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Abstract

Teaching large language models (LLMs) to
be faithful in the provided context is crucial
for building reliable information-seeking sys-
tems. Thus, we introduce a systematic frame-
work, CANOE, to reduce faithfulness halluci-
nations of LLMs in both short-form and long-
form generation tasks without human annota-
tions. Specifically, we first synthesize short-
form question-answering (QA) data with four
diverse tasks to construct high-quality and eas-
ily verifiable training data without human anno-
tation. Meanwhile, we propose Dual-GRPO, a
rule-based reinforcement learning method that
includes three tailored rule-based rewards de-
rived from synthesized short-form QA data,
while simultaneously optimizing both short-
form and long-form response generation. Dual-
GRPO eliminates the need to manually label
preference data to train reward models and
avoids over-optimizing short-form generation
when relying only on the synthesized short-
form QA data. Experimental results show that
CANOE greatly improves the faithfulness of
LLMs across 11 different downstream tasks,
even outperforming the most advanced LLMs,
e.g., GPT-4o and OpenAI o1.1

1 Introduction

Recent progress in large language models (LLMs)
has revolutionized text generation with their re-
markable capabilities (OpenAI, 2023; DeepSeek-
AI et al., 2025b). LLMs are widely used to gener-
ate fluent and coherent text responses based on the
provided contextual information, e.g., document
question answering (QA) (Wang et al., 2024) and
text summarization (Zhang et al., 2024). However,
LLMs often generate responses that are not faithful
or grounded in the input context, i.e., faithfulness
hallucinations (Ji et al., 2023; Huang et al., 2024;

* Equal Contribution.
1 The data, code, and models will be available at https:

//github.com/S1s-Z/CANOE.

Model Size (# Parameters)

A
vg
. 
S
co
re
on
 1
1
 D
ow
n
st
re
a
m
 T
a
sk
s 
(%
) 

70B7B 14B 32B 671B

45

50

55

60

65

70

LLaMA3-8B
-Instruct

GPT-4o

DeepSeek-V3

Claude 3.7 
Sonnet

Ours-LLaMA3
-8B-Instruct

N/A

DeepSeek-R1

o1

75

LLaMA3-70B
-Instruct

Ours-Qwen2.5
-7B-Instruct

Ours-Qwen2.5
-14B-Instruct

Qwen2.5-7B
-Instruct

Qwen2.5-14B
-Instruct

Qwen2.5-32B
-Instruct

Qwen2.5-72B
-Instruct

Optimal Performance/Params Ratio

SOTA 
LLMs

Vanilla LLMs

Our CANOE

Figure 1: Average score on 11 downstream tasks vs
model size. With only 7B parameters, CANOE already
exceeds state-of-the-art LLMs like GPT-4o and o1.

Si et al., 2025), which can undermine their trust-
worthiness. Maintaining faithfulness to the context
is especially important in fields where accurate in-
formation transfer is essential (Duong et al., 2025).
For instance, in legal summarization (Dong et al.,
2025), the text output must reflect the content of le-
gal documents without introducing any distortions.

However, improving the faithfulness of LLMs
faces three key challenges. Specifically, (1) Faith-
fulness is difficult to improve by simply scaling
model parameters: Previous works (Xie et al.,
2024; Li et al., 2025) find that LLMs may overly
rely on internal knowledge learned from exten-
sive pre-training data while disregarding provided
contexts, i.e., the knowledge conflicts (Xu et al.,
2024b). When the model parameters increase and
internal knowledge grows, this may lead to greater
knowledge conflicts and further lower the faith-
fulness of LLMs (Ming et al., 2025). Thus, it
is necessary to explore the tailored post-training
method to improve the faithfulness instead of sim-
ply scaling the model parameters. (2) Faithful-
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ness is challenging to consistently boost across
different downstream tasks: Recently, several
methods (Li et al., 2024; Duong et al., 2025) have
been proposed to improve the faithfulness of LLMs
for different tasks. For example, Bi et al. (2024)
aligns LLMs through DPO (Rafailov et al., 2023)
with constructed faithful and unfaithful short-form
completions, improving the performance of LLMs
on short-form QA tasks. However, these recent
methods are designed for specific tasks, so they fail
to consistently improve the faithfulness of LLMs
across various tasks, like text summarization and
multiple-choice questions, because these tasks can
vary greatly. (3) Data used to enhance faithful-
ness is hard to scale: This issue is especially prob-
lematic with data used to improve the faithfulness
in long-form generation tasks. Unlike tasks with
clear answers, e.g., short-form fact-seeking QA
tasks (Wei et al., 2024), there is no standard way to
ensure data quality in long-form generation tasks
(Duong et al., 2025). Thus, data is typically anno-
tated by humans (Kryscinski et al., 2020; Zhu et al.,
2023), which is costly and not scalable.

To tackle these challenges, we propose a sys-
tematic post-training method called CANOE. The
main idea behind CANOE is to synthesize easily
verifiable short-form QA data and then leverage re-
inforcement learning (RL) with tailored rule-based
rewards to improve the faithfulness of LLMs in
both short-form and long-form generation tasks.
CANOE firstly introduces Dual-GRPO, a variant
of GRPO (Shao et al., 2024) that includes three
carefully tailored rule-based RL rewards derived
from synthesized short-form QA data, while op-
timizing both short-form and long-form response
generation. For the provided contextual informa-
tion and question, Dual-GRPO first prompts LLMs
to produce a reasoning process, followed by a long-
form answer composed of detailed and complete
sentences, and finally a concise short-form answer
in just a few words. In this way, we can assign
different rewards to long-form and short-form re-
sponses, optimizing both simultaneously. Note that
we assign accuracy rewards on generated short-
form responses since the short-form QA task en-
ables reliable rule-based verification of faithfulness.
To overcome the problem of the faithfulness of the
generated long-form responses being difficult to
evaluate via rule-based verification (Zheng et al.,
2025; OpenAI, 2025), we propose proxy rewards
to evaluate it implicitly. Specifically, we construct
the new input by replacing the given context with

the generated long-form answer, then feed it to the
LLMs to evaluate whether a long-form answer can
drive the LLMs toward the correct short-form an-
swer. If the generated long-form response enables
LLMs to generate the correct final answer, this in-
dicates that it remains context-faithful and contains
easy-to-understand sentences that answer the ques-
tion correctly. We also introduce format rewards
to ensure more structured outputs and contribute
to more stable training. To obtain the data used
for training without human annotation, we collect
head-relation-tail triples from the knowledge base,
apply the advanced GPT-4o (OpenAI, 2023) to syn-
thesize the question and contextual information,
and use the tail entity from the triple as the answer
to ensure the correctness. Moreover, we introduce
four diverse QA tasks to ensure the complexity and
diversity of the training data. Combined with the
rule-based Dual-GRPO and data synthesis, CANOE

can teach LLMs to remain context-faithful in both
short-form and long-form generation tasks without
relying on human annotations.

We evaluate the effectiveness of CANOE across
11 different downstream tasks, covering short-form
and long-form generation tasks. Results show that
CANOE significantly reduces faithfulness hallucina-
tions. Specifically, CANOE significantly improves
the overall score, e.g., 22.6% for Llama3-Instruct-
8B. Meanwhile, CANOE surpasses the most ad-
vanced LLMs (e.g., GPT-4o) in the overall score.
To the best of our knowledge, these results are un-
precedented for open-source models that do not
rely on additional human annotations.

2 Related Work

Recently, the demand for utilizing LLMs to gener-
ate coherent text responses based on the provided
contexts has continued to grow, particularly in text
summarization and retrieval-augmented generation
(RAG) scenarios. However, LLMs are often criti-
cized for generating outputs that deviate from the
provided contents, namely faithfulness hallucina-
tion (Li et al., 2022; Ji et al., 2023; Si et al., 2023;
Huang et al., 2024). Many approaches have been
proposed to improve the faithfulness of LLMs. The
first line of work focuses on the inference stage
of LLMs, such as designing prompts to encourage
context integration (Zhou et al., 2023), improving
context quality via explicit denoising (Xu et al.,
2024a), and context-aware decoding to amplify
contextual information (Shi et al., 2024). Although
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Figure 2: An overview of CANOE framework. CANOE first synthesizes easily verifiable short-form QA data and
then proposes the Dual-GRPO with designed rule-based rewards to improve the faithfulness of LLMs.

effective, these approaches primarily serve as a
compensatory way rather than enabling the model
to inherently learn to prevent generating unfaith-
ful responses. Therefore, many studies attempt to
apply post-training methods to improve the faith-
fulness. Bi et al. (2024) utilizes constructed faithful
and unfaithful short-form completions and applies
DPO to align LLMs to be context-faithful in short-
form QA tasks. Huang et al. (2025) trains LLMs
to discriminate between faithful and unfaithful re-
sponses in long-form QA tasks by unfaithful re-
sponse synthesis and contrastive tuning. Duong
et al. (2025) proposes a pipeline to generate a self-
supervised task-specific dataset and applies prefer-
ence training to enhance the faithfulness for a spe-
cial task. However, these methods struggle to con-
sistently improve the faithfulness of LLMs across
various tasks, as these methods are designed for
specific tasks. Thus, how to consistently improve
the faithfulness of LLMs on different downstream
tasks, including short-form and long-form genera-
tion tasks, still remains under-explored.

3 Methodology

In this section, we will detail our proposed frame-
work CANOE, which aims to teach LLMs to remain
faithful across different tasks without human an-
notation. Specifically, we first synthesize easily
verifiable short-form QA data and then propose the
Dual-GRPO with designed rule-based rewards to
improve the faithfulness of LLMs in both short-
form and long-form response generation. We start
with the introduction of the short-form data synthe-

sis process, then a brief overview of RL protocol,
and the tailored rule-based rewards used in the pro-
posed Dual-GRPO training. An overview of the
CANOE framework is presented in Figure 2.

3.1 Training Data Construction

Constructing high-quality and easily verifiable data
is crucial for rule-based RL training (Shao et al.,
2024). Inspired by knowledge base question gener-
ation (Cui et al., 2019; Guo et al., 2024), we attempt
to collect triples from the knowledge base and use
the advanced LLMs to synthesize the context and
question. Concretely, we first collect about 30,000
head-relation-tail triples from Wikidata (Vrandečić
and Krötzsch, 2014). Each collected triple ph, r, tq
includes a head entity h, a tail entity t, and the
relation r between two entities. Then we craft
prompt templates and query the most advanced
GPT-4o to synthesize the contextual information
c and question q based on the triple ph, r, tq. We
directly use the tail entity t as the final answer a
to ensure the correctness and easy validation of
the synthesized data. Each synthetic short-form
QA sample pc, q, aq consists of a contextual pas-
sage c, a question q, and a ground truth answer
a. In this way, we can obtain short-form QA data
that can be easily verified, thus we can utilize a
rule-based RL method to optimize our LLMs to
be more faithful. Meanwhile, to ensure the com-
plexity and diversity of training data, we design
four diverse QA tasks, including straightforward
context, reasoning-required context, inconsistent
context, and counterfactual context. The model is
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expected to answer the question by leveraging the
information in the provided context.
Straightforward Context. A straightforward con-
text means that the context clearly contains state-
ments of the final answer. It requires models to
accurately locate and utilize information from the
context in order to answer questions. Specifically,
we keep the original collected triple as input to
query GPT-4o to synthesize the data pc, q, aq.
Reasoning-required Context. This context con-
tains multiple related entities and relations, and re-
quires models to answer multi-hop reasoning ques-
tions. Firstly, we construct a subgraph based on
the sampled triples and extract 2, 3, 4-hop paths
rph1, r1, t1q, ..., phn, rn, tnqsnď4. Then, we use the
n-th tail entity tn as the ground truth answer and
employ the constructed paths to query GPT-4o to
obtain the multi-hop context and question.
Inconsistent Context. This involves multiple ran-
domly ordered contexts generated from different
triples. This simulates noisy and inconsistent sce-
narios, where models need to detect inconsistencies
and focus on useful and relevant contexts to answer
the questions. We construct such a sample by com-
bining the contexts from up to three QA samples.
Counterfactual Context. A counterfactual context
contains statements that contradict common sense
within the collected triples. Firstly, we replace the
tail entity t of the original collected triple with
a similar but counterfactual entity tcf . Then, we
query GPT-4o to generate questions and counterfac-
tual contexts to construct counterfactual samples.
Unlike the aforementioned tasks, this task further
highlights the importance of faithfulness for LLMs
to answer the questions correctly, as it prevents
models from depending on their learned factual
knowledge to find the right answers.

By introducing four different tasks, we construct
10,000 QA pairs used for training without human
annotation. These short-form QA data can be eas-
ily verified and include tasks varying in complexity,
which can make rule-based RL training more effi-
cient in improving the faithfulness of LLMs. More
details can be found in the Appendix A, e.g., used
prompts, data mixing recipes, and data statistics.

3.2 Reinforcement Learning Protocol
For RL training of LLMs, methods based on policy
optimization, such as PPO (Schulman et al., 2017)
and GRPO (Shao et al., 2024), have been explored.
Given the effectiveness of GRPO in training models
and its advantages over PPO, e.g., eliminating the

need for human-annotated preference data to train
a reward model, we utilize GRPO to optimize and
improve the faithfulness of the policy model πθ.

For each input, consisting of provided contextual
information c, a natural language question q, the
model generates a group of G candidate answers,
to1, o2, . . . , oGu. Each candidate is evaluated us-
ing a designed composite rule-based reward func-
tion to capture the end goal of faithfulness. GRPO
leverages the relative performance of candidates
within the group to compute an advantage Ai for
each output, guiding policy updates according to
the following objective:

JGRPOpθq “ Ec,q,toiu„πθold

«

1

G

G
ÿ

i“1

Li ´ βDKLpπθ||πref q

ff

, (1)

Li “ min pwiAi, clippwi, 1 ´ ϵ, 1 ` ϵqAiq , (2)

where wi “
πθpoi|qq

πθold
poi|qq

, πθold is the policy before the
update, πref is the reference policy (i.e., the initial
model), ϵ and β are hyperparameters controlling
the update step and divergence regularization and
Ai is computed using the normalized reward within
the group. We use synthesized short-form QA data
as training data, which is easily verifiable, so that
we can apply GRPO and train LLMs using the rule-
based reward function. By generating multiple can-
didates per input, GRPO naturally accommodates
the inherent challenges of utilizing the contextual
information c and answering the question q, e.g.,
LLMs may overly rely on the internal knowledge
while disregarding provided contexts. Meanwhile,
employing the rule-based GRPO removes the need
for humans to annotate short-form and long-form
preference data used for training the reward model.

3.3 Reward Design
Having a well-designed reward is key to the effec-
tiveness of RL training (Du et al., 2025). To use
easily verifiable short-form QA data to improve
the faithfulness, the most intuitive reward would be
the accuracy reward, which can check if the gen-
erated responses match the ground truth answers.
However, in our early experiments, we found that
relying solely on short-form QA data and accu-
racy rewards fails to enhance the faithfulness of
long-form response generation, as the models may
over-optimize short-form generation and learn a
false pattern. For example, the tuned models tend
to simply copy text spans from the context as an-
swers and lose their ability to generate long-form
responses. Unfortunately, directly evaluating the
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faithfulness of long, free-form responses via the
rule-based verification continues to pose a signifi-
cant and unresolved challenge.

Therefore, we propose Dual-GRPO, which in-
cludes a set of well-designed rewards that provide
more harmonized guidance for optimizing LLMs
to generate faithful responses. Unlike the original
GRPO that over-optimizes short-form generation,
we first prompt LLMs to generate both long-form
and short-form responses, then assign different re-
wards to the two generated responses to improve
the faithfulness of the two types of generation.
System Prompt and Rollouts. For the provided
context and question, Dual-GRPO employs the de-
signed system prompt that requires LLMs to pro-
duce a reasoning process, then a long-form answer
composed of detailed and complete sentences, and
finally a concise short-form answer in just a few
words. For example, given the context, if the ques-
tion is “What is the country of origin of Super
Mario?”, the long answer could be “Super Mario
originated from Japan.”, while the short answer
could simply be “Japan”. In this way, we can as-
sign different reward scores to long-form and short-
form answers while optimizing them both at once.
This system prompt also triggers zero-shot chain-
of-thought reasoning in the policy model, which
progressively improves as training advances to op-
timize for the reward. The system prompt used for
Dual-GRPO rollouts is shown in the Appendix B.
Accuracy Reward for Short-form Response Gen-
eration. This reward directly assesses whether the
generated short-form responses match the ground
truth answers. We use the exact matching (EM) to
measure accuracy, giving a score of 1 for a match
and 0 for a mismatch. Thus, we can ensure that the
generated short-form response correctly answers
the question based on the context, making LLMs
more faithful in short-form response generation.
Proxy Reward for Long-form Response Genera-
tion. Evaluating the faithfulness of the generated
long-form responses via the rule-based verification
remains challenging. This is because these long-
form answers are often free-form, making rule-
based verification ineffective (Zheng et al., 2025;
OpenAI, 2025). Therefore, instead of directly eval-
uating the faithfulness of the long-form response,
we propose a proxy reward to evaluate it implicitly,
as the faithfulness of a long-form answer can be
measured by its ability to drive the LLMs toward
a correct short-form answer. Specifically, for each
generated long-form answer ylf , we replace the

given context c with it as new input and feed it
to the LLM to check whether the LLM can pro-
duce the correct short-form answer based on ylf .
If the generated long-form response can enable the
LLM to generate the correct answer, it indicates
that the long-form response stays faithful to the con-
text, contains complete and easy-to-understand sen-
tences, and correctly addresses the question. Thus,
we assign a reward score of 1 for the positive long-
form response that helps the LLM to produce the
correct final answer, and a reward score of 0 for
those that lead to an incorrect answer.
Format Reward. We also include a format reward
that encourages adherence to a predefined output
structure (e.g., using <think>, <long_answer>, and
<short_answer> tags). Outputs that conform to this
pattern receive a reward boost, thereby enhancing
clarity and consistency. We use the string match-
ing method to evaluate whether the generated re-
sponses adhere to the format, giving a score of 1
for a match and 0 for a mismatch.

Finally, we use the sum of these three rewards
as the final composite reward. It enhances the ef-
ficacy of the rule-based RL training framework,
guiding the model toward generating more faithful
responses in both short-form and long-form tasks.
More details are shown in the Appendix B.

4 Experiments

In this section, we conduct experiments and pro-
vide analyses to justify the effectiveness of CANOE.

4.1 Tasks and Datasets

To evaluate our method CANOE comprehensively,
we select a range of downstream datasets, including
short-form and long-form generation tasks.
Short-form Generation Tasks. For short-form
generation tasks, we use two counterfactual QA
datasets (ConFiQA (Bi et al., 2024) and CNQ
(Longpre et al., 2021)), a multiple-choice questions
dataset FaithEval (Ming et al., 2025), and a factual
QA dataset FiQA (Bi et al., 2024) that is the fac-
tual version of ConFiQA. These datasets ensure the
answers appear in the contexts to evaluate the faith-
fulness. We also evaluate our method on four open-
domain QA datasets within the FollowRAG bench-
mark (Dong et al., 2024) to evaluate the abilities
of LLMs in real-world RAG scenarios, including
NaturalQA (Kwiatkowski et al., 2019b), TriviaQA
(Joshi et al., 2017), HotpotQA (Yang et al., 2018),
and WebQSP (Yih et al., 2016). In real-world RAG
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Model
Short-form Generation Tasks Long-form Generation Tasks Avg. Score

ConFiQA FiQA CNQ FaithEval FollowRAG XSum WikiLarge CLAPNQ
EM Acc EM Acc EM Acc Acc EM Acc FS FS FS Avg EM Avg Acc

The state-of-the-art LLMs
GPT-4o 31.5 42.7 66.8 79.6 43.4 55.9 47.5 42.2 57.8 80.7 88.1 70.3 58.8 65.3
GPT-4o mini 49.5 63.7 67.1 78.8 47.8 54.3 50.9 38.5 51.3 75.4 91.0 66.0 60.8 66.4
DeepSeek V3 49.5 58.6 67.0 76.5 54.6 67.3 51.0 37.7 55.2 82.8 85.6 71.0 62.4 68.5
Claude 3.7 Sonnet 26.0 36.0 56.4 72.2 41.4 65.0 45.6 36.3 53.7 78.3 81.7 68.3 54.3 62.6
OpenAI o1 49.0 57.9 78.0 89.7 29.5 39.1 52.0 40.5 57.0 81.0 88.1 68.0 60.8 66.6
DeepSeek R1 68.4 74.3 68.4 80.7 60.3 70.2 60.1 42.9 56.6 80.3 83.0 73.5 67.1 72.3
Claude 3.7 Sonnet-Thinking 27.1 38.7 59.5 76.7 42.1 67.0 57.0 38.8 55.3 79.0 81.4 72.2 57.1 65.9

LLaMA-3-Instruct Series
LLaMA-3-Instruct-8B 49.2 58.2 11.4 59.3 37.8 45.2 52.0 31.1 44.8 64.2 77.1 58.5 47.7 57.4
LLaMA-3-Instruct-70B 38.1 54.5 9.1 66.8 54.2 65.0 50.9 38.7 45.7 72.0 77.4 47.2 48.5 59.9
SFT-8B 65.1 70.3 35.9 59.9 52.6 65.7 43.0 19.2 21.0 62.2 74.2 55.3 50.9 56.4
Context-DPO-8B 66.3 72.9 40.9 59.5 54.6 62.3 37.5 29.9 43.8 65.2 78.2 59.1 54.0 59.8
SCOPEsum-8B 35.7 64.6 7.1 68.7 33.8 60.6 55.7 30.1 46.2 70.3 80.3 59.8 46.6 63.3
CANOE-LLaMA-8B 73.5 80.9 82.7 84.9 66.7 73.4 74.6 40.9 51.7 74.4 84.4 64.9 70.3 73.6
∆ Compared to Vanilla. +24.3 +22.6 +71.3 +25.6 +28.9 +28.2 +22.6 +9.8 +6.9 +10.2 +7.3 +6.4 +22.6 +16.2

Qwen-2.5-Instruct Series
Qwen-2.5-Instruct-7B 52.5 61.0 13.2 68.4 55.3 68.2 56.1 32.6 45.3 63.4 57.8 61.2 49.0 60.2
Qwen-2.5-Instruct-14B 34.1 47.3 0.8 61.4 43.1 64.3 51.6 34.8 51.2 68.2 82.3 63.4 47.3 61.2
Qwen-2.5-Instruct-32B 44.5 66.4 39.2 81.1 37.7 66.4 47.0 33.9 53.1 20.2 57.7 31.7 39.0 52.9
Qwen-2.5-Instruct-72B 43.7 52.3 4.8 67.3 51.8 62.2 45.2 38.5 55.7 71.2 90.4 64.8 51.3 63.6
SFT-7B 62.8 69.8 48.8 76.6 60.1 65.3 50.3 29.0 41.7 55.2 51.3 57.2 51.8 58.4
Context-DPO-7B 64.5 70.6 57.1 78.2 62.3 70.1 45.7 31.0 43.7 60.2 53.4 62.8 54.6 60.6
SCOPEsum-7B 39.3 47.9 12.9 60.9 50.2 55.3 52.3 30.6 46.0 68.3 72.0 63.2 48.6 58.2
CANOE-Qwen-7B 67.6 75.2 78.1 83.5 67.2 76.4 70.5 37.0 50.2 72.4 86.1 65.2 68.0 72.4
∆ Compared to Vanilla. +15.1 +14.2 +64.9 +15.0 +11.9 +8.2 +14.4 +4.4 +4.9 +9.0 +28.3 +4.0 +19.0 +12.3
CANOE-Qwen-14B 85.7 87.4 87.8 88.5 81.8 84.2 67.4 46.1 54.6 75.7 91.1 68.4 75.5 77.2
∆ Compared to Vanilla. +51.6 +40.1 +87.0 +27.1 +38.7 +19.9 +15.8 +11.3 +3.4 +7.5 +8.8 +5.0 +28.2 +16.0

Table 1: Experimental results (%) on eleven datasets. The FollowRAG results represent the results averaged over
these four open-domain QA datasets as shown in Table 7, including NaturalQA, TriviaQA, HotpotQA, and WebQSP.
Bold numbers indicate the best performance of models with the same model size. Avg EM/Acc represents the
average score between short-form task metrics (EM/Acc) and long-form task metric FaithScore (FS).

scenarios, the answer may not appear in the re-
trieved passages, and these passages tend to be
noisy. We evaluate models based on whether gold
answers are included in the generated responses
(i.e., Acc) following Asai et al. (2024) and exact
matching (EM) for QA tasks. For multiple-choice
questions, we follow Ming et al. (2025) and use
keyword matching to verify the accuracy.
Long-form Generation Tasks. We include a text
summarization task XSum (Narayan et al., 2018),
a text simplification task WikiLarge (Zhang and
Lapata, 2017), and a long-form QA task CLAPNQ
(Rosenthal et al., 2025). To evaluate the faithful-
ness of generated long-form answers, called Faith-
Score (FS), we use MiniCheck (Tang et al., 2024)
to check whether the model response is grounded
in the provided context. MiniCheck is a state-of-
the-art method to recognize if LLM output can be
grounded in given contexts. If the model response
contains at least one statement that cannot be in-
ferred from the context, we consider it as a negative
response; otherwise, it is a positive response. We
also query GPT-4o to evaluate the quality of gener-
ated responses, namely QualityScore.

More details are available in the Appendix C.

4.2 Baselines and Implementation Details

Baselines. We compare several baselines, includ-
ing (1) Vanilla LLMs: including LLaMA-3-Instruct

(Grattafiori et al., 2024) and Qwen-2.5-Instruct
(Yang et al., 2024) of different sizes. We also con-
duct supervised fine-tuning on synthesized 10,000
short-form data as SFT baselines; (2) SOTA LLMs:
We further evaluate the most advanced LLMs, in-
cluding GPT-4o, GPT-4o-mini, OpenAI o1 (Jaech
et al., 2024), Claude 3.7 Sonnet (Anthropic, 2025),
Claude 3.7 Sonnet-Thinking, Deepseek R1, and
Deepseek V3 (DeepSeek-AI et al., 2025a,b); (3)
The Designed Methods to Improve Faithfulness of
LLMs: Context-DPO (Bi et al., 2024) aligns LLMs
through DPO with constructed faithful and unfaith-
ful short-form answers, thus improving the faith-
fulness in short-form generation. SCOPE (Duong
et al., 2025) introduces a pipeline to generate self-
supervised task-specific data and applies preference
training to enhance the faithfulness in a special task.
We train it on the sampled training set of the sum-
marization task XSum as SCOPEsum, regarding it
as the method designed to improve the faithfulness
of long-form response generation.
Implementation Details. Our main experiments
are conducted on LLaMA-3-Instruct and Qwen-2.5-
Instruct. More implementation details are shown
in Appendix D, e.g., hyperparameters.

4.3 Main Results

CANOE Improves the Faithfulness of LLMs in
Both Short-form and Long-form Response Gen-
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Figure 3: Model performance comparison on FaithEval in a closed-book QA setting and counterfactual context
setting. Our models are colored in orange. We report the results from the chat version of LLaMA-3 and Qwen-2.5.

Model XSum WikiLarge CLAPNQ Avg

GPT-4o 98.5 97.5 81.2 92.4
LLaMA-3-Instruct-8B 70.9 82.9 39.2 64.3
LLaMA-3- Instruct-70B 86.2 83.0 30.1 66.4
CANOE-LLaMA-8B 85.8 87.8 65.5 79.7
Qwen-2.5-Instruct-7B 79.4 79.0 64.6 74.3
Qwen-2.5-Instruct-14B 90.5 83.1 63.6 79.1
Qwen-2.5-Instruct-32B 90.3 83.9 58.6 77.6
Qwen-2.5-Instruct-72B 95.7 94.1 75.4 88.4
CANOE-Qwen-7B 91.5 87.3 68.2 82.3
CANOE-Qwen-14B 91.9 89.7 73.5 85.0

Table 2: QualityScore on long-form generation tasks.

Model Acc EM

QA MR MC QA MR MC

GPT-4o 52.2 45.6 30.3 43.3 32.4 18.7
LLaMA-3-Instruct-8B 69.7 55.9 49.1 60.0 47.9 39.6
CANOE-LLaMA-8B 82.7 80.1 79.8 76.4 73.5 70.5
Qwen-2.5-Instruct-7B 72.8 59.1 51.1 64.9 50.2 42.5
Qwen-2.5-Instruct-14B 62.4 44.9 34.7 44.7 34.3 23.3
Qwen-2.5-Instruct-32B 74.1 65.9 59.3 55.9 42.8 34.8
Qwen-2.5-Instruct-72B 63.3 50.3 43.3 54.3 42.2 34.7
CANOE-Qwen-7B 79.5 76.1 70.1 73.3 67.9 61.7
CANOE-Qwen-14B 91.8 86.4 84.1 89.7 85.2 82.1

Table 3: Results (%) on three tasks in ConFiQA.

eration. As shown in Table 1, CANOE shows con-
sistent and significant improvements on 11 datasets
measuring faithfulness. CANOE achieves substan-
tial improvements in the overall score compared
to original LLMs, e.g., 22.6% for Llama3-8B and
19.0% for Qwen2.5-7B in Avg EM score. CANOE

also surpasses the most advanced LLMs (e.g., GPT-
4o) in the overall score (both Avg EM and Avg Acc
scores). This shows that CANOE can effectively
align LLMs to be context-faithful. Meanwhile, for
real-world RAG scenarios, our proposed CANOE

can also improve the performance even though the
answer may not appear in the retrieved passages,
and these passages are often noisy.
CANOE Maintains the Factuality of LLMs. We
further evaluate whether CANOE will reduce the
factuality of LLMs. Following Ming et al. (2025),
we modify the original FaithEval and make it a
closed-book QA setting, where no context is pro-
vided and LLMs need to give factual answers. In

this case, the models rely entirely on their para-
metric knowledge of common facts, and we find
that our proposed CANOE maintains the factuality
compared to the untuned LLM as shown in Figure
3. However, when a new context with counterfac-
tual evidence that contradicts the model’s paramet-
ric knowledge is introduced, performance declines
sharply. For example, GPT-4o achieves 96.3% ac-
curacy on factual closed-book QA task but only
47.5% on counterfactual QA task that evaluates
the faithfulness of LLMs. This highlights that, un-
like factuality, the faithfulness of LLMs is diffi-
cult to improve by simply scaling model param-
eters, which further indicates the necessity of a
post-training method to improve faithfulness.
CANOE Improves the Quality of Long-form Re-
sponse Generation. As shown in Table 2, we can
find that our proposed CANOE also improves the
quality of generations. This is because the proxy
reward implicitly requires LLMs to generate easy-
to-understand responses, which further optimizes
the response quality. CANOE consistently improves
the generation quality in the three long-form tasks,
which illustrates the effectiveness of our method.
CANOE Enhances LLMs’ Reasoning in Short-
form Response Generation. ConFiQA consists
of three different tasks: question answering (QA),
multi-hop reasoning (MR), and multi-conflicts rea-
soning (MC). QA focuses on the single-hop task
with context containing one corresponding answer,
while MR and MC involve multi-hop reasoning
tasks with context containing one and multiple
related counterfactual contexts, respectively. As
shown in Table 3, CANOE not only improves the
faithfulness in the single-hop QA task but also en-
hances the reasoning ability in reasoning tasks.
CANOE Mitigates Overconfidence Bias. For each
model, we select a total of 110 unfaithful samples
with the highest perplexity from the 11 datasets, 10
samples per dataset. Then we report the average
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Figure 4: The average perplexity score of 110 negative
samples for each model from eleven datasets.

Model Short-form Tasks Long-form Tasks

EM Acc FaithScore QualityScore

CANOE-LLaMA-8B 67.7 73.1 74.6 79.7
-w/o. Dual-GRPO & Data Synthesis 36.3 51.9 66.6 64.3
-w/o. Dual-GRPO (i.e., original GRPO) 60.5 66.6 N/A 23.5
-w/o. Reasoning-required Context. 63.7 69.4 71.7 75.3
-w/o. Inconsistent Context. 64.4 70.2 70.2 72.5
-w/o. Counterfactual Context. 62.6 67.8 69.7 73.7

Table 4: Results of ablation study. EM/Acc in short-
form tasks represents the average score between QA
metrics (EM/Acc) and the accuracy of FaithEval. N/A
means a false generation pattern hacks this metric.

perplexity score on these negative samples shown
in Figure 4. We can find that CANOE produces the
high perplexity scores, indicating low confidence
scores, for these bad cases. This shows that CANOE

mitigates overconfidence in these false statements.

4.4 Analysis
Ablation Study. We conduct an ablation study
in Table 4. The result reveals that our proposed
CANOE (including Dual-GRPO and the designed
short-form data synthesis) significantly improves
the faithfulness of LLMs in both short-form and
long-form generation. For Dual-GRPO, we ob-
serve that directly applying GRPO to synthesized
short-form data leads to over-optimizing short-form
generation and a false response generation pattern.
We find that tuned models tend to directly copy text
spans from the given context as the final answer in-
stead of following instructions in long-form genera-
tion tasks (we show the case study in the Appendix
F.5 to visually show this phenomenon). Thus, the
generated responses do not contain syntactically
and semantically complete sentences for long-form
generation tasks, which leads to low QualityScore
performance and also invalidates the metric used
for evaluating faithfulness. We also explore the
effectiveness of our training data construction strat-
egy. For the designed QA tasks used to ensure
the complexity and diversity of training data, we
replace the designed Reasoning-required Context

Question: What do Greeks say when they break plates?
Qwen-2.5-Instruct-7B: Based on the information provided in the passages,
there is no specific mention of what exactly Greeks say when they break plates
during the plate-breaking ceremony. (✗)

CANOE-Qwen-7B: According to the information given, in the Three’s Com-
pany episode “Opening Night,” when Jack breaks the plates at the end of the
celebration, he exclaims “Opa!”.(✓) This suggests that “Opa!” might be a phrase
commonly used in Greek culture during such festivities. (✓) “Opa!” is often
used to express joy, excitement, or approval, which aligns with the celebratory
nature of plate smashing in Greek traditions. (✓)

Table 5: Case study from long-form QA task CLAPNQ.
For different useful statements, we use different colors.

and Inconsistent Context samples with the same
number of samples that contain Straightforward
Context. We find that involving these more chal-
lenging instances can improve the effectiveness
of RL training. We also replace the data points
that contain Counterfactual Context with the same
number of factual samples. The designed Counter-
factual Context improves the final performance as
it prevents models from depending on their learned
factual knowledge to find the right answers.
Case Study. We further conduct a case study in
Table 5 to visually show the advantages of CANOE.
Our method ensures the statements are faithful and
comprehensive, and the text flows naturally.
Human Evaluation. Evaluating long-form genera-
tion tasks remains challenging (Li et al., 2024).
Thus, we conduct human evaluation in the Ap-
pendix E to show the effectiveness of our method.
Discussion. We also discuss some possible con-
cerns about CANOE in the Appendix F, e.g., the
effect of the amount of synthesized data.

5 Conclusion

In this paper, we propose CANOE, a systematic
post-training method for teaching LLMs to remain
faithful in both short-form and long-form genera-
tion tasks without human annotations. By synthe-
sizing diverse short-form QA data and introduc-
ing Dual-GRPO, a tailored RL method with three
well-designed rule-based rewards, CANOE effec-
tively improves the faithfulness of LLMs. We first
synthesize short-form QA data with four diverse
tasks to construct high-quality and easily verifiable
training data without human annotation. We then
propose Dual-GRPO, a rule-based RL method that
includes three tailored rule-based rewards derived
from synthesized short-form QA data, while op-
timizing both short-form and long-form response
generation simultaneously. Experimental results
show that CANOE consistently improves the faith-
fulness of LLMs across diverse downstream tasks.
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Limitations

Although experiments have confirmed the effec-
tiveness of the proposed CANOE, four major limi-
tations remain. Firstly, CANOE synthesizes short-
form QA data and uses the proposed Dual-GRPO
to improve the faithfulness of LLMs in long-form
response generation implicitly; thus, how to di-
rectly synthesize long-form data and improve the
faithfulness remains under-explored. Meanwhile,
the synthesized short-form QA data is single-turn;
thus, exploring the synthesis of multi-turn QA data
presents an attractive direction for future research.
The motivation behind our work is to improve the
faithfulness of LLMs without human annotation,
but it is still worth exploring how to incorporate
the existing manually labeled data to further im-
prove the faithfulness of the model. Finally, while
our method achieves strong results, exploring addi-
tional strategies, e.g., using cold-start to get a better
initial policy model and improve the reward scores
in training for better performance across different
downstream tasks is also a promising direction.
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Appendix

This appendix is organized as follows.

• In Section A, we report the details of con-
structing training data, e.g., the used triples
and introduction of four designed tasks.

• In Section B, we go into detail about the
proposed Dual-GRPO, including the system
prompt and formal expressions of three differ-
ent well-designed rewards.

• In Section C, we show the details of evalua-
tions, e.g., the introduction of the used bench-
marks and evaluation prompts.

• In Section D, we show the details of our imple-
mentation and training, e.g., hyperparameters
and the used GPUs.

• In Section E, we show the implementation
details of human evaluation.

• In Section F, we discuss some possible ques-
tions about the proposed CANOE. For exam-
ple, we discuss the effect of the amount of
synthesized short-form data for RL training.

A Training Data Details

A.1 Triples from Wikidata
To ensure the usability of the synthetic data and col-
lected triples, we follow Bi et al. (2024) to collect
entities corresponding to the top 1,000 most-visited
Wikipedia pages from 2016 to 2023 and 41 rela-
tions selected by Bi et al. (2024) shown in Table
12. The most-visited Wikipedia pages are based
on monthly page views and retain the most pop-
ular entities using criteria such as the number of
hyperlinks. We finally collected 6,316 entities and
30,762 triples. We randomly select these triples to
synthesize our training data, and finally construct
10,000 samples as the final training data.

A.2 Construction of Four Different Tasks
We design four different tasks to enhance the com-
plexity and diversity of our training data. Mean-
while, we select GPT-4o-2024-08-06 to construct
the contexts and questions.
Straightforward Context. As shown in Sec. 3.1,
we keep the original collected factual triple as input
to query GPT-4o to synthesize the data pc, q, aq.
The prompts for querying GPT-4o to obtain the
generated questions and contexts can be found in

Figure 7 and Figure 8. We finally keep 2,000 such
samples in the synthesized 10,000 training data,
i.e., 20% of the data.
Reasoning-required Context. We construct paths
rph1, r1, t1q, ..., phn, rn, tnqsnď4 from a sub-graph;
more details can be found in Sec. 3.1. Then, we use
the n-th tail entity tn as the ground truth answer
and use the constructed paths to query GPT-4o to
obtain the multi-hop context and question. The
prompts for querying GPT-4o to obtain the gener-
ated questions and contexts can be found in Figure
9 and Figure 10. We finally keep 2,000 such sam-
ples in the synthesized 10,000 training data, i.e.,
20% of the data.
Inconsistent Context. This involves multiple ran-
domly ordered contexts generated from different
triples. This simulates noisy and inconsistent sce-
narios, where models need to detect inconsisten-
cies and focus on useful and relevant contexts to
answer the questions. We construct such a sam-
ple by combining the contexts from up to three
QA samples with reasoning-required context and
use the original tn as the answer. In this way, we
can obtain more complex samples than ones with
the reasoning-required context. To avoid duplicat-
ing the 2,000 samples with the reasoning-required
context collected above, we reconstruct the new
samples with the reasoning-required context used
to obtain the samples with the inconsistent context.
We keep 1,000 such samples in the synthesized
10,000 training data, i.e., 10% of the data.
Counterfactual Context. A counterfactual con-
text includes statements that go against common
sense found in the collected triples. Specifically,
we construct samples with counterfactual contexts
below by modifying previously collected triples
(of three types, including straightforward context,
reasoning-required context, and inconsistent con-
text). We replace the tail entity t of the original
collected triple with a similar but counterfactual
entity tcf , which is obtained by query GPT-4o us-
ing prompt “Generate me a noun for an entity
that is similar to the {t} but different, and require
the entity to exist in the real-world, please tell me
the answer directly:”. Then, we query GPT-4o to
generate questions and counterfactual contexts to
construct counterfactual samples, using the coun-
terfactual triples. The prompts used in construct-
ing samples with counterfactual contexts are the
same as the prompts used in constructing the three
different tasks above. The reason we construct
samples with counterfactual context in this way
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Type Num Avg Len

Straightforward Context. 2,000 186.3
Reasoning-required Context. 2,000 262.2
Inconsistent Context. 1,000 421.2
Counterfactual Context. 5,000 260.8

Table 6: Statistics of the training data. Num indicates the
number of samples. Avg Len shows the average length
of the samples, including the context and question.

is that this prevents the model from learning the
appropriate factual knowledge to answer the ques-
tion correctly, rather than correctly exploiting the
given contextual information. Therefore, we con-
struct the same number of samples as the summed
number of the three types above (including straight-
forward context, reasoning-required context, and
inconsistent context), i.e., 5000 samples (50% of
the data). Meanwhile, this task stresses the impor-
tance of keeping answers faithful in contexts, as
it stops them from relying solely on the learned
knowledge of LLMs to provide correct answers.

A.3 Statistics

We show the statistics of the training data in Table
6. Even though the length of the data we synthesize
is short, we find that our model can be generalized
with consistently state-of-the-art results on a wide
range of tasks with different input lengths by utiliz-
ing our proposed Dual-GRPO, e.g., long-form QA
and RAG generation with long texts as inputs.

B Dual-GRPO Details

In this section, we give a more detailed introduc-
tion to our proposed Dual-GRPO, including the
designed system prompt and formal expressions of
three different rewards.
System Prompt. For the provided contextual in-
formation and question, Dual-GRPO employs the
designed system prompt that requires LLMs to pro-
duce a reasoning process, then a long-form answer
that consists of detailed and complete sentences,
and finally a concise short-form answer in just a
few words. In this way, we can assign different
reward scores to long-form answers and short-form
answers while optimizing them both at once. Mean-
while, this system prompt also triggers zero-shot
chain-of-thought reasoning in the policy model,
which progressively improves as training advances
to optimize for the reward. We use the same system
prompt to train both LLaMA and Qwen models.
We show our used system prompt in Figure 11.

Accuracy Reward. For short-form generation, we
directly assign the accuracy reward. Specifically,
for the generated short-form response ysf based
on the given context c and question q, which is
extracted from the whole generated response ywhole

via string matching, and the ground truth answer
ygt from the synthesized training data, the accuracy
reward Racc for the LLM θ can be calculated as:

Racc “

#

1 if ysf pc, q|θq “ ygt,

0 otherwise.

We use the exact matching (EM) to measure ac-
curacy, giving a score of 1 for a match and 0 for a
mismatch. In this way, we can ensure that the gen-
erated short-form response correctly answers the
question based on the given context, making LLMs
more faithful in short-form response generation.
Proxy Reward. Instead of directly evaluating the
faithfulness of the generated long-form response,
we propose a proxy reward to evaluate it implicitly.
Specifically, for each generated long-form answer
ylf , we replace the given context c with it as new
input and infer the LLM θ to determine whether the
LLM can produce the correct short-form answer
ysf based on ylf for the question q. Thus, the proxy
reward Rproxy can be calculated as:

Rproxy “

#

1 if ysf pylf , q|θq “ ygt,

0 otherwise.

If the generated long-form response can help
LLMs generate the correct answer, it indicates that
the long-form response is faithful to the context,
contains syntactically and semantically complete
sentences, and correctly addresses the question.
Thus, we assign a reward score of 1 for the positive
long-form response that helps the LLM to produce
the correct answer, and a reward score of 0 for
those that lead to incorrect answers.
Format Reward. To enforce the desired output
format, we assign a reward on the whole gener-
ated response ywhole to evaluate whether it con-
tains the proper XML tags. We use three types of
tags as shown in our system prompt, as shown in
Figure 11, including <think>, <long_answer>, and
<short_answer> tags. Formally,

Rformat “

#

1 if correct formatting is present,
0 if incorrect formatting.

We use the string matching method to evaluate
whether the responses adhere to the format.
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Final Reward. Finally, we use the sum of these
three rewards as the final composite reward Rfinal.
This well-designed reward Rfinal of Dual-GRPO
enhances the efficacy of the rule-based RL train-
ing framework to guide the model toward generat-
ing more faithful responses in both short-form and
long-form tasks. Formally,

Rfinal “ Racc ` Rproxy ` Rformat.

Finally, we use this reward Rfinal to compute
an advantage Ai for each output, guiding policy
updates according to the GRPO objective.
Potential Reward Hacking Concerns. In the early
experiments, we have also tried adding the length
reward for long-form responses (i.e., the content
between <long_answer> and </long_answer> tags)
to avoid the potential reward hacking, e.g., avoiding
the policy model directly copying the given context
as the long-form response, but found that the task
performance does not have a significant difference.

C Evaluation Details

C.1 Datasets

ConFiQA (Counterfactual QA). This is a dataset
that incorporates knowledge conflicts through coun-
terfactual passages to evaluate the faithfulness of
LLMs on short-form generation. ConFiQA con-
sists of three tasks: QA (Question Answering), MR
(Multi-hop Reasoning), and MC (Multi-Conflicts).
QA features single-hop question-answering tasks
with context containing one corresponding coun-
terfactual, while MR and MC involve multi-hop
reasoning tasks with context containing one and
multiple related counterfactual contexts, respec-
tively. ConFiQA contains 1,500 data points used
for testing (500/500/500 from QA/MC/MR).
CNQ (Counterfactual QA). CNQ is constructed
based on Natural Questions (Kwiatkowski et al.,
2019a). In CNQ, the context is modified to support
counterfactual answers following (Longpre et al.,
2021). It contains 2,773 samples that incorporate
counterfactual passages to evaluate the faithfulness
of LLMs on short-form generation.
FaithEval (Counterfactual Multiple-choice QA).
FaithEval is a novel and comprehensive bench-
mark tailored to evaluate the faithfulness of LLMs
in contextual scenarios across three diverse tasks:
unanswerable, inconsistent, and counterfactual con-
texts. We select the counterfactual task to eval-
uate the faithfulness of LLMs, which contains

1,000 multiple-choice QA samples curated based
on ARC-Challenge (Clark et al., 2018).
FiQA (Factual QA). FiQA is a factual version of
ConFiQA, which shares the same questions as Con-
FiQA but contains the factual contexts and answers.
The contexts and answers are provided by Bi et al.
(2024), thus we can evaluate the faithfulness of
LLMs in factual short-form response generation. It
contains 1,500 samples for evaluation.
FollowRAG (RAG Scenarios for short-form
QA). FollowRAG aims to assess the model’s abil-
ity to follow user instructions in complex multi-
document contexts. It consists of four well-known
open-domain QA datasets for RAG scenarios, in-
cluding NaturalQA, TriviaQA, HotpotQA, and We-
bQSP. We utilize the provided passages in Fol-
lowRAG as context and original query (instead of
the version with added instruction constraints pro-
posed by Dong et al. (2024)) as questions. We also
use the original answers to report the results. Fol-
lowRAG contains 2,800 samples used for testing
(700/700/700/700 from NaturalQA/TriviaQA/Hot-
potQA/WebQSP). Different from short-form gen-
eration tasks that the contexts always contain an-
swers, in real-world RAG scenarios, the answer
may not appear in the retrieved passages, and these
passages tend to be noisy.
XSum (Summarization). Summarization is a
content-grounded task where a model is provided
a piece of text and tasked with synthesizing the
most salient information within that text. XSum
is a widely used dataset for text summarization,
which consists of about 220,000 BBC articles as
input documents. To facilitate our evaluation, we
use the first 1,000 data points from the test set to
evaluate our method.
WikiLarge (Simplification). Text simplification is
a content-grounded task where a model is provided
a piece of text and is tasked with paraphrasing it to
make the text easier to read and understand. We use
1k instances sampled from the WikiLarge dataset
as a test set, following Ravichander et al. (2025).
CLAPNQ (Long-form QA). CLAPNQ is a
grounded long-form QA benchmark dataset for
Retrieval Augmented Generation of LLMs. The
answers are typically long, 2-3 sentences grounded
on a single gold passage, in contrast to datasets
based on machine reading comprehension, such
as short-form Natural Questions, which are just
a few words. CLAPNQ includes long answers
with grounded gold passages from Natural Ques-
tions. We utilize the provided passages and ques-
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tions from the dev set to evaluate the faithfulness of
LLMs in long-form response generation for open-
domain questions, which contains 600 data points.

C.2 Metrics and LLM-as-a-Judge
Metrics for Short-form Generation Tasks. We
evaluate performance based on whether gold an-
swers are included in the generated responses (i.e.,
Acc) following Asai et al. (2024) and exact match-
ing (EM) for QA tasks. For multiple-choice ques-
tions in FaithEval, we use keyword matching to
verify the accuracy, i.e., Acc.
Metrics for Long-form Generation Tasks. To
evaluate the faithfulness of generated long-form
answers, we use MiniCheck to check whether the
model response is grounded in the provided con-
text. MiniCheck is a state-of-the-art method to
recognize if LLM output can be grounded in given
contexts. We select the MiniCheck-FT52 because
it is the best fact-checking model, outperforming
GPT-4o in evaluating the faithfulness. If the model
response contains at least one statement that can-
not be inferred from the context, we consider it
as a negative response; otherwise, it is a positive
response. To evaluate the quality of the generated
long-form responses for three different tasks (Qual-
ityScore), including summarization, simplification,
and long-form QA, we design different prompts
to query GPT-4o-2024-11-20 as a judge to get the
quality scores. We report the average results of
the quality score results by querying GPT-4o twice.
The prompts for three tasks can be found in Figure
12, Figure 13, and Figure 14.

C.3 Baselines
For SOTA LLMs, we select the following versions
of these models to report the results. Specifically,
we use GPT-4o-2024-08-06 for GPT-4o, GPT-4o-
mini-2024-07-18 for GPT-4o-mini, Claude 3.7
Sonnet-2025-02-19 for Claude 3.7 Sonnet and
Claude 3.7 Sonnet-thinking, Deepseek R1 2025-01-
20 for Deepseek R1, Deepseek V3 2024-12-26 for
Deepseek V3, and o1-2024-12-17 for OpenAI o1.
To get stable experimental results, we query these
models twice and report the average results on each
task. For the methods that are designed for improv-
ing the faithfulness, we reproduce their released
code based on LLaMA-3-Instruct and Qwen-2.5-
Instruct. For SCOPE, we train it on the 10,000 sam-
pled training set of the summarization task XSum

2https://huggingface.co/lytang/MiniCheck-Flan-T5-
Large

Ours Wins Tie Initial Wins

Figure 5: Human evaluation across four key dimensions.

as SCOPEsum, which keeps the same number of
data we used for training CANOE and provides a
fair comparison.

C.4 Test-time Prompts
For baselines, the prompts for different tasks can
be found in Figure 15, Figure 16, Figure 17, Figure
18, and Figure 19. To evaluate the factuality of
LLMs, we modify the original FaithEval and make
it a closed-book QA setting, and use the prompts
shown in Figure 20. During the evaluation for
CANOE, we apply the same system prompt dur-
ing the Dual-GRPO training, and extract the con-
tent between <short_answer> and </short_answer>
tags as the final answers for short-form generation
tasks. Also, for long-form generation tasks, we
extract the content between <long_answer> and
</long_answer> tags as the final answers. We also
find that the long-form responses generated by CA-
NOE can provide correct answers in short-form
generation tasks in the Appendix F.1. Thus, for
real-world applications, we recommend using the
generated long-form responses as the system re-
sponses for the user’s instructions, because these
long-form responses can not only faithfully com-
plete long-form generation tasks, but also provide
correct answers in short-form generation tasks.

C.5 More Detailed Experimental Results
FollowRAG contains four different QA datasets
in RAG scenarios. We report the average results
in Table 1. We show the more detailed results of
FollowRAG in Table 7.

D Implementations Details

We implement our method based on the RL frame-
work open-r1 (Face, 2025). We use AdamW opti-
mizer (Loshchilov and Hutter, 2019) to train our
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Model HotpotQA NaturalQA TriviaQA WebQSP
EM Acc EM Acc EM Acc EM Acc

The state-of-the-art LLMs
GPT-4o 24.7 32.0 37.0 55.0 62.3 72.3 44.9 71.7
GPT-4o mini 18.0 26.2 35.0 48.2 59.5 65.5 41.4 65.3
DeepSeek V3 18.7 27.7 34.9 54.3 60.0 70.0 37.1 68.9
Claude 3.7 Sonnet 15.3 24.1 33.6 53.9 62.5 72.5 33.7 64.3
OpenAI o1 27.0 34.0 37.0 50.0 63.0 76.0 35.0 68.0
DeepSeek R1 26.0 29.3 38.7 52.9 68.0 73.0 38.9 71.3
Claude 3.7 Sonnet-Thinking 20.1 30.2 35.6 53.0 63.4 72.0 36.0 66.0

LLaMA-3-Instruct Series
LLaMA-3-Instruct-8B 13.0 18.2 31.0 40.3 45.5 60.2 35.0 60.4
LLaMA-3-Instruct-70B 24.1 28.7 36.5 45.3 63.0 66.6 31.3 42.1
SFT-8B 3.7 5.4 15.9 18.7 26.6 26.3 30.4 33.6
Context-DPO-8B 10.1 16.7 23.4 37.8 53.3 62.3 32.8 58.3
SCOPEsum-8B 12.0 20.5 25.7 42.5 46.4 58.6 36.1 63.2
CANOE-LLaMA-8B 21.4 23.3 37.4 46.9 60.0 67.3 44.9 69.3

Qwen-2.5-Instruct Series
Qwen-2.5-Instruct-7B 14.0 17.6 32.2 42.3 50.3 62.3 33.9 58.8
Qwen-2.5-Instruct-14B 17.5 21.7 29.3 48.0 55.6 69.3 36.9 65.7
Qwen-2.5-Instruct-32B 16.5 24.6 26.3 50.2 50.0 70.7 42.7 66.7
Qwen-2.5-Instruct-72B 21.8 28.0 34.5 51.0 61.8 73.0 35.7 70.6
SFT-7B 16.2 18.3 26.5 30.2 43.2 58.2 30.2 60.2
Context-DPO-7B 13.0 17.2 25.2 40.2 50.1 63.2 35.7 54.3
SCOPEsum-7B 12.5 19.5 27.2 43.5 48.4 60.1 34.2 60.7
CANOE-Qwen-7B 18.0 22.6 35.7 47.4 57.4 65.7 36.9 65.0
CANOE-Qwen-14B 19.9 25.7 41.9 51.6 63.3 71.7 59.4 69.3

Table 7: Experimental results (%) on FollowRAG. Bold numbers indicate the best performance of models with the
same model size.

model, with a 1ˆ10´6 learning rate, a batch size of
14 for 7B/8B models, and a batch size of 7 for the
14B model, steering the training across two epochs.
We set the maximum input length for the models
to 1,024 and the maximum generation length to
1,024. The number of generations G during the RL
training is set to 7, which is used in Eq. (1). We set
0.04 for β used in Eq. (1). We set 0.2 for ϵ used
for the clip shown in Eq. (2). We set 0.9 for tem-
perature in RL training to generate responses. We
conduct our experiments on NVIDIA A800-80G
GPUs with DeepSpeed+ZeRO2 for 7B/8B mod-
els, DeepSpeed+ZeRO2+Offloading for the 14B
model, and BF16. During the inference, we set 0.7
for temperature for the evaluation of our models
and baselines. For each task, we infer the model
twice and report the average scores as final results.

E Human Evaluation

We conduct a human evaluation on the 90 sam-
ples from long-form generation tasks, including
30/30/30 for summarization/simplification/long-
form QA. We evaluate these samples across four
key dimensions: readability, faithfulness, help-
fulness, and naturalness. For each comparison,
three options are given (Ours Wins, Tie, and Initial
Model Wins), and the majority voting determines

the final result. The participants follow the princi-
ples in Figure 21 to make the decision. We invite
three Ph.D. students to compare the responses gen-
erated by the models. Before participants begin to
make judgments, we describe the principles of our
design in detail and ensure that each participant
correctly understands the principles. If the final re-
sult can not be determined by majority voting, we
will hold a discussion among the participants and
vote on the result again. We compare two models,
including CANOE-LLaMA-8B as our method and
LLaMA-3-8B as the initial model. Shown in Figure
5, we can find that our method reduces faithfulness
hallucinations and also ensures the response quality
for three long-form generation tasks.

F Discussion

F.1 Can Long-form Responses Generated by
CANOE Provide Correct Answers in
Short-form Generation Tasks?

This exploration is important because, in real-world
applications, it is difficult to pre-determine whether
to use generated short-form responses (i.e., the con-
text between <short_answer> and </short_answer>
tags) or long-form responses (i.e., the context be-
tween <long_answer> and </long_answer> tags)
as answers to respond to user instructions. This
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Model ConFiQA FiQA CNQ FaithEval HotpotQA NaturalQA TriviaQA WebQSP AvgAcc Acc Acc Acc Acc Acc Acc Acc

The state-of-the-art LLMs
GPT-4o 42.7 79.6 55.9 47.5 32.0 55.0 72.3 71.7 57.1
GPT-4o mini 63.7 78.8 54.3 50.9 26.2 48.2 65.5 65.3 56.6
DeepSeek V3 58.6 76.5 67.3 51.0 27.7 54.3 70.0 68.9 59.3
Claude 3.7 Sonnet 36.0 72.2 65.0 45.6 24.1 53.9 72.5 64.3 54.2
OpenAI o1 57.9 89.7 39.1 52.0 34.0 50.0 76.0 68.0 58.3
DeepSeek R1 74.3 80.7 70.2 60.1 29.3 52.9 73.0 71.3 64.0
Claude 3.7 Sonnet-Thinking 38.7 76.7 67.0 57.0 30.2 53.0 72.0 66.0 57.6

LLaMA-3-Instruct Series
LLaMA-3-Instruct-8B 58.2 59.3 45.2 52.0 18.2 40.3 60.2 60.4 49.2
LLaMA-3-Instruct-70B 54.5 66.8 65.0 50.9 28.7 45.3 66.6 42.1 52.5
SFT-8B 70.3 59.9 65.7 43.0 5.4 18.7 26.3 33.6 40.4
Context-DPO-8B 72.9 59.5 62.3 37.5 16.7 37.8 62.3 58.3 50.9
SCOPEsum-8B 64.6 68.7 60.6 55.7 20.5 42.5 58.6 63.2 54.3
CANOE-LLaMA-8B 80.9 84.9 73.4 74.6 23.3 46.9 67.3 69.3 65.1

- Using Generated Long-form Responses. 92.3 95.5 81.6 78.2 32.7 59.3 74.1 79.1 74.1
∆ Compared to Using Generated Short-from Response. +11.4 +10.6 +8.2 +3.6 +9.4 +12.4 +6.8 +9.8 +9.0

Qwen-2.5-Instruct Series
Qwen-2.5-Instruct-7B 61.0 68.4 68.2 56.1 17.6 42.3 62.3 58.8 54.3
Qwen-2.5-Instruct-14B 47.3 61.4 64.3 51.6 21.7 48.0 69.3 65.7 53.7
Qwen-2.5-Instruct-32B 66.4 81.1 66.4 47.0 24.6 50.2 70.7 66.7 59.1
Qwen-2.5-Instruct-72B 52.3 67.3 62.2 45.2 28.0 51.0 73.0 70.6 56.2
SFT-7B 69.8 76.6 65.3 50.3 18.3 30.2 58.2 60.2 53.6
Context-DPO-7B 70.6 78.2 70.1 45.7 17.2 40.2 63.2 54.3 54.9
SCOPEsum-7B 47.9 60.9 55.3 52.3 19.5 43.5 60.1 60.7 50.0
CANOE-Qwen-7B 75.2 83.5 76.4 70.5 22.6 47.4 65.7 65.0 63.3

- Using Generated Long-form Responses. 82.9 92.3 83.2 73.2 29.8 56.9 70.6 72.7 70.2
∆ Compared to Using Generated Short-from Response. +7.7 +8.8 +6.8 +2.7 +7.2 +9.5 +4.9 +7.7 +6.9

CANOE-Qwen-14B 87.4 88.5 84.2 67.4 25.7 51.6 71.7 69.3 68.2
- Using Generated Long-form Responses. 89.8 94.4 87.1 70.6 30.0 58.0 73.1 76.6 72.5
∆ Compared to Using Generated Short-from Response. +2.4 +5.9 +2.9 +3.2 +4.3 +6.4 +1.4 +7.3 +4.2

Table 8: Experimental accuracy score results (%) on short-form generation tasks. Bold numbers indicate the best
performance among all the models.

contrasts with the evaluation of LLMs on differ-
ent datasets, as described in the test-time strate-
gies outlined in C.4. Therefore, we first explore
whether the long-form responses generated by CA-
NOE (i.e., the context between <long_answer> and
</long_answer> tags) can provide correct answers
in short-form generation tasks. As shown in Ta-
ble 8, when evaluating the generated long-form re-
sponses that contain the free-form answers, the ac-
curacy scores consistently increase in all the short-
form generation tasks compared to using the gen-
erated short-form responses. It also indicates that
the generated short-form responses maintain con-
ciseness, which is important for measuring the EM
score, but can slightly reduce the accuracy score.
Therefore, in real-world applications, we can di-
rectly use the generated long-form responses as
the system responses for the user’s instructions,
because these long-form responses can not only
efficiently and faithfully complete long-form gen-
eration tasks, but also provide correct answers in
short-form generation tasks.

F.2 Final Rewards in the RL Training Stage

We show the final rewards in Table 9. We can
find that models can easily learn the designed for-
mat, while accuracy and proxy rewards still remain
challenging. Meanwhile, in the early stages of RL
training, the format reward increases quickly and

Model Accuracy Proxy Format

CANOE-LLaMA-8B 70.3 66.1 99.4
CANOE-Qwen-7B 64.1 63.4 99.9
CANOE-Qwen-14B 83.5 76.5 100.0

Table 9: Final rewards (%) in the RL training stage.

Model MultiFieldQA-zh DuReader VCSUM

LLaMA-3-Instruct-8B 80.1 65.2 42.2
CANOE-LLaMA-8B 88.2 75.3 65.2
Qwen-2.5-Instruct-7B 82.3 70.3 45.5
Qwen-2.5-Instruct-14B 83.5 72.2 47.8
Qwen-2.5-Instruct-32B 85.1 77.2 52.7
Qwen-2.5-Instruct-72B 88.9 80.1 57.1
CANOE-Qwen-7B 90.1 78.3 66.5
CANOE-Qwen-14B 93.2 84.3 70.4

Table 10: Results (%) on three Chinese datasets. Bold
numbers indicate the best performance of models with
the same model size.

converges rapidly, and as training proceeds, the
accuracy reward and the proxy reward gradually
increase and eventually converge. This indicates
that our well-designed training data construction
strategy is effective and ensures the complexity and
diversity, avoiding overfitting and reward hacking.

F.3 Multilingual Transfer Ability and Context
Length Generalization of CANOE

To further explore the multilingual transfer ability
of CANOE, we further evaluate our model on the
Chinese dataset. Specifically, we use the single-
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Figure 6: The Avg EM results (%) on 11 datasets with
different numbers of synthesized short-form training
data. We conduct the experiments based on LLaMA-3-
Instruct-8B models.

document QA dataset MultiFieldQA-zh (Bai et al.,
2023), the multi-document QA dataset DuReader
(He et al., 2018), and the summarization dataset
VCSUM (Wu et al., 2023) within LongBench (Bai
et al., 2023). Following Si et al. (2024) that utilizes
the GPT-4 to evaluate the correctness of QA tasks
and the faithfulness of the summarization task, we
use the advanced LLM to evaluate these datasets.
We use the same prompts for three tasks as Si et al.
(2024) to query GPT-4o. The test-time prompts
for these tasks can be found in Figure 23, Figure
24, and Figure 25. As shown in Table 10, we can
find that our proposed CANOE also improves the
faithfulness in Chinese datasets, indicating that our
proposed method has a strong multilingual transfer
ability. Meanwhile, these results also indicate that
our method achieves better faithfulness even when
our training data is short, i.e., CANOE guarantees
a consistently strong performance of the LLM in
long-context scenarios.

F.4 Effect of the Amount of the Synthesized
Short-form Data

To further explore the effect of the amount of the
synthesized short-form data, we conduct the corre-
sponding experiments as shown in Figure 6. We
can find that increasing the number of training data
improves the performance of our method, but when
the number of data is greater than 10,000, the per-
formance will be stable. For the models with dif-
ferent sizes, the optimal amount of training data
may be different, e.g., the larger models may need
more training data to achieve optimal performance.
Fortunately, due to our training data construction

Long-form QA
Inputs:{}
Question: What is the type and definition of this dance?

GRPO-LLaMA-8B: Ballet (✗)

CANOE-LLaMA-8B: Based on the passage, ballet is a type of dance that
developed from lavish court spectacles in Italy and France. It is a combination
of music, drama, poetry, song, costumes, and dance, and involves a combination
of different elements, including music, costumes, and performance. The passage
also mentions that members of the court nobility took part as performers, and
that professional dancers began to take the place of court amateurs. This
suggests that ballet is a type of dance that is characterized by its combination of
different art forms and its performance by trained dancers. (✓)
Simplification
Inputs: The Pokémon series began with the release of Pokémon Red and Green
for the Game Boy in Japan. When these games proved extremely popular, an
enhanced blue version was released sometime after, and the blue version was
reprogrammed as Pokémon Red and Blue for international release.

GRPO-LLaMA-8B: Pocket Monsters Red and Green (✗)

CANOE-LLaMA-8B: The Pokémon series started with the release of Pokémon
Red and Green in Japan, which were later enhanced and reprogrammed for
international release. (✓)
Summarization
Inputs: {}

GRPO-LLaMA-8B: Comedy clubs (✗)

CANOE-LLaMA-8B: Kareem Badr and his friends were able to turn around the
struggling comedy club, the Hideout, by applying their skills in problem-solving
and efficiency. They broke down the business into small chunks and figured out
how to make each aspect better and more efficient. This approach helped them
to improve the club’s performance and eventually expand it. The passage also
mentions that the growing popularity of stand-up comedy is fueled in part by
younger audiences, who view humorous TV hosts as their primary source for
news. Many comedy clubs now require talent, and there is a career and a living
to be made by good comedians who are not superstars. The clubs also make
money from selling drinks and dinners, as well as from cover charges and talent
fees. In addition, digital media has given live comedy a boost, with one terrific
joke being able to get a million hits online. (✓)

Table 11: Case study between the models trained via
GRPO and our model for long-form generation tasks.
Models are implemented on LLaMA-3-Instruct-8B.

strategy, we can simply scale and synthesize train-
ing data without human annotation.

F.5 Case Study between GRPO and the
proposed Dual-GRPO

We find that directly applying GRPO instead of our
proposed Dual-GRPO to synthesized short-form
data leads to over-optimizing short-form generation
and a false response generation pattern. The used
system prompt for applying GRPO can be found in
Figure 22. Shown in Table 11, we can find that the
tuned model GRPO-LLaMA-8B tends to directly
copy text spans from the given context as the final
answer instead of following instructions in long-
form generation tasks. However, when we apply
Dual-GPRO to our synthesized data, we find that
trained models can generate fluent and complete
sentences. Thus, Dual-GRPO not only improves
the faithfulness of LLMs in two types of response
generation but also ensures the utility of models.
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Relation Description

P6 head of government
P17 country
P26 spouse
P27 country of citizenship
P30 continent
P35 head of state
P36 capital
P37 official language
P38 currency
P39 position held
P50 author
P54 member of sports team
P57 director
P86 composer
P101 field of work
P103 native language
P108 employer
P112 founder
P127 owned by
P136 genre
P1376 capital of
P140 religion
P155 follows
P159 headquarters location
P166 award received
P170 creator
P172 ethnic group
P175 performer
P178 developer
P264 record label
P276 location
P286 head coach
P407 language of work or name
P413 position played
P463 member of
P488 chairperson
P495 country of origin
P641 sport
P800 notable work
P937 work location
P169 chief executive officer

Table 12: Manually selected relations that are used to construct training data. We utilize the same manually selected
relations as Bi et al. (2024).
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Prompt for question generation for the samples with straightforward context.

[Instructions]
You are a sophisticated question generator. Given a triple {ph, r, tq} collected from Wikidata,
generate a question that asks about the final tail entity {t} using the head entity {h} and the relation
{r}.

Directly give me the generated question:

Figure 7: Prompt for question generation for the samples with straightforward context.

Prompt for context generation for the samples with straightforward context.

[Instructions]
You are a sophisticated context generator. Given a triple {ph, r, tq} collected from Wikidata, generate
a brief description of the head entity {h}, approximately 150 words long. Ensure the tail entity {t}
and relation {r} are accurately mentioned in the generated description.

Directly give me the generated context:

Figure 8: Prompt for context generation for the samples with straightforward context.

Prompt for question generation for the samples with reasoning-required context.

[Instructions]
You are a sophisticated question generator. Given a chain of triples {[...]} collected from Wikidata,
generate a question that asks about the final tail entity {t} using the head entity {h} and the relation
{r}. Do not include any bridge entities in the question; instead, phrase the question as if directly
asking about the relationship from the head entity to the tail entity

Directly give me the generated question:

Figure 9: Prompt for question generation for the samples with reasoning-required context.

Prompt for context generation for the samples with reasoning-required context.

[Instructions]
You are a sophisticated context generator. Given a chain of triples {[...]} collected from Wikidata,
generate a brief description of the head entity {h}, approximately {150*n} words long. Ensure the
tail entity {t} and relation {r} are accurately mentioned in the generated description.

Directly give me the generated context:

Figure 10: Prompt for context generation for the samples with reasoning-required context.
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System prompt for Dual-GRPO.

A conversation between User and Assistant. The user gives an instruction that consists of two parts: a
passage and the actual instruction, separated by two newline characters.

The passage is provided within <context> and </context> tags. The Assistant needs to refer to the
given passage and complete the instruction.

The Assistant solves the question by first thinking about the reasoning process internally, according
to the given passage, and then providing the response.

The response must be structured and include the following three sections, clearly marked by the
respective tags:

- Reasoning Process: Explain your thought process or logical steps to derive the answer. Enclose this
within <think> and </think> tags.
- Long Answer: Provide a long response that consists of syntactically and semantically complete
sentences to answer the question. Enclose this within <long_answer> and </long_answer> tags.
- Short Answer: Present a concise response that directly answers the question. Enclose this within
<short_answer> and </short_answer> tags.

Format your response exactly as follows:
<think> reasoning process here. </think> <long_answer> detailed answer here. </long_answer>
<short_answer> the concise answer here. </short_answer>.

Figure 11: System prompt for Dual-GRPO.
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Prompt used to calculate quality score for text summarization.

You are asked to evaluate the quality of the AI assistant’s generated summary as an impartial judge,
and your evaluation should take into account factors including readability (whether the summary is
clear and easy to understand) and coherence (whether the assistant’s summary is logical and orderly).

Read the AI assistant’s summary and input passages, and give an overall integer rating in on a scale
of 1 to 5, where 1 is the lowest and 5 is the highest based on the evaluation criteria, strictly in the
following format:“[[rating]]”, e.g. “[[5]]”.

Input Passages: {}
Assistant’s summary:{}
Rating:

Figure 12: Prompt used to calculate quality score for text summarization.

Prompt used to calculate quality score for text simplification.

You are asked to evaluate the quality of the AI assistant’s generated text simplification as an impartial
judge, and your evaluation should take into account factors including readability (whether the
simplification is clear and easy to understand) and coherence (whether the assistant’s simplification is
logical and orderly).

Read the AI assistant’s simplified version and the original text, and give an overall integer rating on a
scale of 1 to 5, where 1 is the lowest and 5 is the highest based on the evaluation criteria, strictly in
the following format: “[[rating]]”, e.g. “[[5]]”.

Original text: {}
AI assistant’s simplification: {}
Rating:

Figure 13: Prompt used to calculate quality score for text simplification.

Prompt used to calculate quality score for long-form QA.

You are asked to evaluate the quality of the AI assistant’s generated long-form answer as an impartial
judge, and your evaluation should take into account factors including readability (whether the answer
is clear and easy to understand) and coherence (whether the answer is logical and well-organized).

Read the AI assistant’s long-form answer and the original question, and give an overall integer rating
on a scale of 1 to 5, where 1 is the lowest and 5 is the highest, based on the evaluation criteria, strictly
in the following format: “[[rating]]”, e.g., “[[5]]”.

Question: {}
Assistant’s long-form answer: {}
Rating:

Figure 14: Prompt used to calculate quality score for long-form QA.
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Test-time prompt used for short-form QA tasks.

Passages: {}

Refer to the passages above and answer the following question with just a few words.

Question: {}

Answer:

Figure 15: Test-time prompt used for short-form QA tasks.

Test-time prompt used for multiple-choice QA task.

Passages: {}

Refer to the passages above and answer the following question with just a few words.

Question: {}

Please select the correct option according to the question, and output the option letter (e.g. A/B/C/D):

Options: {}

Answer:

Figure 16: Test-time prompt used for multiple-choice QA task.

Test-time prompt used for text summarization.

Passage: {}

Refer to the passage above and provide a summary as the response.

Summary:

Figure 17: Test-time prompt used for text summarization.

Test-time prompt used for text simplification.

Passage: {}

Refer to the passage above and simplify it to improve its readability, ensuring its core meaning
remains intact. Please provide only the simplified text as the response.

Simplified text:

Figure 18: Test-time prompt used for text simplification.
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Test-time prompt used for long-form QA task.

Passage: {}

Refer to the passages above and answer the following question.

Question: { }

Figure 19: Test-time prompt used for long-form QA task.

Test-time prompt used for FaithEval in closed-book QA settings.

Question: {}

Please select the correct option according to the question, and output the option letter (e.g. A/B/C/D):

Options: {}

Answer:

Figure 20: Test-time prompt used for FaithEval in closed-book QA settings.
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The principles of human evaluation for long-form responses generation.

You are asked to evaluate the responses generated by different models. You should choose the
preferred responses according to the following perspectives independently:

1. Readability: Whether the response is clear and easy to understand?

2. Faithfulness: Whether the response is faithful to the context and the information can be grounded
in the provided context.

3. Helpfulness: Whether the response provides useful information and follows the instructions from
users?

4. Naturalness: Whether the response sounds natural and fluent?

Finally, please make a decision among the 3 opinions, including Win, Tie, and Loss.

Figure 21: The principles of human evaluation for long-form responses generation.
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System prompt for GRPO in the ablation study.

A conversation between User and Assistant. The user gives an instruction that consists of two parts: a
passage and the actual instruction, separated by two newline characters.

The passage is provided within <context> and </context> tags. The Assistant needs to refer to the
given passage and complete the instruction.

The Assistant solves the question by first thinking about the reasoning process internally, according
to the given passage, and then providing the response.

The response must be structured and include the following two sections, clearly marked by the
respective tags:

- Reasoning Process: Explain your thought process or logical steps to derive the answer. Enclose this
within <think> and </think> tags.
- Answer: Present a concise response that directly answers the question. Enclose this within <answer>
and </answer> tags.

Format your response exactly as follows:
<think> reasoning process here. </think> <answer> answer here. </answer>.

Figure 22: System prompt for GRPO in the ablation study.
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Test-time prompt used for MultiField-zh.

阅读以下文字并用中文简短回答：{}
现在请基于上面的文章回答下面的问题，只告诉我答案，不要输出任何其他字词。
问题：{}
回答：

Figure 23: Test-time prompt used for MultiField-zh.

Test-time prompt used for DuReader.

请基于给定的文章回答下述问题。
文章：{}
问题：{}
回答：

Figure 24: Test-time prompt used for DuReader.

Test-time prompt used for VCSUM.

下面有一段会议记录，请你阅读后，写一段总结，总结会议的内容。
会议记录：{}
会议总结：

Figure 25: Test-time prompt used for VCSUM.
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