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Abstract

Logical reasoning is a key task for artificial in-
telligence due to it’s role in major downstream
tasks such as Question Answering, Summariza-
tion. Recent methods in improving the rea-
soning ability of LL.Ms fall short in correctly
converting a natural language reasoning prob-
lem to an equivalent logical formulation, which
hinders the framework’s overall ability to rea-
son. Towards this, we propose to use finetuning
on a preference optimization dataset to learn
to parse and represent a natural language prob-
lem as a whole to a consistent logical program
by 1) introducing a new supervised and pref-
erence optimization dataset (LOGICPO), and
2) adopting popular techniques such as Direct
Preference Optimization (DPO), Kahneman-
Tversky optimization (KTO) to finetune open-
source LLMs. Our best model with PHI-3.5
consistently outperforms GPT-3.5-TURBO’s
(8-shot) by producing 10% more logically cor-
rect and with 14% less syntax errors. Through
the framework and our improved evaluation
metrics, we offer a promising direction in im-
proving the logical reasoning of LLMs by bet-
ter representing them in their logical formula-
tions.

1 Introduction

Recent state-of-the-art pipelines for Logical Rea-
soning tasks show a marked shift from having
Large Language Models (LLMs) generate solu-
tions directly. Most frameworks first translate the
problem into a formal language using an LLM and
then use a corresponding logical engine (such as
a theorem prover) to solve reasoning tasks (Pan
et al., 2023; Ye et al., 2023; Olausson et al., 2023).
For example, Logic-LM (Pan et al., 2023) demon-
strates how tasks can be converted into first-order
logic, satisfiability (SAT/SMT), or constraint sat-
isfaction problems depending on their types, and
solved using publicly available engines. However,
the efficiency of these methods are limited due to

the reliance on the ability of pretrained LLMs to
correctly translate the natural language reasoning
problem to a consistent logical program. These
logical languages are often low-resource compared
to coding languages such as Python, and therefore
(possibly) less prevalent in pretraining data.

In this work, we therefore focus solely on ana-
lyzing and then improving the parsing of a natu-
ral language-based reasoning problem (including
a context and a query) consistently to First Order
Logic (FOL) problem. We choose FOL as the tar-
get language, as it is a widely adopted logical lan-
guage with broad expressivity, and one can utilize
available algorithms to convert FOL programs to
other equivalent languages (SAT, SMT), as neces-
sary. We use two publicly available logical reason-
ing datasets (with available FOL translations) for
benchmarking. First, we analyze the failure modes
of open and closed-source LLMs through a com-
prehensive study (varying prompting strategies).
We explore whether utilizing other (more popular)
language (such as Python) as an intermediate step
and post-process it to generate FOL problems may
help. We also observe, contemporary efforts in im-
proving FOL translations primarily target sentence
wise translation (Yang et al., 2024), which does
not take predicate level consistency into account
— for example, Tab. 1 shows how the last sentence
is translated into SAT2016(.) predicate, that does
not match SAT(.) predicate used elsewhere.

We observe various syntactic, logical and se-
mantic errors in the FOL programs produced using
GPT3.5-TURBO, Llama-3-8B. We use a set of
natural language problems (a story S) from FO-
LIO, consisting of a context, query and a logical
label. Utilizing a prompt and varying number of
in-context examples, we ask an LLM to generate an
multiple output FOL story (F'S) for an input story.
Using Prover9, we obtain the logical label from the
generated FOL story (F'S). Based on whether the
logical labels match with the original groundtruth



label or errors from Prover9!, we create the super-
vised finetuning and the preference optimization
(LoaGIicPO) dataset. Furthermore, we employ vari-
ous preference optimization methods (PPO, DPO
and KTO) and combine them with open-source
large language models to observe how their pars-
ing errors reduce. Lastly, we analyze what errors
remain difficult to reduce even after employing our
dataset and training methodologies. In summary,
our contributions are three-fold:

* First, we evaluate baseline popular open and
closed-source LLMs such as Llama, GPT3.5
in their capabilities of generating FOLs from
natural language context and query. We ex-
tensively benchmark the effect of increasing
number of shots, using intermediate represen-
tation; and provide an analysis of the errors
the models make.

* We introduce a preference optimization
dataset (LOGICPO) where the input is textual
context and query and the output is an FOL
program, capturing various perturbations syn-
thetically to curb errors at a logical, syntactic
and semantic level.

* We experiment with various preference op-
timization algorithms on open-source LLMs
such as Llama-3, Gemma-3, Phi-3.5 and Flan-
T5. We establish the efficacy of our LOGICPO
dataset, in producing consistent FOL program
from natural language context and query.

2 Related Work

In NLP, prior to Transformers-based end-to-end
systems, the need for Semantic Parsers dominated
various downstream applications, such as Question-
Answering, and Recognizing Textual Entailment
(Gu et al., 2022; Beltagy et al., 2014; Deng et al.,
2022). The task of learning to parse involved:
1) converting natural language to expert-defined
novel semantic representations (Banarescu et al.,
2013; Ge and Mooney, 2005; Sharma et al., 2015;
Chanin, 2023) or 2) translating text to sentences in
well-established programming languages such as
(SQL, First Order Logic). Several solutions around
knowledge-based question answering (Kim et al.,
2020; Wu et al., 2016; Liu et al., 2024) attempted to
convert the natural language question to structured
SQL queries (or SPARQL queries) against known
schemas. However, such models demanded a large
number of parallel data points (source sentence
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and target parse), and did not explore context-level
inter-sentence consistency of such parsing.

In recent times, various researchers have cast
doubt on whether LLMs actually reason (Nikankin
et al., 2024; Lu et al., 2024). As a remedy, a se-
ries of efforts (Olausson et al., 2023; Pan et al.,
2023; Ye et al., 2023) have shown that LLMs can
be used as few-shot semantic parsers to parse into
known programming languages to represent a rea-
soning problem; and such programs can be exe-
cuted to find the correct answer to the problem.
While LLMs show surprising ability to parse text
questions to languages such as Python using in-
context learning, their performance for less popular
formal languages (such as First-order Logic) are
comparatively worse. Researchers resort to multi-
ple tricks, such as self-refinement (Olausson et al.,
2023) using error(s) signals from Automated The-
orem Provers (such as Z3, Prover9) as additional
input. These are quite cost-extensive with multiple
LLM calls, and do not greatly improve the conver-
sion accuracy. There have been some efforts using
small Language Models (such as TS) (Lu et al.,
2022) to learn to parse Natural Language sentences
to FOL, most efforts concentrate on benchmarking
sentence level parsing, such as LOGICLLAMA
(Yang et al., 2024). The authors in LOGICLLAMA
utilize GPT-4 sentence-level NL-FOL pairs, fol-
lowed by filtering to create a data set and use su-
pervised fine-tuning to finetune a Llama model. A
recent non-peer reviewed paper introduces Proof-
FOL (Thatikonda et al., 2024), a high-quality FOL-
annotated subset of ProofWriter dataset using GPT-
40. While this dataset would have been somewhat
useful, neither the dataset or the trained models are
publicly available.

In contrast, our goal is to convert a natural lan-
guage reasoning problem as a whole to a consis-
tent FOL program. We introduce a preference
dataset, perform an extensive study utilzing super-
vised finetuning and many preference optimization
techniques on multiple open-source LLMs. To the
best of our knowledge, our work is the first to ex-
plore Preference Optimization techniques to train
open-source LLMs (such as Llama) to reduce syn-
actic, and logical errors in FOL parsing. We also
plan to release the new preference dataset, that can
enable new algorithms and new family of parsers.
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3 Learning Preference-Optimized NL to
FOL Engines

3.1 Natural Language to First-Order Logic
Conversion

The FOLIO dataset (Han et al., 2024) is an expert-
written dataset containing high-quality examples
requiring complex logical reasoning in FOL. The
dataset consists of two tasks: natural language
reasoning with FOL and NL to FOL translation.
We are interested in the second task of NL to
FOL translation in this work. The goal of this
task is to translate an NL story S to a FOL story
F'S. The NL story S contains a series of con-
text sentences pi, p2, . . . pp, and a conclusion sen-
tence pn+1. The FOL story F'S consists of context
formulas f1, fo,... f,, and a conclusion sentence
fn+1. The translation task requires each p; in S to
be logically and semantically equivalent to its cor-
responding FOL formula f; in F'S. Moreover, the
logical values for the conclusions p,+1 and f,,+1
should be the same based on the corresponding
context S and F'S. We show an example of the
task in Table 1.

3.2 Automated Data Generation

Let’s denote X to be an instance of NL to FOL
conversion data consisting of an NL story S and
a FOL story F'S. Let’s also consider y to be the
logical label of the conclusion sentence/formula
constrained on the contextual sentences/formulas.
The logical label y always belongs to the set of
{True, False, Uncertain}.

Setup We first follow the following pipeline to
generate a collection of output FOL stories F'S
from given input NL stories S:

* Consider n different examples of X from FOLIO
to use as in-context demonstrations.

* Define an appropriate natural language prompted
instruction for NL to FOL conversion. Addition-
ally use the n demonstrations in context and ask
an LLM to generate the output FOL story F'S for
an input NL story S.

 Consider the logical label of S to be y,,;. Pre-
dict the logical label 34 of the generated story
F'S using a standalone logical engine such as
Prover9 (McCune, 2005-2010). Note that the
generated logical label 3¢, could be either from

{True, False, Uncertain} or could also be a { Er-
ror} in case the generated F'S cannot compile in
the logical engine for any reason.

Dataset for Supervised Fine-Tuning. We con-
struct the supervised fine-tuning (SFT) data by con-
sidering instances for which the generated FOL log-
ical label 77, matches the given natural language
logical label y,,;. These SFT instances consist of S
as the input and F'S as the output, as we can con-
sider F'S to be an equivalent version of S because
they both lead to the same logical label.

Dataset for Preference Optimization. Creating
preference optimization data requires a preferred
and a rejected output sample for the same input.
We consider the generated F'S for which the FOL
logical label 77, matches the natural language log-
ical label y,,; as the preferred sample. On the other
hand, F'S for which the label g o1 does not match
Ynt can be considered as the rejected sample. In this
case, the preferred and the rejected FOL samples
can be considered as the clean and noisy transla-
tions of the natural language story, respectively.

Summary of Generated Datasets We denote the
SFT dataset as D, ¢; and the preference dataset as
Dyyep. The summary of the datasets is shown in
Table 2.

The input NL stories are drawn from the train-
ing set of FOLIO. We used n = 2,4,8 in-
context examples to generate the output FOL sto-
ries, as mentioned earlier in Section 3.2. We
used the instruction-tuned 8B versions of Llama
3 (Grattafiori et al., 2024), Llama 3.1 (Grattafiori
et al., 2024), and the 7B version of Mistral 0.2
(Jiang et al., 2023) as the language models to gener-
ate the samples at temperatures of 0.25 and 0.6. We
follow this generation setup with multiple LLMs
at different temperatures with different in-context
LLMs to increase the diversity of the generated
outputs. In total, we generate 7 output samples
for each input NL story in FOLIO. From there, we
randomly subsample and select outputs F'S to cre-
ate Dy and Dy, f, following the same/different
logical label matching strategy, as specified in Sec-
tion 3.2.

3.3 Language Models as NL to FOL Engines

Our objective is to design language models that can
convert an NL story S to its corresponding logically
consistent FOL story F'S. We hypothesize that our
automatically generated datasets D,y and D,y s



Premises:

FOLIO

Premises-FOL:
Instance

2. Test(sat, readiness)

Label: [True]

1. The SAT test is wholly owned and developed by the College Board.

2. The SAT test is intended to assess student’s readiness for college.

3. The SAT was originally designed not to be aligned with high school curricula.
4. Several adjustments were made for the version of the SAT introduced in 2016
to reflect more closely on what students learn in high school.

1. Own(sat, college Board) A ~Own(sat, others)
3. Vz(Year(zx) A Before2016(x) = —AlignHighSchool(z))

4. z(Year(z) A Since2016(x) A AlignHighSchool(x))
Conclusion: Since 2016 the SAT has been better aligned with high school curricula.

Premises-FOL:

Dsy¢ Output,
Dprey Chosen

Label: [True]

1. Va.(SAT (x) = College BoardOwns(z))
2.Vx.(SAT (z) = CollegeReady(z))
3. Va.(SAT (z) A —~Aligned(z))

4. Vx.(SAT (x) A IntroducedIn2016(x) = Aligned(x))
Conclusion-FOL: Vz.(IntroducedIn2016(z) = Aligned(x))

Premises-FOL:

Dypres Rejected

Label: [False]

1. Va.(SAT (x) = College Board(x))

2.Vx.(SAT (z) = CollegeReady(z))

3. Va.(SAT (z) A ~AlignedWith HighSchool(z))

4. Vz.(SAT2016(x) = AlignedWithHighSchool(x))
Conclusion-FOL: Vx.(Since2016(x) A AlignedWith HighSchool(x))

Table 1: An example from the FOLIO dataset and its corresponding versions in our D,y and Dy, datasets. The Label
information in D, f; and D5 is shown for completeness. It is not used during training or inference of our models.

Logical Label | FOLIO  D.f;  Dpres
True 388 5,001 3,751
False 286 3,169 2,600
Uncertain 330 8,792 3,649
Total | 1,004 16,962 10,000

Table 2: Number of instances in FOLIO, D, and Dy,
across the different logical labels. The logical label correspond
to the label of the preferred sample for Dpy.c .

would be useful in teaching language models to
become effective NL to FOL conversion engines.

Firstly, D, 4 provides parallel NL to FOL conver-
sion data over all the three logical labels of {7rue,
False, Uncertain}. This signal would help language
models to observe diverse stories with conclusive
and inconclusive scenarios. Secondly, Dp,..s pro-
vides signals of what is and isn’t the correct FOL
conversion of an NL story. The additional signal
of how not to convert NL to FOL stories comes
from the rejected samples. This would help in
teaching language models to avoid issues like syn-
tax errors, which are common in non-fine-tuned
models (). The rejected samples also work as hard
negatives, as the corresponding FOL story is still

closely related to the NL story while being logically
inconsistent.

We follow the strategy of i) fine-tuning the lan-
guage model with D, ¢; and then ii) fine-tuning with
Dy using commonly used preference optimiza-
tion algorithms such as DPO and KTO (Ethayarajh
et al., 2024). We fine-tune all the parameters of
the language model in each of the two stages. We
empirically show that this is a useful strategy in
making language models highly effective NL to
FOL conversion engines. We also analyze the re-
sults across various dimensions to find interesting
insights (Section 4).

4 Experiments

In this section, we present our experimental setup,
datasets, and the baseline models used to compare
our parsers. We also give a detailed study of the
current parsing abilities of various SOTA LLMs.

4.1 Datasets

Our experiments use tasks from three exist-
ing datasets: FOLIO (Han et al., 2024),
ProofWriter (Tafjord et al., 2021) and PrOn-
toQA (Saparov and He, 2023), all of which have
been shown to be challenging for off-the-shelf



You are an expert in working with

first-order logic (FOL) problems. You will
be given a context with a set of premise
... generate the FOL expressions for the
following example? Do not generate any

Lawton Park is a neighbourhood in Seattle.
All citizens of Lawton Park use the zip
code 98199.

Tom is a citizen of Lawton Park.
Daniel uses the zip code 98199.
</PREMISES>
<CONCLUSION>

Tom uses the zip code 98199.
</CONCLUSION>

| Input

explanations. [ Prompt
FOL: UseZipCode98199(Tom
p (Tom) Troe
Large LLMs TEXT: Lawton Park is a.neighbo.urhood in Seattle.
Example 1 Example 2 LLama, FOL: iawrjtonPgrk isa Nelghbo:rhood.
(S, FS) (S, FS) |, Concat Mistral, etc ii?;;fe isa City. LawntonPark in
\ TEXT: All citizens of Lawton Park use the zip
| In context examples N " "
FOL: ZipCode(Tom, "98199") [Tor
<PREMISES> z

Logic Theorem
Prover (Prover9)

TEXT: Lawton Park is a neighbourhood in Seattle.
FOL:
NeighbourhoodInSeattle(LawtonPark)
TEXT: All citizens of Lawton Park use the zip
code 98199.

- (LN}

TEXT: Lawton Park is a neighbourhood in
Seattle.

FOL: Neighborhood(LawtonPark,
Seattle)

TEXT: All citizens of Lawton Park use the zip

FOL: UsezZipCode(Tom, 9819)

| False

Figure 1: The Data creation pipeline: We use natural language stories from FOLIO, use different settings of LLMs
to create various first order logic parses. We then use an off-the-shelf theorem prover (such as Prover9) to observe
the predicted logical label of the conclusion. If the predicted label matches the original, we include the sample in
Dsyt, Dprey (chosen) and if it does not match, we include it as D,y rejected sample.

LLMs (Olausson et al., 2023). The FOLIO dataset
is an expert-written dataset containing high-quality
examples requiring complex logical reasoning in
FOL. As mentioned in section Section 3.1, we fo-
cus on the NL to FOL translation task. We use its
validation set for our evaluation, containing 204
examples. Meanwhile, ProofWriter is a syntheti-
cally generated dataset for logical reasoning over
natural language. We use the sampled split of 360
data points provided by Olausson et al. (2023) for
our experiments. The data points are uniformly
distributed across the three labels (True, False, Un-
certain) and maximum question depth (ranging
from 0-5; 50 samples each). PrOntoQA is an-
other synthetically generated question-answering
dataset, converted from a synthetic world model
represented in First Order Logic. It contains triplets
of context, query, and a label. We use the validation
split that has 500 instances across the (True, False)
labels. We change the objective of the dataset from
question answering to NL-FOL conversion task.

Metrics. We follow (Olausson et al., 2023) to
report logical correctness, incorrectness and syn-
tax errors. Deviating from the k-majority voting
practice, for each NL story, we generate 10 outputs.
For each output FOL story, the Prover9 provides a
predicted logical label (or generates syntax error).

For correctness, we report the average number of
matches to the original label. For incorrectness,
we report the average number of times the output
label is incorrect. Similar goes for syntax error,
the average number of times the output is syntacti-
cally incorrect. We additionally report the overall
weighted F1 and the F1 score over the True labels.

4.2 Baselines

We compare our approach primarily with two base-
lines, i.e., the GPT3.5 and GPT4 model variants
reported by LINC (Olausson et al., 2023). We
refer to them as GPT3.5-LINC and GPT4-LINC re-
spectively. We utilize the outputs for these models
provided by (Olausson et al., 2023), to avoid costly
experiments of GPT4-LINC. Finally, we evaluate
off-the-shelf LLMs in their abilities to generate
FOL stories by providing in-context examples.

Few-shot Variants. Prior to fine-tuning, we eval-
uate the models’ parsing abilities by using in-
context examples in a few-shot setting. We use the
in-context examples from Olausson et al. (2023)
in 1, 2, 4 and 8-shot generation tasks. These in-
context examples are excerpt from the FOLIO
dataset. Thus, the experiments on FOLIO can
be considered as in-distribution task. Meanwhile,
ProofWriter dataset is significantly different and



. Logically Syntax F1
Model Setting Correct (1) Incorrect Error () | Overall () True Label (1)
1-shot 33.30 15.44 51.26 40.49 22.71
2-shot 45.82 23.24 30.93 38.67 52.32
GPT-3.5 - LINC 4-shot 5181 2445 2374 4550 59.10
8-shot 51.31 24.78 23.90 45.63 53.29
GPT-4 - LINC 8-shot ‘ 64.01 23.08 12.91 ‘ 59.89 67.00
2-Shot 50.15 27.99 21.86 55.43 54.11
Llama-3 8B Instruct SFT 54.26 34.26 11.47 56.73 58.84
SFT + DPO 50.98 29.51 19.51 55.80 56.47
SFT + KTO 55.15 30.98 13.87 59.56 61.74
SFT 49.71 34.80 15.49 53.12 54.51
Gemma-2 2B Instruct SFT + DPO 34.95 21.23 43.82 44.09 42.30
SFT + KTO 50.93 29.80 19.26 56.02 54.39
SFT 58.43 31.08 10.49 61.47 62.03
Phi-3.5 Mini Instruct (4B)  SFT + DPO 61.13 31.08 7.79 63.59 60.73
SFT + KTO 61.52 29.41 9.07 64.43 63.76

Table 3: Results on NL to FOL conversion on the FOLIO validation dataset. The results are an average of 10 runs.

. Logically Syntax F1
Model Setting Correct (1) Incorrect Error () | Overall (1) True Label (1)
SFT 46.14 42.39 11.47 48.04 38.80
Llama-3 8B Instruct SFT + DPO 45.31 35.47 19.22 50.16 45.55
SFT + KTO 48.58 38.06 13.36 51.58 44.12
SFT 46.78 32.56 20.67 51.74 4591
Gemma-2 2B Instruct SFT + DPO 39.97 22.50 37.53 48.69 42.12
SFT + KTO 48.86 32.94 18.19 53.65 49.47
SFT 61.11 30.0 8.89 63.49 54.22
Phi-3.5 Mini Instruct (4B)  SFT + DPO 55.00 36.00 9.00 56.44 46.04
SFT + KTO 65.28 27.89 6.83 67.43 58.96

Table 4: Results on NL to FOL conversion on the ProofWriter dataset. These models are trained on the FOLIO
dataset. The Proof Writer dataset is only used for evaluation. The results are an average of 10 runs.

. Logically Syntax F1
Model Setting Correct (1) Incorrect Error () | Overall (1) True Label (1)
SFT 27.2 65.0 7.8 41.79 45.98
Llama-3 8B Instruct SFT + DPO 45.2 48.4 6.4 61.48 62.50
SFT + KTO 47.4 45.4 7.2 63.18 64.14
SFT 49.2 44.6 6.2 64.14 61.77
Gemma-2 2B Instruct SFT + DPO 40.4 294 30.2 56.19 55.53
SFT + KTO 56.4 334 10.2 70.23 68.45
SFT 87.8 11.6 0.6 92.81 92.65
Phi-3.5 Mini Instruct (4B)  SFT + DPO 80.2 18.6 1.2 88.32 87.37
SFT + KTO 89.0 10.4 0.6 93.68 93.93

Table 5: Results on NL to FOL conversion on the ProntoQA validation dataset. These models are trained on the
FOLIO dataset. The PronotQA dataset is only used for evaluation. The results are an average of 10 runs.

thus requires generalizing out-of-distribution.

4.3 Fine-tuned Variants of LLMs

We use the following models for our experiments:

Llama-3 (Grattafiori et al., 2024), Gemma-2 (Team
et al., 2024), Phi 3.5 (Abdin et al., 2024) We follow
a two-stage fine-tuning approach: (i) fine-tuning
these models using Dgpr dataset for SFT task and

then (ii) fine-tuning them with our Dp,.. dataset
using preference optimization methods such as
DPO (Rafailov et al., 2024) and KTO (Ethayarajh
et al., 2024).

4.4 Main Results

FOLIO From Table 3 & 4, we see almost all of
our SFT models perform close-to and better than



the best GPT3.5 baselines. Overall, the Phi3.5 Mini
SFT version outperforms the other SFT models by
rest of the models by atleast 4.17 %, and GPT-3.5
LINC 8-shot by 7% in the logically correct metric.
The syntax error of Phi3.5 Mini SFT is also 13%
less than the best GPT-3.5 LINC model and 2%
less than the GPT-4 LINC model.

Preference optimization with KTO also leads to
further improvement in performance. We reach
61.52% logical accuracy and 64.43% overall F1 in
FOLIO. In general, we observe SFT + KTO always
leads to improvement in performance compared to
SFT, which is not the case for SFT + DPO vs SFT.

ProofWriter and ProntoQA We evaluate the
models trained on the FOLIO dataset on the
ProofWriter and ProntoQA dataset. We see a
similar trend in results for these other two eval-
uation datasets, where SFT + KTO version of
Phi3.5 Mini reaches the highest performance. We
reach 65.28% and 89.0% logical correctness in
ProofWriter and ProntoQA dataset, respectively.
Llama and Gemma models show results in similar
range for the Proof Writer dataset. However, for
ProntoQA, the best version of Gemma significantly
outperform the best LLama version. Overall, our
dual fine-tuning approach of SFT and preference
optimization shows great promise towards accurate
conversion of NL problems into FOL.

S Analysis and Ablation Studies

5.1 Evaluating Semantic Content of
Translated FOLs

We follow an autoencoder approach, converting the
premise stories to FOLs and converting them back
to textual paragraphs for evaluation. We evaluate
the FOLs generated by comparing the sentence em-
beddings of the FOL-generated paragraph and the
input premise paragraphs by cosine similarity. Fur-
ther, the similarities between the generated NLs
and premise paragraphs show the information car-
ried while encoding to and decoding from the FOL
representations. We follow different levels of eval-
uation to make space for jumbled NLs since the
premise story need not follow a particular order of
sentences. Thus, we evaluate the generated NLs
against the premise paragraph in three methods: (i)
Firstly, we directly compare the paragraph level
embeddings of the premise paragraph and the gen-
erated NL. (ii) We allow for jumbling and take the
average pair-wise similarity of the two. (iii) Lastly,

Evaluation metric LLamMA3 GPT3.5
NL sentence mean similarity 54.83 55.85
NL sentence max similarity 84.09 84.67
NL paragraph similarity 89.13 89.22
FOL sentence mean similarity 54.83 54.57
FOL sentence max similarity 84.09 79.35
FOL paragraph similarity 86.22 87.40

Table 6: Evaluating semantic content of translated FOLs
for LLAMA3 and GPT3.5 through an autoencoder ap-
proach

we allow for jumbling while taking the average
of maximum sentence similarity between pairs of
sentences between the two.

Following this approach, we find that both
LrLAMA3 and GPT3.5 perform similarly with
a paragraph average similarity of 89.13% and
89.26 % respectively. Further results for each of the
evaluation methods can be found in table Table 6.

5.2 Qualitative analysis

From the results reported in Tab.s 3 & 4, it is quite
evident that our fine-tuned models are significantly
better in all evaluation criteria. We further explore
How the generations from fine-tuned models differ
from other neurosymbolic models? We focus on
comparing Llama-3 8b instruct+SFT+KTO model
vs. Phi-3.5 Mini+SFT+KTO as their performance
exceeds other models.

Qualitatively, we find that both the models share
few similarities and dissimilarities in their gener-
ations and highlight some key findings from both.
We also compare the model errors with the different
failure modes for Linc reported in (Olausson et al.,
2023). Using the same notation L1, L2 and L3
corresponding to implicit information loss, explicit
information mistakes and syntax errors correspond-

ingly.

Similarity S;: Lack of consistent usage of
predicates Often, the models use different pred-
icate to convey the same meaning in subsequent
sentences leading to loss of information to Prover9.
Nevertheless, finetuned LLama-3 suffers less from
this type of errors since we see more consistent
usage of predicates in LLama. For example, in the
snippet below:

Premise 1: Susan flies to LGA airport.

FOL: FliesTo(Susan, LGAAirport)

Premise 2: The departure and arrival can not be the
same airport.

FOL_Llama: —Fqual Airports(Daniel, Susan)



Small Context

Medium Context Large Context

Model Setting Overall Acc. (1) True F1 | Overall Acc. (1) True F1 | Overall Acc. (1) True F1
SFT 59.76 62.93 55.07 59.96 19.00 21.05
Llama-3 8B Instruct SFT + DPO 65.00 68.67 48.95 55.77 21.00 17.54
SFT + KTO 66.19 71.19 55.00 61.64 25.00 2222
SFT 47.86 50.25 50.59 55.96 44.00 46.43
Gemma-2 2B Instruct  SFT + DPO 44.29 42.00 32.17 41.60 38.00 52.46
SFT + KTO 57.38 57.02 49.61 53.66 44.00 55.07
SFT 58.10 63.77 59.08 60.90 50.00 72.73
Phi-3.5 Mini Instruct ~ SFT + DPO 58.33 60.75 61.25 59.48 71.00 77.14
SFT + KTO 58.33 63.30 62.96 64.74 53.00 50.79

Table 7: Analysis of the performance of various models across different input context sizes in the validation set of FOLIO. We
group the instances in small context (1-2 sentences), medium context (3-5 sentences) and large context (more than 5 sentences).
The Overall Acc. column corresponds to the logical correctness metric across the full validation set.

FOL_Phi: =(DepartFrom(z) A ArriveAt(z))
TEXT: John flies from LGA airport.

FOL: liesFrom(John, LG AAirport)

TEXT: Susan flies from LGA airport.

FOL: liesFrom(Susan, LGAAirport)

Similarity S>: Both models suffer with complex
logic As expected, both the models fare poorly
with large sentences with more complex logic. In
the example below, both the models suffer in the
same way confusing neither-nor logic:

TEXT: If Rock is neither a fly nor a bird, then
Rock neither flies nor breathes.

FOL: —((Fly(Rock) V Bird(Rock))
(=Fly(Rock) N —Breathes(Rock)))

=

Similarity S3: Problem with Uncertain labels
We find the accuracies related to Uncertain label
highly unreliable due to the high number of ways
in which Uncertain label can be reached. We have
found the following methods the LLM models uti-
lize in order to unexpectedly reach the Uncertain
label. The various ways are as follows:
* The LLM has an inconsistent usage of predi-
cates, like 5.
* Incorrect translation of a single FOL in the
story causing loss of information.

Analysis of NL to FOL Conversion across In-
put Lengths We analyze how well the fine-tuned
models convert NL to FOL stories across different
input context sizes in Section 5.1. We group the
FOLIO dataset into three categories — instances
with small (1-2 sentences), medium (3-5 sentences)
and large context (more than 5 sentences). Llama
and Gemma models shows monotonically decreas-
ing performance as we increase the context length.
Interestingly, the Phi models do almost similarly in
the small and medium context instances, which is
not the case for the other two models.

Model Ll L2 13 . vrong
Translation

Llama-3 8B Instruct 10 15 14 9

Phi-3.5 Mini Instruct | 13 20 14 1

Table 8: Number of instances in FOLIO, with errors corre-
sponding to errors from LINC. L1: Implicit Information Loss,
L2: Explicit information errors, L3: Syntax Errors

Error modes of LINC According to (Olausson
et al., 2023), there are mainly 3 modes of failure for
neurosymbolic solvers like LINC. Thus, we map
the failure methods for our best models LLAMA-3
and PHI3 to investigate whether preference opti-
mization helps alleviate these issues. We note our
results in Table 8. Thus, we can deduce that models
still suffer while representing explicitly mentioned
information due to the choices of predicates, paving
way for future improvements.

6 Conclusion

In this work, we present an efficient method for
improving logical reasoning of LLMs through pref-
erence optimization on a synthetically generated
dataset. Our experiments show that preference
optimization on this dataset leads to significant
performance gains in all of our evaluation criteria.
Furthermore, carrying out a qualitative and quan-
titative analysis of our models shows the various
advantages and shortcomings of our approach. This
work thus shows promise in the field of LLMs as
parsers through preference optimization. Paving
the way for future work on continual fine-tuning of
neurosymbolic solvers for logical reasoning.

Limitations

Our work is among the first ones which attempts to
convert natural language reasoning problems holis-
tically to an equivalent logical representation in



First Order Logic. The primary limitations of the
work is as follows.

1) At various stages of dataset creation, we depend
on the predicted logical label. However, it is not
guaranteed that if the logical label is correct, the
program will also be correct. While we attempt
to evaluate the semantic content, this is clearly an
open problem and requires further exploration.

2) We only explore English-FOL as a represen-
tative natural-formal language pair combinations.
Provided the current failure modes of LLMs, it is
probable that parsing errors will be higher as we
change to even low-resource formal languages or
low-resource natural language. Many low-resource
formal languages have been shown to be useful
such as LEAN for mathematical theorem proving
(was used for GPT-4’s math olympiad work). One
can possibly adopt our framework for generalizing
to such languages as well.
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A Appendix

A.1 Predicate generation through code

prompting
Evaluation metric = LLama3  GPT3.5
Direct comparison  0.3925 0.4355
Similarity Pairing  0.7800 0.7766
Table 9

Inspired from direct code generation abilities of
text+code LLMs (Puerto et al., 2024), we aim to
elicit better reasoning abilities of these LLMs by
generating Python-like boolean functions. These
Python-like functions are equivalents of predicates
in FOL. Using the same predicates provided in
premises-FOL, we prompt the model to generate
Python-like boolean functions. Further, we add
comments to provide models with context that is
proven to generate better Python code. We eval-
uate the predicates generated by comparing these
with the predicates present in premises-FOL in the
following ways: (i) Direct comparison: We take
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the set-wise intersection of the two. (ii) Similar-
ity Pairing: Since each of the predicate need not
be present in the generated code, we find pairwise
correlations of the generated predicates with the
gold predicates. We consider the two predicates to
be similar if one is a substring of another. These
results of this experiment are presentine
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