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Fig. 1: Sample face images leaked from training data (first row) of generative models in different
state-of-the-art synthetic face recognition datasets (second row).

Abstract

Synthetic data generation is gaining increasing popularity in different computer
vision applications. Existing state-of-the-art face recognition models are trained
using large-scale face datasets, which are crawled from the Internet and raise privacy
and ethical concerns. To address such concerns, several works have proposed
generating synthetic face datasets to train face recognition models. However, these
methods depend on generative models, which are trained on real face images.
In this work, we design a simple yet effective membership inference attack to
systematically study if any of the existing synthetic face recognition datasets leak
any information from the real data used to train the generator model. We provide an
extensive study on 6 state-of-the-art synthetic face recognition datasets, and show
that in all these synthetic datasets, several samples from the original real dataset
are leaked. To our knowledge, this paper is the first work which shows the leakage
from training data of generator models into the generated synthetic face recognition
datasets. Our study demonstrates privacy pitfalls in synthetic face recognition
datasets and paves the way for future studies on generating responsible synthetic
face datasets. Project page: https://www.idiap.ch/paper/unveiling_synthetic_faces
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1 Introduction

Recent advancements in state-of-the-art face recognition models are achieved by training deep neural
networks with penalty-based softmax loss functions on large-scale datasets [1—4]. Existing face
recognition datasets contain millions of face images, such as VGGFace2 [5], MS-Celeb-1M [6],
WebFace260M [7], which are typically collected by crawling the Internet without proper user consent.
This raises ethical and legal concerns about the use of such datasets for the development of face
recognition models. In particular, recent data regulation frameworks, such as the European Union
Artificial Intelligence Act, further support the rights of subjects whose data are used in a dataset to
train such models. Consequently, several face recognition datasets, including but not limited to [5, 6],
have been retracted by their creators, to prevent potential legal issues. Therefore, the availability
of such large-scale datasets and the possibility of research in the face recognition task has become
uncertain.

Recently, generating synthetic face recognition datasets has emerged as a promising alternative
to large-scale real datasets and has become a promising solution to address the ethical and legal
concerns [8—15]. The generation of synthetic face datasets, however, relies on the development
of face generative models, which enable the generation of synthetic samples from the probability
distribution of a real face dataset. Meanwhile, most synthetic face recognition datasets are built upon
Generative Adversarial Networks (GANs) [8, 9] or Diffusion Models (DMs) [10, 11]. These face
generative models are trained on a dataset of real face images, and therefore leakage of information
from the training dataset to the generated face images can raise privacy concerns in the generated
synthetic face recognition datasets. Along the same lines, several studies in the literature of generative
models have shown the memorization issue in different models [16—-24], which sparks concerns on
the application of generative models for privacy-sensitive problems. In this paper, we design a simple
yet effective membership inference attack against synthetic face datasets to systematically study if
any of the existing samples in the generated dataset leak any information from the real data used
to train the generator model. We provide an extensive evaluation of 6 state-of-the-art synthetic face
recognition datasets, and demonstrate that in all these synthetic datasets, several samples from original
real datasets are leaked. Fig. 1 illustrates sample face images from 6 state-of-the-art synthetic face
recognition datasets that are leaked from the training set of their generator models. To our knowledge,
this paper presents the first work which shows the leakage from training data of generator models
into synthetic face recognition datasets. Our study demonstrates privacy pitfalls in synthetic face
recognition datasets and paves the way for future studies on generating responsible synthetic face
datasets.

In the remainder of the paper, we first review state-of-the-art synthetic face recognition datasets
in the literature in Section 2. Then, we describe our membership inference attack and present our
evaluation of state-of-the-art synthetic face recognition datasets in Section 3. In Section 4, we discuss
our findings and explain the limitations of our study as well as current shortcomings in the literature.
Finally, the paper is concluded in Section 5.

2 Related Work

As discussed earlier, existing synthetic face recognition datasets are typically generated using a
generative model. While some papers used pretrained face generative models (such as pretrained
StyleGAN on the FFHQ dataset), other works retrained a generative model on another dataset or
proposed a new face generator model. Boutros et al. [8] used the StyleGAN2-ADA [25] as their
generative model and trained it on the CASIA-WebFace dataset [26] with identities serving as class
labels. Then, they utilized their identity-conditioned StyleGAN2-ADA model to generate the SFace
dataset of generated face images, and demonstrated its effectiveness for training face recognition
algorithms.

Kolf et al. [9] also used StyleGAN2-ADA [25] trained on the CASIA-WebFace dataset [26] and
proposed a three-player GAN framework to generate the IDNet dataset. Their three-player framework
integrates identity information into the image generation of StyleGAN, where the third player is used
to force the generator network to generate identity-separable face images.

In contrast to most works in the literature that used GAN-based generator models, some works
generated synthetic datasets using diffusion models. Kim et al. [10], introduced the dual (identity and
style) condition face generator based on a diffusion model and trained it on the CASIA-WebFace
[26] dataset. They used a patch-wise style extractor combined with a time-step dependent ID loss
to train their generator model. Then, they generated the DCFace dataset by synthesizing different



Table 1: Synthetic Face Recognition Datasets in the Literature.

Reference Synthetic Dataset Generator Training Dataset
[8] SFace StyleGAN-ADA (identity-conditioned) CASIA-WebFace
[9] IDNet StyleGAN-ADA (identity-conditioned) CASIA-WebFace
new diffusion model
(101 DCFace (identity and style conditioned) CASIA-WebFace
[11] IDiff-Face (Uniform) new diffusion model FFHQ
IDiff-Face (Two-stage) (identity-conditioned)
. StyleGAN (pretrained) FFHQ
(2] GANDiffFace DreamBooth (pretrained) LAION

identities using identity condition and also different samples per identity using the style condition.
They published two versions of their dataset, DCFace-0.5M and DCFace-1.2M, where the smaller
version is a subset of the larger one.

In [11], the authors trained a latent diffusion model conditioned on identity features obtained from a
pretrained face recognition model using the FFHQ dataset. For sample generation, they used their
trained diffusion model to generate different identities by randomly sampling the identity context from
a uniform distribution. In another approach, they used an unconditional diffusion model to generate
different identities (two-stage). To generate different samples per identity, they fixed the identity
condition and changed the latent noise. Considering these two different generation approaches, they
proposed two datasets called IDiff-Face (Uniform) and IDiff-Face (Two-stage), respectively.

In [12], Melzi et al. introduced the GANDiIffFace dataset, which is generated using both GAN-
based and diffusion-based generators. They first used a pretrained StyleGAN3 [27] model (trained
on FFHQ) to generate different identities, and then used a pretrained DreamBooth [28] model to
generate different samples for each identity. DreamBooth [28] is a diffusion model based on the
Stable Diffusion [29] model that is trained on the LAION dataset [30].

Table 1 summarizes different synthetic face recognition datasets in the literature which are generated
using generative models. We should note that another category of methods to generate synthetic
datasets is computer-graphic-based methods, e.g., DigiFace-1M [13], which is excluded in this study.

3 Membership Inference Attack

As described in Section 2, synthetic S
face recognition datasets are often Face Generator | %a® Generation
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tion dataset Dsynihetic, Which includes  training data into generated synthetic face recognition dataset.
various synthetic identities and differ-

ent sample images per each identity. Therefore, an important question is whether any of the generated
images in the generated synthetic face recognition dataset Dgyniheric contain important information
from training dataset D,.,, which was used to train the face generator model in the first place? In
other words, do we have any leakage of information from Dyca t0 Dgynineic ? Fig. 2 illustrates the
process of leakage of information from the training dataset into the generated synthetic dataset.

We consider an exhaustive search approach to compare all possible pairs of images from Dy, and
Dyynthetic- To this end, we use an off-the-shelf face recognition model F(.) to extract face embeddings
from each face image, and then compare the embeddings of every pair of images from D, and
Dygynihetic- Then, we sort the pairs of images according to the similarity of embeddings and consider the
top-k pairs for visual comparison of images. Algorithm 1 presents the pseudo-code of our approach.

For our experiments, we use an off-the-shelf face recognition model with ResNet100 backbone
which is trained with AdaFace [2] loss function on the WebFace12M dataset [7]. We use the method
presented in algorithm 1 to find pairs with high cosine similarity scores from the training dataset
of the generator model and the generated synthetic dataset for all the synthetic datasets in Table 1.



Algorithm 1 Membership Inference Attack against Synthetic Datasets (MIS).

Require: : Dy, dataset used to train generator network; Dgynmetic, generated synthetic face dataset; F', an
off-the-shelf face recognition model; SIM, similarity function (e.g., cosine similarity) to compare two
embeddings extracted by face recognition F'; k, number of top similar pairs to return for visual comparison.

1: procedure MIS ATTACK

2 Initialize list S = [ ]

3 for Isynthetic,i € Dsymhelic do

4 for Ireal,j € Dhieq do

5: s = SIM(F(Isynlhetic,i)7 F(Ireal,j))

6: S.append(s)

7

8

9

10:

end for
end for
return S.sort()[0 : k]
end procedure

Figs. 4-9 of Appendix illustrate sample face images from the training dataset of generator models
which are leaked in the generated synthetic dataset for 6 state-of-the-art synthetic datasets, including
DCFace [10], IDiff-Face (Uniform) [! 1], IDiff-Face (Two-stage) [ 1], GANDiffFace [12], IDNet [9],
and SFace [8] datasets, respectively. The corresponding training dataset of generator models used to
generate each synthetic dataset is reported in Table 1. In the case of GANDiffFace [12] which uses
two pretrained generator models, we compare with the training dataset of StyleGAN which was used
in the first stage to generate different synthetic identities. For the evaluation of the DCFace dataset,
we consider its smaller set (i.e., DCFace 0.5M), which is also included in the larger version of this
dataset. As Figs. 4-9 of Appendix show, the generated synthetic datasets contain very similar images
from the training set of their generator model, which raises concerns regarding the generation of such
identities.
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leakage based on the histogram of similarity scores has some limitations which are discussed in detail
in Section 4.

We should note that the source code of our experiments as well as the file names of all images
reported as leaked samples in this paper are publicly available in our project page' to facilitate the
reproducibility of our study and help future researchers to build upon our findings.

4 Discussion

Our experiments demonstrate that state-of-the-art synthetic face recognition datasets contain samples
that are very close to samples in the training data of their generator models. In some cases the
synthetic samples contain small changes to the original image, however, we can also observe in
some cases the generated sample contains more variation (e.g., different pose, light condition, etc.)
while the identity is preserved. This suggests that the generator models are learning and memorizing
the identity-related information from the training data and may generate similar identities. This
creates critical concerns regarding the application of synthetic data in privacy-sensitive tasks, such as
biometrics and face recognition.

The findings in our paper open several new research questions and introduce new research directions
that require attention from the community:

o In this paper, we used an exhaustive search approach to find samples which contain informa-
tion leaked in the generated dataset. While our approach is effective in finding samples in
the synthetic dataset that are similar to the training dataset, it requires comparing all possible
pairs of images. However, comparing all possible pairs may not be efficient and such a
membership inference attack can be deployed more efficiently. In particular, if the training
data or generated data have larger samples?, the required computation for all comparisons
similarly increases.

e While our attack algorithm can find samples in the training data which are leaked into
the synthetic dataset, it also returns several samples that are not necessarily obvious to
contain leakage. As an example, we can refer to three categories which we observed in our
experiments:

1. In some cases, the similar images found by our approach are images of children.
However, not only the face recognition models also have a high error for children, but
also distinguishing if two images are for the same child is difficult for human observers.
Therefore, considering children’s images for indicating a possible leakage is not reliable.
This particularly happens for synthetic datasets whose generator models are trained on
the FFHQ dataset, in which the population of young children is considerably large [32].
Fig. 11 of Appendix illustrates some samples of young people in IDiff-Face (Uniform),
IDiff-Face (Two-stage), and GANDiffFace datasets. We ignored such samples in our
evaluations and did not recognise them as leaked samples.

2. In some samples that were returned by our algorithm with high similarity scores, the
synthetic image did not include a face image. In fact, these are unexpected samples
in a face recognition dataset. Therefore, we ignored such samples in our evaluations.
Fig. 12 of Appendix illustrates some examples of images that do not have face images
from DCFace, IDNet, and SFace datasets.

3. In some cases, the images with high similarity scores were not recognized as the same
identity or were not convincing enough to a human observer to demonstrate leakage.
Therefore, we ignored such samples in our evaluations. Fig. 13 of Appendix illustrates
some examples of such images in which we could not conclude leakage in visual
comparison for different datasets.

As a result of having such samples in the output of our analyses, we needed to have a visual
comparison step. While we found visual comparison necessary to draw valid conclusions, it
requires a human observer, even for a small number of selected samples. In addition to the
required human effort, it may introduce subjective bias in visual comparisons. We should
note that the samples shown in Fig. 1 and Figs. 4-10 of Appendix were selected based on
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the unanimous agreement of several observers, however, such a human evaluation may not
be efficient and consistent for future studies.

e An important future direction is to propose new measures to quantify and benchmark the
leakage of information from training datasets of generator models into the synthetic data.
We would like to stress that proposing such a measure is not trivial and requires further
research to address the previous question and eliminate the necessity of human observers. In
particular, three cases which we mentioned in previous point of our discussion (i.e., children
images, no face images, not having same identity) makes statistical analyses (based on the
similarity scores of retrieved pairs) a challenging task, and thus it is difficult to extract a
reliable statistical metric for the leakage in the synthetic datasets using similarity scores. For
example, histograms of scores for matched pairs from synthetic dataset and corresponding
closest images from the training datasets in Fig. 3 show that for almost all images in synthetic
datasets, there is an image in the training dataset which is recognised as the same identity by
a face recognition model. However, sample images in Figs. 11-13 of Appendix, which are
even among top-k retrieved pairs with high similarity score, are not necessarily recognised
as a same identity by a human observer, and therefore such samples cannot demonstrate
identity leakage. Hence, evaluating the leakage based on similarity scores of retrieved pairs
of images is not straightforward and requires further studies.

e Our experiments show that state-of-the-art synthetic datasets leak sensitive information from
the training dataset of their generator models. Therefore, an important future direction is to
generate responsible synthetic face datasets. This objective can be achieved by preventing
such leakage in the data generation process or by further post-processing to eliminate such
leakages. We should note that some of the existing datasets, such as DCFace [10], have
already tried to prevent such leakage in data generation. In [10, Section 3.3], the authors
explained that they removed samples that are more similar to images of training data than a
predefined threshold. However, as images in Fig. 4 and Fig. 10 of Appendix show, such data
cleaning has not been sufficient to prevent identity leakage in the generated synthetic dataset.
This suggests that more efforts should be taken to avoid leakage in the synthetic data.

To draw the discussion to a close, we would like to highlight that the main motivation for generating
synthetic datasets is to address privacy concerns in using large-scale web-crawled face datasets.
Therefore, the leakage of any sensitive information (such as identities of real images in the training
data) in the synthetic dataset spikes critical concerns regarding the application of synthetic data
for privacy-sensitive tasks, such as biometrics. Our study sheds light on the privacy pitfalls in
the generation of synthetic face recognition datasets and paves the way for future studies toward
generating responsible synthetic face datasets.

5 Conclusion

In this paper, we explored the crucial question of “whether synthetic datasets expose real identities
used for training their generator models?". We used a simple yet effective membership inference
attack (based on exhaustive search) against synthetic datasets, and explored if any of the generated
samples in the synthetic face recognition dataset leaks any information from the training dataset of
the corresponding generator model. We evaluated 6 state-of-the-art synthetic face recognition datasets
generated with different deep generative models (GAN-based and diffusion-based). We reported
several samples for each dataset which demonstrate leakage of information in synthetic datasets
from the training data of generator models. In some cases, the retrieved samples further indicate
memorization or learning identity-related information in the generator models. We also discussed the
limitations of our evaluation and outlined potential future directions. To our knowledge, this paper
is first work which shows the leakage from training data of generator models into synthetic face
recognition dataset and reveals privacy pitfalls in the generation of synthetic face recognition datasets.
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A Sample Leaked Images

Figs. 4-9 illustrate sample face images from the training dataset of generator models which are leaked
in the generated synthetic dataset for 6 state-of-the-art synthetic datasets, including DCFace [10],
IDiff-Face (Uniform) [1 1], IDiff-Face (Two-stage) [ | 1], GANDiffFace [12], IDNet [9], and SFace [§]
datasets, respectively. The corresponding training dataset of generator models used to generate each
synthetic dataset is reported in Table | of the paper. For, GANDiffFace [12] which uses two pretrained
generator models, we compared with the training dataset of StyleGAN which was used in the first
stage to generate different synthetic identities. As these figures show, the generated synthetic datasets
contain very similar images from the training set of their generator model, which raises concerns
regarding the generation of such identities. In some cases, such as in DCFace (Fig. 4 of Appendix),
the similarity is very high, and the generated image has some small visual changes compared to the
original training data. However, in some other datasets, the difference is higher, nevertheless, the
identities of generated images look similar. We should note that images shown in Fig. 1 and Figs. 4-9
of Appendix are some samples for each dataset, and for some of these synthetic datasets we can easily
find more samples. For example, Fig. 10 of Appendix illustrates more samples in the DCFace dataset.
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Fig. 4: Sample face images leaked from training data (first row) of the generative model in the
DCFace dataset (second row). For more samples see Fig. 10
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Synthetic

Fig.5: Sample face images leaked from training data (first row) of the generative model in .It.he
IDiff-Face (Uniform) dataset (second row).
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Real

Synthetic

Fig. 6: Sample face images leaked from traning data (first row) of the generative model in the
IDiff-Face (Two-stage) dataset (second row).

Real

Synthetic

Fig.7: Sample face images leaked from training data (first row) of the generative model in the
GANDiIffFace dataset (second row).

Real

Synthetic

Fig. 8: Sample face images leaked from training data (first row) of the generative model in the IDNet
dataset (second row).

Real

Synthetic

Fig.9: Sample face images leaked from training data (first row) of the generative model in the SFace
dataset (second row).
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Fig. 10: Sample face images leaked from training data (CASIA-WebFace) of the generative model in

the DCFace dataset.
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B Sample of Difficult Matching Face Images

As discussed in Section 4 of the paper, while our attack algorithm can find samples in the training
data which are leaked into the synthetic dataset, it also returns several samples that are not necessarily
obvious to contain leakage. Figs. 11-13 illustrates sample of face images, which were difficult to
match while having high similarity score. We ignored such samples in our evaluation and did not
recognise them as leaked samples.

Real

Synthetic

IDiff-Face (U) IDiff-Face (T) GANDiffFace GANDiffFace

Fig. 11: Sample face images of children which have high similarity, but we ignored them in our
evaluations (i.e., we did not recognise them as leaked samples).
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|

Synthetic

Fig. 12: Sample images which do not include a face, and we ignored them in our evaluations (i.e.,
we did not recognise them as leaked samples).

Real

Synthetic

DCFace IDiff-Face (U) IDiff-Face (T) GANDiffFace IDNet SFace

Fig. 13: Sample face images of which have high similarity scores, but are not convincing for human
observer to demonstrate data leakage in the synthesized image. Therefore, we ignored them in our
evaluations (i.e., we did not recognise them as leaked samples).



