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ABSTRACT

Obtaining high-quality generations in modern LLMs has largely been framed as
a selection problem: identifying a single winning generation from a diverse pool
of N samples, the Best-of-N (BON). Yet, this approach is inherently zero-sum,
discarding diverse and potentially useful information from the pool. Instead, we
explore a collaborative setup, where all candidates can potentially contribute to
the final winning generation. To this end, we propose Fusion-of-N (FUSION):
a method that uses a general LLM judge to synthesize the most informative ele-
ments of each sample into a single final answer. We compare FUSION to BON in
two settings, (i) test-time scaling, where we sample and aggregate from a single
model at test-time (ii) synthetic data generation, where we fuse samples from a
pool of diverse teachers to improve a student model. We extensively benchmark
both setups across 11 languages, 3 diverse benchmarks and varying model scales.
Across the bench, FUSION consistently outperforms BON showing versatility and
robustness both in test-time scaling and in downstream gains from synthetic data
generation. We also perform extensive analysis on FUSION, where it shows sur-
prising strengths and robustness under challenging settings. These results show
that we should shift how we think about evaluating and utilizing LL.M generations
from a monolithic measure of quality, to embracing their polylithic nature. This
shift allows us to integrate diverse strengths, unlock latent potential, and achieve
improvements that were previously inaccessible through selection alone.

1 INTRODUCTION

Many of today’s advances in LLMs rely heavily on aggregation at inference: The dominant ap-
proach, Best-of-N (BON), involves generating multiple candidates and selecting one among them
as the final output. This approach has proven highly effective for test-time scaling in tasks ranging
from math reasoning and translation to open-ended tasks (Snell et al.l 2025; Khair1 et al., 2025;
Yao et al.,|[2023; Wang et al.,[2023a), and for producing synthetic data used in fine-tuning (Jayalath
et al., 2025} [Muennighoft et al., [2025), especially in multilingual setups (Grattafiori et al., 2024;
Dang et al., [2024; Martins et al., [2025; Hernandez-Cano et al., 2025} |[Lai & Nissim, 2024; |[Hwang
et al.,|2025;|Odumakinde et al.|[2025]; [Rei et al.,|2025). However, existing aggregation methods treat
generations as competitors in a zero-sum game. Whether through majority voting (Brown et al.,
2024)), self-consistency (Wang et al., |2023a)), or reward-model scoring (Ouyang et al.| [2022), the
goal is to find the single best answer while discarding the rest. This hard selection step imposes clear
limitations: it discards the diversity of reasoning paths that could be combined to produce stronger
answers. It wastes much of the compute spent generating samples and risks reward hacking (Skalse
et al.|[2022bjjaj Ichihara et al.l|2025): the candidate that maximizes a judge’s score is not always the
most correct or useful.

In today’s fast-shifting LLM landscape, where leaderboard wins change hands quickly, treating
quality as a single monolithic dimension is increasingly outdated. In practice, there is rarely a single
“best” answer; diverse outputs often complement one another. This motivates our central question:
can we go beyond selection and design a method that makes fuller use of all generated samples? We
propose FUSION, a simple synthesis-based alternative to BON that exploits the generative abilities
of LLMs to integrate complementary signals across candidates—truly making, rather than merely
taking, the best of N.

We treat aggregation as a synthesis problem rather than a selection problem. We use a strong LLM
judge, the fusor, to integrate the complementary strengths of multiple candidates into a single an-
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swer. Our proposed Fusion-of-N (FUSION) method is simple, general, versatile and can directly
replace BON with no modifications beyond access to a reasonably strong generative LLM that acts
as a fusor. The polylithic understanding of quality allows us to decompose complex problems into
compositional ones that are more tractable. FUSION optimizes across samples and integrates com-
plementary insights into a single, higher-quality answer. Going beyond the initial sample pool is
especially valuable when the pool is strong and diverse, and for problems that naturally benefit from
diversity. Intuitively, this mirrors how experts synthesize knowledge from multiple domains and
perspectives.

We perform a comprehensive evaluation of FUSION as a replacement for BON across test-time
scaling and data generation: For test-time scaling, we measure the effectiveness of FUSION with
multiple samples from 8B and 111B models on open-ended generation and machine translation
tasks. We evaluate the impact of synthetic data generated with FUSION in terms of data quality
and downstream results after fine-tuning a 7B and a 111B model on open-ended prompts, math
and factual reasoning tasks. In both setups our evaluations are spanning multiple languages to test
FUSION under diverse and challenging conditions.

Our results show that synthesis is not only more effective, but also more sample-efficient: FUSION
consistently outperforms BON under the same sampling budget, and in some cases even surpasses
the oracle, revealing that selection is not the upper bound. It proves robust under weaker teacher
pools, showing that diversity can be leveraged even when individual contributors are limited. We
observe that fine-tuning on FUSION data enables models to outperform even the strongest single
teacher, showing that synthesis distills collective knowledge in ways that selection cannot. Fi-
nally, our analysis provides the first detailed look into the mechanisms of synthesis, uncovering both
its strengths—sample efficiency, robustness, and adaptability—and its limits on tightly constrained
math tasks. To summarize, our contributions are:

Conceptual shift from selection to synthesis. We present compelling evidence for reframing ag-
gregation as synthesis problem. In contrast to previous works in this direction (section 6, FUSION
is simple, easily customizable and works out-of-the-box, making it an attractive substitute for BON.

Demonstrated gains across test-time scaling and data generation. FUSION consistently outper-
forms BON in both settings where candidate aggregation is used today: (i) test-time scaling, where
it yields substantial improvements (e.g., +3.8% win-rate vs GEMINI2.5-PRO on mArena-v2, +3.7
XCOMETXL on translation), and (ii) synthetic data generation, where it produces higher-quality
datasets that drive downstream gains across diverse tasks (+2.5% on mArena-v2 vs GEMINI2.5-
FLASH, +0.8 on WMT, +1.0% on GeoFactX answer accuracy and +0.8% on reasoning quality).

Robustness and efficiency across models and settings. Our analysis shows that FUSION is more
sample-efficient and robust than BON. It maintains high performance with smaller or weaker teacher
pools, benefits from larger fusor models, and scales effectively with added test-time compute. These
properties make it a practical and generalizable approach for both test-time scaling and synthetic
data generation, even under constrained or imperfect conditions.

This work redefines how we measure and leverage LLM outputs. Instead of treating generations
as isolated candidates, we embrace their diversity and complementary strengths, synthesizing them
into more powerful, coherent results. Our findings show that treating LLMs as collaborators and
not competitors unlocks higher-quality outputs and more impact on downstream usecases, pointing
toward a fundamentally more effective paradigm for large-scale language model deployment.

2 METHODOLOGY: FROM SELECTION TO SYNTHESIS

Selection with Best-of-N (BON) Given a prompt x, a pool of candidates y € Y, and a scoring
function S, the BON method selects the optimal candidate y* by maximizing a scalar score:
y* = argmax S(y, x)
yey
The scoring function could be a specialized reward model as used in rejection sampling for synthetic
data generation (Grattafiori et al.l [2024)), or test-time scaling (Cobbe et al., 2021). The score could
also be produced by a generative LLM that is prompted to predict a scalar score (Kim et al.,|2024),
though in practice trained classifiers often perform better, for instance many top models on Reward-
Bench (Malik et al., [2025) leaderboard are sequence classifiers. These type of scoring functions
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are typically optimized on verifiable domains and pairwise human preferences (Cobbe et al., 2021}
Ouyang et al., 2022).

Limitations of BON The limiting factors for selection with BON are (1) the alignment with the
desired task (Lambert et al., 20205 [Pan et al., 2022} Ichihara et al.l [2025; |Viswanathan et al., 2025)),
(2) and the quality of the generated sample pool (as per definition, the final generation can only be
as good as the best of the candidates). For domains with verifiable problems, the alignment can
easily be improved by scaling up training data for the reward model (Liu et al. 2025), but even
with expensive ensembles (Eisenstein et al., 2024) risks of overfitting to an imperfect proxy re-
main (Stroebl et al.|[2024)). Scaling up reward model alignment is less transferrable to open domains
like chat or open-ended question answering, where this signal needs to be obtained from human
feedback (Huang et al., 2025; Viswanathan et al.,2025)). Similarly, a poor initial sample pool can be
improved by diversification (Chen et al.,|2025) or optimized sampling (Khairi et al.,|2025), or simply
scaling up the number of samples, sometimes requiring thousands of samples for test-time scaling to
be effective (Stroebl et al., |2024; Brown et al.,[2024)), which makes it extremely resource-intensive.

Synthesis with Fusion-of-N (FUSION) A fusor model F' (a standard LLM) generates a new re-
sponse y* based on the input prompt X, and a pool of candidates Y:

y*=F(xY), y ¢Y

This means that the final generation y* is conditionally dependent on the other candidates, and,
can—in contrast to BON—exceed the original pool in quality (see Section [3). It can be seen as
a form of collaborative refinement: Rather than only selecting a sample according to a monolithic
notion of quality, FUSION goes beyond and productively integrates a polylithic notion of quality into
the synthesis of a better sample. The polylithic view, meaning that we acknowledge the existence
of higher and lower-quality parts in each sample, is particularly well suited for long generations for
complex prompts. FUSION can “mix and match” fragments of variable size (e.g. tokens, terms,
sentences, ...) that stand out in quality in each of the provided samples (see the example in fig. [T3).
BON is captured as a special case: the fusor still has the option to copy one whole generation if it
outperforms all others for the entire sequence.

Components of FUSION The success of FUSION depends on the capabilities of the judge to
comparatively evaluate, extract and aggregate the best parts of each generation. We will show in
section [3] that there appears to be a threshold in model size that needs to be crossed for FUSION
to work without any specialized training. Our analysis also shows that the choice of fusor, given
a certain model size, seems less important than the composition of the sample pool. One major
advantage over using a reward model, is that the FUSION prompt (ours in table f allows for in-
context learning and adaptation without any training. It can be tuned to steer FUSION behavior in
ambiguous cases, such as concerning safety standards (e.g. with a constitution (Bai et al.| 2022)),
tone or model identity, and how much it should attempt to integrate parts from all samples or also
discard the worst ones entirely. With chain-of-thought prompting (Wei et al., 2022) or reasoning
models as fusors, we also have the possibility to scale up FUSION compute where desired. In
preliminary experiments we found it important to instruct the model to not only focus on the best, but
also discard the worst parts. We have not conducted any prompt tuning beyond that, but practitioners
are invited to tune their FUSION prompt to their use cases.

3 EXPERIMENTAL SETUP

Our experiments span two prominent environments for BON, the first focused on test-time scaling,
and the second focused on synthetic data generation. In both cases, our intervention of replacing
BON by FUSION is minimal: Both methods receive the identical set of generations for the same
prompts, but aggregate it differently to produce the final generation.

3.1 MODELS FOR TEST-TIME SCALING

We study the test-time scaling behavior for multilingual models of two sizes: AYA EXPANSE 8B
and COMMAND A at 111B. We use temperature sampling at 7' = 0.7 to generate N = 5 samples
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from each model (see Figure 5] for various V). We use a competitive in-house multilingual Reward
Model (RMﬂ for scoring the candidates in BON and COMMAND A as fusor in FUSION (ablation
and comparison to GEMMA models (Team et al., 2025a) in fig. ).

3.2 MODELS AND DATA FOR SYNTHETIC DATA GENERATION

Models. For synthetic data generation, we employ five open and strong models of varying size
and families as teachers: GEMMA3-27B-IT, KIMI-K2-INSTRUCT, QWEN3-235B, DEEPSEEK-
V3 and COMMAND A (Team et al.| 2025afb; [Yang et al.| 2025} |DeepSeek-Al et al., [2025; (Cohere
et al.} 2025). We sample a low temperature completion (7 = 0.3) from each of them to generate
the pool of samples for each prompt. From this pool, we then select one completion for supervised
fine-tuning (SFT), either with RM or COMMAND A as fusor. Ablations regarding pool composition
and fusor model choice will follow in table For fine-tuning, we choose an 111B instruction-tuned
LLM as our baseline model for our main SFT experiments, and perform an ablation with a smaller
7B Base LLM baseline (Appendix [G). Finetuning hyperparameters are listed in appendix [B] We do
not apply test-time scaling on top of our fine-tuned models.

General Fine-tuning Dataset. For our main fine-tuning experiments, we randomly sample 10k
prompts from UltraFeedback Binarized (UFB) (Tunstall et al.,|2023)), an English preference dataset
with 61k pairs that was previously used to measure the impacts of data composition in fine-
tuning (Odumakinde et al., 2025; |Li et al., |2025b). We translate the prompts automatically into
9 languages: German, French, Spanish, Chinese, Japanese, Arabic, Korean, Italian, Portuguese.

Reasoning Fine-tuning Dataset. Learning to reason is often approached through synthetic data,
where models imitate reasoning traces from a single teacher (Shridhar et al.| [2023; Muennighoff
et al., 2025, Hwang et al.,|2025)). Here, we apply our FUSION approach to learn to reason from mul-
tiple teachers. We add a second, smaller, batch of prompts for domain-specific reasoning tasks: We
add the prompts from the GeoFactX dataset (train split) for geography-based factual reasoning, and
translated s1k prompts (Hwang et al.|[2025) for mathematical reasoning. The prompts are machine-
translated from English and cover five and ten languages, respectively. We prompt the teachers to
generate chains-of-thought and answers for training a student model (details in appendix [C).

3.3 EVALUATION BENCHMARKS

We focus on challenging, multilingual benchmarks that test our models’ generative abilities and
cover tasks of three domains (full details in appendix [D):

Open-ended challenging prompts (Arena) are sourced from mArenaHard V.2 (Khairi et al., [2025])
(11 languages). Quality of generations is measured in terms of win rates as determined by an LLM
judge (gpt-40-2024-05-13) (1) in direct comparison to the commercial GEMINI2.5-FLASH
and GEMINI2.5-PRO models and (2) in head-to-head comparisons of FUSTON vs BON.

Machine Translation (WMT) prompts are sourced from WMT24++ (Deutsch et al., 2025} |Kocmi
et al 2024a)) (English to 10 languages). Quality of generations is measured with XCOMET-
XL (Guerreiro et al.,2024), a state-of-the-art multilingual translation evaluation metric.

Reasoning evaluations target the reasoning fine-tuning mix and include the GeoFactX test
split (Hwang et al., 2025)) (5 languages) and math problems from MGSM (11 languages incl. En-
glish) (Shi et al) 2022). Both are evaluated in terms of accuracy of the final answers, and we
additionally inspect reasoning quality for GeoFactX, following (Hwang et al., 2025).

4 RESULTS

4.1 TEST-TIME SCALING

FUSION brings substantial improvements in multilingual open-ended generation tasks. We
evaluate both COMMAND A and AYA EXPANSE 8B on Arena when scaling test-time compute (Sec-

'It scores an average score of 76.1 on the English RewardBench2 (Malik et al., [2025), which at the time of
submission (24 Sept 2025), places it at 11th place. On multilingual RewardBench (Gureja et al.||[2025)) it scores
an average of 87.6 across languages, beating all openly benchmarked models.
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Figure 1: Test-time scaling with N = 5: FUSION raises win rates against GEMINI2.5-PRO Arena
across languages. It largely outperforms BON with the same set of samples, for both AYA EXPANSE
8B and COMMAND A models. Gray markers indicate greedy baseline performance.

tion[3.I)) and comparing gains from using FUSION vs BON. The results in Figure[T]show significant
gains in win-rate against GEMINI2.5-PRO across both languages and models. For AYA EXPANSE
8B we see impressive jumps in win-rate of up to +10.8% in French. Similarly, FUSION outper-
forms BON for COMMAND A in 9 out of 11 languages. Surprisingly, in cases like German (+9.5%)
and Spanish (+7.8%) the gains from using FUSION on only 5 samples allow COMMAND A to
win over GEMINI2.5-PRO (absolute win-rate > 50%), the top model in Arena. This special case,
where fusor and sampling model are identical, FUSION can be seen as a form of very effective self-
refinement (Ranaldi & Freitas|, [2024). The gains from FUSION are also consistent at different scales
(number of samples), tasks and in direct comparison which we investigate deeper in Section [5]and
Appendix [G]
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Figure 2: FUSTON vs BON vs ORACLE (the highest scoring sample according to the ground truth)
in Translation, error bar show std-err. Bars with bold border (German, Russian and Chinese) are
cases where FUSION is outperforming the ORACLE

Synthesis beats selection in machine translation. When testing on WMT we can use the refer-
ence translation to score each candidate generation against it with the task metric XCOMETXL. We
can thus identify the “oracle” among our samples, and compare its quality to the quality of samples
selected by BON with its (imperfect) RM, or the sample synthesized by FUSION. Figure [2] shows
the comparison for NV = 5 generations from COMMAND A sampled at temperature 7 = 0.7 for the
WMT24++ test set. FUSION outperforms BON with large margins across languages, reaching dif-
ferences of +11.4 in Korean. More importantly, FUSION outperforms the ORACLE selection in the
German, Russian and Chinese translation with gains of +0.8 in the latter, a meaningful improvement
in terms of XCOMETXL scores. This confirms the utility of our proposed synthesis framework of
aggregation. Instead of treating generations as competitors in a zero-sum game, we should treat
them as collaborators whose strengths can be integrated.

4.2 SYNTHETIC DATA GENERATION

FUSION yields consistent multilingual gains with downstream impact. We compare gener-
ation and translation quality of the model fine-tuned on FUSTON-generated data with the model
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ar de en es fr it ja ko pt ru zh | Avg

g BoN 439 43.1 427 433 445 442 436 45.1 434 437 448 | 438
© FusioN 451 443 480 462 483 484 438 484 450 452 463 | 46.3
< A +1.2 +1.2 453 429 +38 +42 402 +33  +1.6 +1.5 415 | +25
—~ BoON 73.8 90.9 - 86.4 835 856 8l1.6 81.7 851 830 786 | 83.0
§ FUsSiION  74.6 91.2 - 87.2 843 862 83.1 828 855 835 798 | 838
A +0.8%  +0.3* - +0.8%  +0.8% +40.6 +1.5%* +1.1* +04 +0.5 +1.2*% | +0.8

Table 1: Downstream evaluation of BON/FUSION-fine-tuned 111B models on Arena (% win
rate against GEMINI2.5-FLASH) and WMT (XCOMETXL, en— -): FUSION outperforms BON
consistently across tasks and languages. * indicates significance for WMT results according to
comet—compare (paired t-test and bootstrap resampling (Koehn| [2004)). The baseline starts at a
22.79% for Arena, and 82 for WMT.

trained on BON-generated data in table [T] (see Appendix [G| for 7B results). All hyperparameters,
prompts and teacher outputs are identical for both variants. Given that we only change the way we
aggregate the samples, we find surprisingly notable and consistent improvements of FUSION over
BON, across languages and the two tasks. On average, the model fine-tuned on fused generations
yields XCOMETXL scores +0.8 higher on WMT24++, a delta that can be expected to represent
human preferences with around 73.6% accuracy, according to estimates in (Kocmi et al.| 2024b)
Similarly, FUSION improves win-rates against GEMINI2.5-FLASH by +2.5% over BON. With only
minimal intervention in the data generation phase, the results reveal a remarkable downstream im-
pact, underscoring the powerful ripple effect that even modest improvements in data generation can
achieve.The 7B model finetuned with FUSION outperforms the one finetuned with BON on WMT,
but not Arena as we discuss in Appendix

FUSION leads to better multilingual factual
reasoning Figure demonstrates how the
model fine-tuned on FUSION outputs outper-
forms the model fine-tuned on BON in terms of
answer correctness and reasoning score across
four out of five languages, with a minor re-
gression in English answer correctness. The
fine-tuned models do not only outperform base
model (by +8.1% in answer correctness on av-
erage for BON, +9.1% for FUSION), but also A

the fusor model (by 3.4% and 4.4%, respec- 45 >0 R55 ) 560 65 70
tively, see full results in table @) This val- easoning score

idates our hypothesis that we can effectively
leverage the wisdom of the crowd without being
bounded by the model that performs the fusion
(see also Appendix [G). It is worth noting that
this holds even for the languages that the fusor
model (COMMAND A) officially does not sup-
port (Swahili and Thai). On MGSM, however,
we found some cases where FUSTON scores be-
low BON, which we discuss in appendix [E.2}
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Figure 3: Downstream evaluation on multi-
lingual factual reasoning on the GeoFactX test
set. FUSTION outperforms BON both in reasoning
quality and answer correctness, with the exception
of English answer correctness.

5 ANALYSIS

Our results reveal consistent improvements across setups and languages with an out-of-the box fusor
and a small set of samples. To find out, where and how FUSION is working, we conduct a range of
ablations, diving deeper into specific sub-questions.

https://kocmitom.github.io/MT-Thresholds/
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What makes the fusor work? In Figure 4| we ap-
proach this question from two angles: (i) the scale
of the fusor (number of parameters), and (ii) how the
fusor model is utilized. We evaluate the size effect ¢
by varying the fusor from the 4B Gemma-3 to the
111B COMMAND A measuring the resulting average
win-rate of test-time scaling on Arena. We find that
for FUSION (blue) a larger scale is needed for the
fusor to work out of the box. Importantly, FUSION
continuously benefits from increasing the scale of o
the fusor as we see an increase in win-rates of +5.5% 10t , 102
as we go from the 27B fusor to a /11B fusor. When Fusor size (log-scale)

we use the same fusor models as a rater in BON
(red) (prompt in Appendix [A), smaller models fare
better, but these gains vanish at scale, which aligns
with the observation that even the strongest genera-
tive models such as GEMINI2.5-PRo are still outper-
formed by classifier RMs on classic reward scoring
benchmarks (Malik et al.l [2025)). Overall, FUSION
utilizes the judge capabilities at larger scale more ef-
fectively than BON. Smaller fusors likely need specialized training for FUSION, which related work
has done for math (Qi et al., 2025b} [Zhao et al., 2025).
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Figure 4: Size of the fusor matters: Small
LLMs might serve well as scalar judges in
BON, but generative fusion capabilities get
unlocked at larger scale, here measured in
win-rates on Arena, averaged across lan-
guages, shaded areas represent std-err.

Which method is more sample-efficient? We

ul
o

compare the sample efficiency of BON and FUSION
under the same test-time scaling budget. In Figure 3]
we measure win-rates on Arena across four lan-
guages (See appendix |G| for language breakdown).
We observe that FUSION is more efficient at the
lower scales (N < 10), improving win-rate against
GEMINI2.5-PRO by +6% with only N = 2, where
BON needs twice more samples to achieve simi-
lar gains. Gains for both methods plateau beyond
N = 7, but FUSION consistently makes fuller use of
each generated sample, making FUSION the more
efficient choice for low-budget scaling. Note that
BON requires N independent samples, which are

N
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Figure 5: Scaling test-time budget: Win-
rates are shown against GEMINI2.5-PRO
on 4 languages from m-ArenaHard-v2.0.

parallelizable, while FUSION encodes all samples
together. Despite this, FUSION shines at small N,
making every token count and turning even a few
samples into high-quality, integrated solutions. With
an efficient long-context implementation, it can achieve strong scaling performance while fully
leveraging the diversity in the sample pool.

Shaded areas are average std-err across lan-
guages.

How is synthetic data quality affected by the fusor and teacher pool? The quality of the syn-
thetic data generated is dependent on the quality of the pool of the samples and the fusor used.
We measure quality of the data averaged across 10 languages using win-rates against GEMINI2.5-
FLASH for 1k examples of UFB, and report in table 2] how modifications to the teacher pool and
fusor affect data quality. Across all modifications we see that FUSION-generated synthetic data is
of higher quality compared to the BON data with +4.4% in the default setup with all five teach-
ers. Even when we perform FUSION with—on this benchmark—weaker DEEPSEEK-V3 (based
on reward scores from our internal RM) (#3), we see only a small drop in quality while still out-
performing BON. When we replace GEMMA3-27B-IT with GEMMA3-4B-IT in the teacher pool
(weaker teacher pool) (#4+#5), both methods are minimally affected—however, using a smaller pool
of only four teachers (without KIMI-K2-INSTRUCT, #6+#7) affects FUSION proportionally more,
but it still wins over BON. If we sample only from a single teacher (here DEEPSEEK-V 3, #8+#9)
win-rates drop substantially, highlighting the importance of diversity in the teacher pool. Overall,
these ablations show that FUSION is more robust under weaker ensembles than BON.
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Table 2: Ablation on pool size and di- Figure 6: Diverse teacher contributions: Anal-
versity: win-rates (WR) vs. GEMINI2.5- ysis of teacher contributions to the final output
FLASH using 1k random UFB sam- of FUSION on a subset of GeoFactX (50 samples
ples, averaged over 10 languages. DS: per language) across unsupported languages.
DEEPSEEK-V3. CMD: CommandA.
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Figure 7: Contributions to the final generation: Analysis of different teachers in the pool con-
tributing to the final output of FUSION or BON. For the multi-teacher we look at FUSION outputs
on subset of UFB (50 samples per language) with a 5-teachers pool.

How does FUSION balance its pool? We track the sources of contribution in FUSION by surface-
level sequence matching (details and more bias probes in appendix [F] with an example in fig. [T3).
We see that a large proportion of the FUSTON output is directly taken from the teachers’ outputs,
forming a coherent synthesis. Only a small fraction of words is unmatched, where the fusor adds
“glue” or reformulates teacher outputs. In Figure [7] we compare contribution to fused outputs and
selections of BON on a random sub-sample of UFB. While both methods show similar high-level
preferences (favoring COMMAND A the most and GEMMA3-27B-IT the least), FUSION integrates
even the less preferred ones. Finally, we inspect the contributions in the GeoFactX data, because it
contains languages not officially covered by the fusor (COMMAND A). Figure[f]shows that FUSION
remains robust, with its preferences shifting to utilize GEMMA3-27B-IT the most.

Is the fusor putting a ceiling on the quality? In
Table [3] we compare the outputs of FUSION, BON,

Reward Answer Language

and all teachers on various metrics on the GeoFactX Model Score  Correctness ~ Correctness
train set. For answer correctness, FUSION achieves FUSION 7.86 58.56 98.86
the highest accuracy with 58.6%, despite the fusor BON 7.11 49.77 99.05
(COMMAND A) scoring the lowest. FUSION also ob- CommandA  6.30 40.52 99.61
tains the highest reward score, from our internal RM, D(gsvisnegk gig Z?-gg gg-gz
on the GeoFactX mix—the very metric BON is opti- Gemma-3 652 41.89 0211
mizing. We note that FUSION has a low 98.9% lan- Kimi-K2 6.64 46.62 99.56

guage correctness, likely due to our fusion prompt
being English-only (Appendix[A), but leave studying Table 3: Data analysis for teachers and ag-
these effects to future work. These results show that gregation outputs on GeoFactX samples, av-
FUSION is not limited by the fusor and is in fact eraged across languages.

more dependent on the sample pool.
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Opportunities for strengthening FUSION. During test-time scaling we find that FUSION ben-
efits English more than other languages. It is likely that the skills that are required to perform
successful FUSTION are not evenly present in all languages. Although we do find gains of FUSION
over BON in unsupported languages of the fusor for GeoFactX, BON might be the safer choice
for cross-lingual transfer to lower-resource languages (Hong et al., [2025)), while generative model
capabilities are still lacking behind. We also found more mixed results when testing on MGSM
(appendix [E.2)), which might indicate that close-ended tasks are either just not well suited to be
addressed by generative ensembling, or that the fusor would need specialized training for such a
specialized domain that RMs are usually well trained on.

6 RELATED WORK

The principle of learning from ensembles has led to advances in many areas of machine learning,
and can be integrated into LLM:s in various forms (Wang et al.,|2023b} Lee et al.|[2023;[Huang et al.,
2024; [Wan et al.| |2024). In this work, we focus on integrative output ensembling. This approach
can be seen as an instance of Mixture-of-Agents (MoA) (Wang et al., [2024)), a framework where
multiple agents organized in layers iteratively enhance the output. Our approach stands out through
simplicity: We show that FUSION becomes effective already in a single aggregation step with a
single fusor, even in diverse and challenging setups, thereby constituting an attractive alternative for
BON, which is—thanks to its simplicity—a much more widely adopted framework than MoA.

LLM-Blender (Jiang et al., 2023) follows a similar idea, but requires two separate modules, one for
pairwise ranking, and one for fusing top-ranking outputs. It operates on the basis of pairwise com-
parisons (which require training a specialized model), while we pass all outputs at once to the fusor,
so that it can evaluate them in context. Other contemporaneous related works also require training
such specialized aggregator modules (Q1 et al.,2025b;[Zhao et al.,2025; [Li et al.,[2025b), while our
approach is effective without any training. These works focus primarily on reinforcement learning
or reasoning for verifiable tasks like math and code. For such specific scenarios with available ex-
pert raters, |L1 et al.|(2025a) warn that MoA might not be sufficiently robust to lower-quality inputs.
For our diverse open-ended evaluations, however, we find FUSION fairly robust to the teacher pool,
and sampling from a single teacher—the proposed solution by |Li et al.| (2025a)—performs signifi-
cantly worse. |Jayalath et al.| (2025) find that fused single-teacher roll-outs can nevertheless provide
valuable supervision in RL training, even without any fusor training.

Our approach can also be cast as combination of parallel and sequential test-time-scaling (Welleck:
et al., [2024; |Snell et al,, [2025)), with N parallel steps and one refinement step. Balancing these
options can be seen as a search problem (Inoue et al.l [2025). This poses an interesting avenue for
future work, where FUSTION operates with adaptive compute (rather than a fixed N+1) customized
for each input. This flexibility might be needed for mimicking human cognitive processes more
closely (Zhang et al.||2024). Overall, our work complements very recent advancements discovering
collaborative synthesis at inference, enhancing understanding of its benefits and limitations. Even in
its simplest form, our approach demonstrates gains across diverse applications, including test-time
scaling and model supervision.

7 CONCLUSION

Our work thoroughly investigates and challenges the to-date standard practice of BON in test-time
scaling and synthetic data generation. Our experiments strongly support replacing it by FUSION
in these scenarios to make most of the costs that are already incurred from generating and eval-
uating multiple samples. Across a range of challenging multilingual tasks, FUSION consistently
outperforms traditional winner-takes-all approaches like BON, delivering higher-quality outputs,
greater sample efficiency, and stronger downstream performance. Importantly, FUSION leverages
the strengths of multiple models, even when some are weaker, showing robustness and adaptability.
These results highlight a shift in how we should think about evaluating and utilizing LLM gener-
ations: rather than measuring quality monolithically, embracing their polylithic nature allows us
to integrate diverse strengths, unlock latent potential, and achieve improvements that were previ-
ously inaccessible through selection alone. FUSION points toward a more effective and sustainable
paradigm for leveraging the collective capabilities of today’s leading LLMs.



Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Training on synthetic data comes with inherent risks of propagating and amplifying biases (Ahn
et al.| |2022; [Shimabucoro et al.| [2024; Mohammadshahi & Ioannou, 2025). We hope that by in-
creasing diversity in the teacher pool, we can reduce model-specific biases to propagate (as opposed
to learning from one teacher only), and prevent loss of diversity the generated data (Briesch et al.,
2024).

Regardless, we cannot strictly protect the student model from adversarial teachers, probably even
less so with FUSION than BON because they might be more prone to prompt injections. Our tests
revealed robustness with respect to the quality of the teacher pool (section[5), but we have not tested
truly adversarial inputs. We rely on the user to verify teacher suitability and potentially add any
sanity checks. In contrast to BON, the FUSION framework allows for flexible instructions that could
include e.g., a constitution (Bai et al., 2022) or specific safety guidelines. In practice, FUSION could
also be prepended with a hard filter for unsafe or lowest-quality samples (e.g. language compliance
via language identification), so that the undesired information does not even get to the aggregation
stage.

We also perform additional analyses for typical LLM judge biases in appendix [F| and find no
evidence for self-preference, but a slight position bias, i.e. the fusor preferring samples that it is
presented first more than those that come later.

We would also like to emphasize that any use of such ensembling needs to respect all terms of use
and licenses of the individual teachers, which lies in the responsibility of the user.

REPRODUCIBILITY STATEMENT

Fusor and teacher models that we use in this work are publicly available (section [3), as well as
the prompts for fine-tuning. We transparently report prompts and instruction templates for LLM
evaluation (appendix [A), and benchmark metric implementations (section [3] Where models are not
public (student model in the experiments on synthetic data generation, and reward model), we report
scores on public benchmarks that allow to anchor our experiments. The data generation pipeline
that we describe in detail in appendix |C|is not perfectly reproducible due to inherent randomness
in the sampling process. Therefore, we will release synthetic data for BON and FUSION where
licenses allow. In addition, we follow the recommended practice for generative multilingual LLM
evaluations (Kreutzer et al.,[2025) and release our pairwise evaluations that rely on LLM judges.
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Based on the provided Instruction and Generated Texts in 1language, fuse them into
a better generation that combines the strength of each of them. Do so in two steps:
First, compare the Generated Text with a focus on what sets them apart in terms of
content, language quality and responsibility, highlighting strengths and weaknesses.
Second, fuse them into a new final generation that combines the best aspects of each
of them while avoiding the weaknesses.

The fused generation should be adequately responding to the instruction, sound nat-
ural to a native speaker, and be focused on conveying the most relevant and accurate
information in a responsible and ethical way.

Output Format

Comparison: (short explanation of the strengths and weaknesses of each generation)
Answer: [[ The final fused generation ]]

Context

Instruction

prompt

Generated Texts

generations

Please analyse the Generated Texts, discarding any unsafe or unethical generations
and provide your fused text. Remember to stick to the requested Output Format,
providing first a short explanation and then putting the final fused generation inside
double brackets [[]].

Table 4: Prompt used for FUSION, including placeholders. Generations are randomly shuffled
and enumerated, presented one per line.

A PROMPTS

A.1 FuUSsION

We provide the prompt used by the fusor in Table ]. We use the same prompt across all tasks,
setups, fusors and languages. Table[5|shows the pormpt for using the fusor model as scaler rater. We
also provide the English Version of the instruction prompts used in our evaluation in Table 6]

B FINE-TUNING HYPERPARAMETERS

We train the 111B baseline on the synthetic data generated from our UFB mix with a batch size of
16, cosine decay with peak learning rate of Se-6 using Adam optimizer across 64 Nvidia H100 GPUs
for 250 steps. For the extended mix (UFB and Math+GeoFactX) we use the same hyperparameter
with increased number of steps of 323. We train the 7B models on the UFB mix with 16 GPUs with
the same parameters.

C SYNTHETIC REASONING DATA

Hwang et al.| (2025) build two datasets for improving multilingual reasoning abilities: s/k-X for
multilingual mathematical reasoning and GeoFactX for geography-based multilingual factual rea-
soning. The multilinguality stems from automatic translation of the prompts, of the s1k dataset from
(Muennighoff et al., [2025)), and of synthetically created English prompts that designed to cover a
variety of regions. For s1k-X the reasoning traces and answers from Qwen-2.5-Instruct 72B
in slk are also translated (via the Google Translate API). This has some undesired side effects where
the mathematical notation or the answer formatting gets corrupted, e.g. with white spaces around
KATEX math symbols. For both datasets, we only work with the translated prompts, and use our
pool of teachers to generate multilingual responses. For analysis and for evaluation, we use the
“silver” answers of Gemini provided in the GeoFactX dataset as ground truth for the evaluation of
accurateness of answers. For s1k-X, a correctness analysis of the data is hindered by the inconsis-
tencies in format for the (translated) silver answers of Qwen, which makes the extraction of answers
non-trivial. We leave this analysis for future work.
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Please act as a fair judge. Based on the provided Instruction and Generated Text,
analyse the Generated Text and provide a 1-5 integer score. The given instruction is in
language and the response should also be in 1anguage Your selection should be
based on your judgment as well as the following guidelines for each possible score:
1. The Generated Text is unintelligibly written (incomplete sentences, leaps in logic,
flagrant mechanical errors) or has majorly incorrect or unverifiable information.

2. The Generated Text is occasionally difficult to understand, dotted with minor fac-
tual or mechanical errors, or missing crucial formatting elements.

3. The Generated Text expresses useful information, is readable, has no factual errors,
and has no more than a minor mechanical error or two. Though it may be informative
to those unfamiliar with the subject matter, it is not overly insightful, engaging, or
likely to hold up to expert scrutiny.

4. The Generated Text clearly expresses useful information at an expert level, is read-
able, and has no factual or mechanical errors. It could just use a quick adjustment with
tone or length.

5. The Generated Text clearly expresses useful information at an expert level, is read-
able, has no factual or mechanical errors, and is the perfect length and tone with regard
to the prompt.

Output Format

Analysis: xxx Answer: [[ SCORE ]] (this should be an integer from 1-5 and nothing
else; the score should be enclosed in double brackets as indicated)

Evaluation Information

Instruction

message

Generated Text

generation

Please analyse the Generated Text and provide a 1-5 integer score according to the
guidelines. Remember to stick to the requested Output Format, providing analysis
and putting your final score (an INTEGER in 1-5) inside double brackets [[]].

Table 5: Prompt used for BoN with generative models, including placeholders

Task Prompt

MGSM (en) Solve this math problem. Give the reasoning steps before giving
the final answer on the last line by itself in the format of ”An-
swer:”. Do not add anything other than the integer answer after
”Answer”:

WMT24++  You are a professional src_lang to tgt_lang translator,
tasked with providing translations suitable for use in tgt_lang
(tgt_country). Your goal is to accurately convey the mean-
ing and nuances of the original src_lang text while adher-
ing to tgt_lang grammar, vocabulary, and cultural sensitivi-
ties. Produce only the t gt _lang translation, without any addi-
tional explanations or commentary. Please translate the follow-
ing src_langtextinto tgt_lang (tgt_country):
source_text

Table 6: Instruction prompts used for evaluation, including task-specific placeholders. MGSM
prompts are taken from the |simple-evals library, we only list the English one here but use them in
the respective target languages.
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For evaluation of fine-tuned models on the test split on GeoFactX, we follow the procedure in
(Hwang et al 2025). We prompt a LLM judge (here GPT-40, deviating from (Hwang et al.
20235) which uses Qwen, as we wanted avoid self-bias) to (1) score the reasoning traces for quality,
and (2) compare the final answer in the generation agains the list of the correct answers provided in
the task. For data analysis in table[3] we implement a cheaper approach where we use fuzzy string
matching to estimate the correctness of answers, which likely underestimates the true correctness.

D EVALUATION

‘We describe our set of evaluation benchmarks in more detail.

mArenaHard V.2 (short: Arena)ﬂ This data contains 498 translated challenging prompts from
ArenaHard v2.07] across 23 languages (Khairi et al, 2025). Quality of generations is measured in
terms of win rates in direct comparison to the commercial GEMINI2.5-FLASHand GEMINI2.5-
PrROmodels in addition to head-to-head comparison of FUSION vs BON. We mainly compare
against GEMINI2.5-PRO in the test-time scaling environment where we use production ready LLMs
with extra compute. In the synthetic data generation environment, we benchmark weaker LLMs
fine-tuned on a small synthetic dataset, hence we switch to GEMINI2.5-FLASH. The pairwise com-
parison is as done by a LLM judge, here GPT-40. We focus on a subset of 11 languages: English
(en), German (de), French (fr), Spanish (es), Russian (ru), Japanese (ja), Chinese (zh), Arabic (ar),
Korean (ko), Portuguese (pt), and Italian (it).

WMT24++ (short: WMT)ﬂ This dataset contains translation problems sourced from the WMT
2024 machine translation shared task (Kocmi et al.| [2024a) expanded to more languages
. Quality of generations is measured with XCOMET—XLE a state-of-the-art multilingual
translation evaluation metric (Guerreiro et all, 2024). We use the prompt in Appendix [A] and we
focus on translating from English to the following languages: Arabic (ar), German (de), Spanish
(es), French (fr), Italian (it), Japanese (ja), Korean (ko), Portuguese (pt), Russian (ru), Chinese (zh).

MGSM: This benchmark contains 250 mathematical problems at grade-school level in 11 lan-
guages (bn, de, en, es, fr, ja, ru, sw, te, th, zh), originally translated from English (Shi et al.L
[2022). We prompt models to think step by step before outputting the final answer, following the
simple—-evals implementationﬂ The evaluation metric is the accuracy of the final answer.

GeoFactX We follow the prompting and evaluation process recommended by |[Hwang et al.[(2025)
and evaluate reasoning traces and final answers with an LLM judge and against gold answers, re-
spectively (details in appendix [C).

E ADDITIONAL RESULTS

E.1 TEST-TIME SCALING

og2
370 976 974 oxo 970
974 9718 90 o0 978
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German French Russian Japanese Chinese
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[ Oracle [ BoN [ FusioN

Accuracy
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Figure 8: Test-time Performance on MGSM. We find that BON has the best performance across
languages, showing that FUSTON might be the ideal fit for math task compared BON with a special-
ized RM. Both method performance is close to the Oracle.

*https://huggingface.co/datasets/CoherelLabs/m-Arenalard-v2.0
Yhttps://github.com/lmarena/arena-hard-auto/tree/main/data/
arena—hard-v2.0
>https://huggingface.co/datasets/google/wmt24pp
®https://huggingface.co/Unbabel/XCOMET-XL
"https://github.com/openai/simple—evals/tree/main

22


https://huggingface.co/datasets/CohereLabs/m-ArenaHard-v2.0
https://github.com/lmarena/arena-hard-auto/tree/main/data/arena-hard-v2.0
https://github.com/lmarena/arena-hard-auto/tree/main/data/arena-hard-v2.0
https://huggingface.co/datasets/google/wmt24pp
https://huggingface.co/Unbabel/XCOMET-XL
https://github.com/openai/simple-evals/tree/main

Under review as a conference paper at ICLR 2026

Continuing our exploration of FUSION in test-time scaling, we look at performance across language
on MGSM math benchmark in Figure[8] We find that FUSION performs well in this as it is relatively
close to Oracle performance. However, BON has a slight but consistent edge over FUSION in all
languages in this task.

E.2 SYNTHETIC DATA GENERATION

100
83.2
80

Accuracy

60 53.8 54.8

40

MGSM GeoFactX

[ Base [ Judge I BoN N Fusion

Figure 9: Comparison of downstream performance on close-ended tasks MGSM and Geo-
FactX. We find while on math BON has the best performance, FUSION has higher accuracy on
GeoFactX, outperforming the fusion judge as well. Error bars show std-err averaged across lan-
guages.

Reasoning tasks Figure [J] compares the performance on the two reasoning tasks for the models
trained on FUSION vs BON in relation to the performance of the JUDGE model, i.e., the fusor
model (COMMAND A) and also the BASE model that we start fine-tuning from. For MGSM, we
find that the FUSION accuracy lags behind both BON -1.2% and the JUDGE performance of -1.5%,
indicating that while FUSION is overall beneficial for improving downstream math accuracy (+3.6%
above BASE), it is not the optimal choice in this case (similar to the test-time scaling experiment
in appendix [E-I] Other works [Qi et al] (2025a) have shown that it is possible to train specialized
LLMs to perform synthesis in the math reasoning domain, which might help to remedy that. But
the facts that (1) BON does not improve the performance of the fine-tuned model beyond the fusor’s
performance, and that (2) the baseline model performs already surprisingly strong, make us wonder
whether these results could also be due to the interplay between data seen in prior training steps,
in fine-tuning, and also in the fusor model. Since the slk dataset is quite popular, it might have
been part of training (in English) of the fusor and the baseline already. For the factual QA domain
we see in stark contrast, that with clearly unseen data, FUSION effects stand out more. The model
fine-tuned on FUSION achieves the best accuracy with +1.0% gains over BON and an impressive
+4.8% compared to fusor JUDGE.

F CONTRIBUTION ANALYSIS

Measuring contributions We inspect FUSION outputs and compare them with the teacher outputs
with string matching. While this does not capture semantic rephrasings, it does give us an idea how
much the fusor can directly copy and paste blocks of the teacher outputs. Parts of the FUSION
output that we cannot directly find in any teacher’s output, we mark as “unmatched”—this is where
we might have some close semantic matches or also just some “glue” work to connect parts from
different teachers. The matching procedure works as follows:

1. Finds all matching blocks between the fused string and each teacher string. We make use of
thedifflib libraryﬁ and use their SequenceMatcher to detect the longest contiguous
matching subsequences.

2. Resolve attribution for each character: Retrieve matching blocks that cover it, assume the
teacher with the longest match wins. If there is a tie: mark it as “multiple”. If there is no
match, mark it as “unmatched”.

$https://docs.python.org/3/library/difflib.html
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3. Calculate contribution statistics for each teacher: Count how many characters of the fused
generation it was attributed to.

100 9.4%
(7 12.0% 9
Réil _ 18.8% 19.6%
9.7%
80 : 11.0%
" 19.0%
B

40

Percntage %

20
0
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Fusion Contribution BoN Selection
mm Kimi-K2 E Qwen3 Multiple
DeepSeek-V3 mm Gemma3 Unmatched

Figure 10: FUSION contributions without fusor in the teacher pool: Analysis of different teach-
ers in the pool contribution to the final output of FUSION when the fusor model is not in the pool.
We look at FUSTON outputs on subset of UFB (50 samples per language)

Disentangling fusor and teacher pool The resulting contribution statistics can be compared with
BON selections that chooses one teacher for each sequence. In Figure[I0|we do this on a small subset
of the UFB data mix covering languages Arabic, English and Chinese. We look at pool of teachers
that does not include the fusor (COMMAND A) to study the effect of the fusor self-bias. Similar to
what we found in Figure[7|where FUSION and BON had their highest contribution from COMMAND
A (the teacher that we now removed), in Figure[I0|the methods also have same preference, agreeing
on DEEPSEEK-V3 as their favorite (previously second-ranking when COMMAND A was in the
pool). This consistent preference lets us conclude that FUSION does not suffer from self-bias with
the fusor able to reliably find the best samples in the pool, whether or not the fusor samples is one
of them.

Percntage %
Percntage %
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Chinese Aral

hinese 0

English bic English c
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== pya-83  mmm Comman dA Unmatched == Sample-1 mmm Sample-2 = Sample-3 Sample-4 sample-5 Multiple Unmatched

(a) Across AYA EXPANSE 8B and COMMAND A (b) Across samples from COMMAND A

Figure 11: FUSTION contributions in test-time scaling: Analysis of how different samples in test-
time scaling contribute to the final output of FUSION: (a) with different candidate models (b) based
on samples order. We look at FUSION outputs on subset of m-AreanHard-v2. (50 samples per
language)

Contributions in test-time scaling In Figure[IT] we perform the contribution analysis on the test-
time scaling setup, where the samples in the pool are coming from a single model. First, we examine
the effect of changing this single model on the FUSTON preference. We are mostly interested in the
case when the fusor is much larger than the candidate model as one would assume the fusor may opt
to replace all of the weaker model outputs with its own preference in the fusion which would result
in higher unmatched rate. However, in Figure m we see that for both the small candidate model
AYA EXPANSE 8B and the larger one COMMAND A the fusor has a small unmatched rate. Albeit
larger for AYA EXPANSE 8B, it demonstrate the fusor outputs are almost always more than 80%
from the content in the samples.
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mArenaHard v2.0 WMT24++

Language (win-rate, in %) (XCOMETXL; en— -)

(+region for WMT) BON FUSION A BON FUSION A

ar (SA) 18.3 15.6 27 | 654 66.3 +0.9
de (DE) 16.8 16.8 0.0 86.8 87.1 +0.3
en 14.9 14.1 -0.8 - - -

es (MX) 19.6 17.6 2.0 | 81.0 81.5 +0.5
fr (FR) 22.4 17.2 52 | 774 71.5 +0.1
it (IT) 19.4 17.2 2.2 | 80.1 80.4 +0.3
ja(P) 17.0 19.5 +2.5 | 70.8 72.1 +1.3
ko (KR) 17.9 14.0 -39 | 720 72.5 +0.5
pt (PT) 16.9 16.6 -03 | 79.8 80.2 +0.4
ru (RU) 12.8 19.0 +6.2 | 74.8 74.5 -0.3
zh (CN) 19.8 20.9 +1.1 | 70.9 71.6 +0.7
Avg 17.8 17.1 -0.7 \ 75.6 76.4 +0.5

Table 7: Downstream evaluation results on 7B Models of BON/FUSION-fine-tuned 7B models
on mArenaHard v2.0 (win rate against GEMINI2.5-PRO as judged by GPT-40) and WMT24++
(XCOMETXL).

Reasoning Score Answer Correctness
(LLM score, in %) (Accuracy, in %)
BON FUSION A Baseline  Fusor ‘ BON FuUSION A Baseline Fusor

en 69.0 69.6 +0.6 63.0 66.1 66.7 66.0 -0.7 68.8 68.5
hi 60.5 61.0 +0.5 51.4 58.7 | 56.8 58.9 +2.1 48.5 57.0
ja 64.5 64.7 +0.2 53.1 59.2 | 583 60.0 +1.7 49.9 56.5
SW 57.2 58.0 +0.8 30.7 436 | 52.8 54.0 +1.2 37.2 43.0
th 453 46.5 +0.2 31.6 359 34.6 349 +0.2 243 252

Avg 593 60.0 +0.7 46.0 527 | 53.8 54.8 +1.0 45.7 50.4

Table 8: Downstream evaluation on multilingual factual reasoning, as measured on the Geo-
FactX test set. FUSION outperforms BON both in terms of reasoning quality and answer correct-
ness, with the exception of English answer correctness. Baseline is model we used to finetune and
Fusor is the model used for fusing the generations.

Position bias We consider another type of possible bias in Figure [ITb] where we visualize the
contribution analysis based on the order of the samples in the FUSION prompt. The samples are
always shuffled before being formatted (see Table 4) and we analyze the order based on what the
order the fusor sees. We find while not large in magnitude, across the three languages, the fusor
outputs have the highest contribution rations in the first and second samples.

Finally in Figure[I2]and we provide an example prompt with excerpts from teachers outputs, and in
Figure 13| we show the full FUSION output color coded according to our contribution analysis.

G EVALUATION RESULTS COMPARISON

To evaluate the effectiveness of our method and generated data across different scales, we applied
our synthetic data generation and SFT pipeline to a smaller baseline. We followed the same setup as
used for the 111B model. The 7B baseline is a base model that have not undergone any post-training
stages. As shown in Table [/} the downstream results vary. While FUSION remains more effective
than BON in WMT?24, improving performance in every language, we observed no gains significant
over BON in m-ArenaHard-v2.0. This suggests that the smaller model requires more parameter
tuning to achieve an optimal setup for SFT to be effective in downstream performance, especially
the relatively small size of out synthetic dataset.

We also report the detailed breakdown of results on downstream gains in the multilingual factual
reasoning benchmark from the finetuned 111B model inTable[8] The Fusor and Baseline help anchor
the gain and provide context about the magnitude of the finetuning gains in general. We find that fine-
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Can a comedian’s use of audience interaction enhance their delivery and stage presence?

Qwen3
Yes, a comedian’s use of audience interaction can significantly enhance both their delivery and
stage presence. When used effectively, audience interaction can transform a standard stand-up
performance into a more dynamic, engaging, and memorable experience. Here’s how:

### Enhances Delivery

1. Creates Natural Rhythm and Pacing

Interacting with the audience can break up the monotony of a scripted set, allowing for natural
pauses, laughs, and transitions. This variation in pacing can make the performance feel more
spontaneous and alive.

2. Provides Real-Time Feedback
Audience reactions during interactions give the comedian immediate feedback, helping...

Absolutely! A comedian’s use of audience interaction can significantly enhance their delivery
and stage presence. It’s a powerful tool, and when done well, it’s a huge part of what separates
a good comedian from a great one. Here’s a breakdown of how it works, and the benefits:

How Audience Interaction Enhances Delivery & Stage Presence:

* Breaks the Fourth Wall: It immediately makes the performance less of a one-way lecture and
more of a shared experience. This creates a more intimate and engaging atmosphere.

Improves Timing & Reactivity: Good audience work forces a comedian to be present* and
react in the moment. This sharpens their comedic timing, as they have to...

Absolutely! A comedian’s use of audience interaction can significantly enhance their delivery
and stage presence in several ways:

### 1. Engagement & Connection

- Direct interaction makes the audience feel involved, creating a personal connection that boosts
engagement.

- It breaks the “fourth wall,” making the performance feel more spontaneous and alive.

### 2. Adaptability & Improvisation

- Skilled crowd work demonstrates quick wit, making the material feel fresh and unique to each
show.

- It allows comedians to riff off real-time reactions, adding unpredictability and excitement.

### 3. Energy & Authenticity
- A dynamic back-and-forth keeps the energy high...

Absolutely, a comedian’s use of audience interaction can significantly enhance their delivery
and stage presence in several ways:

1. Engagement and Connection: Interacting with the audience creates a sense of inclusion
and connection. When a comedian involves the audience directly, it breaks the fourth wall and
makes the performance feel more personal and intimate. This engagement can lead to a more
receptive and responsive crowd, which in turn boosts the comedian’s confidence and energy on
stage.

Example: Asking for volunteers or incorporating audience members into bits can create mem-
orable moments that resonate with the entire crowd.

2. Improvisation and Adaptability: Au...

Figure 12: An excerpt of the outputs of teachers to the FUSION example show in Figure
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Can a comedian’s use of audience interaction enhance their delivery and stage presence?

Yes, a comedian’s use of audience interaction can significantly enhance both their delivery and
stage presence. When executed skillfully, it transforms a standard stand-up performance into a
dynamic, engaging, and personalized experience. Here’s how:

### Enhancing Delivery

1. Improves Timing & Reactivity: Audience interaction forces to be present and
adapt in their comedic timing and improvisation skills.

2. Creates Natural : It breaks up scripted material, adding and keeping the
performance lively.

3. Allows for Callbacks & : Referencing earlier interactions or tailoring jokes to

the crowd’s responses makes the material feel fresh and relevant.

### Boosting Stage Presence

1. Builds Connection : the “fourth wall” fosters intimacy and makes the au-
dience feel valued, the comedian’s presence.

2. Showcases Confidence & : Handling unpredictable responses with humor demon-
strates thinking and professionalism.

3. Humanizes the : Sharing moments with the audience makes the comedian more
relatable and approachable.

#i## Types of Audience Interaction

- Call & Response: energy and involvement.
Heckle : Risky but rewarding handled wit.
Playful : specific audience members while sensitivity.
Improvised : High-level work showcases exceptional skills.

### Potential Pitfalls

- can fall flat, momentum.
Offending : Missteps can alienate audience members.
Losing Control: Disruptive audience members can derail the performance.
Forcing It: Unnatural interactions feel awkward and contrived.

### Great Examples
- Dave : Masters crowd work with charm and wit.
- Jerry : Uses subtle, observational interactions seamlessly.
- Hannah Gadsby: Deepens impact through audience engagement.
Conclusion
When done well, audience interaction is a vital tool that elevates a comedian’s delivery, strength-
ens their stage presence, and creates a shared experience. It requires

and a good read of the room, but the rewards are well worth the effort.

Figure 13: Contribution analysis for a sample FUSION ouput with text colored based on the respec-
tive source: CommandA, DeepSeek-V3, Qwen3, Gemma3, multiple, and . Individual
teacher generations are in Figure[T2]

tuning consistently improve performance over the baseline - with one exception in english. More
importantly FUSION also outperform the Fusor in all non-English results.

In Figure[T4] we move from comparing against GEMINI2.5-PRO as our reference and directly evalu-
ate FUSION against BON in pairwise head-to-head setup judge by GPT-40. We use AYA EXPANSE
8B and COMMAND A to generate 5 samples on Arena, and aggregate with either one of our meth-
ods. We find significant gain that resemble what we observe in Figure[I} FUSION outperform BON
across languages with large gains in magnitude for AYA EXPANSE 8B and lower but also impressive
margins in for COMMAND A (up to +55.2% win-rate in Italian).
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Figure 14: Test Time Scaling Head-to-Head Comparison of FUSION vs BON on m-ArenaHard-v2,
Judged by GPT-40. We consistently see that FUSION results in better final sample compared to
FUSION for both AYA EXPANSE 8B and COMMAND A.
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Figure 15: Synthetic Data Finetuning Head-to-Head Comparison of og the models finetuned with
FusioN vs BON on m-ArenaHard-v2, Judged by GPT-40. We see varying results across languages
in the 111B case, while BON is better on the 7B level.

We perform a similar comparison in Figure [I3] between the finetuned models at the 111B and 7B.
We see varying results across languages in direct head-to-head comparison between the FUSION
finetuned and BON finetuned 111B models. For the 7B we see that BON scores better across all
languages.

In Figure [T6] we provide a breakdown on the scaling plots (win-rates on m-ArenaHard-v2.0 vs
GEMINI2.5-PRO) across languages. We can see that in all subplots that FUSTON grows faster than
BON, with magnitudes depending on the language.

H EXTENDED RELATED WORK

Learning from Ensembles The principle of learning from ensembles has led to advances in many
areas of machine learning, and can be integrated into training LLMs in various forms: For example,
Huang et al| (2024) fuse multiple models via their output probabilities, [Lee et al.| (2023)) learn from
a consensus of multiple teachers in self-instructing (Wang et al.| 2023b), and Wan et al. (2024)
propose a continual pretraining objective for knowledge distillation from multiple teachers. In this
work, we focus on integrative output ensembling, where we simply provide a LLM (the fusor) the
ensemble of outputs as input to integrate their strengths into a fused output.

Synthesis-based ensembling Our approach can be seen as an instance of Mixture-of-Agents
(MoA) (Wang et al) 2024), a framework where multiple agents organized in layers iteratively
enhance the output. Our approach stands out through simplicity: We show that FUSION becomes
effective already in a single aggregation step with a single fusor, even in diverse and challenging
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Figure 16: Head-to-Head Comparison of FUSION vs BON on m-ArenaHard-v2, Judged by GPT-
40. We consistently see that FUSION results in better final sample compared to FUSION for both
AYA EXPANSE 8B and COMMAND A.

setups, thereby constituting an attractive alternative for BON, which is—thanks to its simplicity—a
much more widely adopted framework than MoA.

LLM-Blender (Jiang et al.,|2023) follows a similar idea, but requires two separate modules, one for
pairwise ranking, and one for fusing top-ranking outputs. In contrast to our work, this framework
operates on the basis of pairwise comparisons (which require training a specialized model), while
we argue that the fusor should receive all outputs at once to best comparatively evaluate them.

Other contemporaneous related works also require training such specialized aggregator modules
(Q1 et al., 2025bj [Zhao et al., 2025} |Li et al.l [2025b), while our approach is effective without any
training. These works focus primarily on verifiable tasks like math and code targeting RL or reason-
ing. For such specialized scenarios with expert models available, [Li et al.|(2025a) warn that MoA
might not be sufficiently robust to lower-quality inputs. For the more diverse generative evaluation
scenarios that we are targeting, however, we find that FUSION is fairly robust with respect to the
teacher pool (section [5), and sampling from a single teacher—the proposed solution by [Li et al.
(2025a)—performs significantly worse. [Jayalath et al.[ (2025) find that fused single-teacher roll-
outs can nevertheless provide valuable supervision in RL training, even without any fusor training.
Overall, our work fits nicely in a stream of very recent developments discovering new possibilities of
synthesis as part of the inference process. Even though the idea of FUSION is so intuitive and shared
among recent works, our work advances the understanding of the inner workings and limitations of
this principle. We show that implemented even in its simplest form, it brings gains in highly diverse
applications for both at test-time and for driving model supervision.

Test-time scaling Our approach can also be cast as combination of parallel and sequential test-
time-scaling (Welleck et al., |2024; [Snell et al., [2025), with /N parallel steps and one refinement
step. Inoue et al.| (2025) formulate this combination as a search problem where in a each step either
more samples can be requested, or existing ones can be revisited. This poses an interesting avenue
for future work, where FUSION operates with adaptive compute (rather than a fixed N+1) based on
each input sample. This flexibility might be needed for attempts to mimic human cognitive processes
more closely (Zhang et al.| 2024).

Synthetic data generation In the development of multilingual LLMs in particular, synthetic data
generation has played a core role to reduce language disparities. For example, two recent models
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Apertus (Herndndez-Cano et al.,2025) and EuroLLM (Martins et al., 2025)), rely on EuroBlocksE] a
collection of synthetic fine-tuning data obtained from various sources and individual teachers. Such
synthetic data has also been key in improving mathematical reasoning, both monolingually (Muen-
nighoff et al.| | 2025)) and multilingually (Lai & Nissim)|, 2024; Hwang et al.||2025). Involving and en-
sembling multiple generations from either the same or multiple teachers in the process, as we study
here, is still underexplored. For Llama 3, |Grattafiori et al.| (2024) report using rejection sampling
(i.e. BON) for multilingual data generation. For Aya Expanse, |Dang et al. (2024) report routing
samples to multiple teachers (Lu et al., |2024) via multilingual BON as proposed in (Odumakinde
et al.| 2023)), a strategy also adopted for building Tower+ (Rei et al.| [2025).

I LLM USAGE DISCLOSURE

In this paper, we used Al in several auxiliary functions:

* Formatting of result tables in ISTEX.

 Shortening the text to fit into space limits.

* Polishing text by finding English correspondences to our non-English ideas.
* Implementation aid for the contribution analysis.

* Expansion of our initial list of related works, which we then read and carefully curated into
the final related work discussion.

nttps://huggingface.co/datasets/utter—-project/EuroBlocks—SFT-Synthetic-1124
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