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Abstract

Logical reasoning is a key task for artificial in-001
telligence due to it’s role in major downstream002
tasks such as Question Answering, Summariza-003
tion. Recent methods in improving the rea-004
soning ability of LLMs fall short in correctly005
converting a natural language reasoning prob-006
lem to an equivalent logical formulation, which007
hinders the framework’s overall ability to rea-008
son. Towards this, we propose to use finetuning009
on a preference optimization dataset to learn010
to parse and represent a natural language prob-011
lem as a whole to a consistent logical program012
by 1) introducing a new supervised and pref-013
erence optimization dataset (LOGICPO), and014
2) adopting popular techniques such as Direct015
Preference Optimization (DPO), Kahneman-016
Tversky optimization (KTO) to finetune open-017
source LLMs. Our best model with PHI-3.5018
consistently outperforms GPT-3.5-TURBO’s019
(8-shot) by producing 10% more logically cor-020
rect and with 14% less syntax errors. Through021
the framework and our improved evaluation022
metrics, we offer a promising direction in im-023
proving the logical reasoning of LLMs by bet-024
ter representing them in their logical formula-025
tions.026

1 Introduction027

Recent state-of-the-art pipelines for Logical Rea-028

soning tasks show a marked shift from having029

Large Language Models (LLMs) generate solu-030

tions directly. Most frameworks first translate the031

problem into a formal language using an LLM and032

then use a corresponding logical engine (such as033

a theorem prover) to solve reasoning tasks (Pan034

et al., 2023; Ye et al., 2023; Olausson et al., 2023).035

For example, Logic-LM (Pan et al., 2023) demon-036

strates how tasks can be converted into first-order037

logic, satisfiability (SAT/SMT), or constraint sat-038

isfaction problems depending on their types, and039

solved using publicly available engines. However,040

the efficiency of these methods are limited due to041

the reliance on the ability of pretrained LLMs to 042

correctly translate the natural language reasoning 043

problem to a consistent logical program. These 044

logical languages are often low-resource compared 045

to coding languages such as Python, and therefore 046

(possibly) less prevalent in pretraining data. 047

In this work, we therefore focus solely on ana- 048

lyzing and then improving the parsing of a natu- 049

ral language-based reasoning problem (including 050

a context and a query) consistently to First Order 051

Logic (FOL) problem. We choose FOL as the tar- 052

get language, as it is a widely adopted logical lan- 053

guage with broad expressivity, and one can utilize 054

available algorithms to convert FOL programs to 055

other equivalent languages (SAT, SMT), as neces- 056

sary. We use two publicly available logical reason- 057

ing datasets (with available FOL translations) for 058

benchmarking. First, we analyze the failure modes 059

of open and closed-source LLMs through a com- 060

prehensive study (varying prompting strategies). 061

We explore whether utilizing other (more popular) 062

language (such as Python) as an intermediate step 063

and post-process it to generate FOL problems may 064

help. We also observe, contemporary efforts in im- 065

proving FOL translations primarily target sentence 066

wise translation (Yang et al., 2024), which does 067

not take predicate level consistency into account 068

– for example, Tab. 1 shows how the last sentence 069

is translated into SAT2016(.) predicate, that does 070

not match SAT(.) predicate used elsewhere. 071

We observe various syntactic, logical and se- 072

mantic errors in the FOL programs produced using 073

GPT3.5-TURBO, Llama-3-8B. We use a set of 074

natural language problems (a story S) from FO- 075

LIO, consisting of a context, query and a logical 076

label. Utilizing a prompt and varying number of 077

in-context examples, we ask an LLM to generate an 078

multiple output FOL story (F̃S) for an input story. 079

Using Prover9, we obtain the logical label from the 080

generated FOL story (F̃S). Based on whether the 081

logical labels match with the original groundtruth 082
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label or errors from Prover91, we create the super-083

vised finetuning and the preference optimization084

(LOGICPO) dataset. Furthermore, we employ vari-085

ous preference optimization methods (PPO, DPO086

and KTO) and combine them with open-source087

large language models to observe how their pars-088

ing errors reduce. Lastly, we analyze what errors089

remain difficult to reduce even after employing our090

dataset and training methodologies. In summary,091

our contributions are three-fold:092

• First, we evaluate baseline popular open and093

closed-source LLMs such as Llama, GPT3.5094

in their capabilities of generating FOLs from095

natural language context and query. We ex-096

tensively benchmark the effect of increasing097

number of shots, using intermediate represen-098

tation; and provide an analysis of the errors099

the models make.100

• We introduce a preference optimization101

dataset (LOGICPO) where the input is textual102

context and query and the output is an FOL103

program, capturing various perturbations syn-104

thetically to curb errors at a logical, syntactic105

and semantic level.106

• We experiment with various preference op-107

timization algorithms on open-source LLMs108

such as Llama-3, Gemma-3, Phi-3.5 and Flan-109

T5. We establish the efficacy of our LOGICPO110

dataset, in producing consistent FOL program111

from natural language context and query.112

2 Related Work113

In NLP, prior to Transformers-based end-to-end114

systems, the need for Semantic Parsers dominated115

various downstream applications, such as Question-116

Answering, and Recognizing Textual Entailment117

(Gu et al., 2022; Beltagy et al., 2014; Deng et al.,118

2022). The task of learning to parse involved:119

1) converting natural language to expert-defined120

novel semantic representations (Banarescu et al.,121

2013; Ge and Mooney, 2005; Sharma et al., 2015;122

Chanin, 2023) or 2) translating text to sentences in123

well-established programming languages such as124

(SQL, First Order Logic). Several solutions around125

knowledge-based question answering (Kim et al.,126

2020; Wu et al., 2016; Liu et al., 2024) attempted to127

convert the natural language question to structured128

SQL queries (or SPARQL queries) against known129

schemas. However, such models demanded a large130

number of parallel data points (source sentence131

1https://www.cs.unm.edu/~mccune/prover9/

and target parse), and did not explore context-level 132

inter-sentence consistency of such parsing. 133

In recent times, various researchers have cast 134

doubt on whether LLMs actually reason (Nikankin 135

et al., 2024; Lu et al., 2024). As a remedy, a se- 136

ries of efforts (Olausson et al., 2023; Pan et al., 137

2023; Ye et al., 2023) have shown that LLMs can 138

be used as few-shot semantic parsers to parse into 139

known programming languages to represent a rea- 140

soning problem; and such programs can be exe- 141

cuted to find the correct answer to the problem. 142

While LLMs show surprising ability to parse text 143

questions to languages such as Python using in- 144

context learning, their performance for less popular 145

formal languages (such as First-order Logic) are 146

comparatively worse. Researchers resort to multi- 147

ple tricks, such as self-refinement (Olausson et al., 148

2023) using error(s) signals from Automated The- 149

orem Provers (such as Z3, Prover9) as additional 150

input. These are quite cost-extensive with multiple 151

LLM calls, and do not greatly improve the conver- 152

sion accuracy. There have been some efforts using 153

small Language Models (such as T5) (Lu et al., 154

2022) to learn to parse Natural Language sentences 155

to FOL, most efforts concentrate on benchmarking 156

sentence level parsing, such as LOGICLLAMA 157

(Yang et al., 2024). The authors in LOGICLLAMA 158

utilize GPT-4 sentence-level NL-FOL pairs, fol- 159

lowed by filtering to create a data set and use su- 160

pervised fine-tuning to finetune a Llama model. A 161

recent non-peer reviewed paper introduces Proof- 162

FOL (Thatikonda et al., 2024), a high-quality FOL- 163

annotated subset of ProofWriter dataset using GPT- 164

4o. While this dataset would have been somewhat 165

useful, neither the dataset or the trained models are 166

publicly available. 167

In contrast, our goal is to convert a natural lan- 168

guage reasoning problem as a whole to a consis- 169

tent FOL program. We introduce a preference 170

dataset, perform an extensive study utilzing super- 171

vised finetuning and many preference optimization 172

techniques on multiple open-source LLMs. To the 173

best of our knowledge, our work is the first to ex- 174

plore Preference Optimization techniques to train 175

open-source LLMs (such as Llama) to reduce syn- 176

actic, and logical errors in FOL parsing. We also 177

plan to release the new preference dataset, that can 178

enable new algorithms and new family of parsers. 179
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3 Learning Preference-Optimized NL to180

FOL Engines181

3.1 Natural Language to First-Order Logic182

Conversion183

The FOLIO dataset (Han et al., 2024) is an expert-184

written dataset containing high-quality examples185

requiring complex logical reasoning in FOL. The186

dataset consists of two tasks: natural language187

reasoning with FOL and NL to FOL translation.188

We are interested in the second task of NL to189

FOL translation in this work. The goal of this190

task is to translate an NL story S to a FOL story191

FS. The NL story S contains a series of con-192

text sentences p1, p2, . . . pn and a conclusion sen-193

tence pn+1. The FOL story FS consists of context194

formulas f1, f2, . . . fn and a conclusion sentence195

fn+1. The translation task requires each pi in S to196

be logically and semantically equivalent to its cor-197

responding FOL formula fi in FS. Moreover, the198

logical values for the conclusions pn+1 and fn+1199

should be the same based on the corresponding200

context S and FS. We show an example of the201

task in Table 1.202

3.2 Automated Data Generation203

Let’s denote X to be an instance of NL to FOL204

conversion data consisting of an NL story S and205

a FOL story FS. Let’s also consider y to be the206

logical label of the conclusion sentence/formula207

constrained on the contextual sentences/formulas.208

The logical label y always belongs to the set of209

{True, False, Uncertain}.210

Setup We first follow the following pipeline to211

generate a collection of output FOL stories F̄S212

from given input NL stories S:213

• Consider n different examples of X from FOLIO214

to use as in-context demonstrations.215

• Define an appropriate natural language prompted216

instruction for NL to FOL conversion. Addition-217

ally use the n demonstrations in context and ask218

an LLM to generate the output FOL story F̄S for219

an input NL story S.220

• Consider the logical label of S to be ynl. Pre-221

dict the logical label ȳfs of the generated story222

F̄S using a standalone logical engine such as223

Prover9 (McCune, 2005–2010). Note that the224

generated logical label ȳfs could be either from225

{True, False, Uncertain} or could also be a {Er- 226

ror} in case the generated F̄S cannot compile in 227

the logical engine for any reason. 228

Dataset for Supervised Fine-Tuning. We con- 229

struct the supervised fine-tuning (SFT) data by con- 230

sidering instances for which the generated FOL log- 231

ical label ȳfol matches the given natural language 232

logical label ynl. These SFT instances consist of S 233

as the input and F̄S as the output, as we can con- 234

sider F̄S to be an equivalent version of S because 235

they both lead to the same logical label. 236

Dataset for Preference Optimization. Creating 237

preference optimization data requires a preferred 238

and a rejected output sample for the same input. 239

We consider the generated F̄S for which the FOL 240

logical label ȳfol matches the natural language log- 241

ical label ynl as the preferred sample. On the other 242

hand, F̄S for which the label ȳfol does not match 243

ynl can be considered as the rejected sample. In this 244

case, the preferred and the rejected FOL samples 245

can be considered as the clean and noisy transla- 246

tions of the natural language story, respectively. 247

Summary of Generated Datasets We denote the 248

SFT dataset as Dsft and the preference dataset as 249

Dpref . The summary of the datasets is shown in 250

Table 2. 251

The input NL stories are drawn from the train- 252

ing set of FOLIO. We used n = 2, 4, 8 in- 253

context examples to generate the output FOL sto- 254

ries, as mentioned earlier in Section 3.2. We 255

used the instruction-tuned 8B versions of Llama 256

3 (Grattafiori et al., 2024), Llama 3.1 (Grattafiori 257

et al., 2024), and the 7B version of Mistral 0.2 258

(Jiang et al., 2023) as the language models to gener- 259

ate the samples at temperatures of 0.25 and 0.6. We 260

follow this generation setup with multiple LLMs 261

at different temperatures with different in-context 262

LLMs to increase the diversity of the generated 263

outputs. In total, we generate ? output samples 264

for each input NL story in FOLIO. From there, we 265

randomly subsample and select outputs F̄S to cre- 266

ate Dsft and Dpref , following the same/different 267

logical label matching strategy, as specified in Sec- 268

tion 3.2. 269

3.3 Language Models as NL to FOL Engines 270

Our objective is to design language models that can 271

convert an NL story S to its corresponding logically 272

consistent FOL story FS. We hypothesize that our 273

automatically generated datasets Dsft and Dpref 274
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FOLIO
Instance

Premises:
1. The SAT test is wholly owned and developed by the College Board.
2. The SAT test is intended to assess student’s readiness for college.
3. The SAT was originally designed not to be aligned with high school curricula.
4. Several adjustments were made for the version of the SAT introduced in 2016
to reflect more closely on what students learn in high school.
Premises-FOL:
1. Own(sat, collegeBoard) ∧ ¬Own(sat, others)
2. Test(sat, readiness)
3. ∀x(Y ear(x) ∧Before2016(x) ⇒ ¬AlignHighSchool(x))
4. ∃x(Y ear(x) ∧ Since2016(x) ∧AlignHighSchool(x))
Conclusion: Since 2016 the SAT has been better aligned with high school curricula.
Label: [True]

Dsft Output,
Dpref Chosen

Premises-FOL:
1. ∀x.(SAT (x) ⇒ CollegeBoardOwns(x))
2. ∀x.(SAT (x) ⇒ CollegeReady(x))
3. ∀x.(SAT (x) ∧ ¬Aligned(x))
4. ∀x.(SAT (x) ∧ IntroducedIn2016(x) ⇒ Aligned(x))
Conclusion-FOL: ∀x.(IntroducedIn2016(x) ⇒ Aligned(x))
Label: [True]

Dpref Rejected

Premises-FOL:
1. ∀x.(SAT (x) ⇒ CollegeBoard(x))
2. ∀x.(SAT (x) ⇒ CollegeReady(x))
3. ∀x.(SAT (x) ∧ ¬AlignedWithHighSchool(x))
4. ∀x.(SAT2016(x) ⇒ AlignedWithHighSchool(x))
Conclusion-FOL: ∀x.(Since2016(x) ∧AlignedWithHighSchool(x))
Label: [False]

Table 1: An example from the FOLIO dataset and its corresponding versions in our Dsft and Dpref datasets. The Label
information in Dsft and Dpref is shown for completeness. It is not used during training or inference of our models.

Logical Label FOLIO Dsft Dpref

True 388 5,001 3,751
False 286 3,169 2,600
Uncertain 330 8,792 3,649

Total 1,004 16,962 10,000

Table 2: Number of instances in FOLIO, Dsft and Dpref

across the different logical labels. The logical label correspond
to the label of the preferred sample for Dpref .

would be useful in teaching language models to275

become effective NL to FOL conversion engines.276

Firstly, Dsft provides parallel NL to FOL conver-277

sion data over all the three logical labels of {True,278

False, Uncertain}. This signal would help language279

models to observe diverse stories with conclusive280

and inconclusive scenarios. Secondly, Dpref pro-281

vides signals of what is and isn’t the correct FOL282

conversion of an NL story. The additional signal283

of how not to convert NL to FOL stories comes284

from the rejected samples. This would help in285

teaching language models to avoid issues like syn-286

tax errors, which are common in non-fine-tuned287

models (). The rejected samples also work as hard288

negatives, as the corresponding FOL story is still289

closely related to the NL story while being logically 290

inconsistent. 291

We follow the strategy of i) fine-tuning the lan- 292

guage model with Dsft and then ii) fine-tuning with 293

Dpref using commonly used preference optimiza- 294

tion algorithms such as DPO and KTO (Ethayarajh 295

et al., 2024). We fine-tune all the parameters of 296

the language model in each of the two stages. We 297

empirically show that this is a useful strategy in 298

making language models highly effective NL to 299

FOL conversion engines. We also analyze the re- 300

sults across various dimensions to find interesting 301

insights (Section 4). 302

4 Experiments 303

In this section, we present our experimental setup, 304

datasets, and the baseline models used to compare 305

our parsers. We also give a detailed study of the 306

current parsing abilities of various SOTA LLMs. 307

4.1 Datasets 308

Our experiments use tasks from three exist- 309

ing datasets: FOLIO (Han et al., 2024), 310

ProofWriter (Tafjord et al., 2021) and PrOn- 311

toQA (Saparov and He, 2023), all of which have 312

been shown to be challenging for off-the-shelf 313
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Figure 1: The Data creation pipeline: We use natural language stories from FOLIO, use different settings of LLMs
to create various first order logic parses. We then use an off-the-shelf theorem prover (such as Prover9) to observe
the predicted logical label of the conclusion. If the predicted label matches the original, we include the sample in
Dsft,Dpref (chosen) and if it does not match, we include it as Dpref rejected sample.

LLMs (Olausson et al., 2023). The FOLIO dataset314

is an expert-written dataset containing high-quality315

examples requiring complex logical reasoning in316

FOL. As mentioned in section Section 3.1, we fo-317

cus on the NL to FOL translation task. We use its318

validation set for our evaluation, containing 204319

examples. Meanwhile, ProofWriter is a syntheti-320

cally generated dataset for logical reasoning over321

natural language. We use the sampled split of 360322

data points provided by Olausson et al. (2023) for323

our experiments. The data points are uniformly324

distributed across the three labels (True, False, Un-325

certain) and maximum question depth (ranging326

from 0-5; 50 samples each). PrOntoQA is an-327

other synthetically generated question-answering328

dataset, converted from a synthetic world model329

represented in First Order Logic. It contains triplets330

of context, query, and a label. We use the validation331

split that has 500 instances across the (True, False)332

labels. We change the objective of the dataset from333

question answering to NL-FOL conversion task.334

Metrics. We follow (Olausson et al., 2023) to335

report logical correctness, incorrectness and syn-336

tax errors. Deviating from the k-majority voting337

practice, for each NL story, we generate 10 outputs.338

For each output FOL story, the Prover9 provides a339

predicted logical label (or generates syntax error).340

For correctness, we report the average number of 341

matches to the original label. For incorrectness, 342

we report the average number of times the output 343

label is incorrect. Similar goes for syntax error, 344

the average number of times the output is syntacti- 345

cally incorrect. We additionally report the overall 346

weighted F1 and the F1 score over the True labels. 347

4.2 Baselines 348

We compare our approach primarily with two base- 349

lines, i.e., the GPT3.5 and GPT4 model variants 350

reported by LINC (Olausson et al., 2023). We 351

refer to them as GPT3.5-LINC and GPT4-LINC re- 352

spectively. We utilize the outputs for these models 353

provided by (Olausson et al., 2023), to avoid costly 354

experiments of GPT4-LINC. Finally, we evaluate 355

off-the-shelf LLMs in their abilities to generate 356

FOL stories by providing in-context examples. 357

Few-shot Variants. Prior to fine-tuning, we eval- 358

uate the models’ parsing abilities by using in- 359

context examples in a few-shot setting. We use the 360

in-context examples from Olausson et al. (2023) 361

in 1, 2, 4 and 8-shot generation tasks. These in- 362

context examples are excerpt from the FOLIO 363

dataset. Thus, the experiments on FOLIO can 364

be considered as in-distribution task. Meanwhile, 365

ProofWriter dataset is significantly different and 366
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Model Setting Logically Syntax F1
Correct (↑) Incorrect Error (↓) Overall (↑) True Label (↑)

GPT-3.5 - LINC

1-shot 33.30 15.44 51.26 40.49 22.71
2-shot 45.82 23.24 30.93 38.67 52.32
4-shot 51.81 24.45 23.74 45.50 59.10
8-shot 51.31 24.78 23.90 45.63 53.29

GPT-4 - LINC 8-shot 64.01 23.08 12.91 59.89 67.00

Llama-3 8B Instruct

2-Shot 50.15 27.99 21.86 55.43 54.11
SFT 54.26 34.26 11.47 56.73 58.84
SFT + DPO 50.98 29.51 19.51 55.80 56.47
SFT + KTO 55.15 30.98 13.87 59.56 61.74

Gemma-2 2B Instruct
SFT 49.71 34.80 15.49 53.12 54.51
SFT + DPO 34.95 21.23 43.82 44.09 42.30
SFT + KTO 50.93 29.80 19.26 56.02 54.39

Phi-3.5 Mini Instruct (4B)
SFT 58.43 31.08 10.49 61.47 62.03
SFT + DPO 61.13 31.08 7.79 63.59 60.73
SFT + KTO 61.52 29.41 9.07 64.43 63.76

Table 3: Results on NL to FOL conversion on the FOLIO validation dataset. The results are an average of 10 runs.

Model Setting Logically Syntax F1
Correct (↑) Incorrect Error (↓) Overall (↑) True Label (↑)

Llama-3 8B Instruct
SFT 46.14 42.39 11.47 48.04 38.80
SFT + DPO 45.31 35.47 19.22 50.16 45.55
SFT + KTO 48.58 38.06 13.36 51.58 44.12

Gemma-2 2B Instruct
SFT 46.78 32.56 20.67 51.74 45.91
SFT + DPO 39.97 22.50 37.53 48.69 42.12
SFT + KTO 48.86 32.94 18.19 53.65 49.47

Phi-3.5 Mini Instruct (4B)
SFT 61.11 30.0 8.89 63.49 54.22
SFT + DPO 55.00 36.00 9.00 56.44 46.04
SFT + KTO 65.28 27.89 6.83 67.43 58.96

Table 4: Results on NL to FOL conversion on the ProofWriter dataset. These models are trained on the FOLIO
dataset. The ProofWriter dataset is only used for evaluation. The results are an average of 10 runs.

Model Setting Logically Syntax F1
Correct (↑) Incorrect Error (↓) Overall (↑) True Label (↑)

Llama-3 8B Instruct
SFT 27.2 65.0 7.8 41.79 45.98
SFT + DPO 45.2 48.4 6.4 61.48 62.50
SFT + KTO 47.4 45.4 7.2 63.18 64.14

Gemma-2 2B Instruct
SFT 49.2 44.6 6.2 64.14 61.77
SFT + DPO 40.4 29.4 30.2 56.19 55.53
SFT + KTO 56.4 33.4 10.2 70.23 68.45

Phi-3.5 Mini Instruct (4B)
SFT 87.8 11.6 0.6 92.81 92.65
SFT + DPO 80.2 18.6 1.2 88.32 87.37
SFT + KTO 89.0 10.4 0.6 93.68 93.93

Table 5: Results on NL to FOL conversion on the ProntoQA validation dataset. These models are trained on the
FOLIO dataset. The PronotQA dataset is only used for evaluation. The results are an average of 10 runs.

thus requires generalizing out-of-distribution.367

4.3 Fine-tuned Variants of LLMs368

We use the following models for our experiments:369

Llama-3 (Grattafiori et al., 2024), Gemma-2 (Team370

et al., 2024), Phi 3.5 (Abdin et al., 2024) We follow371

a two-stage fine-tuning approach: (i) fine-tuning372

these models using DSFT dataset for SFT task and373

then (ii) fine-tuning them with our DPref dataset 374

using preference optimization methods such as 375

DPO (Rafailov et al., 2024) and KTO (Ethayarajh 376

et al., 2024). 377

4.4 Main Results 378

FOLIO From Table 3 & 4, we see almost all of 379

our SFT models perform close-to and better than 380
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the best GPT3.5 baselines. Overall, the Phi3.5 Mini381

SFT version outperforms the other SFT models by382

rest of the models by atleast 4.17%, and GPT-3.5383

LINC 8-shot by 7% in the logically correct metric.384

The syntax error of Phi3.5 Mini SFT is also 13%385

less than the best GPT-3.5 LINC model and 2%386

less than the GPT-4 LINC model.387

Preference optimization with KTO also leads to388

further improvement in performance. We reach389

61.52% logical accuracy and 64.43% overall F1 in390

FOLIO. In general, we observe SFT + KTO always391

leads to improvement in performance compared to392

SFT, which is not the case for SFT + DPO vs SFT.393

ProofWriter and ProntoQA We evaluate the394

models trained on the FOLIO dataset on the395

ProofWriter and ProntoQA dataset. We see a396

similar trend in results for these other two eval-397

uation datasets, where SFT + KTO version of398

Phi3.5 Mini reaches the highest performance. We399

reach 65.28% and 89.0% logical correctness in400

ProofWriter and ProntoQA dataset, respectively.401

Llama and Gemma models show results in similar402

range for the ProofWriter dataset. However, for403

ProntoQA, the best version of Gemma significantly404

outperform the best LLama version. Overall, our405

dual fine-tuning approach of SFT and preference406

optimization shows great promise towards accurate407

conversion of NL problems into FOL.408

5 Analysis and Ablation Studies409

5.1 Evaluating Semantic Content of410

Translated FOLs411

We follow an autoencoder approach, converting the412

premise stories to FOLs and converting them back413

to textual paragraphs for evaluation. We evaluate414

the FOLs generated by comparing the sentence em-415

beddings of the FOL-generated paragraph and the416

input premise paragraphs by cosine similarity. Fur-417

ther, the similarities between the generated NLs418

and premise paragraphs show the information car-419

ried while encoding to and decoding from the FOL420

representations. We follow different levels of eval-421

uation to make space for jumbled NLs since the422

premise story need not follow a particular order of423

sentences. Thus, we evaluate the generated NLs424

against the premise paragraph in three methods: (i)425

Firstly, we directly compare the paragraph level426

embeddings of the premise paragraph and the gen-427

erated NL. (ii) We allow for jumbling and take the428

average pair-wise similarity of the two. (iii) Lastly,429

Evaluation metric LLAMA3 GPT3.5

NL sentence mean similarity 54.83 55.85
NL sentence max similarity 84.09 84.67
NL paragraph similarity 89.13 89.22
FOL sentence mean similarity 54.83 54.57
FOL sentence max similarity 84.09 79.35
FOL paragraph similarity 86.22 87.40

Table 6: Evaluating semantic content of translated FOLs
for LLAMA3 and GPT3.5 through an autoencoder ap-
proach

we allow for jumbling while taking the average 430

of maximum sentence similarity between pairs of 431

sentences between the two. 432

Following this approach, we find that both 433

LLAMA3 and GPT3.5 perform similarly with 434

a paragraph average similarity of 89.13% and 435

89.26% respectively. Further results for each of the 436

evaluation methods can be found in table Table 6. 437

5.2 Qualitative analysis 438

From the results reported in Tab.s 3 & 4, it is quite 439

evident that our fine-tuned models are significantly 440

better in all evaluation criteria. We further explore 441

How the generations from fine-tuned models differ 442

from other neurosymbolic models? We focus on 443

comparing Llama-3 8b instruct+SFT+KTO model 444

vs. Phi-3.5 Mini+SFT+KTO as their performance 445

exceeds other models. 446

Qualitatively, we find that both the models share 447

few similarities and dissimilarities in their gener- 448

ations and highlight some key findings from both. 449

We also compare the model errors with the different 450

failure modes for Linc reported in (Olausson et al., 451

2023). Using the same notation L1, L2 and L3 452

corresponding to implicit information loss, explicit 453

information mistakes and syntax errors correspond- 454

ingly. 455

Similarity S1: Lack of consistent usage of 456

predicates Often, the models use different pred- 457

icate to convey the same meaning in subsequent 458

sentences leading to loss of information to Prover9. 459

Nevertheless, finetuned LLama-3 suffers less from 460

this type of errors since we see more consistent 461

usage of predicates in LLama. For example, in the 462

snippet below: 463

464
Premise 1: Susan flies to LGA airport. 465
FOL: FliesTo(Susan, LGAAirport) 466
Premise 2: The departure and arrival can not be the 467
same airport. 468
FOL_Llama: ¬EqualAirports(Daniel, Susan) 469
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Model Setting Small Context Medium Context Large Context
Overall Acc. (↑) True F1 Overall Acc. (↑) True F1 Overall Acc. (↑) True F1

Llama-3 8B Instruct
SFT 59.76 62.93 55.07 59.96 19.00 21.05
SFT + DPO 65.00 68.67 48.95 55.77 21.00 17.54
SFT + KTO 66.19 71.19 55.00 61.64 25.00 22.22

Gemma-2 2B Instruct
SFT 47.86 50.25 50.59 55.96 44.00 46.43
SFT + DPO 44.29 42.00 32.17 41.60 38.00 52.46
SFT + KTO 57.38 57.02 49.61 53.66 44.00 55.07

Phi-3.5 Mini Instruct
SFT 58.10 63.77 59.08 60.90 50.00 72.73
SFT + DPO 58.33 60.75 61.25 59.48 71.00 77.14
SFT + KTO 58.33 63.30 62.96 64.74 53.00 50.79

Table 7: Analysis of the performance of various models across different input context sizes in the validation set of FOLIO. We
group the instances in small context (1-2 sentences), medium context (3-5 sentences) and large context (more than 5 sentences).
The Overall Acc. column corresponds to the logical correctness metric across the full validation set.

FOL_Phi: ¬(DepartFrom(x) ∧ArriveAt(x))470
TEXT: John flies from LGA airport.471
FOL: liesFrom(John, LGAAirport)472
TEXT: Susan flies from LGA airport.473
FOL: liesFrom(Susan, LGAAirport)474

Similarity S2: Both models suffer with complex475

logic As expected, both the models fare poorly476

with large sentences with more complex logic. In477

the example below, both the models suffer in the478

same way confusing neither-nor logic:479

480

TEXT: If Rock is neither a fly nor a bird, then481

Rock neither flies nor breathes.482

FOL: ¬((Fly(Rock) ∨ Bird(Rock)) ⇒483

(¬Fly(Rock) ∧ −Breathes(Rock)))484

Similarity S3: Problem with Uncertain labels485

We find the accuracies related to Uncertain label486

highly unreliable due to the high number of ways487

in which Uncertain label can be reached. We have488

found the following methods the LLM models uti-489

lize in order to unexpectedly reach the Uncertain490

label. The various ways are as follows:491

• The LLM has an inconsistent usage of predi-492

cates, like S1.493

• Incorrect translation of a single FOL in the494

story causing loss of information.495

Analysis of NL to FOL Conversion across In-496

put Lengths We analyze how well the fine-tuned497

models convert NL to FOL stories across different498

input context sizes in Section 5.1. We group the499

FOLIO dataset into three categories – instances500

with small (1-2 sentences), medium (3-5 sentences)501

and large context (more than 5 sentences). Llama502

and Gemma models shows monotonically decreas-503

ing performance as we increase the context length.504

Interestingly, the Phi models do almost similarly in505

the small and medium context instances, which is506

not the case for the other two models.507

Model L1 L2 L3 Wrong
Translation

Llama-3 8B Instruct 10 15 14 9
Phi-3.5 Mini Instruct 13 20 14 1

Table 8: Number of instances in FOLIO, with errors corre-
sponding to errors from LINC. L1: Implicit Information Loss,
L2: Explicit information errors, L3: Syntax Errors

Error modes of LINC According to (Olausson 508

et al., 2023), there are mainly 3 modes of failure for 509

neurosymbolic solvers like LINC. Thus, we map 510

the failure methods for our best models LLAMA-3 511

and PHI3 to investigate whether preference opti- 512

mization helps alleviate these issues. We note our 513

results in Table 8. Thus, we can deduce that models 514

still suffer while representing explicitly mentioned 515

information due to the choices of predicates, paving 516

way for future improvements. 517

6 Conclusion 518

In this work, we present an efficient method for 519

improving logical reasoning of LLMs through pref- 520

erence optimization on a synthetically generated 521

dataset. Our experiments show that preference 522

optimization on this dataset leads to significant 523

performance gains in all of our evaluation criteria. 524

Furthermore, carrying out a qualitative and quan- 525

titative analysis of our models shows the various 526

advantages and shortcomings of our approach. This 527

work thus shows promise in the field of LLMs as 528

parsers through preference optimization. Paving 529

the way for future work on continual fine-tuning of 530

neurosymbolic solvers for logical reasoning. 531

Limitations 532

Our work is among the first ones which attempts to 533

convert natural language reasoning problems holis- 534

tically to an equivalent logical representation in 535
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First Order Logic. The primary limitations of the536

work is as follows.537

1) At various stages of dataset creation, we depend538

on the predicted logical label. However, it is not539

guaranteed that if the logical label is correct, the540

program will also be correct. While we attempt541

to evaluate the semantic content, this is clearly an542

open problem and requires further exploration.543

2) We only explore English-FOL as a represen-544

tative natural-formal language pair combinations.545

Provided the current failure modes of LLMs, it is546

probable that parsing errors will be higher as we547

change to even low-resource formal languages or548

low-resource natural language. Many low-resource549

formal languages have been shown to be useful550

such as LEAN for mathematical theorem proving551

(was used for GPT-4’s math olympiad work). One552

can possibly adopt our framework for generalizing553

to such languages as well.554
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A.1 Predicate generation through code 732

prompting 733

Evaluation metric LLama3 GPT3.5

Direct comparison 0.3925 0.4355
Similarity Pairing 0.7800 0.7766

Table 9

Inspired from direct code generation abilities of 734

text+code LLMs (Puerto et al., 2024), we aim to 735

elicit better reasoning abilities of these LLMs by 736

generating Python-like boolean functions. These 737

Python-like functions are equivalents of predicates 738

in FOL. Using the same predicates provided in 739

premises-FOL, we prompt the model to generate 740

Python-like boolean functions. Further, we add 741

comments to provide models with context that is 742

proven to generate better Python code. We eval- 743

uate the predicates generated by comparing these 744

with the predicates present in premises-FOL in the 745

following ways: (i) Direct comparison: We take 746
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the set-wise intersection of the two. (ii) Similar-747

ity Pairing: Since each of the predicate need not748

be present in the generated code, we find pairwise749

correlations of the generated predicates with the750

gold predicates. We consider the two predicates to751

be similar if one is a substring of another. These752

results of this experiment are presentine753
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