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ABSTRACT

The key to multivariate time series (MTS) analysis and forecasting is to disclose
the underlying couplings between variables that drive the co-movements. Con-
siderable recent successful MTS methods are built with graph neural networks
(GNNs) due to their essential capacity for relational modeling. However, previ-
ous work often used a static graph structure of time-series variables for modeling
MTS, but failed to capture their ever-changing correlations over time. In this
paper, we build a fully-connected supra-graph, representing non-static correla-
tions between any two variables at any two timestamps, to capture high-resolution
spatial-temporal dependencies. Whereas, conducting graph convolutions on such a
supra-graph heavily increases computational complexity. As a result, we propose
the novel Edge-Varying Fourier Graph Networks (EV-FGN), which reformulates
the graph convolutions in the frequency domain with high efficiency and scale-free
parameters, and applies edge varying graph filters to capture the time-varying
variable dependencies. Extensive experiments show that EV-FGN outperforms
state-of-the-art methods on seven real-world MTS datasets.

1 INTRODUCTION

Multivariate time series (MTS) forecasting is a key ingredient in many real-world scenarios, including
weather forecasting Zheng et al. (2015), decision making Borovykh et al. (2017), traffic forecasting
Yu et al. (2018a); Bai et al. (2020), COVID-19 prediction Cao et al. (2020); Chen et al. (2022), etc.
Recently, deep neural networks, such as long short-term memory (LSTM) Hochreiter & Schmid-
huber (1997), convolutional neural network (CNN) Borovykh et al. (2017), Transformer Vaswani
et al. (2017), have dominated MTS modeling. In particular, graph neural networks (GNNs) have
demonstrated promising performance on MTS forecasting with their essential capability to capture
the complex couplings between time-series variables. Some studies enable to adaptively learn the
graph for MTS forecasting even without an explicit graph structure, e.g., by node similarity Mateos
et al. (2019); Bai et al. (2020); Wu et al. (2019) and/or self-attention mechanism Cao et al. (2020).

Despite the success of GNNs on MTS forecasting, three practical challenges are eagerly demanded
to address: 1) the dependencies between each pair of time series variables are generally non-static,
which demands full dependencies modeling with all possible lags; 2) a high-efficiency dense graph
learning method is demanded to replace the high-cost operators of graph convolutions and attention
(with quadratic time complexity of the graph size); 3) the graph over MTS varies with different
temporal interactions, which demands an efficient dynamic structure encoding method. In this
paper, different from most GNN-based methods that construct graphs to model the spatial correlation
between variables (i.e. nodes) Bai et al. (2020); Wu et al. (2019; 2020), we attempt to build a
supra-graph that sheds light on the "high-resolution" correlations between any two variables at
any two timestamps (i.e., fine-grained spatial-temporal dependencies), and largely enhances the
expressiveness on non-static spatial-temporal dependencies.

Obviously, the supra-graph will heavily increase the computational complexity of GNN-based model,
then a high-efficiency learning method is required to reduce the cost for model training. Inspired by
Fourier Neural Operator (FNO) Li et al. (2021), we reformulate the graph convolution (time domain)
to much lower-complexity matrix multiplication in the frequency domain by leveraging an efficient
and newly-defined Fourier Graph Shift Operator (FGSO). In addition, it is necessary to consider the
multiple iterations (layers) of graph convolutions to expand receptive neighbors and mix the diffusion
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information in the graph. To capture time-varying diffusion over the supra-graph, we introduce
the edge-varying graph filter to weight the graph edges differently from different iterations and
reformulate the edge-varying graph filter with multiple frequency-invariant FGSOs in the frequency
domain to reduce the computational cost of graph convolutions. Finally, a novel Edge-Varying Fourier
Graph Networks (EV-FGN) is designed for MTS analysis, which is stacked with multiple FGSOs to
perform high-efficient multi-layer graph convolutions in the Fourier space.

The main contributions of this paper are summarized as follows:

• We adaptively learn a supra-graph, representing non-static correlations between any two variables
at any two timestamps, to capture high-resolution spatial-temporal dependencies.

• To efficiently compute graph convolutions over the supra-graph, we reformulate the graph convolu-
tions in the Fourier space by leveraging FGSO. To the best of our knowledge, this work makes the
first step to reformulate the graph convolutions in the Fourier space.

• We design a novel network EV-FGN evolved from edge-varying graph filters for MTS analysis
to capture the time-varying variable dependencies in the Fourier space. This study makes the first
attempt to design a complex-valued feed-forward network in the Fourier space to efficiently compute
multi-layer graph convolutions.

• Extensive experimental results on seven MTS datasets demonstrate that EV-FGN achieves state-of-
the-art performance with high efficiency and fewer parameters. Multifaceted visualizations further
interpret the efficacy of EV-FGN in graph representation learning for MTS forecasting.

2 RELATED WORKS

2.1 MULTIVARIATE TIME SERIES FORECASTING

Classic time series forecasting methods are linear models, such as VAR Watson (1993), ARIMA
Asteriou & Hall (2011) and state space model (SSM) Hyndman et al. (2008). Recently, deep learning
based methods Lai et al. (2018); Sen et al. (2019); Zhou et al. (2021) have dominated MTS forecasting
due to their capability of fitting any complex nonlinear correlations Lim & Zohren (2021).

MTS with GNN. More recently, MTS have embraced GNN Wu et al. (2019); Bai et al. (2020); Wu
et al. (2020); Yu et al. (2018b); Chen et al. (2022); Li et al. (2018) due to their best capability of
modeling structural dependencies between variables. Most of these models, such as STGCN Yu et al.
(2018b), DCRNN Li et al. (2018) and TAMP-S2GCNets Chen et al. (2022), require a pre-defined
graph structure which is usually unknown in most cases. In recent years, some GNN-based works
Kipf et al. (2018); Deng & Hooi (2021) account for the dynamic dependencies due to network design
such as the time-varying attention Deng & Hooi (2021). In comparison, our proposed model captures
the dynamic dependencies leveraging the high-resolution correlation in the supra-graph without
introducing specific networks.

MTS with Fourier transform. Recently, increasing MTS forecasting models have introduced the
Fourier theory into neural networks as high-efficiency convolution operators Guibas et al. (2022);
Chi et al. (2020). SFM Zhang et al. (2017) decomposes the hidden state of LSTM into multiple
frequencies by discrete Fourier transform (DFT). mWDN Wang et al. (2018) decomposes the time
series into multilevel sub-series by discrete wavelet decomposition and feeds them to LSTM network,
respectively. ATFN Yang et al. (2022) utilizes a time-domain block to learn the trending feature
of complicated non-stationary time series and a frequency-domain block to capture dynamic and
complicated periodic patterns of time series data. FEDformer Zhou et al. (2022) proposes an attention
mechanism with low-rank approximation in frequency and a mixture of expert decomposition to
control the distribution shift. However, these models only capture temporal dependencies in the
frequency domain. StemGNN Cao et al. (2020) takes the advantages of both inter-series correlations
and temporal dependencies by modeling them in the spectral domain, but, it captures the temporal
and spatial dependencies separately. Unlike these efforts, our model is able to jointly encode
spatial-temporal dependencies in the Fourier space.
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Figure 1: The network architecture of our proposed model. Given an input X ∈ RN×T , we 1)
embed X into X ∈ RN×T×d; 2) transform X to Fourier space X ∈ CN×T×d by 2D DFT on the
discrete N × T spatial-temporal space; 3) perform graph convolutions in Fourier space by conducting
multiplication of FGSO S and X in the K-layer EV-FGN; 4) transform the output of EV-FGN to
time domain XΨ ∈ RN×T×d by 2D IDFT; 5) generate τ -step predictions X̂ ∈ RN×τ via feeding
XΨ to a two-layer feed-forward network.

2.2 GRAPH SHIFT OPERATOR

Graph shift operators (GSOs) (e.g., the adjacency matrix and the Laplacian matrix) are a general
set of linear operators which are used to encode neighbourhood topologies in the graph. Klicpera
et al. (2019) shows that applying the varying GSOs in the message passing step of GNNs can lead
to significant improvement of performance. Dasoulas et al. (2021) proposes a parameterized graph
shift operator to automatically adapt to networks with varying sparsity. Isufi et al. (2021) allows
different nodes to use different GSOs to weight the information of different neighbors. Hadou et al.
(2022) introduces a linear composition of the graph shift operator and time-shift operator to design
space-time filters for time-varying graph signals. Inspired by these works, in this paper we design a
varying parameterized graph shift operator in Fourier space.

2.3 FOURIER NEURAL OPERATOR

Different from classical neural networks which learn mappings between finite-dimensional Euclidean
spaces, neural operators learn mappings between infinite-dimensional function spaces Kovachki et al.
(2021b). Fourier neural operators (FNOs), currently the most promising one of the neural operators,
are universal, in the sense that they can approximate any continuous operator to the desired accuracy
Kovachki et al. (2021a). Li et al. (2021) formulates a new neural operator by parameterizing the
integral kernel directly in the Fourier space, allowing for an expressive and efficient architecture for
partial differential equations. Guibas et al. (2022) proposes an efficient token mixer that learns to mix
in the Fourier domain which is a principled architectural modification to FNO. In this paper, we learn
a Fourier graph shift operator by leveraging the Fourier Neural operator.

3 METHODOLOGY

Let us denote the entire MTS raw data as X ∈ RN×L with N variables and L timestamps. Under
the rolling setting, we have window-sized time-series inputs with T timestamps, i.e., {X|X ⊂
X, X ∈ RN×T }. Accordingly, we formulate the problem of MTS forecasting as learning the spatial-
temporal dependencies simultaneously on a supra-graph G = (X,S) attributed to each X . The
supra-graph G contains N ∗ T nodes that represent values of each variable at each timestamp in
X , and S ∈ R(N∗T )×(N∗T ) is a graph shift operator (GSO) representing the connection structure
of G. Since the underlying graph is unknown in most MTS scenarios, we assume all nodes in
the supra-graph are connected with each other, i.e., a fully-connected graph, and perform graph
convolutions on the graph to learn spatial-temporal representation. Then, given the observed values of
previous T steps at timestamp t, i.e., Xt−T :t ∈ RN×T , the task of multi-step multivariate time series
forecasting is to predict the values of N variables for next τ steps denoted as X̂t+1:t+τ ∈ RN×τ on
the supra-graph G, formulated as follows:

X̂t+1:t+τ = F(Xt−T :t;G; Θ) (1)

where F is the forecasting model with parameters Θ.

3



Under review as a conference paper at ICLR 2023

3.1 OVERALL ARCHITECTURE

The overall architecture of our model is illustrated in Fig. 1. Given input data X ∈ RN×T , first we
embed the data into embeddings X ∈ RN×T×d by assigning a d-dimension vector for each node
using an embedding matrix Φ ∈ RN×T×d, i.e., X = X × Φ. Instead of directly learning the huge
embedding matrix, we introduce two small parameter matrices: 1) a variable embedding matrix
ϕv ∈ RN×1×d, and 2) a temporal embedding matrix ϕu ∈ R1×T×d to factorize Φ, i.e., Φ = ϕv ×ϕu.
Subsequently, we perform 2D discrete Fourier transform (DFT) on each discrete N × T spatial-
temporal plane of the embeddings X and obtain the frequency input X := DFT(X) ∈ CN×T×d.
We then feed X to K-layer Edge-Varying Fourier Graph Networks (denoted as ΨK ) to perform graph
convolutions for capturing the spatial-temporal dependencies simultaneously in the Fourier space.

To make predictions in time domain, we perform 2D inverse Fourier transform to generate repre-
sentations XΨ := IDFT(ΨK(X )) ∈ RN×T×d in the time domain. The representation is then fed
to two-layer feed-forward networks (FFN, see more details in Appendix F.4) parameterized with
weights and biases denoted as ϕff to make predictions for future τ steps X̂ ∈ RN×τ by one forward
procedure. The L2 loss function for multi-step forecasting can be formulated as:

L(X̂;X; Θ) =
∑
t

∥∥∥X̂t+1:t+τ −Xt+1:t+τ
∥∥∥2
2

(2)

with parameters Θ = {ϕv, ϕu, ϕff ,ΨK} and the groudtruth Xt+1:t+τ ⊂ X at timestamp t.

3.2 FOURIER GRAPH SHIFT OPERATOR

According to the discrete signal processing on graphs Sandryhaila & Moura (2013), a graph shift
operator (GSO) is defined as a general family of operators which enables the diffusion of information
over graph structures Gama et al. (2020); Dasoulas et al. (2021).
Definition 1 (Graph Shift Operator). Given a graph G with n nodes, a matrix S ∈ Rn×n is called
a Graph Shift Operator (GSO) if it satisfies Sij = 0 if i ̸= j and nodes i, j are not connected.

The graph shift operator includes the adjacency, Laplacian matrices and their normalisations as
instances of its class, and represents the connection structure of the graph. Accordingly, given the
graph G attributed to X ∈ Rn×d (corresponding to the supra-graph with n = N ∗ T ), a general form
of spatial-based graph convolution is defined as

O(X) := SXW (3)
with the parameter matrix W ∈ Rd×d. Regarding S as n× n scores, we can define a matrix-valued
kernel κ : [n] × [n] −→ Rd×d with κ[i, j] = Sij ◦W , where [n] = {1, 2, · · · , n}. Then the graph
convolution can be viewed as a kernel summation.

O(X)[i] =

n∑
j=1

X[j]κ[i, j] ∀i ∈ [n]. (4)

In the special case of the Green’s kernel κ[i, j] = κ[i− j], we can rewrite the kernel summation

O(X)[i] =

n∑
j=1

X[j]κ[i− j] = (X ∗ κ)[i] ∀i ∈ [n]. (5)

with X ∗ κ denotes the convolution of discrete sequences X and κ. According to the convolution
theorem Katznelson (1970) (see Appendix B), the graph convolution is rewritten as

O(X)(i) = F−1 (F(X)F(κ)) (i) ∀i ∈ [n]. (6)
where F and F−1 denote the discrete Fourier transform (DFT) and its inverse (IDFT), respectively.
The multiplication in the Fourier space is a lower-complexity computation compared to the graph
convolution, and DFT can be efficiently implemented by the fast Fourier transform (FFT).
Definition 2 (Fourier Graph Shift Operator). Given a graph G = (X,S) with input X ∈ Rn×d

and GSO S ∈ Rn×n and the weight matrix W ∈ Rd×d, the graph convolution is formulated as

F(SXW ) = F(X)×n F(κ) (7)
where F denotes DFT, satisfies κ[i, j] = κ[i − j], and ×n is matrix multiplication on dimensions
except that of n. We define S := F(κ) ∈ Cn×d×d as a Fourier graph shift operator (FGSO).
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In particular, turning to our case of the fully-connected supra-graph G with an all-one GSO S ∈
{1}n×n, it yields the space-invariant kernel κ[i, j] = Sij ◦W = W and F(SXW ) = F(X)F(κ).
Accordingly, we can parameterize FGSO S with a complex-valued matrix Cd×d which is frequency-
invariant and is computationally low costly compared to a varying kernel resulting a parameterized
matrix of Cn×d×d. Furthermore, we can extend Definition 2 to 2D discrete space, i.e., from [n] to
[N ]× [T ], corresponding to the finite discrete spatial-temporal space of multivariate time series. See
Appendix C for more explanations on the frequency-invariant FGSO and the extension to 2D domain.

Remarks. Compared with FGSO and FNO, frequency-invariant FGSO has several advantages.
Assume a graph with n nodes and the embedding dimension d (d ≤ n). 1) Efficiency: the time
complexity of frequency-invariant FGSO is O(nd log n + nd2) for DFT, IDFT and the matrix
multiplication compared with that of O(n2d+ nd2) on a GSO. 2) Scale-free parameters: frequency-
invariant FGSO strategically shares O(d2) parameters for each node and the parameter volume is
agnostic to the data scale, while the parameter count of FNO is O(nd2).

3.3 EDGE-VARYING FOURIER GRAPH NETWORKS

Graph filters as core operations in signal processing are linear transformations expressed as polyno-
mials of the graph shift operator Isufi et al. (2021); Mateos et al. (2019) and can be used to exactly
model graph convolutions and capture multi-order diffusion on graph structures Segarra et al. (2017).
To capture the time-varying counterparts and adopt different weights to weight the information of
different neighbors in each diffusion order, the edge-variant graph filters are defined as follows Isufi
et al. (2021); Segarra et al. (2017): given GSO S ∈ Rn×n corresponding to a graph with n nodes,

HEV = S0 + S1S0 + ...+ SKSK−1...S0 =

K∑
k=0

Sk:0 (8)

where S0 denotes the identity matrix, {Sk}Kk=1 is a collection of K edge-weighting GSOs sharing
the sparsity pattern of S, and Sk ∈ Rn×n corresponds to the k-th diffusion step. The edge-variant
graph filters are proved effective to yield a highly discriminative model and lay the foundation for the
unification of GCNs and GATs Isufi et al. (2021). We can extend Equation 7 to HEV and reformulate
the multi-order graph convolution in a recursive form, where we omit the weight W for conciseness.
Proposition 1. Given a graph input X ∈ Rn×d, the K-order graph convolution under the edge-
variant graph filter HEV =

∑K
k=0 Sk:0 with {Sk ∈ Rn×n}Kk=0 is reformulated as follows:

HEV X = F−1

(
K∑

k=0

F(X)×n S0:k

)
s.t. S0:k = S0 ×n · · · SK−1 ×n SK (9)

where Sk ∈ Cn×d×d is the k-th FGSO satisfying F(SkX) = F(X)×n Sk, S0 is the identity matrix,
and F and F−1 denote the discrete Fourier transform and its reverse, respectively.

Proposition 1 proved in Appendix D.1 states that we can rewrite the multi-order graph convolution
corresponding to HEV as a summation of a recursive multiplication of individual FGSO in the Fourier
space. Corresponding to our case of the supra-graph G, we can similarly adopt K frequency-invariant
FGSOs and parameterize each FGSO Sk with a complex-valued matrix Cd×d. This saves a large
amount of computation costs and results in a concise form:

HEV X = F−1

(
K∑

k=0

F(X)S0:k

)
s.t. S0:k =

k∏
i=0

Si (10)

The recursive composition has a nice property that S0:k = S0:k−1Sk, which inspires us to design a
complex-valued feed forward network with Sk being the complex weights for the k-th layer. However,
both the FGSO and edge-variant graph filter are linear transformations, limiting the capability of
modeling non-linear information diffusion on graphs. Following by the convention in GNNs, we
introduce the non-linear activation and biases to reformulate the k-the layer as follows:

Xk = σ(Xk−1Sk + bk) (11)

with the complex weight Sk ∈ Cd×d, biases bk ∈ Cd and the activation function σ. Accordingly, we
design an edge-varying Fourier graph network (EV-FGN) in the Fourier space according to Equations
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9 and 11, as shown in Fig. 1. Accordingly, the K-layer EV-FGN ΨK is formulated:

ΨK(X ) =

K∑
k=0

Xk s.t. Xk = σ(Xk−1Sk + bk) (12)

where X0 := F(X), {Sk ∈ Cd×d}Kk=1 and {bk ∈ Cd}Kk=1 are complex-valued parameters. The
frequency output ΨK(X ) is then transformed via IDFT, followed with feed forward networks (see
Appendix F.4 for more details) to make multi-step forecasting in the time domain.

Remarks. EV-FGN efficiently learns edge- and neighbor-dependent weights to compute multi-order
graph convolutions on one fly in the Fourier space with scale-free parameter volume. For K iterations
of graph convolutions, GCNs have a general time complexity of O(Kn2d+Knd2), and FNO needs
O(Knd log n+Knd2), and EV-FGN achieves a time complexity of O(nd log n+Knd2 +Knd).
EV-FGN saves time costs from FNO in Fourier transforms and is much more efficient than GCNs,
especially in our case with n = NT for a given raw input X ∈ RN×T . See Appendix E for more
details about the relations and differences between EV-FGN with FNO, adaptive FNO, and GNNs.

4 EXPERIMENTS

4.1 SETUP

Datasets. We select seven representative datasets from different application scenarios for evalua-
tion, including traffic, energy, web traffic, electrocardiogram, and COVID-19. These datasets are
summarized in Table 1. All datasets are normalized using the min-max normalization. Except the
COVID-19 dataset, we split the other datasets into training, validation, and test sets with the ratio of
7:2:1 in chronological order. For the COVID-19 dataset, the ratio is 6:2:2.

Table 1: Summary of datasets.
Datasets Solar Wiki Traffic ECG Electricity COVID-19 METR-LA

Samples 3650 803 10560 5000 140211 335 34272
Variables 592 2000 963 140 370 55 207

Granularity 1hour 1day 1hour - 15min 1day 5min
Start time 01/01/2006 01/07/2015 01/01/2015 - 01/01/2011 01/02/2020 01/03/2012

Baselines. We compare the forecasting performance of our EV-FGN with other representative and
SOTA models on the seven datasets, including VAR Watson (1993), SFM Zhang et al. (2017), LSTNet
Lai et al. (2018), TCN Bai et al. (2018), GraphWaveNet Wu et al. (2019), DeepGLO Sen et al. (2019),
StemGNN Cao et al. (2020), MTGNN Wu et al. (2020), AGCRN Bai et al. (2020), Reformer Kitaev
et al. (2020), Informer Zhou et al. (2021), Autoformer Wu et al. (2021), FEDformer Zhou et al.
(2022), and CoST Woo et al. (2022). In addition, we compare EV-FGN with SOTA TAMP-S2GCNets
Chen et al. (2022), DCRNN Li et al. (2018) and STGCN Yu et al. (2018a), which need pre-defined
graph structures.

Experimental Settings. All experiments are implemented in Python in Pytorch 1.8 (SFM in Keras)
and conducted on one NVIDIA RTX 3080 card. Our model is trained using RMSProp with a learning
rate of 0.00001 and MSELoss (Mean Squared Error) as the loss function. The best parameters for
all comparative models are chosen through careful parameter tuning on the validation set. We use
MAE (Mean Absolute Errors), RMSE (Root Mean Squared Errors), and MAPE (Mean Absolute
Percentage Error) to measure the performance.

More details about the datasets, baselines and experimental settings can be found in Appendix F.

4.2 RESULTS

We summarize the evaluation results in Table 2, and more results can be found in Appendix G.
Generally, our model EV-FGN establishes a new state-of-the-art on all datasets. On average, EV-FGN
improves 8.8% on MAE and 10.5% on RMSE compared to the best baseline for all datasets. Among
these baselines, Reformer, Informer, Autoformer and FEDformer are transformer-based models
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that achieve competitive performance on Electricity and COVID-19 datasets since those models
are competent in capturing temporal dependencies. However, they are defective in capturing the
spatial dependencies explicitly. GraphWaveNet, MTGNN, StemGNN and AGCRN are GNN-based
models that show promising performances on Wiki, Traffic, Solar and ECG datasets due to their
high capability in handling spatial dependencies among variables. However, they are limited to
simultaneously capturing spatial-temporal dependencies. EV-FGN significantly outperforms the
baseline models since it learns comprehensive spatial-temporal dependencies simultaneously and
attends to time-varying dependencies among variables. In Appendix G, we further report the results
on four datasets and show the comparison between EV-FGN with those models requiring pre-defined
graph structures.

Table 2: Forecasting results on the six datasets.
Models Solar Wiki Traffic

MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)

VAR Watson (1993) 0.184 0.234 577.10 0.057 0.094 96.58 0.535 1.133 550.12
SFM Zhang et al. (2017) 0.161 0.283 362.89 0.081 0.156 104.47 0.029 0.044 59.33
LSTNet Lai et al. (2018) 0.148 0.200 132.95 0.054 0.090 118.24 0.026 0.057 25.77
TCN Bai et al. (2018) 0.176 0.222 142.23 0.094 0.142 99.66 0.052 0.067 -
DeepGLO Sen et al. (2019) 0.178 0.400 346.78 0.110 0.113 119.60 0.025 0.037 33.32
Reformer Kitaev et al. (2020) 0.234 0.292 128.58 0.048 0.085 73.61 0.029 0.042 112.58
Informer Zhou et al. (2021) 0.151 0.199 128.45 0.051 0.086 80.50 0.020 0.033 59.34
Autoformer Wu et al. (2021) 0.150 0.193 103.79 0.069 0.103 121.90 0.029 0.043 100.02
FEDformer Zhou et al. (2022) 0.139 0.182 100.92 0.068 0.098 123.10 0.025 0.038 85.12
GraphWaveNet Wu et al. (2019) 0.183 0.238 603 0.061 0.105 136.12 0.013 0.034 33.78
StemGNN Cao et al. (2020) 0.176 0.222 128.39 0.190 0.255 117.92 0.080 0.135 64.51
MTGNN Wu et al. (2020) 0.151 0.207 507.91 0.101 0.140 122.96 0.013 0.030 29.53
AGCRN Bai et al. (2020) 0.123 0.214 353.03 0.044 0.079 78.52 0.084 0.166 31.73

EV-FGN(ours) 0.120 0.162 116.48 0.041 0.076 64.50 0.011 0.023 28.71
Improvement 2.4% 11.0% - 6.8% 3.8% 12.4% 15.4% 23.3% -
Models ECG Electricity COVID-19

MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)

VAR Watson (1993) 0.120 0.170 22.56 0.101 0.163 43.11 0.226 0.326 191.95
SFM Zhang et al. (2017) 0.095 0.135 24.20 0.086 0.129 33.71 0.205 0.308 76.08
LSTNet Lai et al. (2018) 0.079 0.115 18.68 0.075 0.138 29.95 0.248 0.305 89.04
TCN Bai et al. (2018) 0.078 0.107 17.59 0.057 0.083 26.64 0.317 0.354 151.78
DeepGLO Sen et al. (2019) 0.110 0.163 43.90 0.090 0.131 29.40 0.169 0.253 75.19
Reformer Kitaev et al. (2020) 0.062 0.090 13.58 0.078 0.129 33.37 0.152 0.209 132.78
Informer Zhou et al. (2021) 0.056 0.085 11.99 0.070 0.119 32.66 0.200 0.259 155.55
Autoformer Wu et al. (2021) 0.055 0.081 11.37 0.056 0.083 25.94 0.159 0.211 136.24
FEDformer Zhou et al. (2022) 0.055 0.080 11.16 0.055 0.081 25.84 0.160 0.219 134.45
GraphWaveNet Wu et al. (2019) 0.093 0.142 40.19 0.094 0.140 37.01 0.201 0.255 100.83
StemGNN Cao et al. (2020) 0.100 0.130 29.62 0.070 0.101 - 0.421 0.508 141.01
MTGNN Wu et al. (2020) 0.090 0.139 35.04 0.077 0.113 29.77 0.394 0.488 88.13
AGCRN Bai et al. (2020) 0.055 0.080 11.75 0.074 0.116 26.08 0.254 0.309 58.58
EV-FGN(ours) 0.052 0.078 11.05 0.051 0.077 24.28 0.129 0.173 71.52
Improvement 5.5% 2.5% 1.0% 7.3% 4.9% 6.0% 15.1% 17.2% -

4.3 ANALYSIS

Efficiency Analysis. We investigate the parameter volumes and training time costs of EV-FGN,
StemGNN, AGCRN, GraphWaveNet and MTGNN on two representative datasets (Wiki and Traffic).
We report the parameter volumes and the average time costs of five rounds of experiments in Table 3.
In terms of parameter volumes, EV-FGN requires the least volume of parameters among the compara-
tive models. Specifically, it achieves 32.2% and 9.5% parameter reduction over GraphWaveNet on
Traffic and Wiki datasets, respectively. This is highly attributed that EV-FGN has shared scale-free
parameters for each node. Regarding the training time, EV-FGN runs much faster than all baseline
models, and it shows 5.8% and 23.3% efficiency improvements over the fast baseline GraphWaveNet
on Traffic and Wiki datasets, respectively. Besides, the variable count of Wiki dataset is about twice
larger than that of Traffic dataset, but EV-FGN shows larger efficiency gaps with the baselines. These
results demonstrate that EV-FGN shows high efficiency in computing graph convolutions and is
scalable to large datasets with large graphs. Significantly, the supra-graph in EV-FGN has N × T
nodes, which is much larger than the graphs (with N nodes) in the baselines.

Ablation study. We conduct the ablation study on METR-LA dataset to evaluate the contribution
of different components of our model. The results shown in Table 4 verify the effectiveness of
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Table 3: Results of parameter volumes and training time costs on Traffic and Wiki datasets.
Traffic Wiki

models Parameters Training (s/epoch) Parameters Training (s/epoch)

StemGNN 1606140 185.86±2.22 4102406 92.95±1.39
MTGNN 707516 169.34±1.56 1533436 28.69±0.83
AGCRN 749940 113.46±1.91 755740 22.48±1.01

GraphWaveNet 280860 105.38±1.24 292460 21.23±0.76

EV-FGN (ours) 190564 99.25±1.07 264804 16.28±0.48

each component. Specifically, w/o Embedding shows the significance of performing embedding to
improve model generalization. w/o Dynamic Filter using the same graph shift operator verifies the
effectiveness of applying different graph shift operators in capturing time-varying dependencies. In
addition, w/o Residual represents EV-FGN without the K = 0 layer, while w/o Summation adopts
the last order (layer) output XK as the output of EV-FGN. These results demonstrate the importance
of high-order diffusion and the contribution of multi-order diffusion. More results and analysis of the
ablation study are provided in Appendix H.1.

Table 4: Ablation study on the METR-LA dataset.
metrics w/o Embedding w/o Dynamic Filter w/o Residual w/o Summation EV-FGN

MAE 0.053 0.055 0.054 0.054 0.050
RMSE 0.116 0.114 0.115 0.114 0.113

MAPE(%) 86.73 86.69 86.75 86.62 86.30

4.4 VISUALIZATION

To better investigate the spatial-temporal representation learned by EV-FGN, we conduct more
visualization experiments on METR-LA and COVID-19 datasets. More details about the way of
visualization can be found in Appendix F.5.

Figure 2: The adjacency matrix (right) learned by EV-FGN and the corresponding road map (left).

Visualization of spatial representations learned by EV-FGN. We produce the visualization of the
generated adjacency matrix according to the learned representation from EV-FGN on the METR-LA
dataset. Specifically, we randomly select 20 detectors and visualize their corresponding adjacency
matrix via heat map, as shown in Fig. 2. Correlating the adjacency matrix with the real road map, we
observe: 1) the detectors (7, 8, 9, 11, 13, 18, and 19) are very close in physical distance, corresponding
to the high values of their correlations with each other in the heat map; 2) the detectors 4, 14 and 16
have small overall correlation values since they are far from other detectors; 3) however, compared
with detectors 14 and 16, the detector 4 has slightly higher correlation values to other detectors e.g.,

8
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7, 8, 9, which is attributed that although they are far apart, the detectors 4, 7, 8, 9 are on the same
road. The results verify the effectiveness of EV-FGN in learning highly interpretative correlations.

Visualization on four consecutive days. Furthermore, we conduct experiments to visualize the
adjacency matrix of 10 randomly-selected counties on four consecutive days on the COVID-19 dataset.
The visualization results via heat map are shown in Fig. 3. From the figure, we can observe that
EV-FGN learns clear spatial patterns that show continuous evolution in the time dimension. This is
because EV-FGN highlights the edge-varying design and attends to the time-varying variability of the
supra-graph. These results verify that our model enjoys the feasibility of exploiting the time-varying
dependencies among variables.

Figure 3: The adjacency matrix for four consecutive days on the COVID-19 dataset.

Visualization of EV-FGN diffusion process. To understand how EV-FGN works, we analyze the
frequency input of each layer. We choose 10 counties from COVID-19 dataset and visualize their
adjacency matrices at two different timestamps, as shown in Fig. 4. From left to right, the results
correspond to X0, · · · ,X3 respectively. From the top, we can find that as the number of layers
increases, some correlation values are reduced, indicating that some correlations are filtered out. In
contrast, the bottom case illustrates some correlations are enhanced as the number of layers increases.
These results show that EV-FGN can adaptively and effectively capture important patterns while
removing noises to a learn discriminative model. More visualizations are provided in Appendix H.2.

Figure 4: The diffusion process of EV-FGN at two timestamps (top and bottom) on COVID-19.

5 CONCLUSION

In this paper, we define a Fourier graph shift operator (FGSO) and construct the efficient edge-varying
Fourier graph networks (EV-FGN) for MTS forecasting. EV-FGN is adopted to simultaneously
capture high-resolution spatial-temporal dependencies and account for time-varying variable depen-
dencies. This study makes the first attempt to design a complex-valued feed-forward network in
the Fourier space for efficiently computing multi-layer graph convolutions. Extensive experiments
demonstrate that EV-FGN achieves state-of-the-art performances with higher efficiency and fewer
parameters and shows high interpretability in graph representation learning. This study sheds light on
efficiently calculating graph operations in Fourier space by learning a Fourier graph shift operator.

9
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A NOTATION

Table 5: Notations
X entire multivariate time series data, X ∈ RN×L

X multivariate time series input under the rolling setting, X ∈ RN×T

N the number of variables of X
L the number of timestamps of X
T the number of timestamps of X
τ the prediction length of MTS under the rolling setting
d the embedding dimension
X the embedding of X, X ∈ RN×T×d

X the spectrum of X , X ∈ CN×T×d

S the graph shift operator
G the supra-graph, G = {X,S} attributed to X
S the Fourier graph shift operator
Θ the parameters of the forecasting model
Φ the embedding matrix
ϕv the variable embedding matrix
ϕu the temporal embedding matrix
K the diffusion steps
κ the kernel function
W the weight matrix
b the complex bias weights
F Discrete Fourier transform
F−1 Inverse discrete Fourier transform
F the forecasting model
ΨK K-layer EV-FGN
HEV the edge-varying graph filters

B CONVOLUTION THEOREM

The convolution theorem Katznelson (1970) is one of the most important property of Fourier transform.
It states the Fourier transform of a convolution of two signals equals the pointwise product of their
Fourier transforms in the frequency domain. Given a signal x[n] and a filter h[n], the convolution
theorem can be defined as follows:

F((x ∗ h)[n]) = F(x)F(h) (13)

where (x ∗ h)[n] =
∑N−1

m=0 h[m]x[(n − m)N ] denotes the convolution of x and h, (n − m)N
denotes (n−m) modulo N, and F(x) and F(h) denote discrete Fourier transform of x[n] and h[n],
respectively.

C EXPLANATIONS

C.1 THE INTERPRETATION OF FREQUENCY-INVARIANT FGSO

In addition to reducing parameter volumes and saving computation costs, the frequency-invariant
parameterized FGSO is empirically proved effective to improve model generalization. As we
mentioned above, we perform EV-FGN over the input embeddings and adopt the frequency-invariant
FGSOs. Relatively to directly adopting the frequency-variant FGSOs (Cn×d×d), we subtly “factorize”
the frequency-variant parameterization to the time domain (i.e., the embedding matrix Φ ∈ Rn×d)
and the frequency domain (i.e., frequency-invariant FGSO Cd×d). In the time domain, we embed the
raw MTS inputs to improve the model learning capability, while we learn the same transformation
(FGSO) for all N ∗ T frequency points in the frequency domain (similar to CNN with shared-weight
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convolution kernels or filters that slide along input features). Note that the frequency spectrum in
the frequency domain has a global view of which each frequency point attends to all variables or
timestamps. This treatment in EV-FGN guarantees the model capacity and is empirically proved
superior over the treatment without embeddings and with frequency-variant FGSO (please refer to
the Ablation study for detailed results). Although the frequency-variant parameterization may be
more powerful and flexible than the frequency-invariant one, it introduces more parameters in the
frequency domain, especially for multi-layer EV-FGN, and may not obtain superior performance due
to inadequate training or overfitting.

C.2 EXPLANATION TO THE EXTENSION OF DEFINITION 2 TO 2D DOMAIN

Recall Eqs. 4 and 5,

Eq. 4 (kernel summation): O(X)[i] =
∑n

j=1 X[j]κ[i, j] ∀i ∈ [n]

Eq. 5 (kernel summation): O(X)[i] =
∑n

j=1 X[j]κ[i− j] = (X ∗ κ)[i] ∀i ∈ [n]

When we extend the equations to 2D domain, i.e., from [n] to [N ]× [T ], it means performing a kernel
summation/graph convolution over the discrete spatial-temporal space corresponding to all nodes in
the supra-graph. Obviously, these computations of the kernel summation can be easily extended to
2D domain. Similarly, according to the convolution theorem, we can obtain a 2D-version of Eq. 6:

Eq. 6 (graph convolution): O(X)(i) = F−1 (F(X)F(κ)) (i) ∀i ∈ [N ]× [T ]

with F and F−1 denote the 2D discrete Fourier transform and its inverse, respectively. Accordingly,
when extending Definition 2 to 2D domain, F denotes the 2D discrete Fourier transform. Therefore,
given input embeddings X ∈ RN×T×d, we perform 2D discrete Fourier transform on each discrete
N × T spatial-temporal plane of the embeddings to obtain the frequency spectrum, and then feed the
frequency input into K-layer EV-FGN followed by two-layer (real-valued) feed-forward networks to
generate multi-step forecasting (see Section 3.1 for more details). Note that we adopt the frequency-
invariant FGSO (d× d) in the EV-FGN where the feed-forward computations act on the embedding
dimension, i.e., d. In addition, when extending Definition 2 to 2D domain, the frequency-invariant
FGSO is invariant to both frequency components derived from the spatial dimension (N ) and time
dimension (T ) respectively.

C.3 INTERPRETATION OF OMITTING THE WEIGHT MATRIX W IN PROPOSITION 1

This treatment of omitting the weight matrix W in Eq. 9 is feasible since the weight matrix W can
be absorbed in the embedding input, precisely the embedding matrix parameters. Note that we feed
the input embeddings into EV-FGN (refer to Fig. 1 and Section 3.1). In addition, this treatment
will not reduce the capability of EV-FGN intuitively since we adopt edge-varying filters in EV-FGN.
Note that traditional GCNs adopt different weight matrices (regarding the model capability) but the
same GSO (e.g., adjacency and Laplacian matrices regarding the given graph structure) in different
diffusion orders. Differently, there is no pre-given graph structure in MTS forecasting scenarios,
therefore we adopt the edge-varying filters, i.e., varying GSOs in EV-FGN, which does not reduce
the model capability and achieves desirable performance empirically.

D PROOFS

D.1 PROOF OF PROPOSITION 1

The proof aims to expand the graph convolution corresponding to HEV using a set of FGSOs in the
Fourier space. According to the concise form of Equation 7, i.e.,

F(SX) = F(X)×n S (14)
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where F denotes the discrete Fourier transform (DFT) and we omit the weight matrix W for
convenience (we can treat W as an identity matrix), it yields:

F(SKSK−1 · · ·S0X) = F(SK(SK−1...S0X))

= F(SK−1...S0X)×n SK

= F(X )×n S0 · · · SK−1 ×n SK

(15)

where {Si}Ki=0 is a set of GSOs, and {Si}Ki=0 is a set of FGSOs corresponding to {Si}Ki=0 individually.
Thus, the edge-varying graph filter HEV can be rewritten as

F(HEV X) = F(S0X + S1S0X + ...+ SKSK−1...S0X)

= F(S0X) + F(S1S0X) + ...+ F(SKSK−1...S0X)

= F(X)×n S0 + F(X)×n S0 ×n S1 + ...+ F(X)S0 ×n · · · SK−1 ×n SK

(16)

Accordingly, we have

HEV X = F−1

(
K∑

k=0

F(X)×n S0:k

)
s.t. S0:k = S0 ×n · · · SK−1 ×n SK (17)

Proved.

E COMPARED WITH OTHER NETWORKS

E.1 GNN

Graph Convolutional Networks. Graph convolutional networks (GCNs) depend on the Laplacian
eigenbasis to perform the multi-order graph convolutions over a given graph structure. Compared
with GCNs, EV-FGN as an efficient alternative to multi-order graph convolutions has three main
differences: 1) No eigendecompositions or similar costly matrix operations are required. EV-FGN
transforms the input into Fourier domain by discrete Fourier transform (DFT) instead of graph Fourier
transform (GFT); 2) Explicitly assigning various importance to nodes of the same neighborhood
with different diffusion steps. EV-FGN adopts different Fourier graph shift operators S in different
diffusion steps corresponding to the time-varying dependencies among nodes; 3) EV-FGN is invariant
to the discretization N , T . It parameterizes the graph convolution via Fourier bases invariant graph
structure and graph scale.

Graph Attention Networks. Graph attention networks (GATs) are non-spectral attention-based
graph neural networks. GATs use node representations to calculate the attention weights (i.e., edge
weights) varying with different graph attention layers. Accordingly, both GATs and EV-FGN do
not depend on eigendecompositions and adopt varying edge weights with different diffusion steps
(layers). However, EV-FGN can efficiently perform graph convolutions in the Fourier space. For a
complete graph, the time complexity of the attention calculation of K layers is proportional to Kn2

where n is the number of nodes, while a K-layer EV-FGN infers the graph structure in Fourier space
with the time complexity proportional to n log n. In addition, compared with GATs that implicitly
achieve edge-varying weights with different layers, EV-FGN adopts different FGSOs in different
diffusion steps explicitly.

E.2 FNO

Inspired by Fourier neural operator (FNO) Li et al. (2021) that computes the global convolutions in
the Fourier space, we elaborately design EV-FGN to compute the multi-order graph convolutions in
the Fourier space. Both FNO and EV-FGN replace the time-consuming graph/global convolutions in
time domain with the efficient spectral convolution in the Fourier space according to the convolution
theorem.

However, FNO and EV-FGN are quite different in the network architecture. As shown in Fig. 5, FNO
consists of a stack of Fourier layers where each Fourier layer serially performs 1) DFT to obtain the
spectrum of the input, 2) then the spectral convolution in the Fourier space, 3) and finally IDFT to
transform the output to the time domain. Accordingly, FNO needs K pairs of DFT and IDFT for K
Fourier layers in FNO. In contrast, EV-FGN with just a pair of DFT and IDFT performs multi-order
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(multi-layer) graph convolutions on one fly via stacking multiple FGSOs in Fourier space, as shown
in Fig. 1.

In addition, adaptive Fourier neural operator (AFNO) Guibas et al. (2022) is a variant of FNO. It
is a neural unit and used in a plug-and-play fashion as an alternative to self-attention to reduce the
quadratic complexity. Similarly, it requires a pair of DFT and IDFT to accomplish the self-attention
computation. In contrast, our proposed EV-FGN is a neural network with a set of FGSOs in a
well-designed connection.

Figure 5: The simplified structure of FNO derived from Li et al. (2021). F and F−1 denote Fourier
transform and its reverse respectively.

F EXPERIMENT DETAILS

F.1 DATASETS

Solar1: This dataset is about the solar power collected by National Renewable Energy Laboratory.
We choose the power plant data points in Florida as the data set which contains 593 points. The data
is collected from 2006/01/01 to 2016/12/31 with the sampling interval of every 1 hour.

Wiki2: This dataset contains a number of daily views of different Wikipedia articles and is collected
from 2015/7/1 to 2016/12/31. It consists of approximately 145k time series and we randomly choose
2k from them as our experimental data set.

Traffic3: This dataset contains hourly traffic data from 963 San Francisco freeway car lanes. The
traffic data are collected since 2015/01/01 with the sampling interval of every 1 hour.

ECG4: This dataset is about Electrocardiogram(ECG) from the UCR time-series classification archive
Dau et al. (2019). It contains 140 nodes and each node has a length of 5000.

Electricity5: This dataset contains electricity consumption of 370 clients and is collected since
2011/01/01. Data sampling interval is every 15 minutes.

COVID-196: This dataset is about COVID-19 hospitalization in the U.S. states of California (CA)
from 01/02/2020 to 31/12/2020 provided by the Johns Hopkins University with the sampling interval
of every one day.

METR-LA7: This dataset contains traffic information collected from loop detectors in the highway
of Los Angeles County. It contains 207 sensors which is from 01/03/2012 to 30/06/2012 and the data
sampling interval is every 5 minutes.

1https://www.nrel.gov/grid/solar-power-data.html
2https://www.kaggle.com/c/web-traffic-time-series-forecasting/data
3https://archive.ics.uci.edu/ml/datasets/PEMS-SF
4http://www.timeseriesclassification.com/description.php?Dataset=

ECG5000
5https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
6https://github.com/CSSEGISandData/COVID-19
7https://github.com/liyaguang/DCRNN
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F.2 BASELINES

VAR Watson (1993): VAR is a classic linear autoregressive model. We use Statsmodels library
(https://www.statsmodels.org) which is a python package that provides statistical compu-
tations to realize the VAR.

DeepGLO Sen et al. (2019): DeepGLO models the relationships among variables by matrix factor-
ization and employs a temporal convolution neural network to introduce non-linear relationships. We
download the source code from: https://github.com/rajatsen91/deepglo. We use
the default setting as our experimental settings for wiki, electricity and traffic datasets. For covid
datasets, the vertical and horizontal batch size is set to 64, the rank of global model is set to 64, the
number of channels is set to [32, 32, 32, 1], and the period is set to 7.

LSTNet Lai et al. (2018): LSTNet uses a CNN to capture inter-variable relationships and a RNN
to discover long-term patterns. We download the source code from: https://github.com/
laiguokun/LSTNet. In our experiment, we use the default settings where the CNN hidden units
is 100, the kernel size of the CNN layers is 4, the dropout is 0.2, the RNN hidden units is 100, the
number of RNN hidden layers is 1, the learning rate is 0.001 and the optimizer is Adam.

TCN Bai et al. (2018): TCN is a causal convolution model for regression prediction. We download the
source code from: https://github.com/locuslab/TCN. We utilize the same configuration
as the polyphonic music task exampled in the open source code where the dropout is 0.25, the kernel
size is 5, the hidden units is 150, the number of levels is 4 and the optimizer is Adam.

Reformer Kitaev et al. (2020): Reformer combines the modeling capacity of a Transformer with
an architecture that can be executed efficiently on long sequences and with small memory use. We
download the source code from: https://github.com/thuml/Autoformer. We use the
recommended settings as the experimental settings.

Informer Zhou et al. (2021): Informer leverages an efficient self-attention mechanism to encode
the dependencies among variables. We download the source code from: https://github.com/
zhouhaoyi/Informer2020. We use the default settings as our experimental settings where the
dropout is 0.05, the number of encoder layers is 2, the number of decoder layers is 1, the learning
rate is 0.0001, and the optimizer is Adam.

Autoformer Wu et al. (2021): Autoformer proposes a decomposition architecture by embedding the
series decomposition block as an inner operator, which can progressively aggregate the long-term
trend part from intermediate prediction. We download the source code from: https://github.
com/thuml/Autoformer. We use the recommended settings as our experimental settings with 2
encoder layers and 1 decoder layer.

FEDformer Zhou et al. (2022): FEDformer proposes an attention mechanism with low-rank approxi-
mation in frequency and a mixture of experts decomposition to control the distribution shifting. We
download the source code from: https://github.com/MAZiqing/FEDformer. We use
FEB-f as the Frequency Enhanced Block and select the random mode with 64 as the experimental
mode.

SFM Zhang et al. (2017): On the basis of the LSTM model, SFM introduces a series of different
frequency components in the cell states. We download the source code from: https://github.
com/z331565360/State-Frequency-Memory-stock-prediction. We use the de-
fault settings as the authors recommended where the learning rate is 0.01, the frequency dimension is
10, the hidden dimension is 10 and the optimizer is RMSProp.

StemGNN Cao et al. (2020): StemGNN leverages GFT and DFT to capture dependencies among
variables in the frequency domain. We download the source code from: https://github.com/
microsoft/StemGNN. We use the default setting of stemGNN as our experiment setting where
the optimizer is RMSProp, the learning rate is 0.0001, the stacked layers is 5, and the dropout rate is
0.5.

MTGNN Wu et al. (2020): MTGNN proposes an effective method to exploit the inherent dependency
relationships among multiple time series. We download the source code from: https://github.
com/nnzhan/MTGNN. Because the experimental datasets have no static features, we set the
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parameter load_static_feature to false. We construct the graph by the adaptive adjacency matrix and
add the graph convolution layer. Regarding other parameters, we adopt the default settings.

GraphWaveNet Wu et al. (2019): GraphWaveNet introduces an adaptive dependency matrix learning
to capture the hidden spatial dependency. We download the source code from: https://github.
com/nnzhan/Graph-WaveNet. Since our datasets have no prior defined graph structures, we
use only adaptive adjacent matrix. We add a graph convolution layer and randomly initialize the
adjacent matrix. We adopt the default setting as our experimental settings where the learning rate is
0.001, the dropout is 0.3, the number of epoch is 50, and the optimizer is Adam.

AGCRN Bai et al. (2020): AGCRN proposes a data-adaptive graph generation module for discovering
spatial correlations from data. We download the source code from: https://github.com/
LeiBAI/AGCRN. We use the default settings as our experimental settings where the embedding
dimension is 10, learning rate is 0.003, and the optimizer is Adam.

TAMP-S2GCNets Chen et al. (2022): TAMP-S2GCNets explores the utility of MP to enhance knowl-
edge representation mechanisms within the time-aware DL paradigm. We download the source code
from: https://www.dropbox.com/sh/n0ajd5l0tdeyb80/AABGn-ejfV1YtRwjf_
L0AOsNa?dl=0. TAMP-S2GCNets requires predefined graph topology and we use the Cali-
fornia State topology provided by the source code as input. We adopt the default settings as our
experimental settings on COVID-19.

DCRNN Li et al. (2018): DCRNN uses bidirectional graph random walk to model spatial dependency
and recurrent neural network to capture the temporal dynamics. We download the source code from :
https://github.com/liyaguang/DCRNN. We use the default settings as our experimental
settings with the batch size is 64, the learning rate is 0.01, the input dimension is 2 and the optimizer
is Adam. DCRNN repuires a pre-defined graph structures and we use the adjacency matrix as the
pre-defined structures provided by METR-LA dataset.

STGCN Yu et al. (2018a): STGCN integrates graph convolution and gated temporal convolu-
tion through spatial-temporal convolutional blocks. We download the source code from:https:
//github.com/VeritasYin/STGCN_IJCAI-18. We use the default settings as our exper-
imental settings where the batch size is 50, the learning rate is 0.001 and the optimizer is Adam.
STGCN requires a pre-defined graph structures and we leverage the adjacency matrix as the pre-
defined structures provided by METR-LA dataset.

CoST Woo et al. (2022): CoST separates the representation learning and downstream forecasting task
and proposes a contrastive learning framework that learns disentangled season-trend representations
for time series forecasting tasks. We download the source code from: https://github.com/
salesforce/CoST. We set the representation dimension to 320, a learning rate to 0.001 and the
batch size to 32. Inputs are min-max normalization, we perform a 70/20/10 train/validation/test split
for METR-LA dataset and 60/20/20 for COVID-19 dataset.

F.3 EVALUATION METRICS

We use MAE (Mean Absolute Error), RMSE (Root Mean Square Error), and MAPE (Mean Absolute
Percentage Error) as the evaluation metrics in the experiments.

Specifically, given the groudtruth Xt+1:t+τ ∈ RN×τ and the predictions X̂t+1:t+τ ∈ RN×τ for
future τ steps at timestamp t, the metrics are defined as follows:

MAE =
1

τN

N∑
i=1

τ∑
j=1

|xij − x̂ij | (18)

RMSE =

√√√√ 1

τN

N∑
i=1

τ∑
j=1

(xij − x̂ij)
2 (19)

MAPE =
1

τN

N∑
i=1

τ∑
j=1

∣∣∣∣xij − x̂ij

xij

∣∣∣∣× 100% (20)

with xij ∈ Xt+1:t+τ and x̂ij ∈ X̂t+1:t+τ .
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F.4 EXPERIMENTAL SETTINGS

We summarize the implementation details of the proposed EV-FGN as follows. Note that the details
of the baselines are introduced in their corresponding descriptions (see Section F.2).

Network details. The fully connected feed-forward network (FFN) consists of three linear transfor-
mations with LeakyReLU activations in between. The FFN is formulated as follows:

X1 = LeakyReLU(XΨW1 + b1)

X2 = LeakyReLU(X1W2 + b2)

X̂ = X2W3 + b3

(21)

where W1 ∈ R(Td)×dffn
1 , W2 ∈ Rdffn

1 ×dffn
2 and W3 ∈ Rdffn

2 ×τ are the weights of the three
layers respectively, and b1 ∈ Rdffn

1 , b2 ∈ Rdffn
2 and b3 ∈ Rτ are the biases of the three layers

respectively. Here, dffn1 and dffn2 are the dimensions of the three layers. In addition, we adopt a
ReLU activation function in Equation 11.

Table 6: Dimension settings of FFN on different datasets.

Datasets Solar Wiki Traffic ECG Electricity COVID-19 META-LR

l 6 2 2 ∗ 4 8 4
dffn1 64 64 64 64 64 256 64
dffn2 256 256 256 256 256 512 256

∗ denotes that we feed the original time domain representation to FFN without the dimension reduction.

Training details. We carefully tune the hyperparameters, including the embedding size, batch
size, dffn1 and dffn2 , on the validation set and choose the settings with the best performance for
EV-FGN on different datasets. Specifically, the embedding size and batch size are tuned over
{32, 64, 128, 256, 512} and {2, 4, 8, 16, 32, 64, 128} respectively. For the COVID-19 dataset, the
embedding size is 256, and the batch size is set to 4. For the Traffic, Solar and Wiki datasets, the
embedding size is 128, and the batch size is set to 2. For the METR-LA, ECG and Electricity datasets,
the embedding size is 128, and the batch size is set to 32. Note that the supra-graph connecting all
nodes is a fully-connected graph, indicating that any spatial order is feasible. Therefore, although
we perform 2D DFT in EV-FGN, none spatial order in the spatial space is necessary for performing
EV-FGN, and we directly adopt the raw dataset for experiments.

To reduce the number of parameters, we adopt a linear transform to map the original time domain
representation XΨ ∈ RN×T×d to a low-dimensional tensor XΨ ∈ RN×l×d with l < T . We
then reshape XΨ ∈ RN×(ld) and feed it to FFN. We perform grid search on the dimensions of
FFN, i.e., dffn1 and dffn2 , over {32, 64, 128, 256, 512} and tune the intermediate dimension l over
{2, 4, 6, 8, 12}. The settings of the three hyperparameters over all datasets are shown in Table 6.
Finally, we set the diffusion step K = 3 for all datasets.

F.5 DETAILS FOR VISUALIZATION EXPERIMENTS

To verify the effectiveness of EV-FGN in learning the spatial-temporal dependencies on the fully-
connected supra-graph, we obtain the output of EV-FGN as the node representation, denoted as
R = IDFT(ΨK(X )) ∈ RN×T×d with inverse discrete Fourier transform (IDFT) and K-layer EV-
FGN ΨK . Then, we visualize the adjacency matrix A calculated based the flatten node representation
R ∈ RNT×d, formulated as A = RRT ∈ RNT×NT , to show the variable correlations. Note that A
is normalized via A/max(A). Since it is not feasible to directly visualize the huge adjacency matrix
A of the supra-graph, we visualize its different subgraphs in Figures 3, 4, 5, and 10 to better verify
the learned spatial-temporal information on the supra-graph from different perspectives.

Figure 3: On the METR-LA dataset, we average its adjacency matrix A over the temporal dimension
(i.e., marginalizing T ) to A′ ∈ RN×N . Then, we randomly select 20 detectors out of all N = 207
detectors and obtain their corresponding sub adjacency matrix (R20×20) from A′ for visualization.
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We further compare the sub adjacency with the real road map (generated by the google map tool) to
verify the learned dependencies between different detectors.

Figure 4. On the COVID-19 dataset, we randomly choose 10 counties out of N = 55 counties and
obtain their four sub adjacency matrices of four consecutive days for visualization. Each of the four
sub adjacency matrices R10×10 embodies the dependencies between counties in one day. Figure 4
reflects the time-varying dependencies between counties (i.e., variables).

Figure 5. Since we adopt a 3-layer EV-FGN, we can calculate four adjacency matrices based on the
input X of EV-FGN and the outputs of each layer in EV-FGN, i.e., X1,X2,X3. Following the way of
visualization in Figure 4, we select 10 counties and two timestamps on the four adjacency matrices for
visualization. Figure 5 shows the effects of each layer of EV-FGN in filtering or enhancing variable
correlations.

Figure 10. We select 8 counties and visualize the correlations between 12 consecutive time steps for
each selected county respectively. Figure 10 reflects the temporal correlations within each variable.

G MORE RESULTS

Table 7: Performance comparison under different prediction lengths on the COVID-19 dataset.
Length 3 6 9 12
Metrics MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)

GraphWaveNet Wu et al. (2019) 0.092 0.129 53.00 0.133 0.179 65.11 0.171 0.225 80.91 0.201 0.255 100.83
StemGNN Cao et al. (2020) 0.247 0.318 99.98 0.344 0.429 125.81 0.359 0.442 131.14 0.421 0.508 141.01
AGCRN Bai et al. (2020) 0.130 0.172 68.64 0.171 0.218 79.29 0.224 0.277 113.42 0.254 0.309 125.43
MTGNN Wu et al. (2020) 0.276 0.379 91.42 0.446 0.513 133.49 0.484 0.548 139.52 0.394 0.488 88.13
TAMP-S2GCNets Chen et al. (2022) 0.140 0.190 50.01 0.150 0.200 55.72 0.170 0.230 71.78 0.180 0.230 65.76
CoST Woo et al. (2022) 0.122 0.246 68.74 0.157 0.318 72.84 0.183 0.364 77.04 0.202 0.377 80.81

EV-FGN(ours) 0.071 0.103 61.02 0.093 0.131 65.72 0.109 0.148 69.59 0.124 0.164 72.57
Improvement 22.8% 20.2% - 30.1% 26.8% - 35.9% 35.7% 3.1 % 31.1% 28.7% -

To further evaluate the performance of our model EV-FGN in multi-step forecasting, we conduct
more experiments on the COVID-19, Wiki, ECG, and METR-LA datasets, respectively. Note that
the COVID-19 and METR-LA datasets have predefined graph topologies. We compare EV-FGN
with other GNN-based MTS models (including StemGNN, AGCRN, GraphWaveNet, MTGNN
and TAMP-S2GCNets) and representation learning model (CoST) on the COVID-19 dataset under
different prediction lengths, and the results are shown in Table 7. From the table, we can find that
EV-FGN achieves the best MAE and RMSE on all the prediction lengths. On average, EV-FGN
has 30.0% and 27.9% improvement on MAE and RMSE respectively over the best baseline, i.e.,
TAMP-S2GCNets. Among these models, TAMP-S2GCNets requiring a pre-defined graph topology
achieves competitive performance since it enhances the resultant graph learning mechanisms with
a multi-persistence. However, it constructs the graph in the spatial dimension, while our model
EV-FGN adaptively learns a supra-graph connecting any two variables at any two timestamps, which
is effective and more powerful to capture high-resolution spatial-temporal dependencies.

Table 8: Performance comparison under different prediction lengths on the Wiki dataset.
Length 3 6 9 12
Metrics MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)

GraphWaveNet Wu et al. (2019) 0.061 0.105 138.60 0.061 0.105 135.32 0.061 0.105 132.52 0.061 0.104 136.12
StemGNN Cao et al. (2020) 0.157 0.236 89.00 0.159 0.233 98.01 0.232 0.311 142.14 0.220 0.306 125.40
AGCRN Bai et al. (2020) 0.043 0.077 73.49 0.044 0.078 80.44 0.045 0.079 81.89 0.044 0.079 78.52
MTGNN Wu et al. (2020) 0.102 0.141 123.15 0.091 0.133 91.75 0.074 0.120 85.44 0.101 0.140 122.96
Informer Zhou et al. (2021) 0.053 0.089 85.31 0.054 0.090 84.46 0.059 0.095 93.80 0.059 0.095 95.09

EV-FGN(ours) 0.040 0.075 58.18 0.041 0.075 60.43 0.041 0.076 60.95 0.042 0.077 62.62
Improvement 7.0% 2.6% 20.83% 6.8% 3.8% 24.9% 8.9% 3.8% 25.6% 4.5% 2.5% 20.3%

In addition, we compare our model EV-FGN with five neural MTS models (including StemGNN,
AGCRN, GraphWaveNet, MTGNN and Informer) on Wiki dataset under different prediction lengths,
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and the results are shown in Table 8. From the table, we observe that EV-FGN outperforms other
models on MAE, RMSE and MAPE metrics for all the prediction lengths. On average, EV-FGN
improves MAE, RMSE and MAPE by 6.8%, 3.2% and 22.9%, respectively. Among these models,
AGCRN shows promising performances since it captures the spatial and temporal correlations
adaptively. However, it fails to simultaneously capture spatial-temporal dependencies, limiting its
forecasting performance. In contrast, our model learns a supra-graph to capture comprehensive
spatial-temporal dependencies simultaneously for multivariate time series forecasting.

Table 9: Performance comparison under different prediction lengths on the METR-LA dataset.
Horizon 3 6 9 12
Metrics MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)

DCRNN Li et al. (2018) 0.160 0.204 80.00 0.191 0.243 83.15 0.216 0.269 85.72 0.241 0.291 88.25
STGCN Yu et al. (2018a) 0.058 0.133 59.02 0.080 0.177 60.67 0.102 0.209 62.08 0.128 0.238 63.81
GraphWaveNet Wu et al. (2019) 0.180 0.366 21.90 0.184 0.375 22.95 0.196 0.382 23.61 0.202 0.386 24.14
MTGNN Wu et al. (2020) 0.135 0.294 17.99 0.144 0.307 18.82 0.149 0.328 19.38 0.153 0.316 19.92
StemGNN Cao et al. (2020) 0.052 0.115 86.39 0.069 0.141 87.71 0.080 0.162 89.00 0.093 0.175 90.25
AGCRN Bai et al. (2020) 0.062 0.131 24.96 0.086 0.165 27.62 0.099 0.188 29.72 0.109 0.204 31.73
Informer Zhou et al. (2021) 0.076 0.141 69.96 0.088 0.163 70.94 0.096 0.178 72.26 0.100 0.190 72.54
CoST Woo et al. (2022) 0.064 0.118 88.44 0.077 0.141 89.63 0.088 0.159 90.56 0.097 0.171 91.42

EV-FGN(ours) 0.050 0.113 86.30 0.066 0.140 87.97 0.076 0.159 88.99 0.084 0.165 89.69
Improvement 3.8% 1.7% - 4.3% 0.7% - 5.0% - - 9.7% 3.5% -

Finally, we compare our model EV-FGN with seven neural MTS models (including STGCN, DCRNN,
StemGNN, AGCRN, GraphWaveNet, MTGNN, Informer and CoST) on the METR-LA dataset, and
the results are shown in Table 9. On average, we improve 5.7% on MAE and 2.5% on RMSE. Among
these models, StemGNN achieves competitive performance because it combines GFT to capture the
spatial dependencies and DFT to capture the temporal dependencies. However, it is also limited to
simultaneously capturing spatial-temporal dependencies. CoST learns disentangled seasonal-trend
representations for time series forecasting via contrastive learning and obtains competitive results.
But, our model still outperforms CoST. Because, compared with CoST, our model not only can learn
the dynamic temporal representations, but also capture the discriminative spatial representations.
Besides, STGCN and DCRNN require pre-defined graph structures. But StemGNN and our model
outperform them for all steps, and AGCRN outperforms them when the prediction lengths are 9
and 12. This also shows that a novel adaptive graph learning can precisely capture the hidden
spatial dependency. In addition, we compare EV-FGN with the baseline models under the different
prediction lengths on the ECG dataset, as shown in Fig. 6. It reports that EV-FGN achieves the best
performances (MAE, RMSE and MAPE) for all prediction lengths.

(a) MAE (b) RMSE (c) MAPE

Figure 6: Performance comparison in different prediction lengths on the ECG dataset.

H MORE ANALYSES

H.1 ANALYSES

Parameter Analysis. We evaluate the forecasting performance of our model EV-FGN under different
diffusion steps on the COVID-19 dataset, as illustrated in Table 10. The table shows that EV-FGN
achieves increasingly better performance from K = 1 to K = 4 and achieves the best results when
K = 3. With the further increase of K, EV-FGN obtains inferior performance. The results indicate
that high-order diffusion information is beneficial for improving the forecasting accuracy, but the
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Table 10: Performance at different diffusion steps on the COVID-19 dataset.
K=1 K=2 K=3 K=4

MAE 0.136 0.133 0.129 0.132
RMSE 0.181 0.177 0.173 0.176

MAPE(%) 72.30 71.80 71.52 72.59

Figure 7: Influence of input length. Figure 8: Influence of embedding size.

diffusion information may gradually weaken the effect or even bring noises to forecasting with the
increase of the order.

In addition, we conduct extensive experiments on the ECG dataset to analyze the effect of the input
length and the embedding dimension d, as shown in Fig. 7 and Fig. 8, respectively. Fig. 7 shows that
the performance (including RMSE and MAPE) of EV-FGN gets better as the input length increases,
indicating that EV-FGN can learn a comprehensive supra-graph from long MTS inputs to capture the
spatial and temporal dependencies. Moreover, Fig. 8 shows that the performance (RMSE and MAPE)
first increases and then decreases with the increase of the embedding size, which is attributed that a
large embedding size improves the fitting ability of EV-FGN but it may easily lead to the overfitting
issue especially when the embedding size is too large.

(a) MAE (b) RMSE (c) MAPE

Figure 9: The sensitivity between MAE, RMSE, MAPE and number of nodes on the Wiki dataset.

We further conduct experiments on the Wiki dataset to investigate the performance of EV-FGN under
different graph sizes. The results are shown in Fig. 9, where Fig. 9(a), Fig. 9(b) and Fig. 9(c) show
MAE, RMSE and MAPE at the different number of nodes, respectively. From these figures, we
observe that EV-FGN keeps a leading edge over the other state-of-the-art MTS models as the number
of nodes increases. The results demonstrate the superiority and scalability of EV-FGN on large scale
datasets.

Ablation Study. We provide more details about each variant used in this section and Section 4.3.

• w/o Embedding. A variant of EV-FGN feeds the raw MTS input instead of its embeddings
into the graph convolution in the Fourier space.
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Table 11: Ablation studies on the COVID-19 dataset.
metrics w/o Embedding w/o Dynamic Filter w/o Residual w/o Summation EV-FGN

MAE 0.157 0.138 0.131 0.134 0.129
RMSE 0.203 0.180 0.174 0.177 0.173

MAPE(%) 76.91 74.01 72.25 72.57 71.52

• w/o Dynamic Filter. A variant of EV-FGN uses the same FGSO for all diffusion steps
instead of applying different FGSOs in different diffusion steps. It corresponds to a vanilla
graph filter.

• w/o Residual. A variant of EV-FGN does not have the K = 0 layer output, i.e., X , in the
summation.

• w/o Summation. A variant of EV-FGN adopts the last order (layer) output XK as the final
frequency output of the EV-FGN.

We conduct another ablation study on the COVID-19 dataset to further investigate the effects of the
different components of our EV-FGN. The results are shown in Table 11, which confirms the results
in Table 4 and further verifies the effectiveness of each component in EV-FGN. Both Table 11 and
Table 4 report that the embedding and dynamic filter in EV-FGN contribute more than the design of
residual and summation to the state-of-the-art performance of EV-FGN.

(a) N=7 (b) N=18 (c) N=24 (d) N=29

(e) N=38 (f) N=45 (g) N=46 (h) N=55

Figure 10: The temporal adjacency matrix of eight variables on COVID-19 dataset.

Ordering of the time series. Note that the supra-graph connecting all nodes is a fully-connected
graph, indicating that any spatial order is feasible. Then how could we perform 2D DFT to achieve
the graph convolution? First, the graph convolution on the supra-graph can be viewed as a kernel
summation (cf. Eq.4, i.e., O(X)[i] =

∑n
j=1 X[j]κ[i, j],∀j ∈ [n]) and does not depend on a

specific spatial order. From Eq.4 to Eq.5, we extend the kernel summation to a kernel integral in
the continuous spatial-temporal space and introduce a special kernel, i.e., the shift-invariant Green’s
kernel κ(i, j) = κ(i − j). According to the convolution theorem, we can reformulate the graph
convolution with continuous Fourier transform (i.e., Eq.6 O(X)(i) = F−1 (F(X)F(κ)) (i),∀i ∈ D)
and then apply Eq.6 to the finite discrete spatial-temporal space (i.e., the supra-graph). Accordingly,
we can obtain the Definition 2 and Eq.7 reformulating the graph convolution with 2D DFT.

To understand the learning paradigm of EV-FGN, we can recall the self-attention mechanism as
an analogy that does not need any assumption on datapoint order and introduce extra position
embeddings for capturing temporal patterns. EV-FGN performs 2D DFT on each discrete N × T
spatial-temporal plane of the embeddings X instead of the raw data X . A key insight underpinning
EV-FGN is to introduce variable embeddings and temporal position embeddings to equip EV-FGN
with a sense of variable correlations (spatial patterns and temporal patterns).
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To verify the claim, we conducted experiments on the dataset ECG. Specifically, we randomly shuffle
the order of time-series variables of the raw data five times and evaluate our EV-FGN on each
shuffled data. The results are reported in the following table. Note that we can also conduct shuffling
experiments on temporal order via performing the same shuffling scheme over each window-sized
time-series input, which will get the same conclusion.

Table 12: Five-round results on randomly shuffled data on the dataset ECG.
Metric R1 R2 R3 R4 R5 Raw

MAE 0.052 0.053 0.053 0.053 0.052 0.052
RMSE 0.078 0.078 0.078 0.078 0.078 0.078
MAPE(%) 10.95 10.98 11.02 10.99 10.99 11.05

H.2 VISUALIZATIONS

To demonstrate the ability of our EV-FGN in jointly learning spatial-temporal dependencies, we
visualize the temporal adjacency matrix of different variables. Note that the spatial adjacency matrices
of different days are reported in Fig. 3. Specifically, we randomly select 8 counties from the COVID-
19 dataset and calculate the correlations of 12 consecutive time steps for each county. Then we
visualize the adjacency matrix via heat map, and the results are shown in Fig. 10 where N denotes the
index of the country (variable). From the figure, we observe that EV-FGN learns clear and specific
temporal patterns for each county. These results show that our EV-FGN can not only learn highly
interpretable spatial correlations (see Fig. 2 and Fig. 3), but also capture discriminative temporal
patterns.
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