
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MOL: ADAPTIVE MIXTURE-OF-LENGTH REASONING
FOR EFFICIENT QUESTION ANSWERING WITH CON-
TEXT

Anonymous authors
Paper under double-blind review

ABSTRACT

We present Mixture-of-Length (MoL), an approach for Question Answering (QA)
with context that aims to improve the balance between reasoning quality and re-
sponse efficiency. Our method introduces a principled difficulty assessment based
on information-theoretic principles and a dual-objective reward mechanism that
adaptively modulates response length. In our experiments, MoL exhibits an emer-
gent behavior termed “intelligent brevity”: the model tends to produce shorter
responses for simpler queries and longer ones for more complex inputs. This prop-
erty is desirable for human-computer interaction and can reduce inference costs.
A post-hoc analysis of internal activations suggests a correlation between this out-
put adaptivity and the effective number of layers that contribute during inference.
On multiple QA benchmarks, MoL demonstrates competitive accuracy while sub-
stantially reducing tokens compared to baselines, indicating that difficulty-aware
length modulation is a promising direction for efficient QA with context.

1 INTRODUCTION

Question Answering (QA) with context represents a fundamental challenge in natural language pro-
cessing, where models must synthesize information from multiple sources to generate accurate re-
sponses. While recent advances in large language models (LLMs) have demonstrated remarkable
capabilities in this domain (Suzgun et al., 2023), a critical tension persists between reasoning qual-
ity and computational efficiency (Pan et al., 2024; Su et al., 2024). This challenge is most acute in
multi-document scenarios, where reasoning complexity varies from simple extraction to complex
multi-hop inference. Efficiently navigating this spectrum is key. Figure 1 offers an initial glimpse
of our solution on HotpotQA, demonstrating that comparable accuracy can be achieved with signif-
icantly shorter responses.

Current approaches to efficient reasoning fall into two primary categories, each with significant lim-
itations. First, uniform compression methods (Yang et al., 2025; Kang et al., 2025) apply fixed
reduction strategies regardless of task complexity, leading to under-reasoning on difficult problems
while over-elaborating on simple ones. Second, adaptive methods (Ling et al., 2025; Team et al.,
2025) attempt difficulty-aware processing but rely on heuristic difficulty estimation and rigid com-
pression policies that struggle to recover when initial assessments prove inadequate.

The core insight driving our work is that optimal reasoning should be fundamentally adaptive, which
involves allocating computational resources proportional to the inherent complexity of each query.
However, realizing this vision requires addressing two key technical challenges: (1) principled diffi-
culty assessment that can reliably distinguish between simple extraction tasks and complex reason-
ing problems, and (2) fault-tolerant adaptation that can dynamically expand reasoning when initial
attempts prove insufficient.

We introduce Mixture-of-Length (MoL), a novel framework that addresses these challenges
through two key innovations. First, we develop a theoretically-grounded difficulty assessment based
on information-theoretic principles, specifically modeling QA complexity through the lens of the
Set Cover problem. Our metric quantifies reasoning difficulty by measuring cross-document infor-
mation redundancy, where high redundancy indicates simple extraction tasks and low redundancy
signals complex multi-hop reasoning requirements. Second, we propose a dual-objective reward
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mechanism that implements fault-tolerant adaptation: it encourages compression for correct re-
sponses while promoting expansion for incorrect ones, enabling the model to self-correct by scaling
reasoning capacity on-demand.
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Figure 1: An evaluation of model accuracy and to-
ken length on HotpotQA: Original (base model),
GRPO (RL with accuracy reward only), ER-
PLP (difficulty-aware adaptive reasoning depth),
KIMI (length-penalized reasoning compression),
and MoL (ours). Lower tokens at similar or higher
accuracy is better.

Crucially, MoL exhibits an emergent behav-
ior termed “intelligent brevity”: the model
naturally learns to produce concise responses
for simple queries and elaborate reasoning for
complex problems, without explicit length con-
straints. This is a direct outcome of our train-
ing design, which encourages adaptive resource
allocation based on question difficulty. Post-
hoc analysis further reveals this output-level
adaptation correlates with internal computa-
tional patterns: simpler questions activate fewer
transformer layers, while complex ones engage
deeper model capacity. This suggests that MoL
induces a form of dynamic computational allo-
cation operating coherently across both exter-
nal responses and internal representations.

Empirical evaluations across multiple QA
benchmarks, including HotpotQA (Yang et al.,
2018), StrategyQA (Geva et al., 2021), and
Loong (Wang et al., 2024), reveal that MoL sig-
nificantly enhances both performance and effi-
ciency. Our comprehensive results demonstrate
that MoL achieves: a) Up to 53.2% reduction in token length in inference efficiency across QA
with context datasets. b) An absolute accuracy improvement of 5.0%, outperforming state-of-the-art
token compression and reinforcement learning methods. c) Superior performance generalization to
unseen datasets, highlighting the robustness of our difficulty-aware approach.

Our contributions are threefold: (1) a principled, information-theoretic approach to difficulty as-
sessment in multi-document QA, (2) a fault-tolerant adaptive reasoning framework that dynamically
balances efficiency and accuracy, and (3) empirical evidence that output-level adaptation can reflect
and potentially drive internal computational allocation in transformer models.

2 RELATED WORK

QA with Context. QA with context task aims to enhance question understanding by incorporat-
ing additional information, rather than treating questions as isolated inputs (Min et al., 2020). This
context encompasses various factors, particularly cognitive and social factors related to user intent,
tasks, and needs. Consequently, the effective utilization of context is crucial for accurately interpret-
ing questions. Notably, the performance of Large Language Models (LLMs) remains challenged
when handling long-text tasks due to limitations in their context window (Chiang & Cholak, 2022).
Numerous studies are currently dedicated to extending the effective context length of LLMs (Xiao
et al., 2024; Chevalier et al., 2023). Given this, it is essential to propose methods capable of effective
task-specific adaptation for long-text tasks.

Large Reasoning Model. In recent years, large language models (LLMs) have achieved remark-
able breakthroughs in complex reasoning tasks (Wei et al., 2022). A key innovation in this field is
the Chain-of-Thought (CoT) technique, which enhances multi-step reasoning by introducing in-
termediate reasoning steps (Yao et al., 2023). This approach has significantly improved model
performance in challenging tasks such as mathematical deduction and logical analysis. Building
upon this direction, researchers have further integrated reinforcement learning techniques to en-
hance models’ autonomous reasoning capabilities through answer feedback mechanisms (Cheng
& Van Durme, 2024). This technical approach has led to several state-of-the-art models, such as
OpenAI’s o1 (Achiam et al., 2023) and DeepSeek-R1.

Efficient Reasoning. Several recent works have been proposed to address the redundancy in Chain-
of-Thought (CoT) reasoning (Ma et al., 2025; Shen et al., 2025). For supervised fine-tuning, Yu
et al. (2025) introduces the LS-Mixture framework, which mitigates redundancy by jointly training
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on both original long CoT sequences and their reconstructed shorter ones. Other methods enforce
stricter constraints: Token-Budget imposes a hard token limit to streamline computation (Han et al.,
2024), whereas TokenSkip adopts importance-weighted filtering (Xia et al., 2025). However, both
approaches risk omitting pivotal reasoning steps, especially for complex problems. Reinforcement
learning approaches have enabled more flexible optimization (Rafailov et al., 2023; Ferrag et al.,
2025). The Kimi team’s work utilizes a contrastive length reward to encourage conciseness (Team
et al., 2025), and Ling et al. (2025) propose an adaptive strategy that adjusts reasoning depth based
on pre-assessed problem difficulty. While effective, these methods often suffer from two key limita-
tions: (1) they lack a mechanism for error recovery when an initially concise answer is incorrect, and
(2) their compression strategies can be brittle, failing to expand reasoning for unexpectedly complex
queries. In contrast, MoL introduces a fault-tolerant, dual-objective mechanism. It not only com-
presses responses for simple tasks but also dynamically encourages longer, more detailed reasoning
(Rextend) when an answer is incorrect. This allows the model to self-correct by scaling its reasoning
capacity on-demand, significantly improving reliability and robustness compared to methods with
fixed or one-way compression policies.

3 METHOD

3.1 OVERVIEW

We propose Mixture-of-Length (MoL), a framework that achieves “intelligent brevity” by adaptively
modulating response length based on question difficulty. Our method enables models to naturally
produce concise responses for simple queries while elaborating reasoning for complex problems.
We first introduce a difficulty assessment that quantifies reasoning complexity from cross-document
redundancy (proxy-based information-theoretic) (Alon et al., 2003). Based on this assessment, we
then propose an adaptive mixture-of-length reasoning approach, driven by a dual-objective reward,
to dynamically adjust response length. The overall framework is illustrated in Figure 2.

Figure 2: Our framework adaptively controls response length: When a question is answered incor-
rectly, the model is encouraged by Rextend to lengthen its response in order to search for missing
evidence chains, whereas once the question is answered correctly, Rcompress rewards more concise
expressions. These two behaviors are adaptively interleaved during training based on the correctness
of the current response, rather than forming a fixed multi-stage pipeline.

3.2 DIFFICULTY ASSESSMENT: FROM THEORY TO IMPLEMENTATION

Conceptual Motivation. While reasoning complexity is inherently tied to information synthesis
across documents, we draw conceptual inspiration from information theory and the classic Set Cover
problem (Alon et al., 2003; Ash, 2012) to formalize this intuition. To answer a question q, a model
must synthesize a set of essential knowledge snippets U = {u1, . . . , um}, distributed across context
documents D = {D1, . . . , Dn}. Each document Di provides a subset Ai ⊆ U of these snippets.

The complexity of covering all elements in U with a minimal set of documents is closely related to
the approximation hardness of the Set Cover problem. However, exact Set Cover computation is NP
hard and thus infeasible for large scale QA. We observe that high redundancy, that is, substantial
overlap between different Ai, corresponds to lower effective complexity, since fewer documents are
required to cover U , whereas low redundancy corresponds to higher complexity. Motivated by this
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observation, we propose a practical approximation that characterizes problem difficulty in terms of
document redundancy.

Practical Implementation. Our heuristic operationalizes redundancy through sentence-level simi-
larity between documents:

Step 1: Key Information Extraction. To filter out noise, we first extract question-relevant sen-
tences from each document:

D′
i = {s ∈ Di : s ∈ Top-k(Sim(s, q))}, (1)

where Top-k(Sim(s, q)) denotes the subset of Di consisting of the k sentences with the highest
cosine similarity to q (Sim(s, q) is the cosine similarity between the embeddings of s and q).

Step 2: Cross-Document Similarity Computation. We then compute the pairwise similarity be-
tween the filtered documents to quantify information redundancy:

Sij = cosine(embed(D′
i), embed(D′

j)), (2)
The average similarity is calculated as:

S̄ =
2

n(n− 1)

∑
1≤i<j≤n

Sij , (3)

Finally, difficulty is defined as:

C(q,D) = 1− S̄, (4)

Clarification of Approximation. While our metric is inspired by the complexity formalized in
the Set Cover framework through redundancy principles, it is a heuristic approximation tailored for
practical QA scenarios. Unlike exact Set Cover solutions, our method avoids combinatorial explo-
sion by focusing on semantic overlap at the sentence level. Empirically, this design achieves strong
correlation with difficulty labels documented by humans (81% agreement, Section 4.3), validating
its utility as a proxy for reasoning complexity.

3.3 ADAPTIVE REWARD MECHANISM

Our adaptive reward mechanism can be framed as optimizing the rate-distortion trade-off in reason-
ing, where we use response length as a proxy for rate and task error as a proxy for distortion.

Extend Reward for High Distortion. For complex questions, concise responses often fail to cover
the required multi-step reasoning processes. According to Press et al. (2022), many incorrect an-
swers tend to arise when response length is significantly shorter than expected, leading to missing
critical reasoning steps. To address this, we design an expansion reward mechanism for incorrect
answers (high distortion):

Rextend = clip
(
ε1 − λ

(
1− Lactual

Ltarget

)
, 0, 1

)
, (5)

where Ltarget denotes the target response length, Lactual represents the actual response length,
ε1 is the base reward for incorrect answers, and λ controls the reward-length correlation strength.
This mechanism encourages longer reasoning to unlock correct paths while incorporating accuracy
verification to prevent verbose but ineffective responses.

Compress Reward for Zero Distortion. For simple questions, existing models tend to generate re-
sponses with redundant explanations and irrelevant information (Sui et al., 2025; Chen et al., 2024),
which reduces efficiency and may introduce errors (Zeng et al., 2025). For correct answers (zero
distortion), our compression reward encourages finding a minimal-sufficient description, following
the Minimum Description Length (MDL) principle (Grünwald, 2007):

Rcompress = clip
(
ε2 + λ

(
1− Lactual

Ltarget

)
, 0, 1

)
, (6)

where ε2 indicates the base reward for correct answers. This design provides substantial rewards for
correct answers while progressively decreasing rewards as response length increases, effectively cul-
tivating the model’s ability to “answer on demand” by eliminating non-essential expressions while
preserving accuracy.
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3.4 MIXTURE-OF-LENGTH FRAMEWORK

Difficulty-Dependent Target Lengths. Based on the assessed complexity, we assign a target
length Ltarget which acts as an empirical anchor on the rate-distortion curve. The specific length
thresholds are initially set based on the response length distribution observed in the HotpotQA
dataset(Additional experimental details are provided in Appendix B.5, including additional exper-
iments we conducted demonstrating that MoL can adaptively adjust its behavior, thereby reducing
its dependence on the Ltarget):

Ltarget =


512 if C(q,D) ≤ 0.3 (Simple),
1024 if 0.3 < C(q,D) < 0.7 (Medium),
2048 if C(q,D) ≥ 0.7 (Complex).

(7)

This anchor is sufficiently long for complex cases, yet short enough to avoid verbosity in simple sce-
narios. Importantly, we find that different parameter combinations consistently yield performance
gains(ablation studies on these parameters are provided in Appendix B.5), indicating that our ap-
proach is robust to specific threshold choices.

Unified Reward Function. The complete MoL reward implements “intelligent brevity” by dy-
namically switching between compression and extension modes based on answer correctness. This
design prevents reward hacking behaviors where models might exploit the system by generating
extremely long or short responses regardless of content quality:

RMoL =

{
Rcompress if y = y∗ (zero distortion),
Rextend if y ̸= y∗ (high distortion).

(8)

Progressive Learning Strategy. To ensure stable training, we employ a curriculum learning strat-
egy by dynamically adjusting the length-reward coefficient λ over time:

λ(t) = max

(
γ, λ ·

(
1− t

T

))
, (9)

where t is the current training epoch, T is total epochs, λ is a hyperparameter that controls the
strength of the correlation between response length and reward, and γ is a minimum floor value.

3.5 TRAINING OBJECTIVE

We use the GRPO algorithm for optimization. The total reward function combines the standard
accuracy reward with our MoL reward:

R(x, y) = α · 1[y = y∗] + (1− α) ·RMoL(x, y), (10)
The final optimization objective includes a KL regularizer to a reference policy πref, which stabilizes
updates:

L(θ) = Ex,y∼πθ

[
R(x, y)− β log

πθ(y|x)
πref (y|x)

]
. (11)

4 EXPERIMENTS

Setup We utilized a compute node equipped with 64 A100 GPUs for all experiments. Hyperpa-
rameters are set as follows: α = 0.7 to balance accuracy and efficiency; λ0 = 1.0, γ = 0.3 for
progressive constraint relaxation; ε1 = 0.2, ε2 = 0.6 for the base rewards; and k = 2 for sentence
selection. We encode the documents with the BGE-M3 encoder. We report experimental results
using the F1-score as the primary evaluation metric. All tokens length reported in experimental
results refer exclusively to output tokens, excluding input tokens. During training, a prediction is
considered correct if its F1-score exceeds 0.8. Additional configurations are detailed in Appendix A.
Hyperparameter ablation studies are provided in Appendix B.

Benchmarks We performed comprehensive experiments on diverse QA with context tasks, in-
cluding implicit reasoning, complex reasoning, and long-document reasoning. Our evaluation uti-
lized three benchmark datasets: HotpotQA (Yang et al., 2018), StrategyQA (Geva et al., 2021), and
Loong (Wang et al., 2024).
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Table 1: Performance comparison on QA with Context task under various base LLMs.

Models Methods HotpotQA StrategyQA Loong
Accuracy Tokens Accuracy Tokens Accuracy Tokens

Qwen3-1.7B

Original 51.8 766 81.0 397 - -
GRPO 55.5 717 88.3 425 - -
ERPLP 54.4 444 86.5 369 - -
KIMI 55.1 475 85.9 358 - -
MoL (Ours) 57.3 384 89.3 201 - -

Qwen3-8B

Original 61.0 609 93.7 468 55.8 2165
GRPO 63.7 747 95.4 478 60.8 2363
ERPLP 63.3 394 92.0 270 56.3 2037
KIMI 62.8 444 92.5 333 60.8 1938
MoL(Ours) 67.2 316 95.9 219 62.3 1374

Qwen3-14B

Original 65.7 534 94.4 322 62.4 1915
GRPO 67.2 559 96.1 326 71.3 1907
ERPLP 60.2 352 94.6 248 67.0 1380
KIMI 63.6 311 92.7 304 69.6 1519
MoL (Ours) 69.4 298 96.8 187 72.3 1128

Llama-3.1-8B-Instruct

Original 53.3 431 77.4 116 36.3 742
GRPO 64.5 1107 92.4 119 57.1 896
ERPLP 60.2 186 86.5 110 49.0 158
KIMI 64.5 196 91.6 103 55.9 207
MoL(Ours) 69.2 169 94.1 57 59.2 143

Baselines In our experiments, we compare against the following baseline methods: 1) GRPO:
A baseline based on standard reinforcement learning. 2) ERPLP: An adaptive resource allocation
strategy dynamically adjusts reasoning depth according to problem difficulty (Ling et al., 2025). 3)
KIMI: Integrates model distillation, shortest-path sampling, and length penalty to compress long
reasoning chains into concise outputs (Team et al., 2025).

4.1 COMPARISON EXPERIMENTS

We evaluate the Qwen3-1.7B, Qwen3-8B, Qwen3-14B, and Llama-3.1-8B-Instruct across all bench-
mark datasets (note that Qwen3-1.7B cannot be evaluated on the Loong dataset due to its context
window limitations), with the results presented in Table 1. Experimental results demonstrate that our
proposed MoL method achieves intelligent question-adaptive compression through its document-
relevance-based dynamic difficulty grading mechanism. For simple questions, it applies substantial
compression while preserving more critical information for complex ones, yielding a 49.1% com-
pression ratio with a 6.2% accuracy gain (Qwen3-8B). This adaptive strategy shows significant
effectiveness across all three benchmark datasets, not only realizing efficient compression but also
substantially improving accuracy. These results suggest that MoL provides a more intelligent and
efficient solution for QA with context tasks, effectively addressing a key challenge in traditional
methods of balancing response efficiency with answer quality.

The GRPO-trained model indeed achieves improved accuracy, but at the cost of reduced inference
efficiency. While ERPLP and KIMI demonstrate certain effectiveness in token compression, their
uniform compression strategies exhibit notable limitations. This compression approach particularly
impacts the handling of complex questions, excessive compression leads to critical reasoning infor-
mation loss, resulting in significantly degraded accuracy when answering questions requiring longer
reasoning chains. To validate the operational mechanism of the MoL, we illustrate its effect by com-
paring model outputs before and after training on randomly sampled questions of different difficulty
levels. The complete set of examples is available in Appendix F.
4.2 ABLATION STUDIES

To validate the effectiveness of our question difficulty assessment method, we conduct compara-
tive experiments on the HotpotQA dataset using three distinct difficulty definition approaches. The
experimental results are presented in Table 2. The results demonstrate that models trained with
HotpotQA’s original difficulty labels achieve superior performance while maintaining output con-
ciseness, confirming the reference value of the dataset’s inherent difficulty annotations. In contrast,
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the passage-based method, which computes difficulty labels through similarity measures between
original reference passages, shows suboptimal performance. Specifically, the low-relevance sen-
tences in original reference documents introduce bias to the similarity computation mechanism. The
simple questions are then misclassified as difficult ones and consequently leading to unnecessarily
verbose model responses. Our proposed method can effectively address such limitations by first ex-
tracting question-relevant key sentences before computing similarity. With the improved difficulty
assessment, our method has outperformend other methods. Appendix D presents a comparative
evaluation of the two methods for computing question difficulty.

Table 2: Performance evaluation of models
trained with different difficulty definition strate-
gies on HotpotQA dataset.

Models HotpotQA
Accuracy Tokens

Original 61.1 609
Original difficulty 63.0 387

passage 62.1 594
MoL (Ours) 67.2 316

Table 3: Comparative analysis of reward mech-
anisms on model performance (Loong).

Models Loong
Accuracy Tokens

Original 55.8 2165
GRPO 60.8 2363

MoL w/o Rextend 58.9 1298
MoL w/o Rcompress 62.7 2862

MoL (Ours) 62.3 1374

Our systematic ablation study reveals distinct roles of Rcompress and Rextend (See in Table 3):
Removing Rextend significantly degrades model accuracy (contrast with GRPO performance), con-
firming its exclusive contribution to reasoning quality. Conversely, disabling Rcompress leads to
substantially longer outputs with negligible accuracy gains, demonstrating its specialized function
in length control. These orthogonal effects collectively validate our reward design’s dual-capability
architecture: Rextend primarily enhances correctness without inducing significant length inflation,
while Rcompress successfully enforces conciseness with minimal sacrifice in accuracy. The ablation
studies on the target length and our Progressive Learning Strategy are detailed in Appendix B.5 and
Appendix B.6, respectively.

4.3 STRATIFIED ANALYSIS BASED ON DIFFICULTY LEVELS

We partition the HotpotQA dataset into ten difficulty-based segments and evaluate both the KIMI
method and our approach on each segment, with results shown in Figure 3. Experimental results
demonstrate that our method dynamically adjusts token compression strategies according to question
difficulty, achieving an optimal balance between performance and efficiency. Our approach yields
a significant 7.3% accuracy improvement in high-difficulty segments while maintaining reasonable
token counts. For medium-to-low difficulty segments, it achieves superior compression with 10%
token reduction while preserving accuracy advantage.
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Figure 3: Comparative Analysis of MoL and Kimi Methods by Question Difficulty.

Compared to KIMI’s fixed compression strategy, our method exhibits clear difficulty awareness:
low-to-medium difficulty questions, we allocate fewer tokens, whereas for high-difficulty questions,
increased token allocation mitigates accuracy decline, validating its effectiveness.

To validate the effectiveness of our proposed difficulty assessment method, we employed both the
prompt-based model approach and the MoL method to classify the difficulty levels of the HotpotQA
dataset. The experiments utilized DeepSeek-V3 as the classification model, and the performance of
the two classification results was evaluated based on the Qwen3-8B model (As shown in Table 4).
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Table 4: Comparison of difficulty assessment. MoL demonstrates superior discrimination between
easy and hard questions, with a larger accuracy gap (29.1% vs. 8.4%), higher easy-question accu-
racy, and lower hard-question accuracy, indicating more realistic difficulty evaluation.

Method Difficulty (Acc) Difference
Easy Hard

Prompt(DS-V3) 64.1 55.7 8.4
MoL(Ours) 79.2(higher) 50.1(lower) 29.1

For datasets classified by difficulty using the Prompt-based method, the model’s accuracy did not ex-
hibit significant variation across difficulty levels. In contrast, datasets stratified via the MoL frame-
work exhibited a clear performance gradient reflecting the expected relationship between question
difficulty and model accuracy. Specifically, the model performed significantly better on easy ques-
tions compared to hard questions, indicating stronger discriminative validity and alignment with
real-world difficulty categorization. The MoL methodology successfully identifies simple questions
with higher accuracy and challenging questions where accuracy is lower, thereby creating a distinct
separation between difficulty tiers.

We further validated the accuracy of the MoL for question difficulty assessment by conducting an ex-
pert evaluation on the HotpotQA dataset. The observed agreement rate of 81% between the experts
and MoL provides strong evidence for the reliability of our approach. Although difficulty estimation
based on cross-document similarity performs well overall, two types of extreme misclassification
can occur: samples with high cross-document similarity that nonetheless require multi-step reason-
ing, and samples with low cross-document similarity whose answers can be directly extracted from
a single sentence; in both cases the difficulty estimation method may fail. We include case stud-
ies of these two situations in our experiments to demonstrate MoL’s self-correction and robustness
(see Appendix F.3). We also evaluate the sensitivity of our difficulty estimator to Top-k, embedding
model and sentence segmentation; details and results are given in Appendix B.7.

4.4 ANALYSIS OF MODEL ACTIVATION PATTERNS
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Figure 4: Baseline vs. MoL layer activation on easy vs. hard questions: colored bars denote activated
layers; uncolored bars denote inactive layers (Analysis on the HotpotQA dataset).

To empirically validate that MoL fosters adaptive computation, we analyzed the model’s internal ac-
tivation patterns. We introduce a relative activation metric to quantify the contribution of each layer
(see Appendix C for a detailed definition and implementation). Using this metric, we measured the
number of active layers for both simple and difficult problems, with a threshold of τ = 0.1. The
results are visualized in Figure 4. The baseline model exhibits a homogeneous activation pattern,
engaging a similar number of layers regardless of task difficulty. This confirms its lack of inherent
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difficulty awareness. In contrast, the MoL-trained model demonstrates significant computational
adaptivity: it activates substantially fewer layers for simple problems while recruiting a deeper com-
putational path for difficult ones. This finding provides direct evidence that MoL’s training objective
leads to an emergent behavior where computational effort is implicitly allocated based on perceived
problem complexity, which is a fundamental driver of its efficiency and performance gains.

To demonstrate the generalization capability of our approach, we evaluate models trained on the
HotpotQA dataset across five benchmark datasets. As shown in Table 5, the Qwen3-8B model
trained with MoL exhibits remarkable generalization performance: on unseen StrategyQA and
Loong datasets, it not only maintains high accuracy rates of 94.4% and 57.2% respectively, but
also compresses the average response length to 239 and 1574 tokens, achieving reductions of 48.9%
and 27.3% compared to the original model. These results strongly validate that MoL enables models
to autonomously recognize question difficulty and adaptively select response strategies. Crucially,
the stark contrast with the GRPO baseline confirms that the performance gains are attributable to the
MoL framework itself, rather than to reinforcement learning in general.

4.5 GENERALIZATION STUDIES

Table 5: Qwen3-8B performance across five datasets when trained on HotpotQA.

Models HotpotQA StrategyQA Loong CQA SVAMP

Acc Tokens Acc Tokens Acc Tokens Acc Tokens Acc Tokens

Original 61.0 609 93.7 468 55.8 2165 66.5 673 93.7 1397
GRPO 63.7 747 92.9 513 56.4 2276 67.1 647 93.1 1436
MoL 67.2 316 94.4 239 57.2 1574 68.2 542 94.6 1129

Our model’s training paradigm is based on document-grounded datasets, which necessitates an in-
vestigation into its applicability to standard, non-document-grounded tasks. To this end, we per-
formed evaluations on two benchmarks: a commonsense reasoning dataset (CommonsenseQA) (Tal-
mor et al., 2019) and a mathematical word problem dataset (SVAMP) (Patel et al., 2021). The empir-
ical results are summarized in Table 5. Notably, our method exhibits strong performance, indicating
that the MoL training framework endows the model with an inherent capability to gauge question
difficulty and dynamically allocate computational budget for generating responses. This outcome
strongly validates the generalization power of our approach beyond its training domain.

4.6 LONG CONTEXT SCENARIO
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Figure 5: Model performance comparison on the Loong dataset (10-50k and 50-100k).
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We evaluate model performance on long contexts by testing on data divided into two length inter-
vals: 10k-50k and 50k-100k. As demonstrated in Figure 5. Results show our method achieves the
best overall performance in both intervals, particularly excelling at complex reasoning tasks. This
superior performance stems from MoL’s adaptive Ltarget parameter selection, which enables op-
timal response strategies for texts of varying lengths. Notably, our method maintains comparable
performance between the 50k-100k and 10k-50k ranges, demonstrating significantly better stability
than other baseline models. Experimental results demonstrate that our difficulty-adaptive approach
achieves precise difficulty assessment through sentence decomposition while maintaining robustness
to text length. Our case analysis shows that, even when desired lengths are shorter than initially spec-
ified, the method generates suitable responses, evidencing the effectiveness of the length-constraint
relaxation mechanism and robustness to varying length requirements.

5 CONCLUSION

We propose Mixture-of-Length (MoL), a novel framework that dynamically adapts response lengths
to problem difficulty, effectively balancing reasoning depth and efficiency in QA with context tasks.
MoL combines a principled difficulty assessment with a dual-objective reward mechanism, which
gives rise to an emergent “intelligent brevity” behavior. Our post-hoc analysis shows this adapt-
ability correlates with the model’s internal layer contributions, emulating human-like cognitive ef-
ficiency. MoL represents a promising paradigm for scalable, context-aware reasoning in LLMs and
suggests promising directions for developing intelligent, resource-efficient QA systems.

6 ETHICS STATEMENT

This study uses only publicly available datasets that contain no personal or sensitive identifying
information. We conducted manual difficulty annotations for a subset of samples; annotators were
informed of the research purpose and voluntarily consented to participate. A comprehensive de-
scription of our use of LLMs is documented in Appendix E.

7 LIMITATIONS

Analysis is Correlational: The observed link between shorter outputs and fewer activated layers is
post-hoc and does not establish causality. More rigorous mechanistic studies are needed to confirm
how MoL influences internal computation.

Generalization Constraints in Multi Document Dependent Difficulty Assessment: We acknowl-
edge that the proposed difficulty assessment method is inherently tied to multi document tasks which
limits its direct applicability to single document or document free scenarios. While the bidirectional
reward function in MoL demonstrates task agnostic properties (e.g. outperforming baselines on
CommonsenseQA and SVAMP in Table 5) its adaptation to non multi document settings currently
relies on heuristic initial target lengths derived from approximate output token ranges. Future work
will focus on developing a unified difficulty assessment framework applicable across diverse task
modalities including single document QA and document agnostic reasoning.

8 REPRODUCIBILITY STATEMENT

We have taken several steps to facilitate independent verification of our results. The main pa-
per details the model architecture and training objectives (see Section 3), Experimental Setup and
datasets (Section 4), and ablation configurations (Appendix B). Complete hyperparameter lists, hard-
ware/software specifications are documented in Appendix A. Dataset processing pipelines are de-
scribed in Appendix G. The source code implementing our method will be submitted as part of our
supplementary materials.
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A EXPERIMENTS

Setup Our experiments were conducted using 64 A100 with 80GB memory per device. Hyper-
parameters are set as follows: balancing coefficient α = 0.7, follow other work. length-correlation
coefficient λ = 1, γ = 0.3, base rewards ε1 = 0.2 and ε2 = 0.6. To ensure accurate retrieval of
the most relevant documents, we set the hyperparameter k = 2 in the Top − k algorithm during
the document pruning stage, selecting the top two highest-scoring sentences per document based
on their relevance to the query. We propose a dynamic length selection mechanism with target
length Ltarget adapting to question difficulty levels: for simple questions (typically factual queries),
we set Ltarget = 512 to capture core information needs; for medium-difficulty questions (often
involving multi-clause analysis), Ltarget = 1024 to incorporate contextual dependencies; and for
complex questions (requiring cross-document reasoning), Ltarget = 2048 to enable comprehensive
modeling. This tiered design ensures computational efficiency while optimizing semantic modeling
capacity across complexity levels. Here are some specific training configurations:

Table 6: Hyperparameters for experiments.

Configuration Value
Number of epochs 3
Devices 64 × A100
Total Batch size 256
Learning rate 5 × 10−5

Each experimental run required approximately ten hours to complete. Importantly, the similarity
computation occurs offline during training data preparation and does not introduce any computa-
tional overhead during model inference.

Benchmarks We performed comprehensive experiments on diverse QA with context tasks, includ-
ing implicit reasoning, complex reasoning, and long-document reasoning. Our evaluation utilized
three benchmark datasets: HotpotQA, StrategyQA, and Loong.

HotpotQa: A benchmark designed to advance research in complex reasoning and interpretable
question answering systems. It contains Wikipedia-based questions and answers where each prob-
lem requires integrating information from multiple documents to derive solutions, with sentence-
level supporting facts provided as supervisory signals. The dataset features diverse question types
including fact comparison questions and serves as an effective benchmark for evaluating models’
multi-hop reasoning capabilities.
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StrategyQa: A Boolean question answering dataset focusing on implicit reasoning, containing
2,780 yes/no questions requiring multi-step inference to resolve. Distinct from explicit multi-
hop QA tasks, this dataset challenges models to autonomously infer problem-solving strategies
(e.g., temporal comparisons, logical deductions) without exposing intermediate reasoning steps in
the questions. Each instance is annotated with decomposed reasoning steps and corresponding
Wikipedia evidence paragraphs, which can guide model learning of complex inference processes
through supervised training.

Loong: An innovative long-text multi-document question answering benchmark designed to evalu-
ate large language models (LLMs) in real-world long-context comprehension scenarios. This dataset
ensures models must comprehensively understand all documents by distributing answer-related ev-
idence across multiple passages. It encompasses three domains: financial reports, legal cases, and
academic papers, covering four task types (focused localization, comparison, clustering, and reason-
ing chains), and provides test sets with varying lengths ranging from 10K to 250K tokens.

B HYPERPARAMETER ANALYSIS

To systematically investigate the impact of key hyperparameters, we conduct an ablation study on
the HotpotQA dataset using the Qwen3-8B model.

B.1 ANALYSIS OF THE TRADE-OFF COEFFICIENT α IN THE REWARD FUNCTION

The balancing coefficient α is a key hyperparameter in the reward function that modulates the trade-
off between model accuracy and efficiency. The results, presented in Table 7, delineate how the
variation in α’s value affects the final performance.

Table 7: Experimental Results with Different Values of Parameter α.

α Accuracy Tokens
0.1 64.9 264
0.3 66.3 301
0.5 67.0 313
0.7 67.2 316
0.9 67.3 371

Low α values: The reward is dominated by the length term (RMoL), prioritizing extreme con-
ciseness. However, this leads to the omission of critical reasoning steps, resulting in suboptimal
accuracy due to excessive compression.

High α value: The accuracy term (Raccurate) dominates, prompting the model to adopt a conser-
vative strategy to maximize correctness. This generates verbose reasoning chains with redundant
steps, causing a significant increase in token consumption while the accuracy plateaus, yielding no
further gains.

Optimal value: The model learns to first secure high reward by ensuring correctness and then
optimize for conciseness. We ultimately select α=0.7 as the default configuration, as it achieves
high accuracy while maintaining near-optimal efficiency.

These findings validate the effectiveness and controllability of our proposed reward mechanism. The
coefficient α serves as a reliable and intuitive “tuning knob” for the accuracy-efficiency trade-off.
Furthermore, the presence of a clear optimum demonstrates that our dual-objective reward design is
necessary for successfully balancing these two competing goals.

B.2 ANALYZING THE EFFECT OF CONSTRAINT STRENGTH γ

The hyperparameter γ controls the minimum strength of the length constraint enforced during the
late training phase. As shown in Table 8, our ablation study demonstrates the impact of γ on the
final performance.
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Table 8: Experimental Results with Different Values of Parameter γ.

γ Accuracy Tokens
0.1 66.9 352
0.3 67.2 316
0.5 67.4 372
0.7 66.7 391
0.9 65.1 536

Low γ values: The constraint strength decays too rapidly in the late training phase, causing the
model to lose almost all motivation to optimize response length and regress to its inherent verbose
generation pattern. Consequently, token usage is not minimized, and the accuracy remains subopti-
mal as the model fails to adequately learn the reward signal associated with conciseness.

Optimal γ values: The model remains under a moderate length constraint in the late stage, success-
fully internalizing the strategy of “pursuing conciseness while guaranteeing correctness.” This leads
to a superior balance between accuracy and efficiency.

High γ values: An excessively strong constraint throughout the entire training process inhibits
the model’s exploration and generalization capability, particularly for complex questions requiring
longer reasoning chains. The model struggles to generate necessary intermediate steps, resulting in
a significant drop in accuracy. Meanwhile, to meet the stringent length limit, the model may produce
obscure, abnormally high-density text, which can paradoxically lead to an increased token count.

Conclusion: γ acts not as a simple intensity parameter, but as a critical regulator between stability
and flexibility. Our experiments demonstrate that a moderate γ value is essential: it prevents the
constraint from vanishing too early to ensure stable convergence, while also avoiding overly strong
restrictions to preserve the flexibility needed for solving complex problems, ultimately leading to a
synergistic improvement in both accuracy and efficiency.

B.3 THE NON-MONOTONIC IMPACT OF ε1 AND PARETO-OPTIMAL CHOICE

ε1 sets the base reward value granted for producing extended responses. As shown in Table 22, our
ablation study demonstrates the impact of ε1 on the model’s performance.

Table 9: Experimental Results with Different Values of Parameter ε1.

ε1 Accuracy Tokens
0 67.4 362
0.2 67.2 316
0.4 66.7 311
0.6 65.6 379
0.8 65.1 413

The results reveal a non-monotonic trend, highlighting the delicate trade-off in the design of ε1:

ε1 = 0: This configuration achieves the highest accuracy . Since the model receives no base reward
for generating long but incorrect answers, the expansion reward is solely determined by the align-
ment with the target length (i.e., “precise expansion”). This forces the model to be highly efficient
and precise in its remedial reasoning, filtering out more effective reasoning paths and indirectly
boosting final accuracy. However, this strong constraint also slightly limits the model’s expressive
capacity, preventing it from achieving the highest efficiency.

ε1 ∈ [0.2, 0.4] (Low Range): In this range, the model incurs only a minimal and acceptable drop
in accuracy while achieving substantial gains in efficiency. A modest ε1 in this interval provides a
“safety net,” encouraging beneficial exploration when uncertain without incentivizing meaningless
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verbosity. It works synergistically with the compression reward to steer the model toward the global
optimum of being both correct and concise.

ε1 ≥ 0.6 (High Range): A significant performance degradation is observed, with both accuracy and
efficiency declining. An excessively high ε1 distorts the reward signal, teaching the model a harmful
shortcut: generating a long incorrect answer yields a higher reward than a short incorrect one. This
effectively incentivizes the model to produce “knowingly wrong” verbose outputs instead of striving
for correctness, leading to overall performance deterioration.

Conclusion and Choice: Our experiment indicates that tuning ε1 requires a balance between provid-
ing exploratory freedom and avoiding reward distortion. Although ε1=0 yields the peak accuracy,
we ultimately select ε1=0.2 as the default. The rationale is that this value achieves the best Pareto
frontier for overall performance, trading a negligible accuracy drop for the largest efficiency gain.
This finding indicates that a small but non-zero ε1 is crucial for an effective error-tolerance mecha-
nism.

B.4 ABLATION STUDY ON THE COMPRESSION REWARD ε2

ε2 sets the base reward value granted for producing compressed responses. As shown in Table 10,
our ablation study demonstrates the impact of ε2 on the model’s performance.

Table 10: Experimental Results with Different Values of Parameter ε2.

ε2 Accuracy Tokens
0 61.7 186
0.2 64.3 264
0.4 65.9 292
0.6 67.2 316
0.8 67.7 441

At ε2 = 0: The model exhibits harmful over-compression due to the absence of a base reward for
correctness, causing it to over-optimize for the length bias term. This results in an extremely low
token count but a significant degradation in accuracy, indicating the omission of critical reasoning
steps.

For ε2 ∈ [0.2, 0.6]: The model receives a strong positive signal that “correctness yields high reward.”
This drives a learning strategy that prioritizes answer accuracy before optimizing for conciseness,
leading to a Pareto improvement in both metrics. Accuracy is substantially improved with only a
moderate increase in token usage.

At ε2 = 0.8: An excessively high base reward distorts the optimization objective. The model adopts
a conservative strategy, generating verbose chains of reasoning to ensure correctness. This results in
a sharp increase in token count and a complete loss of efficiency gains.

Conclusion and Selection: These findings demonstrate that ε2 is a pivotal hyperparameter for bal-
ancing accuracy and conciseneness. Based on a comprehensive evaluation, we select ε2 = 0.6 as the
optimal configuration. This value achieves near-peak accuracy while maintaining responses within
an efficient length range, thereby achieving the best overall performance balance.

B.5 ABLATION STUDY ON THE TARGET LENGTHS Ltarget

To establish optimal target length thresholds, we conducted a systematic analysis on the first 1,000
samples from the HotpotQA dataset. First, We use the Qwen3-8B model to directly classify the
difficulty of questions. Subsequently, we analyzed the distribution of output lengths generated by
the model for each difficulty tier, with the results visualized in Figure 6. Through statistical analysis
of these distributions, we empirically determined the target lengths as Ltarget = {512, 1024, 2048},
corresponding to simple, medium, and complex questions respectively. This data-driven approach
ensures that the thresholds align with the inherent reasoning complexity while maintaining compu-
tational efficiency.
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Figure 6: Distribution of generated output lengths by difficulty class (Simple / Medium / Hard).
Tokens count only model outputs (exclude inputs), red diamonds mark class means.

To assess how the initial target length settings for problems of varying difficulty affect performance,
we conducted an additional experiment using four alternative sets of Ltarget values with the Qwen3-
8B model:

Ltarget =


256 Simple,
512 Medium,

1024 Complex,
Ltarget =


256 Simple,
256 Medium,

256 Complex,

Ltarget =


512 Simple,
512 Medium,

512 Complex,
Ltarget =


1024 Simple,
1024 Medium,

1024 Complex,

(12)

The results, summarized in Table 11, show that the choice of initial target lengths has a negligible
impact on final outcomes. These findings validate the effectiveness of our Progressive Learning
Strategy: the target response length functions primarily as a guiding signal in the early stages of
training to shape response lengths, but it does not materially influence the final answers. Conse-
quently, our approach remains robust across a broad spectrum of problem difficulties, demonstrating
strong generalization.

Table 11: Experimental Results with Different Values of Parameter Ltarget.

Methods HotpotQA StrategyQA Loong
Acc Tokens Acc Tokens Acc Tokens

Original 61.0 609 93.7 468 55.8 2165
MoL(256,512,1024) 66.7 303 96.1 247 61.4 1473
MoL(512,1024,2048) 67.2 316 95.9 219 62.3 1374

MoL(256,256,256) 67.0 303 96.4 236 61.7 1338
MoL(512,512,512) 67.4 331 95.9 213 62.1 1402

MoL(1024,1024,1024) 66.9 286 96.2 225 61.3 1425
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To investigate the impact of Ltarget on model training efficiency, we present a systematic evaluation
of the Qwen3-8B model’s training dynamics on the HotpotQA dataset under varying initial target
length configurations, focusing on performance variations across epochs. Figure 7 and Figure 8
illustrate the evolution of Accuracy and generated token length during training, respectively. Exper-
imental results demonstrate that larger deviations between the initial target length and the optimal
value necessitate more training steps to reach convergence. However, as training progresses, the
influence of target length diminishes, with all configurations eventually converging to comparable
performance levels. This indicates that while the initial length setting impacts training efficiency, it
has minimal effect on the model’s final generalization capability.
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Figure 7: Evolution of accuracy across training epochs.
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Figure 8: Evolution of model output length across training epochs.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.6 ABLATION STUDY ON THE PROGRESSIVE LEARNING STRATEGY

To validate the effectiveness of our Progressive Learning Strategy, we conducted an ablation study
by removing this module and re-evaluating the model’s performance. The results are presented in
Table 12.

Table 12: Experimental Results with Progressive Learning Strategy.

Methods HotpotQA StrategyQA Loong
Acc Tokens Acc Tokens Acc Tokens

Original 61.0 609 93.7 468 55.8 2165
MoL w/o λ(t) 65.3 835 93.1 592 49.1 913

MoL 67.2 316 95.9 219 62.3 1374

The results reveal that the Progressive Learning Strategy has a substantial impact on performance.
Without this strategy, the model’s response length is severely constrained by the pre-defined initial
target value, failing to dynamically adapt to the problem’s complexity. This limitation is particularly
detrimental to complex problems requiring long reasoning chains, such as those in the Loong dataset,
leading to a drastic performance drop. Furthermore, this inability to adapt the output length also
impairs performance on simpler tasks, resulting in decreased accuracy across all datasets. These
findings firmly demonstrate that the Progressive Learning Strategy is an indispensable component
for generating high-quality and adaptive responses.

B.7 ABLATION STUDY ON THE ROBUSTNESS OF DIFFICULTY ESTIMATION

To evaluate the sensitivity of our difficulty estimator to Top-k retrieval, the embedding encoder,
and sentence segmentation, we ran controlled ablations on the Loong dataset using Qwen3-8B. Ta-
ble 13 summarizes the results for varying Top-k (k=1,2,3), Table 14 compares two sentence encoders
(Sentence-T5 and BGE-M3), and Table 15 reports results for two segmentation granularities (1 sen-
tence vs. 2 sentences per retrieval unit). Each entry reports downstream answer accuracy and the
average number of generated tokens (output only). In brief, k=2 yields a good trade-off between
accuracy and generation length (k=1 produces shorter outputs but slightly lower accuracy), encoder
choice has only a minor effect on accuracy, and merging two sentences modestly increases generated
length without materially changing accuracy. Overall, MoL is robust to these design choices: they
have minimal impact on the final results.

Table 13: Top-k ablation on Loong (Qwen3-8B). Impact of varying Top-k retrieval (k=1,2,3) on
downstream answer accuracy and average generated tokens (output only). “Original” denotes the
baseline without MoL.

Methods Loong
Acc Tokens

Original 55.8 2165
MoL(k=1) 61.7 1199
MoL(k=2) 62.3 1374
MoL(k=3) 62.1 1422

C IMPLEMENTATION DETAILS FOR LAYER-WISE ACTIVATION

C.1 QUANTIFYING LAYER-WISE ACTIVATION

To investigate the computational dynamics of our MoL-trained model during inference, we quantify
each Transformer’s layer-wise activation via its relative contribution to the residual stream.
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Table 14: Embedding encoder ablation on Loong (Qwen3-8B). Comparison between Sentence-T5
and BGE-M3 sentence encoders reporting answer accuracy and average output token length.

Methods Loong
Acc Tokens

MoL(Sentence-T5) 62.6 1462
MoL(BGE-M3) 62.3 1374

Table 15: Sentence granularity ablation on Loong (Qwen3-8B). Effect of segmentation unit
(single-sentence vs. two-sentence retrieval units) on downstream accuracy and average generated
tokens.

Methods Loong
Acc Tokens

Original 55.8 2165
MoL(one sentence) 62.3 1374
MoL(two sentence) 62.5 1439

Motivation. Relative activation is preferable to absolute magnitudes because it: (i) normalizes
for scale differences across layers induced by residual connections, (ii) captures the proportional
change each layer makes to the information flow, and (iii) remains comparable across model sizes
and architectures.

Definition. Consider a Pre-LN decoder-only Transformer layer l operating on an input residual
stream r

(l)
in ∈ RT×D. Let ∆(l)

attn and ∆
(l)
mlp denote, respectively, the actual updates added back to the

residual stream by the attention and MLP submodules. The total update is ∆(l)
layer = ∆

(l)
attn +∆

(l)
mlp.

We define the relative activation as:

α(l) =
RMS(∆(l)

layer)

RMS(r(l)in ) + ϵ
(13)

where ϵ is a small constant for numerical stability. A layer is considered active if α(l) > τ (threshold
τ described in Section C.3).

C.2 IMPLEMENTATION DETAILS

Masked RMS for padded batches. For a tensor x ∈ RB×T×D and an attention mask m ∈
{0, 1}B×T , we compute a masked Root Mean Square (RMS) over all valid elements:

masked rms(x,m) =

√∑
(x2 ⊙m′)

(
∑

m) ·D
+ ϵ (14)

where m′ is the mask m broadcast to the shape of x (i.e., [B, T, 1]), and ⊙ denotes element-wise
multiplication. We compute in float32 and clamp the denominator to avoid division-by-zero when
all tokens are padding.

Non-invasive residual differencing. To ensure that the measured updates match the actual tensors
added to the residual stream (including any internal dropout, scaling, or gating), we avoid reading
from intermediate projection layers and instead compute updates by differencing the residual states:

r
(l)
0 :block input before LayerNorm (block-level forward pre-hook),
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r
(l)
1 :after attention residual addition and before MLP (captured as the input to the post-attention

LayerNorm via its forward pre-hook),

r
(l)
2 :block output (block-level forward hook).

Then

∆
(l)
attn = r

(l)
1 − r

(l)
0 , (15)

∆
(l)
mlp = r

(l)
2 − r

(l)
1 , (16)

∆
(l)
layer = r

(l)
2 − r

(l)
0 . (17)

This construction is architecture-robust and aligns the numerator and denominator of Eq. 13 to the
same residual stream.

Measurement protocol. We instrument models in evaluation mode under no-gradient execution
to disable dropout and reduce overhead. For mixed precision, we upcast to float32 for statistics.
Unless otherwise stated, we use ϵ = 10−8 for FP32 and 10−6 for FP16/BF16.

C.3 THRESHOLD SELECTION AND ROBUSTNESS

Threshold. We set τ = 0.1 based on empirical analysis across multiple model sizes and reasoning
tasks. This value provides effective separation between layers with meaningful contributions and
those with minimal updates.

Cross-architecture verification. We verified LLaMA and Qwen style Pre-LN decoders. For other
variants (e.g., Post-LN), the same principle applies: capture the residual states immediately before
and after each residual addition to form ∆attn and ∆mlp via differencing (Eq. 15). This guarantees
inclusion of any internal dropout, scaling, or gating before residual addition.

D PARAGRAPH-LEVEL VS. SENTENCE-LEVEL SIMILARITY MATCHING

Through controlled experiments comparing paragraph-level and sentence-level similarity match-
ing (Results in Tables 16 and Table 17), we identify fundamental limitations in paragraph-level
approaches: they inherently incorporate numerous low-relevance sentences (particularly question-
related expository content). These noisy segments systematically distort similarity computation,
causing significant underestimation of semantic alignment and consequent overestimation of ques-
tion difficulty. Our proposed Top-k key sentence filtering prior to similarity calculation demonstra-
bly mitigates this issue, with experimental results validating the efficacy of our approach.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

All models utilized in this work are publicly available. We employed them solely for language
polishing to improve the readability of our text. It is important to note that these models were
not involved in any scientific decision-making. Furthermore, all model-assisted outputs underwent
rigorous human review to ensure compliance with ethical and legal standards.

F CASE STUDY

F.1 ANALYSIS OF RESPONSE PATTERNS FOR SIMPLE QUESTIONS

When handling relatively simple questions that require no reasoning (e.g., asking whether visitors
are allowed to use mobile phones to take photos or videos during the ride in the “Jurassic World
Adventure” attraction at Universal Beijing Resort), baseline models tend to generate overly verbose
responses (Results in Tables 18). Although they accurately output the core information that elec-
tronic devices are prohibited for photography, the models still append redundant content, such as
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Table 16: A Case Study on Estimating Question Difficulty Through Sentence-Level Similarity Anal-
ysis.

Sentence-level Similarity Matching

Query Who is the author of The Story of the Stone?

Doc Doc1: “The Story of the Stone, recognized as the foremost of China’s Four Great
Classical Novels, was authored by the Qing dynasty writer Cao Xueqin... Beyond
its narrative depth, the work provides a critical depiction of feudal society’s moral
decay and social intricacies. With its vast ensemble of characters and richly woven
plotlines, it has been acclaimed as the “Encyclopedia of Chinese Feudal Society.”
Doc2: “Cao Xueqin, the author of the Story of the Stone, was born into aristocracy
but died in poverty, drawing upon his personal experiences to compose this monu-
mental work. ... Their intertwined destinies collectively depict the rise and fall of
a feudal dynasty, offering a panoramic critique of traditional Chinese society.”
Doc3: “Authored by the Qing Dynasty literatus Cao Xueqin, the Story of the Stone
not only presents remarkably vivid character portrayals but also contains numer-
ous iconic scenes that have become literary canon...collectively elevating the novel
to its enduring status as a masterpiece of world literature.”
Doc4: “The Story of the Stone, penned by Cao Xueqin, offers a profound critique
of 18th-century Chinese feudal society... constrained marriage—which vividly il-
lustrates the oppressive nature of feudal Confucian norms on individual agency.”
Doc5: “The Story of the Stone, authored by Cao Xueqin, stands as the pinnacle of
Chinese literary achievement. Beyond its central tragic romance...render the work
an indispensable resource for studying premodern Chinese society. To this day,
“Hongxue” (Redology) remains a vibrant field of scholarly inquiry.”
Doc6: “Cao Xueqin’s the Story of the Stone is renowned for its exquisite linguis-
tic artistry and profound characterization...hints surrounding the Twelve Beauties
of Jinling. This intricate web of narrative foreshadowing creates an exceptionally
tightly-knit story structure.”
Doc7: “Cao Xueqin’s the Story of the Stone employs the rise and fall of the Jia
family as an allegory for the decline of feudal society as a whole...conservatism
of Confucian orthodoxy. This sophisticated interplay of thematic elements has se-
cured the novel’s enduring legacy and widespread influence in both literary and
cultural spheres.”

Doc’ Doc1’: “The Story of the Stone was authored by the Qing dynasty writer Cao Xue-
qin.”
Doc2’: “Cao Xueqin, the author of the Story of the Stone, was born into aristoc-
racy but died in poverty, drawing upon his personal experiences to compose this
monumental work. ”
Doc3’: “Authored by the Qing Dynasty literatus Cao Xueqin”
Doc4’: “The Story of the Stone, penned by Cao Xueqin”
Doc5’: “The Story of the Stone, authored by Cao Xueqin”
Doc6’: “Cao Xueqin’s the Story of the Stone is renowned for its exquisite linguis-
tic artistry and profound characterization.”
Doc7’: “Cao Xueqin’s the Story of the Stone employs the rise and fall of the Jia
family as an allegory for the decline of feudal society as a whole.”

Sim(Query,
Doc’)

0.87

Judge Easy

repeatedly mentioning instructions from official channels. Textual analysis reveals that such expan-
sions primarily stem from verbatim extraction of reference documents; while semantically correct,
they fail to meet the task requirement of concise responses. In contrast, models trained with MoL
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Table 17: A Case Study on Estimating Question Difficulty Through Paragraph-Level Similarity
Analysis.

Paragraph-level Similarity Matching

Query Who is the author of The Story of the Stone?

Doc Doc1: “The Story of the Stone, recognized as the foremost of China’s Four Great
Classical Novels, was authored by the Qing dynasty writer Cao Xueqin... Beyond
its narrative depth, the work provides a critical depiction of feudal society’s moral
decay and social intricacies. With its vast ensemble of characters and richly woven
plotlines, it has been acclaimed as the “Encyclopedia of Chinese Feudal Society.”
Doc2: “Cao Xueqin, the author of the Story of the Stone, was born into aristocracy
but died in poverty, drawing upon his personal experiences to compose this monu-
mental work. ... Their intertwined destinies collectively depict the rise and fall of
a feudal dynasty, offering a panoramic critique of traditional Chinese society.”
Doc3: “Authored by the Qing Dynasty literatus Cao Xueqin, the Story of the Stone
not only presents remarkably vivid character portrayals but also contains numer-
ous iconic scenes that have become literary canon...collectively elevating the novel
to its enduring status as a masterpiece of world literature.”
Doc4: “The Story of the Stone, penned by Cao Xueqin, offers a profound critique
of 18th-century Chinese feudal society... constrained marriage—which vividly il-
lustrates the oppressive nature of feudal Confucian norms on individual agency.”
Doc5: “The Story of the Stone, authored by Cao Xueqin, stands as the pinnacle of
Chinese literary achievement. Beyond its central tragic romance...render the work
an indispensable resource for studying premodern Chinese society. To this day,
“Hongxue” (Redology) remains a vibrant field of scholarly inquiry.”
Doc6: “Cao Xueqin’s the Story of the Stone is renowned for its exquisite linguis-
tic artistry and profound characterization...hints surrounding the Twelve Beauties
of Jinling. This intricate web of narrative foreshadowing creates an exceptionally
tightly-knit story structure.”
Doc7: “Cao Xueqin’s the Story of the Stone employs the rise and fall of the Jia
family as an allegory for the decline of feudal society as a whole...conservatism
of Confucian orthodoxy. This sophisticated interplay of thematic elements has se-
cured the novel’s enduring legacy and widespread influence in both literary and
cultural spheres.”

Sim(Query,
Doc)

0.31

Judge Hard

demonstrate precise response control, strictly confining their outputs to the core information sought
by the question, ensuring answer accuracy while significantly improving response efficiency.

F.2 ANALYSIS OF REASONING CAPABILITIES FOR COMPLEX QUESTIONS

The baseline models exhibit fundamental limitations in processing multi-conditional reasoning
tasks, as evidenced by their performance on greenhouse gas effect questions (Results in Tables 19).
While correctly identifying the basic absorption ratios of CH4 to CO2 (84×) and NF3 to CO2

(16,100×), these models fail to incorporate the critical constraint regarding fluorinated gases’ 272×
radiative efficiency relative to CH4, resulting in erroneous linear extrapolations. In contrast, our
MoL-enhanced model demonstrates superior information integration and quantitative reasoning ca-
pabilities. It successfully captures all relevant document constraints, establishes cross-sentence nu-
merical relationships, and performs the necessary multi-step calculation (16,100/84×272) to ac-
curately determine NF3’s superior absorption efficacy. This performance improvement confirms
that our approach not only enhances key information extraction completeness but also develops the
model’s capacity for evidence-based quantitative reasoning, representing a significant advancement
in complex scientific question answering.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 18: Case study on the easy question.

Easy Question

Query Are Visitors Allowed to Use Mobile Phones for Photography or Videography Dur-
ing the “Jurassic World Adventure” Ride at Universal Studios Beijing?

Doc Doc1: “Universal Studios Beijing Resort’s latest 2023 safety guidelines clearly
state that, as an immersive 4D experience, “Jurassic World: Fallen Kingdom”
strictly prohibits visitors from using any electronic devices to film the ride for
safety and copyright reasons. The guidelines specifically emphasize: “Before en-
tering the queue area, all guests ...”
Doc2: “China Culture News, September 5, 2023, Tourism Safety Special Report:
A recent on-site visit by reporters to Universal Studios Beijing revealed that the
“Jurassic World Adventure” attraction has strict controls on the use of electronic
devices. In the queuing area, large electronic screens are installed every 20 meters,
playing a looping ...”
Doc3: “In the ’Attraction Safety Tips’ section of the official website of Universal
Studios Beijing, special instructions for ’Jurassic World Adventure’ are detailed:
’To ensure the safety and best experience for all visitors, please do not use any
electronic devices, including ...”

Model
Output
(Original
model)

Official regulations strictly prohibit tourists from using any electronic devices to
take pictures during the ride. The resort has set up warning signs in multiple
locations to remind tourists, but allows official photography services to record im-
ages. The official explanation is: the dynamic motion platform of the project will
produce sudden acceleration, deceleration and turns. Handheld electronic devices
may cause the device to fall out of the hand, posing a safety hazard; at the same
time, the flashing and fast-moving images on the screen may interfere with the
experience of other tourists and infringe on the copyright of Universal Pictures.

Model
Output
(MoL
(Ours))

For safety reasons and to protect Universal Pictures’ intellectual property rights, it
is strictly prohibited for visitors to use their mobile phones to take photos or videos
during the ride.

F.3 ROBUSTNESS TO DIFFICULTY MISCLASSIFICATION (MOL SELF-CORRECTION)

Although difficulty estimation based on cross-document similarity works in most cases, extreme
misclassification can still occur. Table 20 and Table 21 present two types of extreme misclas-
sification scenarios and MoL’s self-correction behavior. Table 20 illustrates the case of high
cross-document similarity but actually requiring multi-step reasoning: because the mean similar-
ity S̄ is large, the example is initially judged as simple, so the model attempts a short answer and
makes an error (the table shows the initial output). When the answer is judged incorrect, MoL’s ex-
tension reward Rextend encourages the model to produce longer, more complete chains of reasoning
to fill in missing evidence; once the correct answer is obtained, the system switches to the compres-
sion reward Rcompress, which trains the model to return the correct conclusion in a more concise
form. Table 21 shows the case of low cross-document similarity but an answer that can be directly
extracted: such samples are initially judged hard and lead to longer generations, but the first long an-
swer often already contains the core correct information; subsequently Rcompress guides the model
to compress redundant background into an extremely concise and correct answer. Both tables list
example document excerpts used for difficulty assessment and model outputs at each stage, clearly
illustrating MoL’s short-term effect on training efficiency when difficulty estimation is wrong and
its robustness in final answer accuracy and conciseness.

F.4 FAILURE CASE ANALYSIS

While the MoL driven model demonstrates robust performance across most scenarios isolated cases
reveal challenges in preserving nuanced contextual details. We present an illustrative example in
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Table 19: Case study on the hard question.

Hard Question

Query In the “greenhouse effect” that causes global disasters, which gas has the strongest
ability to absorb long-wave radiation?

Doc Doc1: “Greenhouse gases (such as CO2, NF3, N2O, H2O, etc.) can absorb
long-wave radiation (infrared radiation) released from the earth’s surface, but the
absorption bands and efficiencies of different gases vary significantly.”
Doc2: “Methane (CH4) has a 100-year GWP of 28-36 and a lifetime of about 12
years. Its instantaneous absorption capacity for long-wave radiation is 84 times
that of CO2 (on a 20-year time scale), but its concentration is only 0.4% of CO2.”
Doc3: “NF3 is a common gas used in the semiconductor industry. Its radiation
efficiency (heat absorption capacity per molecule) is 16,100 times that of CO2 and
its atmospheric lifetime is 740 years, but its current concentration is extremely low
(Industrial Greenhouse Gas Emission Inventory, 2023).”
Doc4: “The 100-year GWP of fluorinated gases (such as sulfur hexafluoride SF6

and hydrofluorocarbons HFCs) is as high as 22,800 (SF6) and 14,800 (HFC−23),
and they are the key control targets of the Kyoto Protocol. The single-molecule
radiation efficiency of SF6 is 272 times that of CH4, but the concentration is
extremely low (<0.0001 ppm).”

Model
Output
(Original
model)

CO2, NF3, N2O, H2O, etc. are all common gases that absorb long-wave radi-
ation, but CH4’s absorption capacity for long-wave radiation is 84 times that of
CO2, but NF3’s absorption capacity is 16,100 times that of CO2, so NF3 has the
strongest absorption capacity for long-wave radiation.

Model
Output
(MoL
(Ours))

CO2 is one of the gases that cause the greenhouse effect and can also absorb long-
wave radiation, but CH4’s ability to absorb long-wave radiation is 84 times that
of CO2, and NF3’s ability to absorb long-wave radiation is 16,100 times that of
CO2, so NF3 has a stronger ability to absorb long-wave radiation. The radiation
efficiency of fluorinated gases is 272 times that of CH4, which is 272*84=22,848
times that of CO2. Therefore, fluorinated gases have a stronger ability to absorb
long-wave radiation than NF3, so the gas with the strongest ability to absorb long-
wave radiation is fluorinated gases.

Figure 22 to demonstrate the discussed phenomenon. For instance in evaluating a companys IPO
eligibility (net profit ≥ ¥100M for 3 years no major litigation) the model accurately identifies that net
profits exceeded ¥100M in 2021–2022 and that the litigation provision (¥15M) falls below the ¥27M
threshold (30% of 2023 net profit). However in this rare instance the models compression strategy
inadvertently omits two context specific factors: the 2023 net profit decline to ¥90M (30% YoY
drop) highlights short term instability though the model focuses on the multi year threshold while the
auditor notes ongoing litigation (¥30M in claimed damages) as a material risk under CSRC Rule 4.3
but the model prioritizes quantified provisions over qualitative disclosures. These omissions result in
an overconfident conclusion (”IPO requirements met”) that overlooks domain specific interpretative
requirements. Importantly such cases represent less than 2.3% of the evaluation set.

G DATA PROCESSING
We partition all experimental datasets into training, validation, and test subsets. The original diffi-
culty labels are directly obtained from the inherent difficulty annotations in the HotpotQA dataset.
For data samples containing multiple documents, we employ a paragraph-based similarity matching
approach: we first compute pairwise similarities at the document level, then evaluate question diffi-
culty using the average similarity score. When applying the MoL method for difficulty assessment,
we initially segment each original document into several sub-documents based on semantic bound-
aries, calculate the relevance between each sub-document and the question, retain the k most relevant
sub-documents, and reconstruct them into new documents. Subsequently, we recompute similarities
across all documents and assess question difficulty based on the average similarity score. Detailed
implementation is provided in Appendix 3.2.
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Table 20: Case study: High cross-document similarity but requires multi-hop reasoning (short →
extend → compress). Orange denotes the sentences most relevant to the query, red denotes incorrect
answers, and blue denotes correct answers.

Outlier-case example

Query Is there a Nobel Prize laureate in Dr. Li’s academic genealogy? If so, please
identify the individual and specify their relationship to Dr. Li.

Doc Doc1: “In recent years, the Department of Chemistry, University of Cambridge,
has continued to invest research ... Dr. Li currently holds a position in the De-
partment of Chemistry, University of Cambridge, and previously worked under
Professor Smith. The department maintains ... and students. Professor Smith
has conducted long-term research in organic catalysis. In addition, departmental
newsletters and public records often include project summaries and lists of aca-
demic collaborators led by Professor Smith’s research group.”
Doc2: “Professor Smith has considerable ... from senior mentors and peers. Pro-
fessor Smith, who teaches at the University of Cambridge, had Professor Johnson
as his doctoral advisor; Professor Johnson is said in the text to have received a
Nobel Prize for his contributions to chemical kinetics. Professor Smith not only
emphasizes fundamental research but also actively promotes the industrial trans-
lation of research outcomes; he has trained multiple outstanding doctoral students
and early-career researchers. Professor Smith has supervised several PhD students,
including Dr. Li. Departmental notices and various academic briefings document
collaborative results between Professor Smith and his students. ”
Doc3: “Dr. Li’s public curriculum ... conference presentations and grant appli-
cations. Dr. Li’s CV notes that he completed postdoctoral research in Professor
Smith’s group in 2012. In addition, Professor Johnson, as a senior scholar, has
had his research and contributions repeatedly cited in multiple disciplinary review
articles and academic biographies, becoming an important reference figure in the
field. Professor Johnson’s scholarly influence is often reiterated in several intro-
ductory articles. The academic community widely discusses Professor Johnson’s
work, and related citations and commemorative articles are retrievable in profes-
sional journals.”

Doc’ Doc1’:“Dr. Li currently holds a position in the Department of Chemistry, Univer-
sity of Cambridge, and previously worked under Professor Smith. Professor Smith
has conducted long-term research in organic catalysis.”
Doc2’: “Professor Smith, who teaches at the University of Cambridge, had Pro-
fessor Johnson as his doctoral advisor; Professor Johnson is said in the text to have
received a Nobel Prize for his contributions to chemical kinetics. Professor Smith
has supervised several PhD students, including Dr. Li.”
Doc3’: “Dr. Li’s CV notes that he completed postdoctoral research in Professor
Smith’s group in 2012. Professor Johnson’s scholarly influence is often reiterated
in several introductory articles.”

Difficulty
judge

Easy

Initial
output

Dr. Li’s PhD advisor is Smith. Answer: Smith.

Medium-
term
output

First, based on Doc1 and Doc3, Dr. Li received training in Professor Smith’s
group, and therefore Professor Smith is Dr. Li’s direct advisor. Next, examination
of Professor Smith’s academic lineage (Doc2) shows that Smith’s doctoral advisor
was Professor Johnson. Doc2 further indicates that Professor Johnson received
a Nobel Prize for his contributions to chemical kinetics. Therefore, the Nobel
laureate traceable in Dr. Li’s academic genealogy is Professor Johnson. Answer:
Professor Johnson (Nobel Prize laureate).

Final
output

Dr. Li worked under Professor Smith, and Johnson (Professor Smith’s doctoral
advisor) received a Nobel Prize for contributions to chemical kinetics.
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Table 21: Case study: Low similarity across documents, yet answer is directly extractable (long →
compress). Orange denotes the sentences most relevant to the query, red denotes incorrect answers,
and blue denotes correct answers.

Outlier-case example

Query When is the ”Ancient Bronzes” exhibition at the City Center Museum open to the
public?

Doc Doc1: “The City Center Museum launched ... for scholarly display upon reopen-
ing. The City Center Museum undertook a large-scale restoration project in re-
cent years, with maintenance work completed by the end of 2021. In the post-
restoration exhibition program, the curatorial team specially planned the ”Ancient
Bronzes” exhibition, and external notices confirmed the exhibition’s opening date
and public visiting arrangements. The ”Ancient Bronzes” exhibition opened to the
public on May 15, 2022. The museum’s official website and press releases include
the opening reports and exhibition descriptions published at that time.”
Doc2: “As an important local cultural institution, the museum ... educational pro-
grams. The museum holds various temporary exhibitions throughout the year, at-
tracting large numbers of local visitors and school groups. Meanwhile, to facilitate
public visits the museum ... in order to plan their visits. Guided-tour information
and reservations must be obtained through the museum’s official website or by
telephone. The museum also regularly announces the latest exhibitions and event
arrangements through social media and community partners.”
Doc3: “In recent years, media attention to local cultural projects has increased;
reports frequently ... and social impact rather than listing the specific schedules or
opening dates of each exhibition. Recent media coverage has focused on the mu-
seum’s investment in educational activities and community partnerships. Further-
more, exhibition catalogues typically present ... opening days; therefore date infor-
mation is usually determined by the museum’s notices or official announcements.
Exhibition catalogues commonly include themes such as archaeological excava-
tions, historical documents, and cultural heritage, rather than detailed schedules.”

Doc’ Doc1’:“The City Center Museum undertook a large-scale restoration project in
recent years, with maintenance work completed by the end of 2021.
The ”Ancient Bronzes” exhibition opened to the public on May 15, 2022.”
Doc2’: “The museum holds various temporary exhibitions throughout the year,
attracting large numbers of local visitors and school groups.
Guided-tour information and reservations must be obtained through the museum’s
official website or by telephone.”
Doc3’: “Recent media coverage has focused on the museum’s investment in edu-
cational activities and community partnerships.
Exhibition catalogues commonly include themes such as archaeological excava-
tions, historical documents, and cultural heritage, rather than detailed schedules.”

Difficulty
judge

Hard

Initial
output

The City Center Museum completed a large-scale restoration project in recent
years, during which exhibition layouts and display facilities were upgraded (see
museum restoration notice). In the subsequent reopening plan, the museum sched-
uled multiple thematic exhibitions to attract the public. Regarding the opening
date of the ”Ancient Bronzes” exhibition, the museum’s public materials record:
”The Ancient Bronzes exhibition opened to the public on May 15, 2022.” (Source:
Doc1). In summary, the exhibition’s public opening date was May 15, 2022.

Medium-
term
output

According to the museum’s materials (Doc1), the Ancient Bronzes exhibition was
reopened to the public after the museum’s renovation, and is explicitly recorded as
opening to the public on May 15, 2022. Therefore the answer is: May 15, 2022.

Final
output

The ”Ancient Bronzes” exhibition opened to the public on May 15, 2022.
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Table 22: Case study: MoL’s overcompression leads to answer inaccuracies. Orange denotes the
sentences most relevant to the query, red denotes incorrect answers, and blue denotes correct an-
swers.

Outlier-case example

Query Does the company meet IPO listing requirements (net profit ≥ ¥100M for 3 years,
no major litigation)?

Doc Doc1: “The company’s financial performance from fiscal years 2021 to 2023
showed: 2021 Net Profit of ¥120M with ¥1.2B revenue (15% YoY growth); 2022
Net Profit increased to ¥130M with ¥1.5B revenue (8% YoY growth); 2023 Net
Profit declined to ¥90M with ¥1.4B revenue (-20% YoY growth), including a
¥50M goodwill impairment due to the failed acquisition of TechCorp in Q2 2023,
which was classified as a non-recurring item under IFRS 9. The net profit calcula-
tions followed IFRS 15 for revenue recognition and IFRS 9 for impairment, with
no adjustments made for non-recurring items in the annual report. ”
Doc2: “Auditor’s Opinion on Financial Statements (Deloitte, 2023): For 2021–
2022, the financial statements present fairly in all material respects with an un-
modified opinion; in 2023, a qualified opinion was issued due to ... requiring
adjustments. The key risk disclosure states: The company’s 2023 financial state-
ments may not reflect the full impact of ongoing litigation.”
Doc3: “Pending Litigation: Patent Infringement Lawsuit (Case No. 2023-0487)
involves GlobalTech Inc. as plaintiff and [Company Name] as defendant, alleging
infringement through the use of a patented AI algorithm in Product X (launched
2022) with claimed damages of ¥30M based on 5 years of lost royalties; the cur-
rent status includes a court hearing scheduled for 2024 Q3 and a provision of
¥15M (50% of claimed damages) recorded in accordance with IFRS 15 Paragraph
30. Under CSRC Rule 4.3, litigation exceeding 30% of annual net profit (¥27M
for 2023’s ¥90M net profit) must be disclosed as a material risk. ”

Doc’ Doc1’:“The company’s financial performance from fiscal years 2021 to 2023
showed: 2021 Net Profit of ¥120M with ¥1.2B revenue (15% YoY growth); 2022
Net Profit increased to ¥130M with ¥1.5B revenue (8% YoY growth); 2023 Net
Profit declined to ¥90M with ¥1.4B revenue (-20% YoY growth)”
Doc2’: “For 2021–2022, the financial statements present fairly in all material re-
spects with an unmodified opinion.
The company’s 2023 financial statements may not reflect the full impact of ongo-
ing litigation.”
Doc3’: “Pending Litigation: Patent Infringement Lawsuit (Case No. 2023-0487)
involves GlobalTech Inc. as plaintiff and [Company Name] as defendant.
Under CSRC Rule 4.3, litigation exceeding 30% of annual net profit (¥27M for
2023’s ¥90M net profit) must be disclosed as a material risk.”

Difficulty
judge

Hard

Model
Output
(Original
model)

The company’s market dominance is established through a market share of 75%,
which exceeds the statutory threshold of 70%, coupled with the absence of com-
peting entrants that further entrenches its dominance. Regarding exclusionary con-
duct, the exclusive agreements with suppliers directly trigger Article 17 of the An-
timonopoly Law, which prohibits restrictions on supplier collaboration. The exit
of small and medium sized competitors is a direct consequence of these exclusion-
ary practices. Collectively, the fulfillment of both criteria market share exceeding
70% and anti competitive exclusivity constitute a violation of Article 17, as the
conduct demonstrably undermines market fairness and fair competition. Thus, the
company fails to satisfy the IPO listing requirements.

Model
Output
(MoL
(Ours))

Net profit exceeded ¥100M in 2021–2022 and litigation provision is below ¥27M
(30% of 2023 net profit). IPO requirements met.
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