNet. This symthetic dataset allows us to directly examine how the generative model uti-
lizes tokens to encode concept-specific information, specifically class labels, rather than analyzing
real-world images. Our synthetic dataset consists of 1,000,000 training images, 300,000 validation
images, and 50,000 test images, evenly distributed across all ImageNet categories. This balanced
distribution provides 1,000, 300, and 50 images per category in the training, validation, and test sets,
respectively. Each generated image has 256×256 pixels, with 16×16 tokens. During the generation
process, we can simultaneously obtain both the image and its token-based embedding E.

4.1.2 TRAINING INFORMATION EXTRACTOR

To validate the reliability of our explanations, we train 2 classification models with identical input-
output specifications but different architectures as the information extractor fY : (1) CNN-based
Extractor (CE), and (2) ResNet-based Extractor (RE). The specific architectures can be found in the
Appendix A.1. Both models take token-based embeddings E ∈ R256×16×16 and output probability
distributions over 1000 ImageNet labels. This setup enables us to analyze how different informa-
tion extractor architectures generate T ∗ based on the VQGAN, ensuring that our explanations are
consistent across model designs.

4.2 INFORMATION EXTRACTOR PERFORMANCE EVALUATION

Based on Tabel 1, the performance of our models, with Top 1 accuracies of 53.07% and 51.43%
for CNN-based and ResNet-based architectures, respectively, is significant considering the potential
inaccuracies introduced by VQGAN image generation process. Despite this challenge, the high Top
5 accuracies (exceeding 75%) demonstrate that our information extractors effectively capture the
relationship between token patterns and image labels. This indicates the models’ ability to learn
meaningful representations from token-based input embeddings E.

4.3 SALIENCY-BASED TOKEN EXPLANATION EVALUATION

Experimental Design. In this part, our experiments aim to validate that the token combinations
T ∗

image and T ∗
concept identified by our saliency-based method are indeed the most relevant and repre-

sentative of specific concepts. We conduct evaluations at both the image and the concept level.

6
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Figure 2: Token visualization for different concepts using our saliency-based method. Each row
shows 6 images of a distinct concept. Red boxes highlight high-TSV tokens, revealing consistent
identification of class-specific features (e.g., eyes, neck, red crowns, flame) across images.
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Figure 3: Image-level saliency-based method evaluation results: average probabilities vs. number
of masked tokens.

At the image level, we define T ∗
image as the set of the Top n tokens with the highest Token Saliency

Values (TSV), where n ranges from 5 to 50 in increments of 5. For each token in T ∗
image, we mask the

corresponding regions in the generated image. We then measure the change in softmax probability
for the specific label across four pretrained models: ViT-B/16, ViT-B/32, ResNet18, and ResNet50.
As a baseline, we randomly select n tokens and mask the associated regions in the image to compare
the effect with masking tokens in T ∗

image. At the concept level, we first identify the Top n (n = 20)
highest-TSV tokens in each training image to form individual T ∗

image sets. From the union of these
sets across all images of a given concept, we select the Top k (k = 100) most frequent tokens to form
T ∗

concept. We compare this with a frequency-based baseline of selecting the Top 100 most frequent
tokens in all images under the specific label without using our information extractor fY . We then
mask the corresponding patches of selected tokens in test images and measure the change in the
probability of the label. Our analyses treat each ImageNet class as a distinct concept, aggregating
results across all 1000 classes.
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Table 2: Concept-level saliency-based method evaluation results (Acc: prediction accuracy, P: prob-
ability, n: number of masked tokens, ∆A: change in accuracy, ∆P : change in probability).

Pretrained
Model Acc P CE RE Baseline

n ∆A ↓ ∆P ↓ n ∆A ↓ ∆P ↓ n ∆A↓ ∆P ↓
ResNet18 55.6% 0.452

42.176

-45.4% -0.381

40.629

-45.5% -0.382

64.166

-42.2% -0.356
ResNet50 56.1% 0.472 -46.6% -0.403 -46.8% -0.404 -41.9% -0.365
ViT-B/16 59.0% 0.472 -9.50% -0.112 -9.60% -0.113 -7.30% -0.090
ViT-B/32 58.0% 0.442 -36.0% -0.289 -36.0% -0.289 -33.2% -0.264

Image-level Evaluation Results. Figure 2 demonstrates the efficacy of our saliency-based method
in identifying concept-specific features across multiple images (more results can be found in Ap-
pendix A.3). Each row in the figure represents a distinct label. For each label, we present 6 different
images. Within each image, we highlight a specific token that exhibits a high Token Saliency Value
(TSV) using a red bounding box. These visualizations demonstrate our saliency-based method’s
ability to focus on tokens that often correspond to specific, concrete visual features within each
concept. For instance, the consistent highlighting of eyes, red crowns, and other distinctive fea-
tures across multiple images of the same class indicate that these tokens can effectively represent
meaningful, class-specific characteristics.

Quantitatively, Figure 3 shows the average change in softmax probability for specific labels as we
mask from 5 to 50 high-TSV tokens. Across all pretrained models, our method consistently leads
to a steeper decline in probability compared to random selection, demonstrating its effectiveness in
identifying tokens crucial to concept representation. Notably, both CNN-based and ResNet-based
information extractors exhibit similar declining trends, suggesting that different models attend to
similar tokens for specific concepts. These results validate our saliency-based method’s ability to
identify label-relevant features and provide interpretable insights into VQGMs.

Concept-level Evaluation Results. Table 2 presents the concept-level evaluation results across
4 different pretrained models. Our saliency-based method consistently outperforms the naive
frequency-based baseline in terms of impact on model predictions. When removing tokens based on
our T ∗

concept, we observe a more substantial impact on the prediction of the pre-trained model despite
masking fewer tokens on average (n1 = 42.176 and n2 = 40.629 for the CNN-based extractor
and the ResNet-based extractor, respectively) compared to the baseline (nb = 64.166). This is evi-
denced by the more significant reductions in both accuracy and probability scores. For instance, with
ResNet50, our method decreases accuracy by 46.8% and probability by 0.404, compared to base-
line 41.9% and 0.365, respectively. This superior performance, despite masking a smaller image
area, indicates that our method identifies more label-relevant tokens. Despite masking more tokens,
the baseline’s inferior performance suggests that it often selects less relevant tokens. These results
validate the effectiveness of our information extractor in identifying concept-specific features and
demonstrate our method’s ability to capture more semantically meaningful tokens for each concept.

4.4 OPTIMIZATION-BASED TOKEN EXPLANATION EVALUATION

Experimental Design. To evaluate our optimization-based method for identifying concept-
specific tokens T ∗

concept, we conduct experiments using 10 bird categories (500 images in total) from
the synthetic dataset. These bird images can be generated by VQGAN in high quality, and the 4
pre-trained models achieve high prediction accuracies on these 500 images, ranging from 84.6% to
90.2% (refer to AccOrig in Table 3). We pair 10 bird categories into 5 groups, each category serving
as both original and target labels. The optimization process begins with token-based embeddings E
from original label images, optimizing towards the target label, which is the concept to be explained
(details in Appendix A.4). We focus on a fixed 4× 4 region within the 16× 16 token grid, limiting
T ∗

concept to 16 tokens (only 1/16 of total 256 tokens).

We explore two optimization methods, both aiming to maximize the activation of a target bird label
(the concept to be explained): 1) Token selection optimization (our method): We optimize a token
selection matrix, which represents the probability of selecting each token from the codebook for
specific positions in the target region. 2) Embedding optimization (baseline): We directly optimize
the d-dimensional embedding in the target region. After optimization, we apply vector quantiza-
tion Gray (1984) to map each optimized embedding vector to the nearest token in the codebook,

8
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Table 3: Optimization-based method evaluation results.

Model AccOrig POrig PTarg

∆POrig ↓ / ∆PTarg ↑
Embedding Optimization Token Selection

CE RE CE RE
ResNet18 86.8% 0.795 0.016 -0.224 / 0.127 -0.202 / 0.097 -0.290 / 0.162 -0.284 / 0.160
ResNet50 84.6% 0.780 0.011 -0.217 / -0.122 -0.206 / 0.102 -0.282 / 0.165 -0.277 / 0.155
ViT-B/16 89.0% 0.766 0.003 -0.193 / 0.095 -0.174 / 0.072 -0.237 / 0.128 -0.243 / 0.121
ViT-B/32 90.2% 0.758 0.003 -0.196 / 0.090 -0.190 / 0.080 -0.239 / 0.112 -0.245 / 0.120

minimizing the Euclidean distance. Optimized embeddings were decoded via VQGAN to generate
images. To measure the effectiveness of each method optimization method, we calculate the change
in probabilities for the original and target labels before and after optimization:

∆POrig = POrig(optimized)− POrig(initial), ∆PTarg = PTarg(optimized)− PTarg(initial). (10)

Evaluation Results. Table 3 shows the results of our optimization methods across different mod-
els. The Token Selection method consistently outperforms the Embedding Optimization baseline
by both reducing the original label probability (∆POrig) and increasing the target label probability
(∆PTarg). For instance, in the ResNet18 model with CNN-based extractor, our method decreases the
probability of the original label by 36.5% (from 0.795 to 0.505) and increases the probability of the
target label about 11 times (from 0.016 to 0.178) compared to the initial probability. In contrast, the
Embedding Optimization baseline achieves a 28.2% decrease in the original label probability and a
7.9-fold increase in the target label probability. This shows that our method surpasses the baseline
by achieving a greater reduction in the original label and a more significant increase in the probabil-
ity of the target label. Similar improvements are observed in another information extractor. In the
ViT-B/16 model with ResNet-based extractor, our Token Selection method reduces the probability
of the original label by 31.7% and increases the probability of the target label by over 40 times,
significantly outperforming the baseline. These results indicate that our Token Selection method ef-
fectively identifies the most important tokens contributing to the target label. By directly optimizing
the token selection matrix end-to-end, it finds the token combination that maximally activates our
information extractor fY . In contrast, the Embedding Optimization method optimizes embeddings
and then maps them back to the nearest tokens in the codebook, which may result in suboptimal
token combinations due to the lack of end-to-end optimization.

These quantitative results demonstrate our optimization method’s capability to capture token-level
differences between concepts/labels and suggest its potential for targeted image manipulation. To
further illustrate this capability visually, we conduct image editing experiments. Figure 4 shows the
visualization of the image editing process using our token selection optimization method. These
sequences show the gradual transformation of one bird species into another, focusing on the head
region. The progressive changes in the bird’s head features, such as beak shape and color, illustrate
our method’s ability to identify and manipulate concept-specific tokens effectively.

These results validate the effectiveness of our token selection method in identifying and manipulat-
ing class-relevant features within VQGMs. The substantial increases in target label probabilities,
often by more than an order of magnitude, demonstrate the method’s potential for enhancing model
interpretability and its applicability in targeted image editing tasks.

4.5 DISCUSSION

Our experiments demonstrate that CORTEX effectively interprets VQGMs by identifying and ma-
nipulating concept-specific tokens within the codebook, thereby revealing how these tokens con-
tribute to the model’s representation of concepts. The saliency-based method accurately locates
tokens critical for specific concepts, while the optimization-based method enables targeted manipu-
lation of these tokens to achieve controlled, concept-driven modifications in generated images. This
elucidation of the relationship between codebook tokens and encoded concepts enhances our under-
standing of VQGMs’ internal representations and decision-making processes, which is crucial for
identifying potential biases and improving model robustness.

9
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Original Image Step 1 Step 500 Step 1000 Step 3000 Target Example

Figure 4: Optimization-based image editing process.

5 RELATED WORK

Vector quantization in computer vision. Vector quantization has been instrumental in advanc-
ing image generative models (Gray, 1984; Nasrabadi & Feng, 1988). VQ-VAE (Van Den Oord
et al., 2017) pioneered the use of discrete latent codes for efficient image reconstruction, overcom-
ing “posterior collapse” issues in VAEs. DALL-E (Ramesh et al., 2021) extended this to text-to-
image generation, while VQGAN (Esser et al., 2021) and ViT-VQGAN (Yu et al., 2021) enhanced
image quality through perceptual and adversarial objectives. In video generation, MAGVIT (Yu
et al., 2023), VideoPoet (Kondratyuk et al., 2023), and LaVIT (Jin et al., 2024; 2023) applied vector
quantization for spatial-temporal modeling and multimodal learning. Our work builds upon these
VQGMs, offering a novel approach to interpreting discrete tokens and providing insights into visual
information encoding and utilization.

Vision model explainability. Traditional approaches to explaining vision models primarily fall
into two categories: heatmap-based methods (Sundararajan et al., 2017; Selvaraju et al., 2020;
Binder et al., 2016; Gandelsman et al., 2023; Chefer et al., 2021), which highlight influential image
regions, and optimization-based methods (Nguyen et al., 2016; Erhan et al., 2009; Yosinski et al.,
2015; Nguyen et al., 2015; Simonyan, 2013), which generate synthetic inputs to maximize specific
activations. While insightful, these pixel-level approaches are limited in explaining complex gener-
ative models like VQGMs. Our CORTEX approach extends these ideas to the token level, providing
concept-specific explanations of how VQGMs utilize discrete latent representations. This novel per-
spective offers deeper insights into the internal generative processes of VQGMs, bridging the gap
between traditional explainability methods and the complexities of modern generative models.

6 CONCLUSION

In this paper, we introduce CORTEX, a novel framework for interpreting VQGMs through concept-
specific token analysis. Guided by the Information Bottleneck principle, CORTEX combines
saliency-based and optimization-based methods to extract critical token combinations while filtering
out non-essential tokens. Our comprehensive experiments demonstrated CORTEX’s effectiveness
in providing clear explanations of token combination in the generative process, significantly out-
performing baselines. The saliency-based method accurately identified tokens critical for specific
concepts, while the optimization-based method enabled targeted manipulation of these tokens to
achieve controlled, concept-driven modifications in generated images.

This elucidation of the relationship between codebook tokens and encoded concepts enhances our
understanding of VQGMs’ internal representations and decision-making processes. CORTEX not
only improves VQGM transparency but also enables precise image manipulation and editing based
on token-level representations. This work opens up new possibilities for fine-grained control in im-
age generation and editing, paving the way for more transparent and controllable generative models.
Future work could explore extending CORTEX to other generative architectures and investigating
its potential in multi-modal settings.
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A APPENDIX

A.1 INFORMATION EXTRACTOR

This appendix provides details on the structure of two Information Extractor: CNN-based model
and Resnet-based model.

A.1.1 CE: CNN-BASED EXTRACTOR

The CNN-based Extractor (CE) is a convolutional neural network designed for image classifica-
tion. The model comprises two main blocks, each containing four convolutional layers (conv1 1 to
conv1 4 and conv2 1 to conv2 4). Each convolutional layer utilizes 512 filters with a 3 × 3 kernel
size, stride of 1, and padding of 1, followed by batch normalization and ReLU activation. Max
pooling (2 × 2 kernel, stride 2) is applied after each block. The network concludes with three fully
connected layers: the first transforms 512 × 4 × 4 input features to 4096 output features, the sec-
ond maintains 4096 features, and the final layer maps to the number of classes. Additional features
include batch normalization and ReLU activation after the first two fully connected layers, with
dropout (0.5) applied after the first fully connected layer.

A.1.2 RE: RESNET-BASED EXTRACTOR

The ResNet-based Extractor (RE) is an advanced model incorporating residual connections and
Squeeze-and-Excitation (SE) blocks. The network consists of two main layers, each containing 3
residual blocks. Each residual block comprises two convolutional layers (3× 3 kernel, maintaining
channel size) with batch normalization and ReLU activation, a shortcut connection, and an SE block
for channel-wise attention. The SE block employs global average pooling followed by two fully
connected layers with reduction and expansion, using sigmoid activation for generating attention
weights. The model concludes with global average pooling to reduce spatial dimensions, followed
by two fully connected layers: 512 to 2048 features, and 2048 to the number of classes. Batch
normalization and ReLU activation are applied after the first fully connected layer, with dropout
(0.5) implemented.

Both CE and RE are designed to process input tensors with 256 channels and spatial dimensions of
16× 16 tokens.

A.1.3 TRAINING SETTINGS

These information extractors were trained using a batch size of 256 for 80 epochs, with the task in-
volving classification across 1000 classes. We employed the Adam optimizer with an initial learning
rate of 0.001 and weight decay of 1e−4. To adjust the learning rate during training, we implemented
a StepLR scheduler, which decreased the learning rate by a factor of 0.1 every 20 epochs. The loss
function used for training was Cross Entropy Loss. Our experimental setup allowed for the train-
ing of multiple model architectures under consistent conditions, enabling fair comparison of their
performance.

A.2 GUMBEL-SOFTMAX TECHNIQUE FOR TOKEN SELECTION OPTIMIZATION

In our implementation, we employ the Gumbel-Softmax technique to optimize the selection of to-
kens from the codebook. This method enables differentiable sampling from a discrete distribution,
which is essential for our gradient-based optimization process. The core of our approach involves
a matrix P of shape (256, 16384), where each row represents a probability distribution over the
codebook tokens.

The Gumbel-Softmax approximation operates by adding Gumbel noise to the logits (log probabili-
ties) derived from P at each optimization step. The Gumbel-Max trick states that for a categorical
distribution with class probabilities pi, sampling can be performed as:

argmaxi(log(pi) + gi) (11)

where gi are i.i.d. samples from Gumbel(0, 1) distribution.
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We then apply a softmax function with a temperature parameter τ to these noisy logits:

yi =
exp((log(pi) + gi)/τ)∑
j exp((log(pj) + gj)/τ)

(12)

In the “hard” version of this technique, we convert this soft distribution to a one-hot vector by
selecting the maximum value:

yhard = onehot(argmaxi(yi)) (13)

The final output is then:

y = stop gradient(yhard − y) + y (14)

This process allows us to sample discrete tokens while maintaining differentiability, thereby enabling
backpropagation through the sampling process.

A key feature of the Gumbel-Softmax is the temperature parameter τ , which controls the discrete-
ness of the samples. As τ approaches zero, the samples become more discrete, closely approxi-
mating one-hot vectors. Conversely, as τ increases, the distribution becomes smoother and more
uniform.

Throughout the optimization process, we update the P matrix based on the gradients computed
through this differentiable sampling procedure. The gradient of the Gumbel-Softmax estimator with
respect to the logits is:

∂yi
∂ log(pk)

=
yi(δik − yk)

τ
(15)

where δik is the Kronecker delta.

By utilizing this approach, we can optimize the selection of discrete tokens from the codebook in a
manner compatible with gradient-based optimization methods. This compatibility is crucial for our
objective of maximizing the activation of target labels in our classification model.

The Gumbel-Softmax technique thus serves as a bridge between the discrete nature of our token
selection problem and the continuous optimization landscape required for effective gradient-based
learning. It allows us to backpropagate through the discrete sampling operation, enabling end-to-end
training of our model while maintaining the ability to produce discrete outputs during inference.

A.3 MORE VISUALIZATOIN RESULTS

Figure 5 presents additional image-level visualization results, complementing the analysis provided
in Section 4.3. The figure is structured into two distinct sets of four rows each, each set focusing on
a specific token for a particular category. This approach demonstrates the efficacy of our saliency-
based method in identifying concept-specific features across multiple images. The first four rows
showcase visualizations related to the ”black grouse” category, highlighting a single, consistently
meaningful token across different images of this bird species. Similarly, the subsequent four rows
are dedicated to visualizations of the ”candle” category, emphasizing the same token across various
candle images. In each image, we highlight the token exhibiting a high Token Saliency Value (TSV)
using a red bounding box. These visualizations illustrate our saliency-based method’s ability to
focus on tokens that frequently correspond to specific, concrete visual features within each concept.
For instance, the consistent highlighting of particular features (such as the red crown for the black
grouse or flame for candles) across multiple images of the same class indicates that these tokens
effectively represent meaningful, class-specific characteristics. By consistently focusing on the same
token within each category, we demonstrate our method’s ability to extract and emphasize stable,
category-relevant features across diverse visual representations.
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Figure 5: Token visualization in different categories: red box in each row represents the same token

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.4 OPTIMIZATION EXPERIMENT DESIGN

Figure 6 illustrates the pairing strategy employed in our optimization experiments. We selected 10
bird categories and organized them into 5 pairs, as shown in the figure. Each pair consists of two
bird species that serve alternately as the original and target labels in our experiments.

For each category, we utilized 50 images from the test set. In the experimental process, when
images from a category in the first row serve as the original images, the corresponding category
in the second row becomes the target label, and vice versa. For instance, in the pair (Goldfinch,
Water Ouzel), when Goldfinch images are being optimized, Water Ouzel serves as the target label.
Conversely, when Water Ouzel images are used as original images, Goldfinch becomes the target
label.

This reciprocal design is applied consistently across all five pairs depicted in Figure 6. Every image
in our dataset undergoes optimization as an original image, with its paired category serving as the
target label.

Our optimization process focused on a fixed 4 × 4 region within the 16 × 16 token grid, limiting
T ∗

concept to a set of 16 tokens. We evaluate the changes in softmax probabilities for both the original
and target labels across four pretrained models. This figure shows that

Goldfinch House Finch Snowbird Indigo Bird Robin

BulbulJayMagpieChickadeeWater Ouzel

Figure 6: Optimization-based method experiment design
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