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Abstract

Diffusion models (DMs) have been significantly developed and widely used in
various applications due to their excellent generative qualities. However, the ex-
pensive computation and massive parameters of DMs hinder their practical use in
resource-constrained scenarios. As one of the effective compression approaches,
quantization allows DMs to achieve storage saving and inference acceleration by
reducing bit-width while maintaining generation performance. However, as the
most extreme quantization form, 1-bit binarization causes the generation perfor-
mance of DMs to face severe degradation or even collapse. This paper proposes
a novel method, namely BiDM, for fully binarizing weights and activations of
DMs, pushing quantization to the 1-bit limit. From a temporal perspective, we
introduce the Timestep-friendly Binary Structure (TBS), which uses learnable ac-
tivation binarizers and cross-timestep feature connections to address the highly
timestep-correlated activation features of DMs. From a spatial perspective, we
propose Space Patched Distillation (SPD) to address the difficulty of matching
binary features during distillation, focusing on the spatial locality of image genera-
tion tasks and noise estimation networks. As the first work to fully binarize DMs,
the W1A1 BiDM on the LDM-4 model for LSUN-Bedrooms 256×256 achieves a
remarkable FID of 22.74, significantly outperforming the current state-of-the-art
general binarization methods with an FID of 59.44 and invalid generative samples,
and achieves up to excellent 28.0× storage and 52.7× OPs savings.

1 Introduction

Diffusion models (DMs) [19, 50, 44, 76], as a type of generative visual model [66, 59, 68], have
garnered impressive attention and applications in various fields, such as image [57, 58], speech [42,
45, 24], and video [40, 18], because of their high-quality and diverse generative capabilities. The
diffusion model can generate data from random noise through up to 1000 denoising steps [19].
Although some accelerated sampling methods effectively reduce the number of steps required for
generating tasks [56, 31], the expensive floating-point computation of each timestep still limits
its wide application on resource-constrained scenarios. Therefore, compression of the diffusion
model becomes a crucial step for its broader application, and existing compression methods mainly
include quantization [30, 54, 47], distillation [53, 36, 41, 73, 11], pruning [7, 12, 14, 13], etc. These
compression approaches aim to reduce storage and computation while preserving accuracy.

Quantization is considered a highly effective model compression technique [70, 9, 64, 21, 10], which
quantizes the weights and/or activations to low-bit integers or binaries for compact storage and
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Figure 1: Overview of BiDM with Timestep-friendly Binary Structure, which improves DM architec-
ture temporally, and Space Patched Distillation, which enhances DM optimization spatially.

efficient computation in inference. Some existing works thus apply quantization to compress DMs,
aiming to compress and accelerate them while maintaining the quality of generation. Among them,
1-bit quantization, namely binarization, can achieve maximum storage savings for models and has
performed well in discriminative models such as CNNs [33, 67, 65]. Furthermore, when both weights
and activations are quantized to 1-bit, e.g., fully binarized, efficient bitwise operations such as XNOR
and bitcount can replace matrix multiplication, achieving the most efficient acceleration [74].

Some existing works have attempted to quantize DM to 1-bit [77], but their exploration mainly
focuses on the weights, which are still far from full binarization. In fact, for generative models
like DM, the impact of fully binarizing weights and activations is catastrophic: a) As generative
models, DMs have rich intermediate representations closely related to timesteps and highly dynamic
activation ranges, which are both very limited in information when binarized weights and activations
are used; b) Generative models like DMs are typically required to output complete images, but the
highly discrete parameter and feature space make it particularly difficult for binarized DMs to match
the ground truth during training. The limited representational capacity, which is hard to match with
timesteps dynamically, and the optimization difficulty of generative tasks in discrete space make it
difficult for the binarized DM to converge or even collapse during the optimization process.

We propose BiDM to push diffusion models towards extreme compression and acceleration through
complete binarization of weights and activations. It is designed to address the unique properties
of DMs’ activation features, model structure, and the demands of generative tasks, overcoming the
difficulties associated with complete binarization. BiDM consists of two novel techniques: From
a temporal perspective, we observe that the activation properties of DMs are highly correlated
with timesteps. We introduce the Timestep-friendly Binary Structure (TBS), which uses learnable
activation binary quantizers to match the highly dynamic activation ranges of DMs and designs
feature connections across timesteps to leverage the similarity of features between adjacent timesteps,
thereby enhancing the representation capacity of the binary model. From a spatial perspective, we
note the spatial locality of DMs in generative tasks and the convolution-based U-Net structure. We
propose Space Patched Distillation (SPD), which introduces a full-precision model as a supervisor
and uses attention-guided imitation on divided patches to focus on local features, better guiding the
optimization direction of the binary diffusion model.

Extensive experiments show that compared to existing SOTA fully binarized methods, BiDM signifi-
cantly improves accuracy while maintaining the same inference efficiency, surpassing all existing
baselines across various evaluation metrics. Specifically, in pixel space diffusion models, BiDM is
the only method that raises the IS to 5.18, close to the level of full-precision models and 0.95 higher
than the best baseline method. In LDM, BiDM reduces the FID on LSUN-Bedrooms from the SOTA
method’s 59.44 to an impressive 22.74, while fully benefiting from 28.0× storage and 52.7× OPs
savings. As the first fully binarized method for diffusion models, numerous generated samples also
demonstrate that BiDM is currently the only method capable of producing acceptable images with
fully binarized DMs, enabling the efficient application of DMs in low-resource scenarios.

2



2 Related Work

Diffusion models (DMs) have demonstrated excellent generative capabilities across various tasks [19,
57, 58, 43, 42, 45, 24]. However, their large-scale model architectures and the high computational
costs required for multi-step inference limit their practical applications. To address this, methods
for accelerating the process at the timestep level have been widely proposed, including sampling
acceleration that does not require retraining [56, 31, 34, 35] and distillation methods [53, 36, 41]. A
recent method called DeepCache [38] caches high-dimensional features to avoid a lot of redundant
computations and is compatible with typical sampling acceleration methods. However, these methods
cannot overcome the memory bottlenecks and efficiency limits during single-step inference.

Quantization is a widely validated compression technique that compresses weights and activations
from the usual 32 bits to 1-8 bits to achieve compression and acceleration [6, 78, 37, 75]. Conse-
quently, quantization is being studied for application in diffusion models [15, 4]. These methods
generally consider the unique timestep structure and spatial architecture of diffusion models, but due
to the significant difficulty of quantizing generative models, most post-training quantization (PTQ)
methods can only quantize models to 4 bits or more [29, 54, 22], while more accurate quantization-
aware training (QAT) methods face severe performance bottlenecks below 3 bits [30, 55].

Binarization, the most extreme form of quantization, typically expresses weights and activations as
±1, allowing the model to achieve maximum compression and acceleration [60, 62]. In computer
vision, binarization work has mainly focused on discriminative models like CNNs [49, 33, 46, 48] or
ViTs [28, 16], with limited work on generative models. While ResNet VAE and Flow++ [1] have
achieved complete binarization for VAEs [26], they do not offer generative performance comparable
to current advanced models. Binary Latent Diffusion [61] binarized the latent space of LDMs [26] but
did not improve the model’s spatial footprint or inference efficiency. The latest work, BinaryDM [50],
quantized DMs to nearly W1A4, but it did not address activation quantization, leaving room for
achieving full binarization and acceleration of DMs.

3 Method

3.1 Binarized Diffusion Model Baseline

Diffusion models. Given a data distribution x0 ∼ q(x0), the forward process generates a se-
quence of random variables xt ∈ {x1, · · · ,xT } with transition kernel q(xt|xt−1), usually Gaussian
perturbation, which can be expressed as

q (x1, . . . ,xT | x0) =

T∏
t=1

q(xt | xt−1), q (xt | xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
, (1)

where βt ∈ (0, 1) is a noise schedule. Gaussian transition kernel allows us to marginalize the joint
distribution, so with αt := 1 − βt and ᾱt :=

∏t
i=1 αi, we can easily obtain a sample of xt by

sampling a gaussian vector ϵ ∼ N (0, I) and applying the transformation xt =
√
ᾱtx0 +

√
1− ᾱtϵ.

The reverse process aims to generate samples by removing noise, approximating the unavailable
conditional distribution q (xt−1 | xt) with a learnable transition kernel pθ (xt−1 | xt), which can be
expressed as

pθ (xt−1 | xt) = N
(
xt−1; µ̃θ (xt, t) , β̃tI

)
. (2)

The mean µ̃θ (xt, t) and variance β̃t could be derived using the reparameterization tricks in [19]:

µ̃θ (xt, t) =
1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ (xt, t)

)
, β̃t =

1− ᾱt−1

1− ᾱt
· βt, (3)

where ϵθ is a function approximation with the learnable parameter θ, which predicts ϵ given xt.

For the training of DMs, a simplified variant of the variational lower bound is usually applied as the
loss function for better sample quality, which can be expressed as

LDM = Et∼[1,T ],x0∼q(x0),ϵ∼N (0,I)

[
∥ϵt − ϵθ (xt, t)∥2

]
. (4)
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(a) Activation Range (b) Activation Features

Figure 2: (a) The activation range of the 4th convolutional layer of the full-precision DDIM model on
CIFAR-10 varies with the denoising timesteps. (b) The output features are similar at each step of the
full-precision LDM-4 model on LSUN-Bedrooms compared to the previous step.

U-Net [51], due to its ability to fuse low-level and high-dimensional features, has become the main-
stream backbone of Diffusion. The input-output blocks of U-Net can be represented as {Dm}dm=1

and {Um}dm=1, where blocks corresponding to smaller m are more low-level. Skip connections
propagate low-level information from Dm(·) to Um(·), so the input received by Um is expressed as:

Concat(Dm(·), Um+1(·)). (5)

Binarization. The quantization compresses and accelerates the noise estimation model by discretiz-
ing weights and activations to low bit-width. In the baseline of the binarized diffusion model, the
weights w are binarized to 1-bit [49, 5, 20]:

wbi = σ sign(w) =

{
σ, if w ≥ 0,

−σ, otherwise,
(6)

where sign function confine w to +1 or -1 with 0 thresholds. σ is a floating-point scalar, which is
initialized as ∥w∥

n (n denotes the number of weights) and learnable during training following [49, 33].

Meanwhile, activations are typically quantized by naive BNN quantizers [23, 32]:

abi = sign(a) =

{
1, if a ≥ 0,

−1, otherwise.
(7)

When both weights and activations are quantized to 1-bit, the computations of the denoising model
can be replaced by XNOR and bitcount operators, achieving significant compression and acceleration.

3.2 Timestep-friendly Binary Structure

Before delving into the detailed description of the proposed method, we summarize our observation
on the properties of DMs:

Observation 1. The activation range varies significantly across long-term timesteps, but the
activation features are similar in short-term neighbouring timesteps.

Previous works, such as TDQ [55] and Q-DM [30], have commonly demonstrated that the activation
distribution of DMs largely depends on denoising process, manifesting as similarities between
adjacent timesteps while difference between distant ones, as shown in Figure 2(a). Therefore,
applying a fixed scaling factor to activations across all timesteps can cause significant distortion in the
activation range. Beyond the distribution range, Deepcache [38] highlights the substantial temporal
consistency of high-dimensional features across consecutive timesteps, as shown in Figure 2(b).

These phenomena prompt us to reexamine existing binary structures. Binaryization, especially the
full binaryization of weights and activations, results in a greater loss of activation range and precision
compared to low-bit quantizations like 4-bit [50]. This makes it more challenging to generate rich
activation features. Such deficiencies in activation range and output features significantly harm
representation-rich generative models like DMs. Therefore, adopting binary quantizers with more
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flexible activation ranges for DMs, and enhancing the model’s overall expressive power by leveraging
its feature outputs, are crucial strategies for improving its generative capability after full binaryization.

We first focus on the differences between various timesteps over the long term. Most existing
activation quantizers, such as BNN [23] and Bi-Real [32], as shown in Eq. (7), directly quantize
activations to {+1, -1}. This approach significantly disrupts activation features and negatively impacts
the expressive power of generative models. Some improved activation binary quantizers, such as
XNOR++ [2], adopt a trainable scale factor k:

abi = K sign(a) =

{
K, if a ≥ 0,

−K, otherwise,
(8)

where the form of K could be either a vector or the product of multiple vectors, but it remains a
constant value during inference. Although this approach partially restores the feature expression of
activations, it does not align well with diffusion models that are highly correlated with timesteps and
may still lead to significant performance loss.

We turn our attention to the original XNOR, which employs dynamically computed means to construct
the activation binary quantizer. Its operation for 2D convolution can be expressed as:

I ∗W ≈ (sign(I)⊗ sign(W))⊙ (Kα) = (sign(I)⊗ sign(W))⊙ (A ∗ kα), (9)

where I ∈ Rc×win×hin , W ∈ Rc×w×h, A =
∑

|Ii,:,:|
c , α = 1

n ∥W∥ℓ1. k ∈ R1×1×w×h represents
a 2D filter, where ∀ij kij = 1

w×h . ∗ and ⊗ indicate convolution with and without multiplication,
respectively. This approach naturally preserves the range of activation features and dynamically
adapts with the input range across different timesteps. However, due to the rich expression of DM
features, local activations exhibit inconsistency in range before and after passing through modules,
indicating that the predetermined value of k does not effectively restore the activation representation.

Therefore, we make k adjustable and allow it to be learned during training to adaptively match the
changes in the range of activations before and after. The gradient calculation process of our learnable
tiny convolution k can be expressed as follows:

∂L
∂k

=
∂L

∂(I ∗W)

∂(A ∗ kα)
∂k

(sign(I)⊗ sign(W)). (10)

Notably, making k learnable does not add any extra inference burden. The computational cost remains
unchanged, allowing for efficient binary operations.

On the other hand, we focus on the similarity between adjacent timesteps. Deepcache directly extracts
high-dimensional features as a cache to skip a large amount of deep computation in U-Net, achieving
significant inference acceleration. This process is expressed as:

F t
cache ← U t

m+1(·), Concat(Dt−1
m (·), F t

cache). (11)

However, this approach does not apply to binarized diffusion models, as the information content of
each output from a binary network is very limited. For binary diffusion models, which inherently
achieve significant compression and acceleration but have limited expressive power, we anticipate
that the similarity of features between adjacent timesteps will enhance binary representation, thereby
compensating for the representation challenges.

We construct a cross-timestep information enhancement connection to enrich the expression at the
current timestep using features from the previous step. This process can be expressed as:

Concat(Dt−1
m (·), (1− αt−1

m+1) · U
t−1
m+1(·) + αt−1

m+1 · U t
m+1(·)), (12)

where αt−1
m+1 is a learnable scaling factor. As shown in Figure 2(b), the similarity of high-dimensional

features varies across different blocks and timesteps in DMs. Therefore, we set multiple independent
α values to allow the model to adaptively learn more effectively during training.

In summary, Timestep-friendly Binary Structure (TBS) includes learnable tiny convolution applied
to scaling factors after averaging the inputs and connections across timesteps. Their combined
effect adapts to the changes in the activation range of diffusion models over long-range timesteps
and leverages the similarity of high-dimensional features between adjacent timesteps to enhance
information representation.
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Figure 3: An illustration of TBS. Since the feature space is
high-dimensional, we illustrate it using schematic diagrams.

From the perspective of error reduc-
tion, a visualization of TBS is shown
in Figure 3. First, we abstract the out-
put of the binary DM under the base-
line method as vector Bt−1. The mis-
match in scaling factors creates a sig-
nificant difference in length between it
and the output vector F t−1 of the full-
precision model. Using our proposed
scaling factors and learnable tiny con-
volutions, Bt−1 is expanded to Lt−1.
Lt−1 is closer to F t−1, but there is still
a directional difference from the full-
precision model. The cross-timestep
connection further incorporates the out-
puts F t of the previous timestep, Bt,
and Lt. The high-dimensional feature
similarity between adjacent timesteps
means the gap between F t−1 and F t

is relatively small, facilitating the combination of Lt−1 and Lt. Finally, we obtain the binarized
DM’s output with TBS applied as T t−1 = (1− α) · Lt−1 + α · Lt, closest to the output F t−1 of the
full-precision model. The learnable tiny convolution k in TBS allows scaling factors to adapt more
flexibly to the representation of DM, while connections across timesteps enable the binarized DM to
use the previous step’s output information for appropriate information compensation.

3.3 Space Patched Distilation

Due to the nature of generative models, the optimization process of diffusion models exhibits different
characteristics from past discriminative models:

Observation 2. Conventional distillation struggles to guide fully binarized DMs to align with
full-precision DMs, while the features of DM exhibit locality in space during the generation task.

In previous practices, adding distillation loss during the training of quantized models has been a
common approach. As the numerical space of binary models is limited, directly optimizing them
using naive loss leads to difficulties in adjusting gradient update directions and makes learning
challenging. Therefore, adding distillation loss to intermediate features can better guide the model’s
local and global optimization process.

However, as a generative model, the highly rich feature representation of DMs makes it extremely
difficult for binary models to finely mimic full-precision models. Although the L2 loss used in the
original DM training aligns with the Gaussian noise in the diffusion process, it is not suitable for the
distillation matching of intermediate features. During regular distillation, the commonly used L2
loss tends to prioritize optimizing pixels with larger discrepancies, leading to a more uniform and
smooth optimization result. This global constraint learning process is challenging for binary models
aimed at image generation, as their limited representation capacity makes it difficult for fine-grained
distillation imitation to directly adjust them to fully match the direction of full-precision models.

At the same time, we note that DMs using U-Net as a backbone naturally exhibit spatial locality
due to their convolution-based structure and generative task requirements. This is different from
past discriminative models, where tasks like classification only require overall feature extraction
without low-level requirements, making traditional distillation methods unsuitable for DMs with
spatial locality in generative tasks. Additionally, most existing DM distillation methods focus on
reducing the number of timesteps and do not address the spatial locality of features required for
image generation tasks.

Therefore, given the difficulty in optimizing binary DMs with existing loss functions and the spatial
locality of DMs, we propose Space Patched Distillation (SPD). Specifically, we designed a new loss
function that partitions features into patches before distillation and then calculates spatial attention-
guided loss patch by patch. While conventional L2 loss makes it difficult for binary DMs to achieve
direct matching, leading to optimization challenges, the attention mechanism allows the distillation
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Figure 4: Visualization of the last TimeStepBlock’s output of the LDM model on LSUN-bedroom
dataset. FP32 denotes the full-precision model’s output F fp. Diff denotes the difference between the
output of the full-precision model and the binarized one

∥∥F fp −Fbi
∥∥. Ours denotes the attention-

guided SPD.

optimization to focus more on critical parts. However, this is still challenging for fully binarized
DMs because the highly discrete binary outputs have limited information, making it difficult for the
model to capture global information. Therefore, we leverage the spatial locality of DMs by dividing
intermediate features into multiple patches and independently calculating spatial attention-guided
loss for each patch, allowing the binary model to better utilize local information during optimization.

SPD first divides the intermediate features Fbi and F fp ∈ Fb×c×w×h, output by a block of the binary
DM and the full-precision DM respectively, into p2 patches:

P fp
i,j = F

fp
[:,:,i:i+w/p,j:j+h/p], Pbi

i,j = Fbi
[:,:,i:i+w/p,j:j+h/p]. (13)

Then, attention-guided loss is calculated for each patch separately:

Afp
i,j = P

fp
i,jP

fp
i,j

T
, Abi

i,j = Pbi
i,jPbi

i,j

T
. (14)

After regularization, the losses at corresponding positions are calculated and summed up:

Lm
SPD =

1

p2

p−1∑
i=0

p−1∑
j=0

∥∥∥∥∥ Afp
i,j

∥Afp
i,j∥2

−
Abi

i,j

∥Abi
i,j∥2

∥∥∥∥∥
2

, (15)

where ∥ · ∥2 denotes the L2 function. Finally, the total training loss L is computed as:

L = LDM +
λ

2d+ 1

2d+1∑
m

Lm
SPD, (16)

where d denotes the number of blocks during the upsampling process or downsampling process,
resulting in a total of 2d+ 1 intermediate features, including the middle block. λ is a hyperparameter
coefficient to balance the loss terms, defaulting set to 4.

We visualize the intermediate features and attention-guided SPD mentioned above. As Figure 4
shown, our SPD allows the model to pay more attention to local information in each patch.

4 Experiment

We conduct experiments on various datasets, including CIFAR-10 32× 32 [27], LSUN-Bedrooms
256 × 256 [72], LSUN-Churches 256 × 256 [72] and FFHQ 256 × 256 [25] over pixel space
diffusion models [19] and latent space diffusion models [50]. The evaluation metrics used in our study
encompass Inception Score (IS), Fréchet Inception Distance (FID) [17], Sliding Fréchet Inception
Distance (sFID) [52], Precision and Recall. To date, there has been no research that compresses
diffusion models to such an extreme extent. Therefore, we use classical binarization algorithms [2,
78, 33, 49], the recent SOTA general binarization algorithms [62], and quantization methods suited
to generative models [15, 63] as baselines. We extract the outputs of TimestepEmbedBlocks from
the DM to serve as the operating target for our TBS and SPD. And we employ the same shortcut
connections in convolutional layers as those used in ReActNet[33]. Detailed experiment settings are
presented in the Appendix A.
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4.1 Main Results

Pixel Space Diffusion Models. We first conduct experiments on the CIFAR-10 32× 32 dataset.
As the results presented in Table 1, W1A1 binarization of DM using baseline methods results in
substantial degradation. However, BiDM demonstrated significant improvements across all metrics,
achieving unprecedented restoration of image quality. Specifically, BiDM achieved remarkable
enhancements from 4.23 to 5.18 in the IS metric, and reduced 27.9% in the FID metric.

Table 1: Binarization results for DDIM on CIFAR-10 datasets with 100 steps.

Model Dataset Method #Bits IS↑ FID↓ sFID↓ Precision↑

DDIM CIFAR-10
32× 32

FP 32/32 8.90 5.54 4.46 67.92
XNOR++[2] 1/1 2.23 251.14 60.85 44.98
DoReFa[78] 1/1 1.43 397.60 139.97 0.17
ReActNet[33] 1/1 3.35 231.55 119.80 18.37
ReSTE[62] 1/1 1.26 394.29 125.84 0.18
XNOR[49] 1/1 4.23 113.36 27.67 46.96
BiDM 1/1 5.18 81.65 25.68 52.92

Latent Space Diffusion Models. Our LDM experiments encompass the evaluation of LDM-4 on
LSUN-Bedrooms 256× 256 and FFHQ 256× 256 datasets, along with the assessment of LDM-8
on the LSUN-Churches 256× 256 dataset. The experiments utilized the DDIM sampler with 200
steps, and the detailed outcomes are presented in Table 2. Across these three datasets, our method
achieved significant improvements over the best baseline methods. In comparison to other binarization
algorithms, BiDM outperformed across all metrics. On the LSUN-Bedrooms, LSUN-Churches, and
FFHQ datasets, the FID metric of BiDM decreased by 61.7%, 30.7%, and 51.4%, respectively,
compared to the best results among the baselines.

In contrast to XNOR++, its adoption of fixed activation scaling factors in the denoising process
results in a very limited dynamic range for its activations, making it difficult to match the highly
flexible generative representations of DMs. BiDM addressed this challenge by making the tiny
convolution k learnable, which acts on the dynamically computed scaling factors. This optimization
led to substantial improvements exceeding an order of magnitude across all metrics. On the LSUN-
Bedrooms and LSUN-Churches datasets, the FID metric decreased from 319.66 to 22.74 and from
292.48 to 29.70, respectively. Additionally, compared to the SOTA binarization method ReSTE,
BiDM achieved significant enhancements across multiple metrics, particularly demonstrating notable
improvements on the LSUN-Bedrooms dataset. We have supplemented our work with BBCU, a
binarization method more akin to generative models like DMs rather than discriminative models.
Experimental results indicate that even as a binarization strategy for generative models, BBCU
faces significant breakdowns when applied to DMs, as FID dropped dramatically to 236.07 on
LSUN-Bedrooms. As a work targeting QAT for DM, EfficientDM is indeed a suitable comparison,
especially since it designs TALSQ to address the variation in activation range. The results show
that EfficientDM struggles to adapt to the extreme scenario of W1A1, and this may be due to its
quantizer having difficulty adapting to binarized DM, and using QALoRA for weight updates might
yield suboptimal results compared to full-parameter QAT.

As we mentioned in the TBS section of our manuscript, most existing binarization methods struggle to
handle the wide activation range and flexible expression of DMs, further highlighting the necessity of
TBS. Their optimization strategies may also not be tailored for the image generation tasks performed
by DM, which means they only achieve conventional but suboptimal optimization.

4.2 Ablation Study

We perform comprehensive ablation studies for LDM-4 on the LSUN-Bedrooms 256× 256 dataset to
evaluate the effectiveness of each proposed component in BiDM. We evaluate the effectiveness of our
proposed SPD and TBS, and the results are presented in Table 3. Upon separately applying our SPD or
TBS methods to LDM, we observed significant improvements compared to the original performance.
When the TBS method was incorporated, FID and sFID dropped sharply from 106.62 and 56.61 to
35.23 and 25.13, respectively. Similarly, when the SPD method was added, FID and sFID decreased
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Table 2: Quantization results for LDM on LSUN-Bedrooms, LSUN-Churches and FFHQ datasets.

Model Dataset Method #Bits FID↓ sFID↓ Precision↑ Recall↑

LDM-4 LSUN-Bedrooms
256× 256

FP 32/32 2.99 7.08 65.02 47.54
XNOR++ 1/1 319.66 184.75 0.00 0.00
BBCU 1/1 236.07 89.66 0.59 5.66
EfficientDM 1/1 194.45 113.24 0.99 9.20
DoReFa 1/1 188.30 89.28 0.86 0.18
ReActNet 1/1 154.74 61.50 4.63 9.30
ReSTE 1/1 59.44 42.16 12.06 2.92
XNOR 1/1 106.62 56.81 6.82 5.22
BiDM 1/1 22.74 17.91 33.54 19.90

LDM-8 LSUN-Churches
256× 256

FP 32/32 4.36 16.00 74.64 48.98
XNOR++ 1/1 292.48 168.65 0.02 0.00
DoReFa 1/1 162.06 95.37 7.85 0.74
ReActNet 1/1 56.39 54.68 45.13 2.06
ReSTE 1/1 47.88 52.44 51.98 3.34
XNOR 1/1 42.87 49.24 51.53 4.28
BiDM 1/1 29.70 45.14 55.75 14.80

LDM-4
FFHQ

256× 256

FP 32/32 4.87 6.96 74.73 50.57
XNOR++ 1/1 379.49 320.64 0.00 0.00
DoReFa 1/1 214.06 177.63 2.09 0.00
ReActNet 1/1 147.88 141.31 3.36 0.69
ReSTE 1/1 144.37 97.43 4.03 0.03
XNOR 1/1 89.37 54.04 31.31 4.11
BiDM 1/1 43.42 32.35 49.44 13.96

XNOR++ ReActNet ReSTE XNOR BiDM XNOR++ ReActNet ReSTE XNOR BiDM

LSUN-Bedrooms 256×256 FFHQ 256×256

Figure 5: Visualization of samples generated by the W1A1 baseline and our BiDM. BiDM is the first
fully binarized DM method capable of generating viewable images, significantly surpassing advanced
binarization methods.

significantly from 106.62 and 56.61 to 40.62 and 31.61, respectively. Other metrics also exhibited
substantial improvements. This demonstrates the effectiveness of our approach in continuously
approximating the binarized model features to full-precision features during training by introducing a
learnable factor αt

m and incorporating connections between adjacent time steps. Furthermore, when
we combined our two methods and applied them to LDM, we observed an additional improvement
compared to the individual application of each method. This further substantiates that performing
distillation between full-precision and binarized models at the patch level can significantly enhance
the performance of the binarized model. We also conducted additional ablation experiments, and the
results are presented in the appendix B.
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Table 3: Ablation result of each proposed component.

Method #Bits FID↓ sFID↓ Prec.↑ Recall↑
Vanilla 1/1 106.62 56.81 6.82 5.22
+TBS 1/1 35.23 25.13 26.38 14.32
+SPD 1/1 40.62 31.61 23.87 11.18
BiDM 1/1 22.74 17.91 33.54 19.90

4.3 Efficiency Analysis

Inference Efficiency Analysis. We conducted an analysis of the diffusion model’s inference efficiency
under complete binarization. During inference, BiDM requires only a very small number of additional
floating-point additions for the connections across timesteps compared to the classic binarization
work XNOR-Net, and there are no differences in the majority of calculations, such as convolutions.
Performing a floating-point convolution with a depth of 1 for scaling factors requires only a small
amount of computation, and the overhead for averaging matrix A is also minimal. The findings
presented in Table 4 reveal that BiDM, while achieving the same 28.0×memory efficiency and 52.7×
computational savings as the XNOR baseline, demonstrates significantly superior image generation
capabilities, with the FID decreased from 106.62 to 22.74. See Appendix B for more details.

Table 4: Inference efficiency of our proposed BiDM of LDM-4 on LSUN-Bedrooms.

Method #Bits Size(MB) BOPs(×109) FLOPs(×109) OPs(×109) FID↓
FP 32/32 1045.4 - 96.00 96.00 2.99
XNOR 1/1 37.3 92.1 0.38 1.82 106.62
BiDM 1/1 37.3 92.1 0.38 1.82 22.74

Training Efficiency Analysis. We also explored the training efficiency of BiDM, as the overhead
required for the QAT of binarized DMs cannot be overlooked. Theoretical analysis and experimental
results show that BiDM achieved significantly better generative results than baseline methods under
the same training cost, demonstrating that it not only has a higher upper limit of generative capability
but is also relatively efficient in terms of generative performance. See Appendix B for details.

Limitations. The techniques of BiDM increase the training time of DMs compared with the original
process, and future efforts may thus focus on the efficient quantization process of DMs.

5 Conclusion.

In this paper, we present BiDM, a novel fully binarized method that pushes the compression of
diffusion models to the limit. Based on two observations — activations at different timesteps and
the characteristics of image generation tasks — we propose the Timestep-friendly Binary Structure
(TBS) and Space Patched Distillation (SPD) from temporal and spatial perspectives, respectively.
These methods address the severe limitations in representation capacity and the challenges of highly
discrete spatial optimization in full binarization. As the first fully binarized diffusion model, BiDM
demonstrates significantly better generative performance than the SOTA general binarization methods
across multiple models and datasets. On LSUN-Bedrooms, BiDM achieves an FID of 22.74, greatly
surpassing the SOTA method with an FID of 59.44, making it the only method capable of generating
visually acceptable samples while achieving up to 28.0× storage savings and 52.7× OPs savings.
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A Experiment Settings

We adopt several classic binarization algorithms, including XNOR [49], XNOR++ [2], DoReFa [78],
and ReActNet [33], along with the SOTA binarization method, ReSTE [62] as baselines. Addi-
tionally, we also include the quantization methods designed for generative models, BBCU [63] and
EfficientDM [15]. We extract the output features of TimestepEmbedBlocks from the DM to serve as
the targets of TBS and SPD operations. For the CIFAR-10 [27] dataset, We add TBS connections to
the outputs of the last 2 timestep embedding blocks and set αinit to 0.3. The λ on CIFAR-10 is set to
3e-2. For the LSUN-Bedrooms [72], LSUN-Churches [72] and FFHQ [25] datasets, We add TBS
connections to the outputs of the last 8 timestep embedding blocks and also set αinit to 0.3. The λ on
these three datasets is set to 1e-2.

Our quantization-aware training is based on the pre-trained diffusion model, and the quantizer
parameters and latent weights are trained simultaneously. The overall training process is relatively
consistent with the original training process of DDIM or LDM. For the CIFAR-10 dataset, we set
the learning rate to 6e-5 and the batch size to 64 during training. The training process consisted
of 100k iterations, and during sampling, we used 100 sampling steps. For the LSUN-Bedrooms,
LSUN-Churches and FFHQ datasets, the learning rate was set to 2e-5 and the batch size to 4 during
training. The training consisted of 200k iterations, with 200 steps used during denoising phase.

We conducted extensive experiments on two different types of diffusion models: the latent-space dif-
fusion model LDM and the pixel-space diffusion model DDIM. For the DDIM model, we specifically
selected the CIFAR-10 dataset with a resolution of 32× 32 for our experiments. For the LDM model,
our experiments spanned multiple datasets, including the LSUN-Bedrooms, LSUN-Churches and the
FFHQ dataset, all with a resolution of 256× 256. To evaluate the generation quality of the diffusion
model, we utilize several evaluation metrics, including Inception Score (IS), Fréchet Inception Dis-
tance (FID) [17], Sliding Fréchet Inception Distance (sFID) [52], and Precision-and-Recall. After
200,000 iterations of training, we randomly sample and generate 50,000 images from the model and
compute the metrics based on reference batches. The reference batches used to evaluate FID and
sFID contain all the corresponding datasets. We recorded FID, sFID, and Precision for all tasks and
additional IS for CIFAR-10.

We utilize OPs as metrics for evaluating theoretical inference efficiency. Taking the convolutional
unit as an example, the BOPs for a single computation operation of a single convolution are defined
as follows nmk2babw [69, 71]. It is composed of bw bits for weights, babits for activation, n input
channels, m output channels, and a k × k convolutional kernel. For the output feature with width w
and height h, BOPs ≈ whnmk2babw. As there might also be full-precision modules in the model,
the total OPs of the model are summed up as 1

64BOPs + FLOPs [3]. All our experiments are
conducted on a server with NVIDIA A100 40GB GPU.

B Additional Quantitative Results

We conducted more detailed ablation experiments to comprehensively validate our results.

Effects of learnable k in TBS. We apply the proposed learnable k to the XNOR baseline. The
experimental results shown in Table 5 indicate that this modification can lead to a significant
improvement in performance. The model achieved a doubling of improvement in FID, sFID. Their
original values were 106.62 and 56.81, respectively, and they decreased to 57.62 and 30.46. The
negligible degradation in Recall can be overlooked.

Table 5: Solely transforming k into learnable on the XNOR baseline network.
k #Bits FID↓ sFID↓ Prec.↑ Recall↑
Vanilla 1/1 106.62 56.81 6.82 5.22
learnable 1/1 57.26 30.46 15.88 5.00

Effects of cross-timestep connection in TBS. We investigated the impact of varying the number
of TBS connections. Table 6 illustrates that the introduction of TBS cross-timestep connections
consistently outperforms models without such connections(n = 0). This validates the efficacy of our
cross-timestep linkage strategy based on the high-dimensional feature similarity of LDM. Among
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the experiments incorporating cross-timestep connections, the models with 1 and 8 connections
both achieved equally optimal results. The model with 1 connection demonstrated slightly superior
performance in FID and Precision, whereas the model with 8 nodes exhibited marginally better
outcomes in sFID and Recall.

Table 6: The number of TBS connections
n FID↓ sFID↓ Prec.↑ Recall↑
0 30.24 28.21 29.77 16.94
1 24.22 20.94 34.28 18.22
8 22.74 17.91 33.54 19.90

12 23.25 28.31 37.74 18.78

Effects of SPD. As a general quantization method, real-to-binary [39] suggests that using attention
map-based loss during the distillation of a binary model from a full-precision model achieves better
results. In contrast, BinaryDM, as the work most closely related to BiDM, directly points out that
using L2 loss makes it difficult to align and optimize binary features with full-precision features.
These studies indicate that the general L2 loss is inadequate for meeting the optimization needs of
binary scenarios. So we also compare our SPD with the commonly used L2 loss function. As shown
in Table 7, by replacing the L2 loss function with patch distillation, the model can achieve better
performance.

Table 7: Different distillation strategies
Ldistil FID↓ sFID↓ Prec.↑ Recall↑
L2 26.07 23.26 33.12 18.98
LSPD 22.74 17.91 33.54 19.90

Further Inference Efficiency Analysis. We expand upon the inference process described in Eq.9
and provide a detailed explanation and testing. Since the divisor involved in calculating the mean of
A1,h,w from Ic,h,w (i.e., the channel dimension c) can be integrated into k1,1,3,3 in advance, resulting
in k′1,1,3,3 = k1,1,3,3

c . Additionally, αn,1,1,1 derived from Wn,c,h,w can also be computed ahead of
inference. Therefore, the actual operations involved during inference are as follows:

[FP] Original full-precision convolution:

• (0) Perform convolution between full-precision Ic=448,h=32,w=32
f and full-precision

Wn=448,c=448,h=32,w=32
f to obtain the full-precision output O448,32,32

f .

[XNOR-Net/BiDM] The inference process for XNOR-Net/BiDM involves the following 6 steps:

• Sign operation:

(1) Sign operation:

• Binary operation:

(2) Perform convolution between the binary I448,32,32b and the binary W 448,448,3,3
b to

obtain the full-precision output O448,32,32
f .

• Full-precision operations:

(3) Sum the full-precision I448,32,32f across channels to obtain A1,32,32.

(4) Perform convolution between full-precision A1,32,32 and k′1,1,3,3 to obtain O1,32,32
1 .

(5) Pointwise multiply O448,32,32
f by O1,32,32

1 to obtain the full-precision output
O448,32,32

2 .

(6) Pointwise multiply O448,32,32
2 by α448,1,1 to obtain the final full-precision output

O448,32,32.
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We utilized the general deployment library Larq [8] on a Qualcomm Snapdragon 855 Plus to test
the actual runtime efficiency of the aforementioned single convolution. The runtime results for a
single inference are summarized in the Table 8. Due to limitations of the deployment library and
hardware, Baseline achieved a 9.97x speedup, while XNOR-Net / BiDM achieved an 8.07x speedup.
Besides, the improvement in generation performance brought by BiDM is even more significant, and
we believe that it could achieve better acceleration results in a more optimized environment.

Table 8: The actual runtime efficiency of a single convolution.

Method (0) (1)+(2) (3) (4) (5) (6) Runtime(µs FID↓/convolution)

FP 176371.0 176371.0 2.99
Baseline (DoReFa) 17695.2 4.3 17699.5 188.30
XNOR-Net / BiDM 17695.2 2948.8 1133.3 83.2 4.3 21864.8 22.74

Further Training Efficiency Analysis. BiDM consists of two techniques: TBS and SPD. The
time efficiency analysis during training is as follows: (1) TBS includes the learnable convolution
of scaling factors (Eq.10) and the cross-time step connection (Eq.12). The increase in training
time due to the convolution of trainable scaling factors is minimal, as the depth of the convolution
for scaling factors is only 1, and the size of the trainable convolution kernel is only 3 × 3. The
cross-time step connection is the primary factor for the increase in training time. Since it requires
training α, we introduce this structure during training, so each training sample requires not only noise
estimation for T t−1 but also for T t, directly doubling the sampling steps. (2) SPD may lead to a
slight increase in training time (an additional 0.18 times), but since we only apply supervision to the
larger upsampling/middle/downsampling blocks, the increase is limited.

The results in Figure 6 align well with the theoretical analysis mentioned above. BiDM achieved
significantly better generative results than baseline methods under the same training iterations,
demonstrating that it not only has a higher upper limit of generative capability but is also relatively
efficient when considering generative performance.

We also tested the FID after uniformly training for 0.5 days, and the results in Tabel 9 show: (1)
BiDM has the best convergence, even in a short training time. (2) No.3 significantly outperforms
No.5 because connections across timesteps greatly increase training time, making No.3 converge
faster in the early training stages. (3) No.5 slightly outperforms No.7 because LSPD causes a slight
increase in training time.

We emphasize that the biggest challenge in fully binarizing DM lies in the drop in accuracy. Although
BiDM requires a longer training time for the same number of iters, it significantly enhances the
quality of generated images, as no other method has been able to produce effective images.

Table 9: Training speed under different settings, and FID at 0.5 days.

No. convolution of scaling learnable connections across Ldistil
Training Speed FID↓

factors (Eq.9) k timesteps (ms/iter) at 0.5 days

1 309.8 167.59
2

√
310.2 121.63

3
√ √

340.8 58.55
4

√ √
458.5 93.66

5
√ √ √

480.2 70.80
6

√
LSPD 389.6 86.78

7
√ √ √

L2 (MSE) 496.8 71.15
8

√ √ √
LSPD 547.2 47.11

C Additional Visualization Results
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Figure 6: (a) Training iterations and training loss under different settings. (b) Training time and
training loss under different settings. The meaning of the numbers in the legend corresponds to those
in Table 9.
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Figure 7: Generation results of BiDM and baselines on the LSUN-Bedrooms dataset.
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Figure 8: Generation results of BiDM and baselines on the LSUN-Churches dataset.
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Figure 9: Generation results of BiDM and baselines on the FFHQ dataset.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We make the main claims made in the abstract and introduction accurately
reflect the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations of the work in section4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: the paper fully discloses all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and conclusions
of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in the supplemental
material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all the details necessary to understand the results in the
section A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper ensure the reproducibility of the experiment by fixing random seeds.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provides sufficient information on the computer resources in the
section A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper cites the original papers of assets used and introduces the details in
the section A.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The details of the new assets are introduced in the section 4 and the section A.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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