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Abstract

In neural network training, RMSProp and Adam remain widely favoured optimisation al-
gorithms. One of the keys to their performance lies in selecting the correct step size, which
can significantly influence their effectiveness. Additionally, questions about their theoretical
convergence properties continue to be a subject of interest. In this article, we theoretically
analyse a constant step size version of Adam in the non-convex setting and discuss why it is
important for the convergence of Adam to use a fixed step size. This article demonstrates
the derivation and effective implementation of a constant step size for Adam, offering in-
sights into its performance and efficiency in non-convex optimisation scenarios. (i) First,
we show that the deterministic Adam can be affected by rapidly decaying learning rates
(linear decay, exponential decay and etc.), mostly used to provide tight convergence bounds
for Adam. This indicates that these rapidly decay rates play a dominant role in driving
convergence. Next, (ii) Based on this observation, we derive a constant step that depends
on the dynamics of the network as well as data to ensure that Adam can reach criticality
for smooth and non-convex objectives, and we give bounds on the running time. Both de-
terministic and stochastic versions of Adam are analysed in this article. We show sufficient
conditions for the derived constant step size to achieve asymptotic convergence of the gra-
dients to zero with minimal assumptions. (iii) We design experiments to empirically study
Adam’s convergence with our proposed constant step size against state-of-the-art step size
schedulers on classification tasks. Lastly, (iii) we also demonstrate that our derived constant
step size has better abilities in reducing the gradient norms than the various state-of-the-art
learning rate schedulers and a wide array of constant step sizes. Empirically, we also show
that despite accumulating a few past gradients, the key driver for convergence in Adam is
the non-increasing step sizes.

1 Introduction

Optimisation problems in machine learning are often structured as minimizing a finite sum minx∈Rn f(x),
where f : Rn 7→ R and f(x) = 1

k

∑k
i=1 fi(x). Each fi : Rn 7→ R typically exhibits non-convex behavior,

particularly in neural network domains. A prominent method for tackling such problems is Stochastic
Gradient Descent (SGD), where updates occur iteratively as xt+1 := xt − α∇f̃it(xt), with α denoting the
step size and f̃it being a randomly chosen function from {f1, f2, ..., fk} at each iteration t. SGD is favoured
for training deep neural networks for its computational efficiency, especially with mini-batch training, even
with large datasets Bottou (2012).

Adaptive variants of SGD, which incorporate past gradients through averaging, have gained traction due to
their ability to track gradient scaling on an individual parameter basis, as highlighted by Bottou et al. Bot-
tou (2009). These methods are favoured for their perceived ease of tuning compared to traditional SGD.
Adaptive gradient methods typically update using a vector obtained by applying a linear transformation,
often referred to as “diagonal pre-conditioner" to the linear combination of all previously observed gradients.
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This pre-conditioning is believed to enhance algorithm robustness to hyperparameter choices, making them
less sensitive to initial settings.

Adagrad, introduced by Duchi et al. in et al. (2011); McMahan & Streeter (2010), showed superior perfor-
mance, especially in scenarios featuring sparse or small gradients. However, its effectiveness diminishes in
situations with non-convex loss functions and dense gradients due to rapid learning rate decay. To address
this, variants like RMSProp et al. (2012), Adam Kingma & Ba (2015) (Algorithm 1), Adadelta Zeiler
(2012), and Nadam Dozat (2016) have been proposed. These methods mitigate learning rate decay by em-
ploying exponential moving averages of squared past gradients, thereby limiting reliance on all past gradients
during updates. While these algorithms have found success in various applications et al. (2019b), they have
also been observed to exhibit non-convergence in many settings Sashank et al. (2018), especially in deter-
ministic environments where noise levels are controlled during optimisation. This regulation is accomplished
either by employing larger batches Martens & Grosse (2015); De et al. (2017); et al. (2015) or by integrating
variance-reducing techniques et al. (2013; 2014).

Despite their widespread adoption in solving neural network problems, adaptive gradient methods like RM-
SProp and Adam often lack theoretical justifications in non-convex scenarios, even when dealing with exact
or deterministic gradients et al. (2018). Several sufficient conditions have been proposed to guarantee the
global convergence of Adam, which can be further classified into the following two categories:

(B1) Learning rate decay: Reddi et al. Sashank et al. (2018) demonstrated that the main cause of
divergences in Adam and RMSProp predominantly arises from the disparity between the two successive
learning rates.

Γt =
√vt
αt

−
√vt−1

αt−1
(1)

If the positive definiteness property of Γt is violated, Adam and RMSProp may experience divergence.
Barakat and Bianchi in Barakat & Bianchi (2020) relaxed the Γt > 0 constraint and demonstrated that
Adam can converge when

√vt

αt
≥ c

√vt−1
αt−1

holds for all t and some positive real c. Prior research efforts Shi
et al. (2020); Tian & Parikh (2022); Chen et al. (2018); Luo et al. (2019); Défossez et al. (2020); Zou et al.
(2019) have focused on establishing convergence properties of optimisation algorithms such as RMSProp and
Adam. These investigations typically utilize step size schedules of the form αt = α

ta for all t ∈ {1, 2, . . . , T},
α ∈ (0, 1), and a > 0, or other time-dependent variations like αt = α(1 − β1)

√
1−βt

2
1−β2

. While a non-increasing
(diminishing) step size is crucial for convergence, empirical analysis suggests that rapid decay of the step
size can lead to sub-optimal outcomes, as discussed in the next section.

(B2) Temporal decorrelation: Zhou et al. in Zhou et al. (2018) emphasized that the divergence observed
in RMSProp stems from imbalanced learning rates rather than the absence of Γt > 0, as previously suggested
by Reddi et al. Sashank et al. (2018). Leveraging this insight, Zhou et al. Zhou et al. (2018) proposed
AdaShift, which incorporates a temporal decorrelation technique to address the inappropriate correlation
between vt and the current second-order moment g2

t . This approach requires the adaptive learning rate αt
to be independent of g2

t . However, it’s worth noting that the convergence analysis of AdaShift was primarily
limited to RMSProp for resolving the convex counterexample presented by Reddi et al. Sashank et al. (2018).

In contrast to the aforementioned modifications and restrictions, we introduce an alternative sufficient con-
dition (abbreviated as SC) to ensure the global convergence of the original Adam. The proposed SC (refer
to Section 4.1) depends on a constant learning rate α [our proposed learning rate] and on the parameter β1.
Our SC doesn’t necessitate rapidly decaying step sizes and positive definiteness of Γt. It’s easier to verify
and more practical compared to (B2).

NOTE: A recent study by Chen et al. (2022) proposes a similar convergence rate to ours using a constant
step size approach for mini-batch Adam, where they employ αt = α√

T
, with α being any positive real number.

However, our work asks the questions:
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1. For better convergence1 of Adam with non-decreasing or constant step sizes, is αt = α√
T

sufficient?

2. Are there any other terms related to the dynamics of the model and data that need to be integrated
as constants in the learning rates proposed above?

3. If such terms exist, will they lead to better convergence?

Our work specifies the exact learning rate that ensures convergence with fewer assumptions and contains
information about the model dynamics and data distribution in the form of Lipschitz smoothness of the loss.

This article is organized as follows: Section 2 presents basic definitions and pseudocodes that will be
used throughout our theoretical analysis. In Section 3, we provide the motivation for this work and outline
the major contributions of the article. Section 4 discusses the convergence guarantees for Adam with a
fixed step size. In Section 5, we present the details of the designed experiments and analyse the results.
Finally, Section 6 concludes the article.

2 Notations, Definitions and Pseudocodes

In the following, we denote as xTy and ∥x∥2 the scaler product and L2-norm of the Hilbert space Rn
respectively. For any differentiable and real-valued function f : Rn 7→ R and any point x ∈ Rn, we will denote
as ∇xf ∈ Rn the gradient of f at x. The double derivative of f at x is denoted by ∇2

xf ∈ Rn×n which is a
square matrix, also called the Hessian matrix. Next, we define the Lipschitz property, a standard assumption
in optimisation literature, which we assume in all our proofs for non-convex objectives. Additionally, this
section presents the pseudocode for the Adam optimizer.
Definition 1. K - Smoothness. If f : Rd 7→ R is at least once differentiable, then we call it K smooth for
some constant K > 0, if for all x,y ∈ Rd, the following inequality holds:

f(y) ≤ f(x) + ∇xf(x)T (x − y) + K

2 ||x − y||2

If a function f : Rn 7→ R is K-smooth, then K is essentially the Lipschitz constant of the gradient of f .
Henceforth, we will refer to K as the Lipschitz smoothness of the function, which is the same as the Lipschitz
constant of the gradient of the function. Alternatively, we can define K-smoothness as:
Definition 2. K - Smoothness. A function f : Rd 7→ R is called Lipschitz smooth if there exists a constant
K > 0 such that:

∀x,y ∈ Rn, ∥∇xf(x) − ∇yf(y)∥2 ≤ K∥x − y∥2

The smallest K for which the previous inequality is true is called the Lipschitz constant of ∇f or Lipschitz
smoothness of f and will be denotedK(f). Note, from here onwardsK andK(f) can be used interchangeably,
denoting the function’s Lipschitz smoothness.
Definition 3. Square root of Penrose inverse. If v ∈ Rd and V = diag(v), then we define V −1

2 :=∑
j∈support(v)

1√vj
bjbTj , where {bj}dj=1 is the standard basis of Rd.

Definition 4. Sign function. We define a function sign : Rd 7→ {−1, 1}d as follows:

sign(z)j =
{

1 if zj ≥ 0
−1 else

1Better convergence refers to the gradient norm of the loss approaching zero more closely as iterations progress. If two
algorithms, A1 and A2, drive the gradient norm of the loss to 0.1 and 0.001 respectively, A2 demonstrates superior convergence.
To assess the convergence speed accurately, one must analyze the loss curve plot.
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Algorithm 1: Adam Algorithm Pseudocode Kingma & Ba (2015)
Input: Learning rate: α ∈ (0, 1], β1, β2 ∈ [0, 1), initial starting point w0 ∈ Rd, a constant vector

ρ1d > 0 ∈ Rd, we assume we have access to a noisy oracle for gradients of f : Rd 7→ R
1 Initialization: m0 = 0, v0 = 0
2 for t from 1 to T : do
3 gt = ∇f(wt)
4 mt = β1mt−1 + (1 − β1)gt
5 vt = β2vt−1 + (1 − β2)g2

t

6 Vt = diag(vt)
7 wt+1 = wt − α(V1/2

t + diag (ρ1d))−1 mt

8 End

3 Motivation & Contributions

In practical scenarios, such as learning latent variables from vast datasets with unknown distributions, the
goal is to solve the optimisation problem:

min
w∈Rd

L(w) = min
w∈Rd

Eζ∼P [l(ζ,w)] (2)

Here L : Rn 7→ R is a non-convex loss function, ζ is a random variable with an unknown distribution P and
l(ζ,w) quantifies the performance of parameter vector w ∈ Rn on the random variable ζ. Common iterative
optimisation algorithms like Adam and RMSProp are often employed to solve this problem. It’s observed
that using a more aggressive constant step size often leads to favourable outcomes Jing (2020); Li et al.
(2021). However, determining the optimal learning rate requires an exhaustive search. Specifically, when
optimizing for a parameter set w ∈ Rd, the goal is to find a parameter w∗ aligning with a minimum in the
loss landscape L(w). Gradient descent-based algorithms, including those with momentum, iteratively update
parameters using wt+1 = wt − αtg(∇wL(wt)), where αt is the step size at iteration t and g : Rd 7→ Rd
is a function incorporating the gradient and momentum terms. Convergence of the parameter sequence
{w0,w1, . . . ,wT−1} to w∗ necessitates the sequence {(wt+1 − wt)} to converge to 0 as t → T . This
corresponds to the sequence {αtg(∇wL(wt))} converging to 0 ∈ Rd. The literature often opts for a non-
increasing step size αt, such as αt ∝ 1

ta , where a > 0, to theoretically prove convergence. Despite non-zero
gradient norms, αt can cause {αtg(∇wL(wt))} to approach 0, even if {∇wL(wt)} does not. Although
accumulating past gradients helps mitigate the decay of the learning rate, there’s a risk that learning rates
with rapid decay may dominate. Our empirical analysis in Section 5 demonstrates that Adam, with non-
increasing learning rates, does not aggressively drive the gradient norm of the loss towards zero. With a
fixed step size αt = α > 0, if wt → w∗, then ∥∇wL(wt)∥2 → 0. This ensures convergence to a saddle point
of L(w) with a fixed step size, an assurance not available with a non-increasing and iteration-dependent step
size.

Consequently, our research aims to identify the optimal constant step size, ensuring convergence in both
deterministic and stochastic Adam iterations beyond a time threshold t > T (β1, ρ) where T (β1, ρ) is a
natural number.

A summary of our contributions: The major contributions of this article are summarized as follows.

1. We derive an exact constant step size to guarantee convergence of deterministic as well as stochastic
Adam. To the best of our knowledge, this study is the first to theoretically guarantee Adam’s global
convergence (gradient norm of loss function converges to 0) with an exact constant step size, which
depends on the dynamics of the model and data.

2. Our study offers runtime bounds for deterministic and stochastic Adam to achieve approximate
criticality with smooth non-convex functions.
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3. We introduced a simple method to estimate the Lipschitz smoothness 2 of the loss function w.r.t
the network parameters. We offer a probabilistic guarantee for the convergence of our estimated
Lipschitz constant to its true value.

4. We empirically show that even with past gradient accumulation, deterministic Adam can be affected
by rapidly decaying learning rates. This indicates that these rapid decay rates play a dominant role
in driving convergence.

5. We also demonstrate empirically that with our analysed step size, Adam quickly converges to a
favourable saddle point with high validation accuracy.

4 Convergence Guarantee For Adam With Fix Step Size

Previously, it has been shown in Sashank et al. (2018); De et al. (2018); Défossez et al. (2020) that deter-
ministic RMSProp and Adam can converge under certain conditions with adaptive step size. Here, we give
the first result about convergence to criticality for deterministic and stochastic Adam with constant step
size, albeit under a certain technical assumption about the loss function (and hence on the noisy first-order
oracle). The proofs of the theorems discussed in this section, along with additional experiments, are provided
in the Appendix, which is included as part of the Supplementary Material for this paper.

4.1 Novel Sufficient Conditions (SC) for Convergence of Adam

Below are the commonly employed assumptions for analyzing the convergence of stochastic algorithms for
non-convex problems:

1. The minimum value of the problem L∗ = argminw∈RdL(w) is lower bounded, i.e L∗ > −∞.

2. The stochastic gradient gt of the loss function is an unbiased estimate, i.e E[gt] = ∇wL(wt).

3. The second-order moment of stochastic gradient gt is uniformly upper-bounded, i.e E[∥gt∥2
2] ≤

(E[∥gt∥2])2 ≤ γ2.

In addition, we suppose that that the parameters β1 and learning rate α satisfy the following restrictions:

1. The parameter β1 satisfies β1 <
ϵ

ϵ+γ for some ϵ > 0.

2. Our proposed step size αt = α ∈ R+ remains constant throughout the analysis.
Theorem 1. Deterministic Adam converges with proper choice of constant step size. Let the
loss function L : Rn 7→ R be K−smooth and let γ < ∞ be an upper bound on the norm of the gradient of L.
Also assume that L has a well-defined minimiser w∗ such that w∗ = argminw∈Rd L(w). Then the following
holds for Algorithm (1):

For any ϵ, ρ > 0 if we let α =
√

2(L(w0) − L(w∗))/Kδ2T , then there exists a natural number T (β1, ρ)
(depends on β1 and ρ) such that min

t=1,...,T
∥∇wL(wt)∥2 ≤ ϵ for some t ≥ T (β1, ρ), where δ2 = γ2

ρ2 .

Theorem 2. Stochastic Adam converges with proper choice of constant step size. Let the loss
function L : Rn 7→ R be K−smooth and be of the form L =

∑m
j=1 Lj such that (a) each Lj is at-least once

differentiable, (b) the gradients satisfy sign(Lr(w)) = sign(Ls(w)) for all r, s ∈ {1, 2, . . . ,m}, (c) L has a
well-defined minimiser w∗ such that w∗ = argminw∈Rd L(w). Let the gradient oracle, upon invocation at
wt ∈ Rd, randomly selects jt from the set {1, 2, . . . ,m} uniformly, and then provides ∇fjt

(xt) = gt as the
result.

Then, for any ϵ, ρ > 0 if we let α =
√

2(L(w0) − L(w∗))/Kδ2T , then there exists a natural number T (β1, ρ)
(depends on β1 and ρ) such that
min

t=1,...,T
E[∥∇wL(wt)∥2] ≤ ϵ for some t ≥ T (β1, ρ), where δ2 = γ2

ρ2 .

2Our derived step size, crucial for ensuring convergence, is determined by the Lipschitz smoothness of the loss function.
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Remark 1: With our analysis, we showed that both deterministic and stochastic Adam with constant step
size converges with rate O

( 1
T 1/4

)
. This convergence rate is similar to the convergence rate of SGD proposed

by Li et al. in Li et al. (2014). Our motivation behind these theorems was primarily to understand the
conditions under which Adam can converge, especially considering the negative results presented in Reddi et
al. Sashank et al. (2018). However, we acknowledge that it is still an open problem to tighten the analysis
of deterministic as well as stochastic Adam and obtain faster convergence rates than we have shown in the
theorem. One thing to keep in mind is that our convergence rate is obtained for a fixed step size, and having
a decaying step size provides additional opportunities for analysis to tighten the bound Shi et al. (2020);
Tian & Parikh (2022); Chen et al. (2018); Luo et al. (2019); Défossez et al. (2020); Zou et al. (2019).
Remark 2: Based on the preceding two theorems, it becomes evident that the Adam achieves convergence
when equipped with an appropriately chosen constant step size α =

√
2(L(w0) − L(w∗))/Kδ2T , according

to our analysis. Subsequently, we analyse the given step size and conduct extensive experiments to ascertain
that, with the designated step size, the gradient norm effectively and more aggressively tends towards zero
compared to other learning rate scheduling techniques (Listed in Table 1). Hence, our empirical investigations
validate that the chosen step size ensures convergence in practice. We compare our step size with several
state-of-the-art schedulers and an array of constant step sizes in Section 5.

4.2 Analysis of Constant Step Size

The optimal learning rate, as per Theorem 1 and Theorem 2, depends on factors like the Lipschitz
smoothness of the loss3 (K), initial and final loss values, the total number of iterations/epochs (T ), and an
additional term denoted as δ2. For simplicity, we omitted the δ2 term as it depends on an oracle of gradients
and set the final loss term to zero. Thus, our approximate learning rate is now expressed as α ≈

√
2L(w0)
K̂T

,
making it practical while still capturing the core concept of Theorem 1 and Theorem 2 . Here K̂ is the
approximated smoothness of the loss, defined in the next section.

4.3 Approximating The Lipschitz Smoothness of Loss

Determining the appropriate Lipschitz smoothness for a neural network is a key area of research in deep
learning, with various methods proposed for estimation, as demonstrated in recent works Virmaux & Scaman
(2018); Fazlyab et al. (2019); Latorre et al. (2020); et al. (2019a); Gouk et al. (2021). Estimating the learning
rate prior to training requires careful estimation of the Lipschitz smoothness of the loss function. For locally
Lipschitz smooth functions (i.e. functions whose restriction to some neighbourhood around any point is
Lipschitz), the Lipschitz smoothness may be computed using its Hessian matrix.
Theorem 3. (Rademacher Federer (2014) [22, Theorem 3.1.6]) If f : Rd 7→ R is a locally Lipschitz smooth
function, then f is differentiable almost everywhere. Moreover, if f is at least twice differentiable and ∇xf
is Lipschitz continuous, then

K(f) = supx∈Rd∥∇2
xf∥2 (3)

where ∥A∥2 is the spectral norm of the matrix A ∈ Rn×n.

For large networks, directly optimizing according to Theorem 3 can be time-consuming. Instead, we propose
a novel technique to approximate the Lipschitz smoothness. It’s important to note that this work does not
aim to estimate the best Lipschitz smothness for the loss or network; rather, it focuses on the convergence
analysis of Adam. We introduce Algorithm 2 to approximate the Lipschitz smoothness of the loss4, supported
by mathematical proof that our estimate converges in distribution to the original Lipschitz smoothness. We
shall now prove that our estimated Lipschitz smoothness (K̂) converges to the real Lipschitz smoothness
(K) in distribution.
Theorem 4. Given ∥.∥2 and ∇2

wL are continuous functions and ∥∇2
wL∥2 is bounded from above. If L is

locally Lipschitz smooth then, K(L) = supw∈Rd∥∇2
wL∥2. Let K̂ be a random variable defined as :

K̂ = max
1≤j≤N

∥∇2
wL(wj)∥2 (4)

3The Lipschitz smoothness of the loss is with respect to network parameters.
4Algorithm 2 is given for the full-batch scenario. The algorithm for the mini-batch case is deferred to the Appendix due

to space constraints.
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where wj, j ∈ {1, 2, . . . , N} are i.i.d samples drawn from a full domain distribution W. Then, as N → ∞,
the random variable K̂ converges in distribution to K(L).
Mathematically:

lim
N→∞

P (K̂ ≤ k) =
{

0 if k < K(L)
1 if k ≥ K(L)

(5)

Algorithm 2: Estimating Lipschitz Smoothness of Loss Function
Input: Dataset: X ∼ P, Loss function: L : Rd → R, A network parameterized by w ∈ Rd ∼ W, No. of

iterations: N
Output: K̂

1 Initialization: K̂ = 0, Iteration Number n = 0
2 for n from 1 to N : do
3 Randomly sample the network weights: wn ∼ W
4 Compute loss for the current pass: L(wn) = Eζ∼P [l(ζ,wn)]
5 Compute the spectral norm of hessian at the current instant using power method by Müntz et al.

(1913): ∥∇2
wL(wn)∥2

6 Estimate the Lipschitz smoothness (K̂): K̂ = max(∥∇2
wL(wn)∥2, K̂)

7 End

From Theorem 4, K̂ d−→ K(L)5. optimisation of the loss gradient can be achieved through iterative tech-
niques like steepest descent Boyd & Vandenberghe (2004), backtracking Boyd & Vandenberghe (2004), and
Wolfe’s and Goldstein’s conditions Wolfe (1969), aiming to identify the direction (weights w) maximizing the
gradient norm. However, non-convex loss surfaces in deep learning may lead to convergence to sub-optimal
local maxima. Also, losses with unbounded gradients can lead to excessively high Lipschitz constants. Our
approach addresses this by leveraging the convergence in distribution phenomenon from probability the-
ory. We randomly select directions from a distribution W and take the maximum gradient norm across all
evaluated samples, theoretically converging to the true Lipschitz constant in distribution. Note, to respect
Theorem 3, the distribution of the weights W needs to be full domain.

5 Experimental Setup

We assess Adam’s performance with our selected step size through experiments on fully connected networks
with ReLU activations. Additionally, we expand our analysis to include classification tasks on MNIST and
CIFAR-10 datasets using LeNet LeCun et al. (1998) and VGG-9 Simonyan & Zisserman (2014), respectively.
To maintain strict experimental control, we ensure that all network layers have identical widths denoted
as h. For experiments, in Section 5.2 and 5.3, we used Kaiming uniform distribution He et al. (2015)
for initialization. Default PyTorch parameters are chosen [Link]. No regularization is applied. Before
delving into further details about the experiments, we will first describe the model architectures utilized for
experiments in the subsequent sections.

5.1 Outline of the Experiments Conducted

We conducted classification experiments on the MNIST dataset for various network sizes, encompassing
different values of network depth and h. CIFAR-10 experiments are carried out only on VGG-9 architecture.
All experiments are implemented using PyTorch. We compare the performance of Adam using our proposed
step size with:

1. A list of commonly used schedulers and several non-increasing step sizes that were utilized to demon-
strate theoretical convergence for Adam in past literature. The schedulers include (i) Linear LR,

5Theorem 4 holds for mini-batch case too. Refer to Appendix for more insights.
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(ii) Step LR, (iii) Square root Decay, (iv) Inverse Time Decay, (v) Exponential Decay, (v) One
Cycle LR, and (vi) Cosine Decay Smith & Topin (2019). The full list with hyperparameters are
given in Table 1, Appendix C.1.

2. An array of constant step sizes {10−2, 10−3, 10−4, 10−5} which are widely used in literature.

Each experiment was executed for 100 epochs. For various schedulers, we fine-tuned their hyperparameters
to identify configurations where they exhibited the best performance and retained those values for the final
comparison with our step size. These choices are made to provide a fair comparison with our constant step
size approach, as overly rapid decay rates may not effectively minimise the gradient norm of the loss function.
Below is the list of experiments we have conducted:

1. Full-batch experiments (Section 5.2): To efficiently compare learning rate schedules, we cre-
ated smaller versions of the MNIST and CIFAR-10 datasets: mini-MNIST and mini-CIFAR-10,
respectively. Mini-MNIST comprises 5500 training images and 1000 test images, selected from the
original MNIST dataset. Mini-CIFAR-10 includes 500 training images and 100 test images per class,
representing about 10% of the full CIFAR-10 dataset. Despite their reduced size, both mini datasets
adequately represent their respective originals for experimentation.

2. Mini-batch experiments (Section 5.3): To see if our findings from the full-batch experiments
apply to mini-batch scenarios according to Theorem 2, we conducted similar experiments using
a mini-batch setup with a fixed batch size of 5,000 for CIFAR10 and MNIST both. We utilized
the entire training sets of CIFAR10 and MNIST for these experiments. We tested our models on
CIFAR10 using the VGG-9 architecture and on MNIST using the LeNet architecture. We also
justified why such a large batch size is needed for empirical convergence.

3. Effect of initialization on our learning rate: As our learning rate α =
√

2L(w0)
K̂′T

depends on the
initial loss value and the estimated Lipschitz constant, we conducted experiments to demonstrate
the independence of our learning rate with respect to different network initialization techniques.
Please refer to Appendix C.4 for the results.

4. Additional experiments on CNN architectures (Section 5.4): To examine the potential
generalizability of our theoretical findings across architectures, we trained an image classifier on
CIFAR-10 and MNIST datasets employing VGG-like networks and LeNet architectures, respectively.

5.2 Comparing Performances in Full-Batch Setting

In Figure 1 and 2, we illustrate the variations in gradient norm, training loss, and test loss across itera-
tions for different schedulers. These experiments were conducted on single-layer, three-layer, and five-layer
classifiers with 1000 nodes in each hidden layer, trained on mini-MNIST. Additional comparisons for var-
ious neural network architectures with different widths and depths are provided in the Appendix, where
similar qualitative trends can be observed. (1) Comparison against various learning rate schedulers:
We compared our step size against several well-known schedulers listed in Table 1, Appendix C.1. Ex-
cept for cosine decay and one-cycle learning rate, all other schedulers are non-increasing. Our goal was to
evaluate their efficacy in driving the gradient norm of the loss function towards zero. (2) Comparison
against various fixed learning rates: We tested our learning rate against several other fixed learning
rates, {10−2, 10−3, 10−3, 10−4, 10−5}. We wanted to demonstrate that instead of searching extensively for
the best learning rate to train a model, one could just use our learning rate and achieve decent results.

Looking at Figures 1 and 2, it is clear that our suggested learning rate helps decrease the gradient norm
of loss more aggressively towards zero as compared to other schedulers and non-increasing learning rates,
supporting our Motivation. Even with the accumulation of a few past gradients, deterministic Adam proves
ineffective in mitigating the rapid decay of the learning rate. This is evident from Figure 1, where one can
observe a notable difference in gradient norms after 100 epochs between the best-performing scheduler
(Exponential in this case) and our learning rate is in order of 10−2.
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Figure 1: Comparison with schedulers: Full-batch experiments on a 3-layer network with 103 nodes/layer, trained
on MNIST. Left: Grad. norm v/s epochs, Middle: Training loss v/s epochs, Right: Test acc. v/s epochs.
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Figure 2: Comparision with const. step sizes: Full-batch experiments on a 3-layer network with 103 nodes/layer,
trained on MNIST. Left: Grad. norm v/s epochs, Middle: Training loss v/s epochs, Right: Test acc. v/s epochs.

Additionally, these figures demonstrate that our learning rate not only reaches any stationary point but tends
to approach a local minimum or its neighbourhood where the model achieves good validation accuracy. The
plot of loss versus epoch indicates that our proposed learning rate leads to faster convergence in practice as
compared to other schedulers. However, it’s worth noting that achieving faster convergence in general is still
a challenge. Nevertheless, using this learning rate results in quicker convergence than other schedulers and
a range of fixed learning rates.

5.3 Comparing Performances in Mini-Batch Setting

In this section, we replicate the same set of experiments in mini-batch setting. We choose 5,000 as batch
size for both the CIFAR10 and MNIST datasets. From Figure 3 and Figure 4, we observed that even
in the mini-batch setting, our learning rate effectively reduces the gradient norm of loss more aggressively
compared to other schedulers and constant step sizes. This trend aligns with the behaviour observed in the
full-batch setting across all plots, including gradient norm, training loss, and validation accuracy.
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Figure 3: Comparison with schedulers: Mini-batch experiments on a 3-layer network with 103 nodes/layer, trained
on MNIST. Left: Grad. norm v/s epochs, Middle: Training loss v/s epochs, Right: Test acc. v/s epochs.
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Figure 4: Comparison with const. step sizes: Mini-batch experiments on a 1-layer network with 103 nodes/layer,
trained on MNIST. Left: Grad. norm v/s epochs, Middle: Training loss v/s epochs, Right: Test acc. v/s epochs.

Why such a large batch size is chosen? Despite the non-convergence issue demonstrated by Reddi et
al. Sashank et al. (2018), it does not rule out convergence if the minibatch size increases over time, thereby
reducing the variance of stochastic gradients. Increasing minibatch size has been shown to aid convergence
in some optimisation algorithms not based on exponential moving average (EMA) methods et al. (2018);
Hazan et al. (2015). In all our minibatch experiments (including those in the Appendix), we choose a
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Figure 5: Increasing batch size experiments on Left: a fc network with 5 layers and 3 × 103 nodes/layer,
trained on MNIST, Middle: LeNet trained on MNIST and Right: VGG-9 trained on CIFAR-10.

large batch size because our theoretical analysis for the minibatch setting, as described in Theorem 2,
assumes that the loss is K − Lipschitz and is represented by L =

∑m
j=1 Lj . Our proposed learning rate

relies on the Lipschitz constant of the loss function. To accurately estimate this constant, it is crucial to
estimate the stochastic gradients with low variance, as the Lipschitz constant is essentially the supremum of
the true gradient norm over the network weights (Theorem 3). This approximation of gradients affects the
estimation of the Lipschitz constant. Therefore, to make our step size effective in the minibatch setting, it
is crucial to estimate the gradients with low variance, which in turn provides the correct estimation of the
Lipschitz constant. From Figure 5, our empirical analysis suggests that increasing batch size will lead to
faster convergence, as increasing batch size decreases variance. We now show results with our learning rate
with increasing minibatch size in Figure 5.

5.4 LeNet on MNIST and VGG-9 on CIFAR-10

To test whether these results might qualitatively hold for convolutional neural networks (CNN) models,
we trained an image classifier on CIFAR-10 and MNIST using VGG-9 and LeNet, respectively. We use
minibatches of size 5,000 for the LeNet and 2,500 for VGG-9. As illustrated in Figures 6, 7, 8, 9, 10, and
11, our proposed learning rate scheduler performs well with CNNs, outperforming state-of-the-art schedulers
and various constant step sizes. We can clearly see a gap of at least 10−1 order between our learning rate and
the best-performing scheduler’s gradient norm curve for LeNet experiments. This training was conducted for
100 epochs. Therefore, our empirical results demonstrate that our proposed learning rate can be effectively
applied to CNNs and mini-batch scenarios, leading to better convergence.
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Figure 6: Comparison with schedulers: Full-batch experiments on LeNet architecture with MNIST data.
Left: Grad. norm v/s epochs, Middle: Training loss v/s epochs, Right: Test acc. v/s epochs.
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Figure 7: Comparison with schedulers: Mini-batch experiments on LeNet architecture with MNIST data.
Left: Grad. norm v/s epochs, Middle: Training loss v/s epochs, Right: Test acc. v/s epochs.
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Figure 8: Comparison with constant step sizes: Mini-batch experiments on LeNet architecture with MNIST
data. Left: Grad. norm v/s epochs, Middle: Training loss v/s epochs, Right: Test acc. v/s epochs.
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Figure 9: Comparison with constant step sizes: Full-batch experiments on LeNet architecture with MNIST
data. Left: Grad. norm v/s epochs, Middle: Training loss v/s epochs, Right: Test acc. v/s epochs.
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Figure 10: Comparison with schedulers: Mini-batch experiments on VGG-9 architecture with CIFAR-10
data. Left: Grad. norm v/s epochs, Middle: Training loss v/s epochs, Right: Test acc. v/s epochs.
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Figure 11: Comparison with constant step sizes: Mini-batch experiments on VGG-9 architecture with
CIFAR-10 data. Left: Grad. norm v/s epochs, Middle: Training loss v/s epochs, Right: Test acc. v/s
epochs.

6 Conclusion and Limitations

This article presents the first known theoretical guarantees for the convergence of Adam with an exact
constant step size in non-convex settings. It provides insights into why using non-decreasing step sizes may
yield sub-optimal results and advocates for sticking to a fixed step size for convergence in Adam. (i) We
analysed Adam’s convergence properties and established a simple condition on the step size that depends
on the characteristics of the model and data (in the form of the loss’s Lipschitz smoothness and initial loss
value). This condition ensures convergence in both deterministic and stochastic non-convex settings. We tag
it as a sufficient condition SC in our text. (ii) We proposed a novel method for efficiently approximating
the Lipschitz constant of the loss function with respect to the parameters, which is crucial for our proposed
learning rate. (iii) Our empirical findings suggest that even with the accumulation of the past few gradients,
the key driver for convergence in Adam is the non-increasing nature of step sizes. (iv) Finally, our theoretical
claims are validated through extensive experiments on training deep neural networks on various datasets.
Our experiments validate the effectiveness of the proposed step size. It drives the gradient norm towards
zero more aggressively than the commonly used schedulers and a range of arbitrarily chosen constant step
sizes. Our derived step size is easy to use and estimate and can be used to train a wide range of tasks.

Limitations: (i) It is still open to tightening the convergence rate of Adam. (ii) In Section 5.3, we
empirically demonstrate that increasing the batch size leads to improved convergence. In our proof for the
convergence of stochastic Adam, we chose to exclude the batch size factor for simplicity. However, we aim
to theoretically demonstrate in the future that, according to our analysis, increasing batch size results in
faster convergence.
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