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Abstract
Data subset selection aims to find a smaller yet
informative subset of a large dataset that can ap-
proximate the full-dataset training, addressing
challenges associated with training neural net-
works on large-scale datasets. However, existing
methods tend to specialize in either high or low
selection ratio regimes, lacking a universal ap-
proach that consistently achieves competitive per-
formance across a broad range of selection ratios.
We introduce a universal and efficient data subset
selection method, Best Window Selection (BWS),
by proposing a method to choose the best win-
dow subset from samples ordered based on their
difficulty scores. This approach offers flexibility
by allowing the choice of window intervals that
span from easy to difficult samples. Furthermore,
we provide an efficient mechanism for selecting
the best window subset by evaluating its quality
using kernel ridge regression. Our experimental
results demonstrate the superior performance of
BWS compared to other baselines across a broad
range of selection ratios over datasets, including
CIFAR-10/100 and ImageNet, and the scenarios
involving training from random initialization or
fine-tuning of pre-trained models.

1. Introduction
In many machine learning tasks, the effectiveness of deep
neural networks often relies on large-scale datasets that
include a vast number of samples, enabling them to achieve
state-of-the-art performances. However, working with such
large datasets presents several challenges, including the high
computational costs, storage requirements, and potential
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concerns related to privacy (Schwartz et al., 2020; Strubell
et al., 2019). Data subset selection emerges as a promising
approach to address these issues. This involves the careful
selection of a smaller, yet highly informative, subset from
the original large dataset. The goal is to find a subset with a
specified selection ratio that approximates the performance
of the entire dataset or incurs minimal performance loss.

Data subset selection has two primary approaches: score-
based selection and optimization-based selection. Score-
based selection involves defining a specific score to measure
each sample’s influence (Koh & Liang, 2017), difficulty
(Toneva et al., 2019; Paul et al., 2021), or consistency (Jiang
et al., 2021) in training neural networks. The primary goal
is to identify the most valuable or influential samples within
the dataset while pruning the remaining samples that have
minimal impact on the model’s generalization ability. On the
other hand, optimization-based selection approaches find the
optimal subset of a fixed size that can best approximate the
full dataset training in terms of loss gradient or curvature by
solving the associated optimization problem (Mirzasoleiman
et al., 2020; Pooladzandi et al., 2022; Shin et al., 2023; Yang
et al., 2023). The original optimization, which is NP-hard,
is commonly approximated by submodular functions and
a greedy algorithm is adopted to sequentially select the
samples up to the size limit of the subset.

While the prior approaches successfully reduce dataset size
in specific scenarios, there is not a single selection method
that universally outperforms other baselines across broad
selection ratios. To illustrate this, we conduct a bench-
mark comparison between two methods: Forgetting score
(Toneva et al., 2019) representing the score-based selection
approach, and LCMat (Shin et al., 2023) representing the
optimization-based selection approach. We evaluate the test
accuracy of models trained with different subset sizes of
datasets, including CIFAR-10/100 (Krizhevsky, 2009) and
ImageNet (Deng et al., 2009), ranging from 1% to 90%,
as selected by these two methods (Table 1). Score-based
methods, which prioritize samples of high influence or dif-
ficulty, tend to initially select rare yet influential samples
while excluding typical or easy samples. These methods
demonstrate competitive performance, nearly matching the
full-dataset training, when the selection ratio is sufficiently
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Figure 1. Overview of the proposed method, Best Window Selection (BWS). BWS is composed of two parts, 1) generating window
subsets and 2) evaluating window subsets. We first sort samples by a difficulty score (e.g., Forgetting (Toneva et al., 2019)) and generate
window subsets of a fixed size while varying their starting points. We then evaluate the window subsets, by solving kernel ridge regression
on the input features of each window subset and obtaining simple (linear) classifiers associated with each window subset. Finally, we
evaluate the performance of these classifiers on the full training dataset to identify the best window subset achieving the highest accuracy.

high (e.g., over 40% for CIFAR-10). However, they suffer
significant performance degradation as the selection ratio
decreases. In contrast, optimization-based methods tend to
select representative samples that best approximate the full
dataset training. Consequently, they achieve competitive
performance even with very low selection ratios. However,
their performance gains are limited as the selection ratio
increases due to lack of diversity in sample selection. These
findings show the variability in the criteria for an effective
data subset, depending on the selection ratio, and highlight
that previous methods may not be general enough to cover
the entire spectrum of selection ratios.

Our key contribution is the development of a universal and
efficient data selection method capable of maintaining com-
petitive performance across a wide range of selection ratios.
We introduce the Best Window Selection (BWS) method,
illustrated in Fig. 1. The key idea involves ordering samples
based on their difficulty-based sample scores and offering
flexibility in choosing a ‘window subset’ from the ordered
samples. Here, the window subset is defined as a subset
consisting of samples with a contiguous ranking of difficulty.
By allowing the starting point (the ranking of the hardest
data in the subset) of each window subset to vary, we en-
able the selection of easy, moderate, or hard data subsets.
We first demonstrate the existence of the best window that
achieves the highest test accuracy for each subset size, and
reveal that the optimal starting point for the best window
varies depending on both the subset size and dataset. We
then present a computationally-efficient method for select-
ing the best window subset without the need to evaluate
models trained with each subset. We achieve this by solv-
ing a kernel ridge regression problem using samples from
each window, evaluating the corresponding solution’s per-
formance on the full training dataset, and selecting the best
performing window subset.

We evaluate our selection method, BWS on CIFAR-10/100

and ImageNet, demonstrating that BWS consistently out-
performs other baselines, including both score-based and
optimization-based approaches, across a wide range of selec-
tion ratios ranging from 1% to 90%. For CIFAR-10, BWS
achieves a 15-30% improvement in test accuracy compared
to Forgetting (Toneva et al., 2019) in the low selection ratios
of 1-10%. It also demonstrates competitive performance in
the high selection ratio regime, reaching up to 93% test ac-
curacy with only a 40% data subset. BWS also consistently
outperforms optimization-based techniques such as LCMat
(Shin et al., 2023) and AdaCore (Pooladzandi et al., 2022),
despite requiring significantly lower computational costs.
Furthermore, we empirically verify that BWS is effective
across different model architectures, including pre-trained
ViT (Dosovitskiy et al., 2021). Another significant advan-
tage of our method is its resilience to label noise, enhancing
its robustness in sample selection. Our code is publicly
available at https://github.com/NohyunKi/BWS.

2. Related Works
Score-based selection Some initial works in score-based
selection use validation/test sets to quantify the effect of
each training instance. Data Shapley (Ghorbani & Zou,
2019; Kwon et al., 2021; Kwon & Zou, 2022) evaluates the
value of each instance by measuring the average change
in validation accuracy when that instance is excluded from
the dataset. Influence Function (Koh & Liang, 2017; Pruthi
et al., 2020) approximates how a model’s prediction changes
as individual training examples are visited. In the absence
of a validation set, score-based selection quantifies the learn-
ing difficulty or consistency of samples during neural net-
work training. Forgetting (Toneva et al., 2019) and EL2N
(Paul et al., 2021) introduce a difficulty score to measure a
data point’s learning difficulty. Memorization (Feldman &
Zhang, 2020) and C-score (Jiang et al., 2021) aim to predict
the accuracy on a sample when the full dataset is utilized,

2

https://github.com/NohyunKi/BWS


BWS: Best Window Selection Based on Sample Scores for Data Pruning across Broad Ranges

except for that sample. CG-score (Ki et al., 2023) evaluates
data instances without model training by calculating the
analytical gap in generalization errors when an instance is
held out. These score-based methods prioritize difficult or
influential samples for data subset selection. While they
effectively select a subset approximating the full-dataset
performance, their performance degrades significantly as
the selection ratio decreases, as achieving high performance
solely with difficult samples becomes challenging.

Optimization-based selection Optimization-based selec-
tion involves formulating an optimization problem to select
a coreset of a given size that can effectively approximate the
diverse characteristics of the full dataset. These methods
include coreset selection to approximate the training distri-
bution by herding (Chen et al., 2010) or k-center algorithms
(Sener & Savarese, 2018). Recent approaches have sought
subsets of samples approximating loss gradients or curva-
ture by CRAIG (Mirzasoleiman et al., 2020), CREST (Yang
et al., 2023), and AdaCore (Pooladzandi et al., 2022). While
these methods have proven effective, they are computation-
ally demanding and necessitate full-dataset sampling at each
epoch. LCMat (Shin et al., 2023) addresses this computa-
tional challenge by aligning both gradients and Hessians
without requiring periodic full-dataset sampling. However,
these methods often struggle to choose diverse samples, and
their performance does not match that of score-based ap-
proaches, in the intermediate to high selection ratio regimes.

In contrast to these approaches, we develop a universal
selection method capable of consistently identifying a high-
performance subset across a wide range of selection ratios.
While recent methods like Moderate-DS (Xia et al., 2023)
and CCS (Zheng et al., 2023) have also aimed for universal-
ity across various selection ratios, our method outperforms
these approaches, over a broad range of selection ratios, as
demonstrated in Section 6. Moderate-DS selects samples
closest to the median of the features of each class, while
CCS prunes a β% of hard examples, with β being a hyperpa-
rameter, and then selects samples with a uniform difficulty
score distribution. Importantly, our method does not require
hyperparameter tuning, such as setting β in CCS, since we
assess the quality of window subsets and efficiently find the
best one using kernel ridge regression.

3. Motivation
3.1. No single method prevails over the entire range

We conduct an evaluation of existing data selection methods
across a wide range of selection ratios. Specifically, we
benchmark two representative methods: Forgetting score
(Toneva et al., 2019), representing difficulty score-based
selection, and LCMat (Shin et al., 2023), representing
optimization-based selection. We assess the test accuracy of

Table 1. Test accuracy across various selection ratios for the
CIFAR-10/100 and ImageNet datasets, with subsets selected us-
ing random sampling, Forgetting score (Toneva et al., 2019), and
LCMat (Shin et al., 2023). The best performance among the three
is highlighted in bold.

Selection ratio 1% 5% 10% 20% 30% 40% 50% 75% 90% 100%

Random 39.10 67.14 78.43 86.87 89.91 91.66 92.83 94.40 95.08
CIFAR-10 Forgetting 30.08 42.39 54.31 79.19 89.13 93.41 94.49 95.31 95.14 95.40

LCMat 41.53 66.86 77.48 87.34 90.72 92.45 93.38 94.90 95.19

Random 5.89 23.76 42.03 55.03 65.98 69.23 73.84 76.53 78.29
CIFAR-100 Forgetting 7.01 20.69 34.22 50.95 61.54 68.92 72.65 78.55 79.69 78.81

LCMat 8.43 28.51 42.81 55.77 64.39 67.22 73.11 77.51 78.47

Random 6.14 33.17 45.87 59.19 65.94 68.23 70.14 73.74 74.83
ImageNet Forgetting 4.78 28.18 45.84 60.75 67.48 70.26 72.73 74.63 75.53 75.85

LCMat 6.01 32.26 46.08 59.02 65.28 68.50 70.30 74.13 74.81

models trained on subsets of CIFAR-10/100 and ImageNet,
with selection ratios ranging from 1% to 90%, as summa-
rized in Table 1. For the Forgetting score approach, we sort
the samples in descending order based on their scores, de-
fined as the number of times during training the decision of
that sample switches from a correct one to incorrect one, and
select the top-ranking (most difficult) samples. In contrast,
for LCMat, we employ an optimization to identify a subset
that best approximates the loss curvature of the full dataset.
We employ ResNet18 (He et al., 2016) for CIFAR-10 and
ResNet50 for CIFAR-100 and ImageNet.

We can observe that the most effective strategy varies de-
pending on the selection ratios, and there is no single method
that consistently outperforms others across the entire range
of selection ratios. Specifically, for CIFAR-10 with low
subset ratios (1-30%), the optimization-based selection
(LCMat) performs better than the difficulty score-based
selection (Forgetting). In this regime, the ‘Forgetting’ even
underperforms random selection. However, as the subset
ratio increases beyond 40%, the ‘Forgetting’ outperforms
both the LCMat and random selection. Similar trends are
observed for CIFAR-100 and ImageNet. Interestingly, for
CIFAR-100, there is an intermediate regime where neither
the ‘Forgetting’ nor LCMat outperform random sampling.

These findings emphasize that the desired properties of data
subsets change depending on the selection ratios. In cases
of low selection ratios (sample-deficient regime), it is more
beneficial to identify a representative subset that closely
resembles the full dataset in terms of average loss gradients
or curvature during training. However, as the selection ratio
increases (sample-sufficient regime), preserving the high-
scoring, rare or difficult-to-learn samples becomes more
critical, as these samples are known to enhance the gener-
alization capability of neural networks and cannot be fully
captured by a representative subset that reflects only the
average behavior of the full dataset.

3.2. Theoretical analysis

To validate this experimental finding, we provide a theoret-
ical analysis of optimal subset selection, revealing similar
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change of trends in the desirable subsets depending on the
selection ratios. We consider a binary classification problem
by solving a linear regression problem, as detailed below:
Data samples x1,x2, . . .xn ∈ Rd are generated from a
multivariate normal distribution, D = 1√

d
N (0, Id). The

label yi of sample xi is determined by the sign of its first
element. Specifically, if (xi)1 > 0 then yi = 1; and if
(xi)1 < 0, then yi = −1. We define the score of each sam-
ple as 1/|(xi)1|. Samples closer to the decision boundary
(x)1 = 0 have higher scores, while those farther from the
boundary have lower scores. We select a label-balanced sub-
set of size m, denoted by (XS,yS) ∈ Rd×m × {−1, 1}m,
and use it to solve a linear regression problem to find
wS = argminw∈Rd ∥yS − X⊤

Sw∥22. For a new sample
x′, our decision will be +1 if w⊤

S x
′ > 0 and −1 otherwise.

Thus, we consider wS to be a better solution when the value
of its first element, (wS)1, is larger. For the above setup, we
analyze the solution wS depending on the subset size |S|.

A similar problem setup was analyzed in (Sorscher et al.,
2022), demonstrating that the optimal selection strategy
varies depending on the subset ratio. Specifically, Sorscher
et al. (2022) considers a max margin classifier trained on a
data subset selected by the teacher-perceptron model, pro-
viding a comprehensive set of equations enabling numerical
computation of the generalization error for various subset
data distributions. In contrast, our contribution lies in provid-
ing a closed-form solution for the optimal linear classifier, as
summarized in the theorem below. This theorem shows the
transition of the optimal sample selection strategy between
sample-deficient and sample-sufficient regimes.

Theorem 1 (Informal). If the subset size is as small as
|S| = m ≪

√
d/ ln d, then the first coordinate of wS

is approximated as (wS)1 ≈
∑m

i=1 |(xi)1|. On the other
hand, if |S| = m ≫ d2 ln d, it can be approximated as
(wS)1 ≈ (

∑m
i=1 |(xi)1|)/(

∑m
i=1 |(xi)1|2).

A more formal statement and the proof of Thm. 1 is avail-
able in Appendix A.2. From Thm.1, it is evident that the
characteristics of the desirable data subset XS vary depend-
ing on the subset size regime. In the sample-deficient regime
(m ≪

√
d/ ln d), it is more advantageous to include sam-

ples that are farther from the decision boundary (easy sam-
ples) in XS to train a better classifier, resulting in a higher
value of (wS)1. Conversely, in the sample-sufficient regime
(m ≫ d2 ln d), it is more beneficial to include samples
closer to the decision boundary (difficult samples) to in-
crease (wS)1. We conjecture that the relatively wide gap
between two distinct regimes ( [

√
d/ ln d, d2 ln d]) may be

attributed to the loose analysis. We anticipate that a more
precise boundary will occur at m = Θ(d), where m ≪ d
(m ≫ d) corresponds to the sample-deficient (sufficient)
regime. We provide empirical results that support this theo-
retical analysis and our conjecture in Appendix A.3.

Figure 2. Results on “training set split” experiment on CIFAR-10
dataset, when five different models are trained by five different data
subsets, divided by their difficulty rankings, [0, 20]% (hardest) to
[80, 100]% (easiest). Model accuracies (y-axis) are evaluated on
all five subsets (x-axis) separately. Right figures visualize the t-
SNE of test samples’ features extracted from models trained by the
hardest [0, 20]% subset (top) and the [20, 40]% subset (bottom).

Having identified the distinct properties of desirable data
subsets depending on the subset size, the remaining question
is how to design a universal data selection method capable
of performing well across a wide range of selection ratios.

4. Window Subset: Flexible Subset Selection
4.1. Desirable difficult level for data subsets in moderate

selection ratios? Hard, but not the hardest

The underlying rationale for difficulty score-based selection
methods like Forgetting (Toneva et al., 2019) and EL2N
(Paul et al., 2021) is that training models on a subset consist-
ing of challenging data will enable the models to learn (or
memorize) the atypical features of hard samples, while still
retaining the capacity to learn typical features of easier sam-
ples. However, as shown in our empirical findings in Sec.
3.1 and further supported by our theoretical analysis in Sec.
3.2, this assumption may not hold when the subset ratio is
extremely small. This leads us to our next question: Is it still
feasible for models trained on hard instances to effectively
learn easier instances, without having been exposed to these
samples during training, at moderate selection ratios?

To investigate this, we design a “training set split” experi-
ment on CIFAR-10 dataset. We divide the training dataset
into five subsets and observe the impact of training on each
subset on the accuracy across the other subsets. In detail,
we sort the CIFAR-10 training instances by forgetting score
(Toneva et al., 2019) and divide them into five subsets based
on consecutive ranking intervals: the hardest 20% (rankings
within [0, 20]%), [20, 40]%, and so on, up to the easiest 20%
([80, 100]%). We train five different ResNet18 models, each
on one of these subsets, and then evaluate their classification
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accuracies on all five subsets separately.

The results, presented in Fig. 2, reveal that models trained
on harder data subsets generally perform better across all
subsets, with the exception of the model trained solely on
the hardest 20%. For instance, the model trained on the
[20, 40]%-ranked subset effectively classifies instances not
only within its training range but also those in the easier
[40, 100]% range. This suggests that training with harder
instances helps the model learn both the unique features of
these challenging instances and the common, representative
features of the entire dataset. This finding supports the
rationale behind existing score-based selection methods,
which prioritize selecting challenging data for training.

Yet, this pattern does not hold for the model trained exclu-
sively on the hardest 20% subset. This model exhibits a
significant drop in accuracy across all the easier subsets,
except for the hardest subset it was trained on. This indi-
cates that a model trained with only the most challenging
instances lacks generalizability to easier samples.

We support this claim by analyzing the feature spaces of
models trained with the hardest [0, 20]% subset and the sub-
sequent [20, 40]% subset. Our focus is on demonstrating
that the model trained with the hardest 20% subset strug-
gles to effectively create a feature space for classification.
We extract features of CIFAR-10 test samples from each
model and visualize their t-SNE (van der Maaten & Hinton,
2008) in Fig. 2 (right). The figure reveals that the feature
space generated by the model trained on the hardest subset
does not efficiently cluster test samples by class. We further
quantify this using the neural collapse property (Kothapalli,
2023), which compares within-class feature variability to
inter-class feature variability. Let fk,i be the feature of the
i-th data in the k-th class, µk = 1

n

∑n
i=1 fk,i be the fea-

ture mean of class k, and µG = 1
K

∑K
k=1 µk be the global

mean feature. The within-class covariance Σw is defined
by 1

Kn

∑K
k=1

∑n
i=1(fk,i − µk)(fk,i − µk)

⊤, and the inter-
class covariance ΣB by 1

K

∑K
k=1(µk − µG)(µk − µG)

⊤.
The trace, tr(ΣWΣ†

B), then measures the clusterability of
features with respect to their classes, with a lower value
indicating better clustering. The tr(ΣWΣ†

B) values for mod-
els trained on [0, 20]% (the hardest 20%), [20, 40]%, and
so on, up to [80, 100]%, and the full dataset, are 9.33, 1.68,
1.99, 2.60, 3.35, and 1.04, respectively. Notably, there is
a significant increase in tr(ΣWΣ†

B) for the hardest subset,
suggesting poor feature learning for classification.

In summary, training with harder data generally benefits
learning both representative and atypical features, aiding in
better model generalization. However, when the subset ratio
is moderate and the subset consists of the hardest samples,
the model may suffer significant performance drop and fail
to establish an effective feature learning for classification.

0.0 0.2 0.4 0.6 0.8 1.0
Starting point of window

55
60
65
70
75
80
85
90
95

Te
st

 a
cc

ur
ac

y(
%

)

10%
20%
30%
40%

(a) CIFAR-10

0.0 0.2 0.4 0.6 0.8 1.0
Starting point of window

30

40

50

60

70

Te
st

 a
cc

ur
ac

y(
%

)

10%
20%
30%
40%

(b) CIFAR-100

Figure 3. Sliding window experiments to measure the test accu-
racy of the models trained by window subsets while changing the
starting point of the windows in CIFAR-10 (left) and CIFAR-100
(right) dataset. Samples are sorted in descending order by their
difficulty scores. The horizontal lines are results from random
selection. For each subset ratio, there exists the best window, and
its starting point shifts toward left as the subset ratio increases.
Results for ImageNet dataset is also reported in Appendix F.1

4.2. The existence of a high-performing window subset

Section 4.1 implies that for each subset ratio, there is a
proper difficulty level of the subset for better model gen-
eralization. Expecting that a subset composed of samples
of proper difficult level will perform well, we consider the
window selection method, similar to (Lee & Chung, 2024),
that selects a window subset from samples ordered by their
difficulty scores. In detail, we sort the samples in descend-
ing order based on their difficulty scores and select a starting
point, such as s% for a given window size of w%, to choose
continuous intervals of samples within [s, s + w]%. This
approach has two merits: 1) flexibility and 2) computational-
efficiency. The flexibility in choosing the starting point s%
of the window allows us to opt for easy, moderate, or hard
data subsets depending on the choice of the starting point.
The search space of window selection method is confined
to the number of possible starting points for the windows,
making the window selection method computationally much
more efficient compared to a general subset selection where
the search space scales as

(
n
m

)
≈ exp(cn) for some constant

c > 0 when the subset size m is a constant fraction of n.

We first explore the performance of the window selection
approach while varying the starting point and illustrate the
existence of the best window subset. We sort the samples
from CIFAR-10/100 in descending order based on their
Forgetting scores (Toneva et al., 2019), and select windows
of different sizes, ranging from 10% to 40%, by adjusting
the starting point from 0 to (100− w)% with a step size of
5%. We then train ResNet18 for CIFAR-10 and ResNet50
for CIFAR-100 using the windows subsets and plot the
resulting test accuracies in Fig. 3.

We can observe that, for each subset ratio, there exists an
optimal starting point, and this optimal point shifts towards
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Algorithm 1 BWS: Best Window Selection Method
Input Dataset {(xi, yi)}ni=1 sorted by difficulty scores from
the hardest to easiest, subset size m, and step size
t.

Train a feature extractor f(·) by m randomly chosen samples
from the dataset.
Extract the features of the samples by using f(·) and denote
them by fi = [f(xi), 1].
for k ∈ {0, t, 2t, 3t . . . , ⌊(n−m)/t⌋t} do

Define a window subset S = {(fi, yi)}k+m−1
i=k .

for c ∈ {1, 2, . . . C} do
For the samples in S with label c, set the label equal to 1.
For others, set the label to 0.
Solve the linear regression problem Eq.1 with the window
subset S. Let wS(c) be the solution.

end for
Obtain wS ∈ R(d+1)×C by wS := [wS(1), . . .wS(C)].
Calculate the accuracy of wS by
1
n

∑n
i=1 1(argmaxc(w

⊤
S fi)c = yi).

end for
Output Window subset S for which the accuracy of wS is maxi-
mized.

lower values (indicating more difficult samples) as the win-
dow subset size increases. Specifically, for CIFAR-10, the
optimal window subset of size 10% falls within the interval
[50, 60]%, while for a window size of 40%, it falls within
[5, 45]%. Similar trends are observed for CIFAR-100, al-
beit with distinct optimal starting points depending on the
dataset. For CIFAR-100, with a window size of 10%, the
best window subset comprises samples from [80, 90]%, pri-
marily consisting of easy samples. It is important to note
that the 10% subset for CIFAR-100 includes only 50 sam-
ples per class, whereas for CIFAR-10, it includes 500 sam-
ples per class. Consequently, the optimal 10% window for
CIFAR-100 ([80, 90]%) tends to include more easy and rep-
resentative samples capable of capturing the representative
features of each class.

The observation that the optimal starting point of the win-
dow subset varies based on both the subset size and the
dataset introduces a new challenge in window selection:
How can we efficiently identify the best window subset
without having to evaluate models trained on each subset?
We address this crucial question by introducing a proxy task
to estimate the quality of window subsets.

5. Best Window Selection (BWS)
Our goal is to develop a computationally-efficient method
capable of assessing and identifying the best window subset
without requiring the training of a model on every potential
subset. To achieve this goal, we propose to solve a kernel
ridge regression (KRR) problem by using each window
subset and evaluate the performance of the corresponding

Table 2. Comparison between the window subsets chosen by the
sliding window experiment in Fig. 3 (left) and BWS (using the
KRR as a proxy task) (right) in terms of their starting points and
test accuracies. The chosen windows align well between the two.

Ratio Sliding window experiment BWS

Starting point Test accuracy Starting point Test accuracy

10% 50% 82.67 55% 82.29

20% 25% 89.06 30% 88.74

30% 15% 91.80 15% 91.80

40% 5% 93.59 5% 93.59

solution on the full training datasets. Using KRR for a
proxy task is motivated by the observation that the kernel
regression with the model-related kernels can provide a
good approximation to the original model (Neal, 1996; Lee
et al., 2018; Jacot et al., 2018; Arora et al., 2019), while
providing computational efficiency compared to training
the actual models. We provide further justifications of this
proxy task in Appx. B. Alg. 1 outlines the main steps.

Let fi := [f(xi), 1] ∈ Rd+1 be the feature vector of xi ob-
tained by a feature extractor f(·). The details of the feature
extractor is available in the end of this section. For each
window subset S = {(fi, yi)}mi=1 composed of m samples,
define XS := [f1, . . . , fm] and yS := [y1, . . . , ym]. Then,
we denote the problem of kernel ridge regression, and the
corresponding solution, using the subset S by

wS := argmin
w

∥yS −X⊤
Sw∥22 + λ∥w∥22, (1)

wS = (λId+1 +XSXS
⊤)−1XSyS

= XS(λIm +X⊤
SXS)

−1yS. (2)

We set λ = 1 to prevent singularity in matrix inversion. The
matrix inversion in Eq. 2 can be performed efficiently in a
lower dimension between d+ 1 and m.

Our algorithm finds the best window subset by evaluat-
ing the performance of wS, corresponding to each window
subset S, on classifying the training samples {(xi, yi)}ni=1

as described in Alg. 1. To apply wS for C-class clas-
sification problem, we find wS(c) ∈ Rd+1 for each
class c ∈ {1, . . . , C}, classifying whether a sample be-
longs to class c or not, and simply place the vectors in
columns of wS ∈ R(d+1)×C . Then, we evaluate the per-
formance of wS by calculating the classification accuracy
1
n

∑n
i=1 1(argmaxc(w

⊤
S fi)c = yi) on the full training set.

In Table 2, we compare the performances of window sub-
sets chosen by the sliding window experiment in Fig. 3
and BWS (using the KRR as a proxy task) on CIFAR-10
dataset. We compare the starting points and test accuracies
of the window subsets chosen by the two different methods
for each subset ratio. We can observe that window subsets
chosen by KRR align well with those chosen by the sliding
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Figure 4. (a, b, c) Data pruning experiments. Test accuracy of the models trained with data subsets of varying ratios in CIFAR-10/100,
and ImageNet dataset, selected by different methods. Our method (BWS) outperforms other baselines across a wide range of selection
ratios and achieves the accuracy as high as the Oracle window. Full results are reported in Table 13–15.

window experiment. This observation demonstrates the ef-
fectiveness of our algorithm, which can efficiently replace
the need to train models on each window subset and evaluate
them on test dataset. BWS also finds the near optimal start-
ing points for CIFAR-100 and ImageNet datasets across a
broad range of subset ratios (from 1% to 90%). The detailed
results are available in the Appendix H.

Feature extractor When |S| = m, we randomly select
m samples from the full dataset, and use these samples to
train a neural network for a few epochs to generate a feature
extractor f(·). For CIFAR-10, we train ResNet18 for 20
epochs, and for CIFAR-100/ImageNet, we train ResNet50
for 20 epochs. The rationale behind training a feature ex-
tractor with random samples matching the window subset
size is to simulate the situation where the model is trained
with a limited window subset of the same size, enabling
effective quality evaluation for window subsets.

Computational complexity The computational complex-
ity of Algorithm 1 includes training a feature extractor and
solving the regression problem for (⌊(n−m)/t⌋)-subsets.
Training the feature extractor is relatively efficient since it
involves only a few epochs. Solving the regression requires
matrix inversion, which takes O(min(d,m)3) steps, with
d = 512 for ResNet18 and 2048 for ResNet50. This cost is
significantly lower than other optimization-based baselines.
For example, running BWS for the CIFAR-10 dataset with
ResNet-18 and a step size of 5% takes less than 11 seconds.
Detailed comparisons are provided in Appendix C.3.

6. Experiments
To demonstrate the effectiveness of our method, we con-
duct data pruning experiments. We select a subset of the

dataset using each selection method while pruning the rest
of the samples, and evaluate the performance of the model
trained with each subset. We perform these experiments us-
ing ResNet18 for CIFAR-10 and ResNet50 for CIFAR-100
and ImageNet. Baselines include 1) two difficulty score-
based selection: Forgetting and EL2N, 2) two optimization-
based selection: AdaCore and LCMat, and 3) two univer-
sal selection methods: Moderate DS score and CCS. We
also add SSL Prototype (Sorscher et al., 2022) and mem-
orization score (Feldman & Zhang, 2020) as baselines on
the ImageNet experiment, since these scores are known to
achieve competitive performances especially on the large-
scale datasets (Sorscher et al., 2022). More details about
the baselines and experiments are available in Appx. C. The
full experimental results are available in Appx. H.

6.1. Experimental Results

Data pruning experiments In Fig. 4, we present the test
accuracies of models trained with data subsets of varying ra-
tios, selected by different methods. The reported values are
mean, and the shaded regions are std. across three (two) in-
dependent runs for CIFAR-10/100 (ImageNet). The Oracle
window curve represents the results obtained using the win-
dow subset of the highest test accuracy found by the sliding
window experiment as in Fig. 3, and BWS represents the re-
sults obtained using Alg. 1. We can observe that our method,
BWS, consistently outperforms all other baselines across
almost all selection ratios, and achieves the performance
near the Oracle window. In the case of CIFAR-10/100,
the difficulty score-based methods, Forgetting and EL2N,
perform well in high ratio regimes but experience signifi-
cant performance drop as the selection ratio decreases. The
optimization-based methods, LCMat and AdaCore, achieve
better performance than the difficulty score-based methods
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Figure 5. (a) Cross architecture experiment. Test accuracy of
the model fine-tuned with subsets of varying ratios in the CIFAR-
10 dataset, selected by different methods. We utilize the Vision
Transformer (ViT) architecture, pretrained on the ImageNet dataset.
(b) Robustness to label noise. Data pruning experiments with
CIFAR-10, including 20% label-noise. For both experiments, BWS
surpasses other baselines for a wide range of selection ratios.

in low selection ratios but underperform in high selection
ratios. Detailed numbers are reported in Table 13–15.

Cross-architecture experiments To test the robustness
of our method across changes in model architectures, we
conduct data pruning experiments on CIFAR-10 while using
different architectures during sample scoring and training.
Window subsets are constructed using samples ordered by
their Forgetting scores, calculated on ResNet18, and then
the best window selection (Alg. 1) and the model training
are conducted using a simpler CNN/EfficientNet-B0 or a
larger Vision Transformer (ViT) (Dosovitskiy et al., 2021),
pre-trained on the ImageNet. The results on the ViT are pre-
sented in Fig. 5(a), while those on CNN and EfficientNet-B0
are shown in Fig. 9 of Appx. F.2. In all cases, our method
consistently achieves competitive performances across all
selection ratios, demonstrating its robustness to changes in
neural network architectures during data subset selection.

Robustness to label noise Additionally, we demonstrate
that BWS is robust against label noise in subset selection.
Existing sample selection methods, which rely on difficulty-
based sample scores (Toneva et al., 2019; Paul et al., 2021),
are susceptible to a particular limitation: they often assign
high scores to samples corrupted by label noise, as these
samples are inherently hard to learn. This poses the risk of
unintentionally selecting noisy samples during the selection
phase. On the contrary, our BWS algorithm adopts a differ-
ent approach by solving a proxy task using kernel ridge re-
gression rather than solely relying on high or low difficulty-
based scores. We test the robustness of BWS in the presence
of label noise by corrupting randomly chosen 20% samples
of CIFAR-10 dataset by random label noise. To further
enhance the robustness of our method, we modify Alg. 1
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Figure 6. (a) Test accuracies of the models trained with two half-
width windows of varying starting points. Each axis indicates
the starting points of each widow, and brighter color indicates
higher accuracy. The best result is observed near the diagonal,
contiguous windows. (b) Test accuracy of the models trained with
wider windows. Horizontal lines are the results of oracle window
subset. At high ratio, oracle window outperforms wider windows.

to evaluate the solution of kernel ridge regression using
only the low-scoring 50% samples from the training dataset,
which will rarely include label-noise samples, instead of the
full dataset. In Fig. 5(b), we compare the performance of
this modified version of BWS with other baselines. While
difficulty score-based selection and optimization-based se-
lection methods suffer from performance degradation due
to label noise, our method, along with another label noise-
robust method, Moderate DS, achieves performance even
higher than what is achievable with the full training dataset,
which includes the 20% label noise. Further experiment
results with higher noise ratio are provided in Appendix F.3.

6.2. Ablation study

BWS operates by sorting training instances based on their
difficulty scores, creating window subsets, and selecting the
best window by a proxy task. To assess the importance of
each component, we conduct several ablation studies.

Different types of window subsets Our method employs
a window type that includes samples from a contiguous
range of difficulty scores while changing the starting point.
We explore two more generalized window types: a union
of two half-width windows and a wider window where the
samples are randomly selected from a wider range. For two
half-width windows, given a subset of size w, we search over
all combinations of two half-width windows, denoted by
[x1, x1+w/2]∪ [x2, x2+w/2], while varying their starting
points x1 ∈ [0, 100− w] and x2 ∈ [x1 + w/2, 100− w/2]
with a step size of 5%. For wider windows, we consider a
window that is c times wider than the subset size w, denoted
as [x1, x1 + c ·w] while varying the starting point x1 within
the range [0, 100 − c · w] with a step size of 5%. These
ablation studies are conducted with CIFAR-10 on ResNet18,
to see whether the generality in subset selection can bring

8



BWS: Best Window Selection Based on Sample Scores for Data Pruning across Broad Ranges

Table 3. The maximum test accuracy achieved by each window
type in CIFAR-10. The best contiguous window nearly matches
two half-width windows and outperforms wider windows.

Selection
Ratio

Two half-width
windows

Twice
wider window

Best contiguous
window

10% 83.04 82.37 82.67
20% 89.16 89.01 89.06
30% 92.02 91.72 91.80
40% 93.67 92.62 93.59

Table 4. Test accuracy of the models trained by window subsets of
CIFAR-10 selected by different proxy tasks. Our method achieves
the better performance, and the best window subsets selected by
ours aligns better with those of oracle windows.

Proxy task Subset ratio 1% 5% 10% 20% 30% 40% 50% 75% 90%

SVP Test accuracy 46.25 71.35 80.95 88.06 90.68 91.63 93.36 94.75 95.37
Window index 80% 65% 60% 40% 30% 25% 15% 5% 0%

Gradient Test accuracy 39.45 70.40 82.24 88.42 90.68 91.63 92.72 94.30 94.82
difference Window index 50% 45% 40% 35% 30% 25% 20% 10% 5%

Gradient Test accuracy 36.33 60.46 74.77 87.79 91.77 93.59 94.54 95.23 95.37
similarity Window index 30% 25% 20% 15% 10% 5% 0% 0% 0%

BWS Test accuracy 46.10 70.70 82.29 88.74 91.80 93.59 94.54 95.23 95.37
Window index 90% 70% 55% 30% 15% 5% 0% 0% 0%

Oracle Test accuracy 47.17 72.89 82.67 89.06 91.80 93.59 94.54 95.23 95.37
Window index 85% 55% 50% 25% 15% 5% 0% 0% 0%

meaningful gain possibly at the cost of computation.

In Table 3, we present the maximum test accuracies achieved
by the two non-contiguous (two half-width/wider windows)
and contiguous window types. Remind that two half-width
window type includes all the contiguous windows. We ob-
serve that for every subset ratio, the performance of the best
contiguous window subset almost matches that of two half-
width windows, and outperforms wider widows. Moreover,
Fig. 6(a) shows that the best composition of two half-width
windows occur when the two windows are close to each
other (the diagonal positions in the figure). The sliding
window experiment for wider windows in Fig. 6(b) shows
that the best contiguous window (horizontal lines) achieves
better performance than wider windows, especially in high
ratios. These results support our use of contiguous window
subsets in choosing the near-optimal subset in a computa-
tionally efficient manner across a broad range of selection
ratios. Further results are reported in Appx. G.1–G.2.

Different types of proxy task We also evaluate the effec-
tiveness of our proxy task, kernel ridge regression in Alg. 1,
by comparing it with three different variants: 1) Selection
via proxy (SVP) (Coleman et al., 2020), utilizing a smaller
model (ConvNet) for choosing the best window, 2) Gradient
ℓ2-norm difference, which finds a window subset minimiz-
ing the ℓ2-norm difference between the average gradients
of the full dataset and the window subset, and 2) Gradient
cosine similarity, which finds a window subset maximiz-
ing the cosine similarity between the average gradients of
the full dataset and the window subset. The last two meth-
ods are inspired by gradient-matching strategies used in

optimization-based coreset selection (Mirzasoleiman et al.,
2020; Yang et al., 2023). Table 4 presents the test accuracies
achieved by models trained on window subsets selected by
each method, along with the corresponding starting points of
the chosen windows. The last row shows the result with the
oracle window. Our method achieves better test accuracy
compared to the three variants, and the window selected
by our method aligns better with the oracle selection. In
particular, SVP tends to select easier subsets possibly due to
the limited capacity of the simple network used in the proxy
task. This result demonstrates that the best subset cannot be
effectively chosen by using a simpler network or matching
the average gradients; it requires a proxy task such as kernel
ridge regression, with model-related kernels, to evaluate the
quality of window subsets for classification tasks. We also
perform an ablation study to show the robustness of our
method across various difficulty scores in Appx. G.3.

7. Conclusion and Discussion
We introduced the Best Window Selection (BWS), a uni-
versal and efficient data subset selection method capable
of achieving competitive performance across a wide range
of selection ratios. Our experimental results demonstrate
that BWS effectively identifies the best window subset
from samples ordered by difficulty-based scores, utiliz-
ing a simple proxy task based on kernel ridge regression.
This method outperforms previous data subset selection
approaches, which often excel within a limited range of
selection ratios.

Subset selection has become a crucial technique in the big
data era, allowing for the reduction of large datasets with
minimal information loss. However, current efforts, includ-
ing BWS, mainly focus on sample selection for supervised
learning on curated datasets designed for classification tasks
with well-defined labels. The next stage for subset selection
may involve addressing challenges associated with much
larger and more complex datasets. For instance, DataComp
(Gadre et al., 2023) proposes a new benchmark for subset
selection by providing a web-scale multimodal dataset as
the full training set. This setup challenges researchers to
develop strategies for selecting subsets that benefit diverse
downstream test sets capable of zero-shot generalization.

We believe that the insights gained through BWS–
specifically, the shifts in the desired dataset characteristics
based on selection ratio and the methodology for efficiently
identifying the optimal subset using a simple proxy task–
may provide valuable perspectives for designing data filter-
ing or selection strategies for these large-scale datasets.
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Impact Statement
This paper addresses the performance degradation seen in
existing data subset selection methods when the selection
ratio varies widely. We introduce a methodology specifi-
cally designed to effectively counter this challenge. Our
proposed universal data subset selection method delivers
consistent, competitive performance across various selection
ratios. This is particularly valuable in practical situations
where computational and storage resources for training can
vary, necessitating flexible sample selection based on the
required subset ratios.
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A. Proof of Theoretical Analysis
A.1. Linear ridge regression

The solution of the linear ridge regression problem is derived as follows.

L(w) = ∥y −X⊤w∥22 + λ∥w∥22
∂L

∂w
= 2XX⊤w − 2Xy + 2λw = 0 ⇒ w = (λI+XX⊤)−1Xy

∴ wS = (λI+XSX
⊤
S )

−1XSyS = XS(λI+X⊤
SXS)

−1yS

A.2. Proof of Theorem 1

In this section, we provide the detailed proof of Theorem 1 in Sec. 3.2. We assume that n = poly(d) data inputs
x1,x2, . . .xn are sampled from normalized multivariate normal distribution, D = 1√

d
N (0, Id) = 1√

d
(N1,N2 . . .Nd)

where {Nk} are i.i.d. normal distributions. Remind that the label yi of sample xi is determined by the sign of its first
element, i.e., if (xi)1 > 0 then yi = 1, and if (xi)1 < 0, then yi = −1. We select a subset of size m, denoted by
(XS,yS) ∈ Rd×m × {−1, 1}m.

We first provide a high-level proof idea of Theorem 1. Note that the optimal wS = argminw∈Rd ∥yS −X⊤
Sw∥22 can be

written as wS = XS(X
⊤
SXS)

−1yS when m ≤ d, and wS = (XSX
⊤
S )

−1XSyS when m ≥ d. Let us first consider the
case of m ≤ d. Due to the properties of high dimensional multivariate normals, we have ∥xi∥ ∈ [1 ±

√
7 lnn/2d] for

all i ∈ [n] and |x⊤
i xj | ≤

√
7 lnn/2d for all i ̸= j ∈ [n] with high probability. Thus, ∥X⊤

SXS − Im∥F ≤
√

m2(7 lnn)
2d

where Im is the identity matrix of size m. When m ≪
√

d/ ln d, we have (X⊤
SXS) ≈ (X⊤

SXS)
−1 ≈ Im, and thus

wS = XS(X
⊤
SXS)

−1yS ≈ XSyS, which implies that (wS)1 ≈
∑m

i=1 |(xi)1|. Let us next consider the case of m ≥
d. Note that the diagonal terms of XSX

⊤
S are

∑m
i=1 |(xi)k|2 = Θ(m/d) for k ∈ [d] and the off-diagonal terms are∑m

i=1(xi)k(xi)l = O(
√
m ln d/d) for k ̸= l ∈ [d] with high probability. The eigenvalues of XSX

⊤
S can be shifted from

its diagonal entries (
∑m

i=1 |(xi)1|2, . . . ,
∑m

i=1 |(xi)d|2) by at most
√
m ln d
d d =

√
m ln d by the effect of its off-diagonal

entries. Thus, when m/d ≫
√
m ln d, i.e., m ≫ d2 ln d, we can have XSX

⊤
S ≈ diag(

∑m
i=1 |(xi)1|2, . . . ,

∑m
i=1 |(xi)d|2)

and (XSX
⊤
S )

−1 ≈ diag((
∑m

i=1 |(xi)1|2)−1, . . . , (
∑m

i=1 |(xi)d|2)−1). Since wS = (XSX
⊤
S )

−1XSyS, the first coordinate
value of wS is (wS)1 ≈ (

∑m
i=1 |(xi)1|)/(

∑m
i=1 |(xi)1|2).

To more formally state and prove Theorem 1, we provide Theorem 2 to explain the regime of low selection ratio (m =
o(
√
d/ ln d)) and Theorem 3 for the high selection ratio (m = ω(d2 ln d)). To prove the two theorems, we use the following

three lemmas, including the tail bounds on chi-square and Gaussian distributions, and Gershgorin theorem, which are stated
as below:

Lemma A.1 (Chi-square tail bound). If x ∼ χ2(d), then P(χ2(d) ≥ d+2
√
dt+2t) ≤ e−t and P(χ2(d) ≤ d−2

√
dt) ≤ e−t.

Lemma A.2 (Gaussian tail bound). If x ∼ N (0, 1), then P(|x| ≥ t) ≤ e
−t2

2 .

Lemma A.3 (Gershgorin circle theorem). Let A ∈ Cd×d be a matrix with its (i, j)-th entry equal to aij . Let ri :=
∑

j ̸=i |aij |
and Di := Dri(aii) be a closed ball centered aii with radius ri. Then, every eigenvalue of A is contained in ∪iDi

Gershgorin circle theorem restricts the eigenvalues of a matrix in a union of disks, whose centers are diagonal elements, and
the radius is the sum of off-diagonal elements.

Now, we provide Theorem 2, which will be used to explain why selecting low-scoring (easy) data samples results in a good
performance when the subset size |S| is small.

Theorem 2 (Sample-deficient regime). If m = o
(√

d/ ln d
)

, then ∥(X⊤
SXS)

−1−Im∥2 ≤ m
√

7 lnn
2d with high probability

as d → ∞.

Proof. At first, we prove two properties of the high dimensional multivariate normal distribution, which state that the norm
of every xi is almost equal to 1, and every two independent vectors are almost orthogonal for large enough d. For any
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1 ≤ i ̸= j ≤ n, with probability 1−O( 1n ), we have

1−
√

7 lnn

2d
≤ ∥xi∥2 ≤ 1 +

√
7 lnn

2d
, and (3)

|x⊤
i xj | <

√
7 lnn

2d
. (4)

The first property (Eq. 3) can be proved by Lemma A.1. Let t = 3 lnn for Lemma A.1. Then,

P(χ2(d) ≥ d+ 2
√
3d lnn+ 6 lnn) ≤ 1

n3
and P(χ2(d) ≤ d− 2

√
3d lnn) ≤ 1

n3
.

Since 2
√
3d lnn+ 6 lnn ≤

√
13d lnn for large enough d, with probability 1−O( 1

n3 ) we have

1−
√

13 lnn

d
≤ 1

d
χ2(d) ≤ 1 +

√
13 lnn

d

d → ∞
====⇒ 1−

√
7 lnn

2d
≤
√

1

d
χ2(d) ≤ 1 +

√
7 lnn

2d
. (5)

Since xi ∼ 1√
d
N (0, Id) and ∥xi∥22 = 1

dχ
2(d), for ∀i ∈ [n], with probability 1−O( 1

n2 ), Eq. 3 follows.

The proof of the second property (Eq. 4) also utilizes Lemma A.1. Let xi =
1√
d
(Ni1,Ni2, . . .Nid) and xj =

1√
d
(Nj1,Nj2, . . .Njd) where Nik,Njk are i.i.d. normals N (0, 1). Then,

x⊤
i xj =

1

d

d∑
k=1

NikNjk =
1

d

d∑
k=1

(Nik +Njk)
2 − (Nik −Njk)

2

4

=
1

2d

d∑
k=1

[(
Nik +Njk√

2

)2

−
(
Nik −Njk√

2

)2
]
=

1

2d

d∑
k=1

[(N
′

k)
2 − (N

′′

k )
2]

=
1

2d
(χ2

1(d)− χ2
2(d)),

where N ′

k and N ′′

k are i.i.d. normals, and χ2
1(d) and χ2

2(d) are i.i.d chi-squares.

As shown in Eq. 5, with probability 1−O( 1
n3 ),

1−
√

7 lnn

2d
≤
√

1

d
χ2
1(d) and

√
1

d
χ2
2(d) ≤ 1 +

√
7 lnn

2d
. (6)

Thus, we have ∣∣∣∣ 12d (χ2
1(d)− χ2

2(d))

∣∣∣∣ ≤
√

7 lnn

2d
. (7)

By applying a union bound, for ∀i ̸= j ∈ [n], with probability 1−O( 1n ), we have |x⊤
i xj | ≤

√
7 lnn
2d . From Eq. 3 and Eq.

4, we obtain that ∥X⊤
SXS − Im∥2F ≤ m2

(
7 lnn
2d

)
.

Let A = X⊤
SXS, then we derive the bound on ∥I−A−1∥2 from the bounds of ∥I−A∥2 and ∥A−1∥2. First, note that

∥I−A∥2 ≤ ∥I−A∥F ≤ m

√
7 lnn

2d
and m

√
7 lnn

2d
→ 0 as d → ∞

since m = o(
√
d/ ln d) and n = poly(d). Moreover, we have

∥A−1∥2 = ∥(I− (I−A))−1∥2 = ∥I+ (I−A) + (I−A)2 + . . . ∥2

≤ ∥I∥2 + ∥(I−A)∥2 + ∥(I−A)2∥2 + · · · ≤ 1 +

∞∑
k=1

(
m

√
7 lnn

2d

)k

≤ 2.
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Finally, we have

∥I−A−1∥2 ≤ ∥A−1∥2∥I−A∥2 ≤ m

√
7 lnn

2d
.

We next provide Theorem 3, which explains why selecting high-scoring (difficult) data samples results in a good performance
when the subset size |S| is large (m = ω(d2 ln d)). Assume that we select the subset XS by observing the first element of
each data, (xi)1. Suppose that we select the data samples whose first elements are a1√

d
, a2√

d
, . . . am√

d
where ai ∈ Θ(1), and

let a :=
∑m

i=1 a2
i

m . The elements of the other coordinates are independent normals, i.e., (xi)k ∼ N (0, 1) for k ≥ 2. We
will prove that ( d

mXSX
⊤
S )

−1 can be approximated by a diagonal matrix of which the first element is equal to 1
a and other

elements are equal to 1.

Theorem 3 (Sample-sufficient regime). Let B = diag(a, 1, 1, . . . 1) ∈ Rd×d. If m = ω(d2 ln d), then ∥( d
mXSX

⊤
S )

−1 −

B−1∥2 ≤ c′d2
ln d

m
for some constant c′ > 0 with high probability as d → ∞.

Proof. The elements of d
mXSX

⊤
S are expressed as follows, where k ̸= l ∈ [d]\{1}:

d

m
(XSX

⊤
S )11 =

1

m

m∑
i=1

a2i = a

d

m
(XSX

⊤
S )k1 =

1

m

m∑
i=1

aiNi = N
(
0,

∑m
i=1 a

2
i

m2

)
= N

(
0,

a

m

)
d

m
(XSX

⊤
S )kk =

d

m

m∑
i=1

(xi)
2
k =

1

m
N 2

ik =
1

m
χ2(m)

d

m
(XSX

⊤
S )kl =

d

m

m∑
i=1

(xi)k(xi)l =
1

m

m∑
i=1

NikNil.

By Gaussian tail bound (Lemma A.2), if x ∼ N (0, a/m), then we have

P(|x| ≥ 2
√
a ln d/m) ≤ 1/d2.

Note that 1
mχ2(m) = 1

m∥x∥22 for x ∼ N (0, Im). By Lemma A.1, we have a result similar to Eq. 4,

P(|∥x∥2 − 1| ≥
√

7 ln d/2m) ≤ 1/d2.

For NikNil, by applying the result of Eq. 4, we can also show that

P(∥x∥2 ≥
√

7 ln d/2m) ≤ 1/d3.

Combining the above three bounds, we obtain that for ∀k ̸= l ∈ [d], with probability 1−O( 1d ),∣∣∣∣ dm (XSX
⊤
S )k1

∣∣∣∣ ≤ 2

√
a ln d

m
,

∣∣∣∣ dm (XSX
⊤
S )kk − 1

∣∣∣∣ ≤
√

7 ln d

2m
, and

∣∣∣∣ dm (XSX
⊤
S )kl

∣∣∣∣ ≤
√

7 ln d

2m
.

Thus, we obtain ∥ d
m (XSX

⊤
S )−B∥F ≤ cd2 ln d

m for some constant c > 0, with probability 1−O( 1d ). Let A = d
m (XSX

⊤
S ),

then

∥A−1 −B−1∥2 ≤ ∥A−1∥2∥I−AB−1∥2 ≤ ∥A−1∥2∥B−A∥2∥B−1∥2

≤ ∥A−1∥2∥B−A∥F ∥B−1∥2 ≤ ∥A−1∥2 cd2
ln d

m
· 1.

It is remaining to prove that ∥A−1∥2 is bounded. The eigenvalues of A = d
m (XSX

⊤
S ) are almost equal to the diagonal

elements by utilizing Gershgorin circle theorem. Since m ∈ ω(d2 ln d),
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(a) Plots for entire regime (b) Plots focused on sample-sufficient regime

Figure 7. Results of window sliding experiment at the setting of theoretical analysis. In our setting, the dimension d is 256, the number of
full dataset n is 256, 000, and the subset size m are selected among 16, 64, 256, 512, 2048, 3072, and 4096. Left figure covers the entire
regime (m = 16, 64, 256, 512, and 2048), while the right figure focuses on sample-sufficient regime.

r1 =
∑

j ̸=i |a1j | < 2d
√

a ln d
m ≪ a and rk =

∑
j ̸=i |akj | < d

√
7 ln d
2m ≪ 1.

Therefore, every eigenvalues of A are close to either a or 1 with probability 1−O( 1d ). Thus, ∥A−1∥2 is bounded above by
max( 1a , 1) plus some some constant, which shows that ∥A−1∥2 is bounded. Therefore, we have

∥A−1 −B−1∥2 ≤ ∥A−1∥2 cd2
ln d

m
≤ c′d2

ln d

m
for some constant c′ > 0.

A.3. Toy experiment

To validate our theoretical analysis, we conduct a window sliding experiment similar to the one in Sec. 5, at the setting of
the theoretical analysis in Sec. A.2, while varying the subset sizes and the starting points of the window subsets at d = 256
and n = 256, 000. The results are shown in Fig. 7. Fig. 7(a) shows the plot for both the sample-deficient and sufficient
regimes, including m = 16, 64, 256, 512, 2048, while Fig. 7(b) shows focused plots for sample sufficient regime where
m = 2048, 3072, 4096. The x-axis in Fig. 7(a) is the starting point of the window subset, which identifies the ranking of the
hardest sample in the window subset, while that in Fig. 7(b) is the end point of the window subset, which identifies the
ranking of the easiest sample in the window subset. The y-axis is the cosine similarity between w and ê1 = (1, 0, . . . , 0),
where w is the solution of the regression problem, and ê1 is the unit vector with its first coordinate equal to 1, which is the
true decision boundary. A higher cosine similarity implies a better solution. Red lines show the results when subset size m
is smaller, and the blue or black lines show the result of larger subset sizes.

In the sample-deficient regime where m ≤ d (red lines), the cosine similarity increases as the starting point of the window
increases, meaning that it is better to use easy samples to learn the linear classifier. On the other hand, in the sample-sufficient
regime where m > d (blue and black lines), the cosine similarity is larger for windows having a smaller end point, meaning
that it is better to include difficulty samples to learn a better classifier. This result coincides with the theoretical analysis,
which claims that the inclusion of easier (harder) data samples results in a better solution for a smaller (larger) subset size,
respectively. As we conjectured at Sec. 3.2, the transition of a desirable selection strategy occurs near m = Θ(d).
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B. Discussions on Using Kernel Ridge Regression as a Proxy
In Algorithm 1, we use the kernel ridge regression as a proxy for training neural networks to evaluate the performance of
window subsets. In this section, we provide some theoretical rationale behind the use of the kernel ridge regression.

Our use of the kernel ridge regression as a proxy for training neural networks can be partly explained by the recent progress
in theoretical understanding of training neural networks using kernel methods. In particular, some recent works (Neal, 1996;
Lee et al., 2018; Jacot et al., 2018; Arora et al., 2019) have shown that training and generalization of neural networks can
be approximated by two associated kernel matrices: the Conjugate Kernel (CK) and Neural Tangent Kernel (NTK). The
Conjugate Kernel is defined by the gram matrix of the derived features produced by the final hidden layer of the network,
while NTK is the gram matrix of the Jacobian of in-sample predictions with respect to the network weights. These two
kernels also have fundamental relations in terms of their eigenvalue distributions as analyzed in (Fan & Wang, 2020). Our
proxy task is motivated by the observation that the kernel regression with these model-related kernels can provide a good
approximation to the original model (under some assumptions such as enough width, random initialization, and small
enough learning rate, etc.). As an example, the work by Arora et al. (2019) provides the following theorem, which connects
the training of a neural network with kernel ridge regression using NTK.

Theorem 4 (Informal version of Arora et al. (2019)). Consider a fully connected neural network with sufficiently large
width d1 = d2 = . . . dL where dl is the number of nodes in lth layer. Given a training dataset {(xi, yi)}ni=1 ⊂ Rd ×R with
normalized inputs ∥xi∥2 = 1, the network is trained by gradient descent with a sufficiently small learning rate to minimize
the square-loss

∑n
i=1(fnn(xi)− yi)

2, where fnn is the trained network. With a kernel function of the network K(·, ·), NTK
of training data H ∈ Rn×n is defined by Hij = K(xi,xj). And, for a test data xte, the kernel between the test data and
the training dataset X = [x1,x2, . . .xn] ∈ Rd×n is defined by K(xte,X) ∈ Rn where K(xte,X)i = K(xte,xi). Let
fntk(xte) = (K(xte,X))⊤H−1y. Then,

|fnn(x)− fntk(x)| ≤ ϵ

Theorem 4 justifies that the kernel regression with NTK can provide a good approximation to the neural network training
under the specified assumptions. However, calculating the NTK for the entire neural network requires high computational
cost as it involves computing the Jacobian with respect to the network weights.

To address such a problem, Conjugate Kernel is often considered as a promising replacement of NTK. For example, the work
by Zhou et al. (2022) utilizes the kernel ridge regression based on Conjugate Kernel for dataset distillation. We also use the
Conjugate Kernel in our kernel ridge regression (Eq. 1), by defining the kernel matrix as X⊤

SXS where XS = [f1, . . . , fm]
is composed of features produced by the exact target network of our consideration (ResNet18 for CIFAR-10 and ResNet50
for CIFAR-100/ImageNet). By considering the features from the target network, we can obtain the (approximate) network
predictions that are linear in these derived features. In detail, the output of the CK-regression for the test example xte can be
written as fntk(xte) = x⊤

teXS(X
⊤
SXS)

−1yS = x⊤
tew where w = XS(X

⊤
SXS)

−1y in Eq. 2 for λ = 0.

Of course, this kernel approximation of the neural network models, which assumes a fixed feature extractor, does not
exactly match our situation where the selected subset not only affects the linear classifier but also the feature extractor
itself during the training. However, this is still a good proxy that can reflect the network architecture of our interest in a
computationally-efficient manner. Also, our analysis in Table 2 shows that this proxy finds the best window subset that
aligns well with the result from the actual training of the full model.

C. Implementation Details
C.1. Baseline details

We benchmark our BWS algorithm against eight different state-of-the-art methods, Forgetting score (Toneva et al., 2019),
EL2N score (Paul et al., 2021), AdaCore (Pooladzandi et al., 2022), LCMat (Shin et al., 2023), Moderate DS (Xia et al.,
2023), CCS (Zheng et al., 2023), SSL Prototype score (Sorscher et al., 2022), and Memorization score (Feldman & Zhang,
2020).

In Forgetting and EL2N scores, the scores are derived by averaging the results of five independent training runs using the
full CIFAR-10/100 dataset. Specifically, Forgetting scores are obtained at the 200th epoch (full training), while EL2N
scores are captured at the 20th epoch. For our ImageNet experiments, pre-calculated Forgetting, EL2N, SSL prototype, and
Memorization scores are sourced from https://github.com/rgeirhos/dataset-pruning-metrics (Sorscher et al., 2022).
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In the AdaCore and LCMat methodology, subset selection is conducted only once at the 10th epoch, to ensure a fair
comparison to other baselines. Both AdaCore and LCMat implementations are sourced from the LCMat repository. For
Moderate DS, models are trained using the full dataset, and the individual data features are extracted from the models.
These features are defined as the outputs of the penultimate layer, with dimensions being 512 for ResNet18 and 2048 for
ResNet50. The CCS algorithm employs the aforementioned Forgetting score. Within the CCS approach, we consistently set
the hyperparameter β to zero across all data selection ratios. We also provide the results of CCS with optimal β obtained by
grid search in Appendix §E.

All computational tasks utilized consistent network architectures, as detailed in Section 6: ResNet18 for CIFAR-10 and
ResNet-50 for both CIFAR-100 and the ImageNet dataset. Additional experimental specifications related with learning
algorithms are reported in Table 5 of Appendix §C.2.

Details of the baselines are summarized below:

• EL2N score: The Error L2-Norm (EL2N) score of data (xi, yi) is defined as E[∥f(W(t),xi)−yi∥2], where f(W(t),x)
is the output of the neural network for the sample (x, y) at the t-th epoch.

• Forgetting score: The Forgetting score is defined as the number of times during training (until epoch T ) that the
decision of the sample switches from a correct one to an incorrect one. Forgetting(xi, yi) is defined as

T∑
t=2

1{argmax f(W(t− 1),xi) = yi}(1− 1{argmax f(W(t),xi) = yi}). (8)

• AdaCore: Adaptive Second order Coresets (AdaCore) is an algorithm that solves the optimization problem, which finds
a subset that imitates the full gradient preconditioned with the Hessian matrix:

S∗ ∈ argminS⊂V

∑
i∈V

min
j∈S

∥Hi(wt)
−1gi(wt)−Hj(wt)

−1gj(wt)∥, s.t. |S| ≤ r (9)

where gi(wt) = ∇l(wt, (xi, yi)) and Hi(wt) = ∇2l(wt, (xi, yi)) represent the gradient and Hessian of the loss
function for the data point (xi, yi) using the model parameter wt at the t-th epoch of training, respectively. Let V
represents the full dataset and S be the coreset of size r. In the AdaCore method, when employing the cross entropy
loss with a softmax layer as the final layer, the gradient gi(wt) is approximated by pi − yi, where pi is the softmax
output for the data point (xi, yi). Moreover, to reduce computational complexity, the Hessian Hi(wt) is approximated
using only its diagonal.

• LCMat: Loss-Curvature Matching (LCMat) is an algorithm that solves the optimization problem, which finds a subset
that matches the loss curvature of full dataset. Due to the intractability of utilizing the loss curvature, an alternative
optimization problem is suggested as follows:

S∗ ∈ argminS⊂V

∑
i∈V

min
j∈S

∥gi(wt)− gj(wt)∥+
1

2
ρ
∑
k∈K

|λi,k − λj,k|, s.t. |S| ≤ r (10)

where gi(wt) = ∇l(wt, (xi, yi)) and λi,k = [Hi(wt)]kk = ∇2
kkl(w, (xi, yi)) denote the gradient and the k-th

diagonal element of the Hessian of the loss function for the data point (xi, yi) with the model parameter wt at the t-th
epoch of training, respectively. Let V represent the full dataset, S the coreset with size r and W the model parameter
space. K = argmax|K|=K

∑
j∈K Vari(λi,k) is a set of indices for K sub-dimensions on W , where the dimension

variance is high. In LCMat, when employing the cross entropy loss with a softmax layer as the final layer, the gradient
gi(w) is approximated by pi − yi, where pi is the softmax output for the data point (xi, yi).

• Moderate DS: For each class of a given dataset, Moderate Coreset calculates the distance between features and the
feature mean of the class, which is defined as di = ∥fi −

∑
j∈S fj

|S| ∥2 where S is the set of features whose label is the
same as fi. Then, the data points with distances closest to the distance-median(median({di}i∈S)) are selected.

• CCS: Coverage-Centric Coreset Selection (CCS) is an algorithm based on difficulty-based score, which considers
overall data coverage upon a distribution as well as important data. CCS prunes β% hardest data first and splits the
remained data into k subsets {Bi}ki=1 based on evenly divided score ranges {Ri}ki=1. Then, CCS selects the same
number of samples from each score range to make the score distribution of the selected samples uniform.
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Table 5. Details for the experiments used in the training of the dataset.

CIFAR-10 CIFAR-100 ImageNet

Architecture ResNet18 ResNet50 ResNet50
Batch size 128 128 256
Epochs 200 400 90
Initial Learning Rate 0.05 0.2 0.1
Weight decay 5e-4 5e-4 1e-4
Learning Rate Scheduler Cosine annealing scheduler Step scheduler
Optimizer SGD with momentum 0.9

Data Augmentation
Random Zero Padded Cropping (4 pixels) Random Resized Cropping
Random left-right flipping (probability 0.5)
Normalize by dataset’s mean, variance

• SSL Prototype score: The work by Sorscher et al. (2022) conducts k-means clustering of samples in the embedding
space of a model pre-trained on the ImageNet dataset. It then defines a self-supervised prototype metric (SSL Prototype
score) as the Euclidean distance to its nearest cluster centroid, or prototype. Points located closer to the center have
lower SSL scores.

• Memorization score: Memorization score (Feldman & Zhang, 2020) calculates the influence of each training example
(xi, y) on the classification accuracy of that same example (xi, y), and is defined as follow

mem((xi, yi)) = P(hT (xi) = yi)−P(hT\{(xi,yi)}(xi) = yi) (11)

where hS(·) is a model trained on the set S and T is the training dataset.

C.2. Experiment details

Data pruning experiment We conduct experiments with three public datasets, CIFAR-10/100 and ImageNet by training
ResNet networks (He et al., 2016) of different depths. ResNet18 is used for CIFAR-10 and ResNet50 is used for CIFAR-100
and ImageNet dataset. The implementation is based on the ResNet network in torchvision (Paszke et al., 2019). Since
CIFAR-10/100 images are smaller than ImageNet images, we replace the front parts of the ResNet (convolution layer with
7× 7 kernel and 2× 2 stride, max pooling layer with 3× 3 kernel and 2× 2 stride) with a single convolution layer with
3× 3 kernel and 1× 1 stride for the small size images. The details on hyperparameters and optimization methods used in
training are summarized in Table 5.

Our experiments report the averaged results from three runs on CIFAR-10/100 and two on ImageNet, with shaded regions
representing standard deviations. Networks are trained on datasets curated based on specific selection ratios and methods.
Crucially, our data selection ensures equal selection from each class by preserving the portion data in each class.

Cross-architecture robustness We conduct cross-architecture experiments on the CIFAR-10 dataset, training three
distinct networks: a simple CNN, EfficientNet-B0, and a Vision Transformer (ViT) pretrained on the ImageNet dataset.

For the simple CNN, we design an architecture comprising three convolutional layers with a 3× 3 kernel and 1× 1 stride
(channels: 64, 128, 256). This is paired with two max-pooling layers with a 2 × 2 kernel. The convolutional layers are
interspersed with these max-pooling layers. Following the convolutional layers, the network is connected to two fully
connected layers (channels: 128, 256). Each convolutional layer is equipped with a batch normalization layer followed by a
non-linear ReLU activation layer. We set the initial learning rate to 0.05 and weight decay to 1e-4. Other details are the
same as CIFAR-10 case in Table 5. For EfficientNet-B0, we closely follow the implementation details of Tan & Le (2019),
by setting the learning rate to 1e-4 and a weight decay of the same magnitude. Other implementation specifications are the
same with the details in Table 5 of CIFAR-10. For the ViT, we adhere to the implementation specifications as detailed in
Dosovitskiy et al. (2021). We obtain a ViT model pretrained on the ImageNet dataset using the timm module in PyTorch,
which we subsequently fine-tune on the CIFAR-10 dataset for 10 epochs. For fine-tuning a model pre-trained on ImageNet
to adapt to the CIFAR-10 dataset, we resize the data to fit the 224x224 pixel dimensions. We set the initial learning rate to
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1e-4 and weight decay to 1e-4. We do not use a learning rate scheduler. Other details are the same as CIFAR-10 case in
Table 5.

Within our algorithm, BWS, we utilize a Forgetting score sourced from the ResNet18 architecture. Furthermore, we
establish a feature extractor using either simple CNN, EfficientNet-B0, or ViT architecture, repectively. For the CNN
and EfficientNet-B0 architecture, we execute training for 20 epochs, while for the ViT setup, we fine-tune for 3 epochs.
We report the averaged results from three independent runs on the three networks, with the shaded regions indicating the
standard deviations. Similar to previous experiments, data samples are selected to ensure a balanced portion of each class,
preserving the original class ratios within the CIFAR-10 dataset.

Robustness to label noise We generate a noise version of the CIFAR-10 dataset with symmetric label noise at levels of
20% and 40%, respectively. To evaluate this noisy dataset, we compute the EL2N score using a ResNet18 model, averaging
the outcomes over five independent runs. The EL2N score is selected due to its lower computational cost compared to
the Forgetting score, especially when it is required to re-calculate the new EL2N score for the entire noisy dataset. In
our analysis, we apply Algorithm 1 to the CIFAR-10 dataset, where the samples are ordered by their EL2N scores. To
calculate the classification accuracy of wS, we specifically use the lower-scoring 50% of the samples, represented as
1
n

∑n
i=n

2
1(argmaxc(w

⊤
S xi)c = yi), instead of the typical approach 1

n

∑n
i=1 1(argmaxc(w

⊤
S xi)c = yi). This adjustment

was made to exclude noisy samples from the quality evaluation of window subsets and thus prevent overfitting to noise in
the data.

Ablation on different window selection methods The formal definitions of Gradient difference and Gradient similarity
are as follows:

• Gradient difference: minimizing the difference between the gradients of the full training dataset (V ) and window subset
(S).

Gradient Difference(V, S) =
∥∥∥∥∑i∈V ∇fw(xi)

|V |
−
∑

i∈S ∇fw(xi)

|S|

∥∥∥∥
2

(12)

• Gradient similarity: maximizing the cosine similarity between the gradients of the full training dataset (V ) and window
subset (S).

Gradient Similarity(V, S) =
∑

i∈V ∇fw(xi)∥∥∑
i∈V ∇fw(xi)

∥∥
2

·
∑

i∈S ∇fw(xi)∥∥∑
i∈S ∇fw(xi)

∥∥
2

(13)

C.3. Computational cost

Table 6. Time cost (in seconds) for subset selection of each algorithm across selection ratios.

Selection ratio 1% 5% 10% 20% 30% 40% 50% 75% 90%

CIFAR-10
BWS (Ours) 4.3 4.8 7.2 8.5 9.7 10.4 10.4 9.0 6.3

LCMat 520 1197 2260 4213 5800 7173 8450 10320 10631
AdaCore 224 699 1256 2273 3186 3977 4649 5637 5839

CIFAR-100
BWS (Ours) 14.6 55.6 57.3 62.2 64.7 64.0 61.7 45.7 30.2

LCMat 1465 1468 1471 1478 1483 1489 1493 1501 1504
AdaCore 1295 1300 1304 1309 1315 1320 1324 1331 1334

ImageNet
BWS (Ours) 1423 2910 3941 6141 7590 8616 9029 10118 6499

LCMat 238451 239027 239694 240934 242003 242864 243594 244854 245245
AdaCore 213733 214309 214963 216181 217067 217866 218521 219593 219924

GPU Nvidia A100 40GB

We compare the computational cost of our BWS algorithm, as detailed in Algorithm 1, with other optimization-based coreset
selection baselines, namely LCMat and AdaCore. We assume that the sample scores, used for sorting, is readily available
and that the feature extractor is also pre-provided for both ours and optimization-based methods. We report and compare the
time taken to select the subset for each algorithm.
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In Table 6, we detail the time required to select subsets from various datasets using the different methods. Clearly, our
method outperforms optimization-based techniques in terms of time cost for subset selection. As we have previously
described in Sec. 5, our strategy, which selects the best window subset from a continuous interval of samples sorted by their
scores, greatly reduces the search space compared to the general optimization techniques, leading to improved efficiency.

D. Detailed Review of Related Works
In this section, we provide additional related works on data subset selection regarding various perspectives.

When there is no validation set, some score-based selection methods, such as EL2N (Paul et al., 2021) and Forgetting
(Toneva et al., 2019), suffer from performance degradation when the dataset includes label-noise samples, since these
methods often assign high scores to label-noisy samples, as label-noise samples are inherently hard to learn. Some recent
methods adopt more cautious measures to distinguish hard-to-learn but clean-label samples, known to be valuable to enhance
the generalization ability of neural networks, from label-noise samples. For instance, Cartography (Swayamdipta et al.,
2020) utilizes two measures, confidence mean and confidence variance of data sample, to distinguish hard-to-learn samples
from mere label-noise samples. Second-Split Forgetting (Maini et al., 2022) achieves this goal by observing the learning
time and forgetting time of each sample while training a model. AUM (Pleiss et al., 2020) observes the logit value of a given
label and the next largest logit value, and uses the gap to separate noisy data samples and ambiguous data samples.

Another important issue that has been recently explored in data subset selection is the computational overhead in quantifying
the data value. There are several recent attempts to valuate data without training of a neural network. For example, CG-score
(Ki et al., 2023) evaluates data instances without model training by calculating the analytical gap in generalization errors
when an instance is held out. LAVA (Just et al., 2023) evaluates the value of each data instance without a model training
by using a proxy function, the class-wise Wasserstein distance between training and validation set, for the validation
performance. DAVINZ (Wu et al., 2022) utilizes the Neural Tangent Kernel (NTK) of a network at initialization for
calculating the contribution of each data instance to domain-aware generalization error bound.

In optimization-based selection, many works have utilized the effect of data on the model training. MaxMargin (Har-Peled
et al., 2007), IWeS (Citovsky et al., 2023), and Selection-Via-Proxy (Coleman et al., 2020) use the confidence of a model
to identify uncertain data during optimization. Maximum Margin Coresets (Har-Peled et al., 2007) selects data with the
smallest margin in an SVM setting, IWeS (Citovsky et al., 2023) selects examples using importance sampling with a
sampling probability based on the confidences of two models, and Selection-Via-Proxy (Coleman et al., 2020) applies
confidence-based methods to a small proxy model to perform data selection. Das et al. (2021) solve a convex linear
programming problem to find high-value data that contributes much to the loss and optimization, and Glister (Killamsetty
et al., 2021b) finds data that contributes significantly to the loss during the training of a neural network. GradMatch
(Killamsetty et al., 2021a) finds a subset whose gradient matches better with the gradient of the full dataset.

Additionally, in active learning, where data samples are selectively labeled for semi-supervised learning, Neural-
Preconditioning (Kong et al., 2022) obtains the label of data that dominates the eigenspace of the NTK, and Culotta
& McCallum (2005) obtain the label of the least confident data to reduce labeling costs. The works by Har-Peled et al.
(2007); Citovsky et al. (2023); Coleman et al. (2020) utilize the confidence of a model to identify uncertain data during the
optimization, and the works by Das et al. (2021); Killamsetty et al. (2021b) find the data that contributes much to the loss.

E. Comparison with CCS
CCS (Zheng et al., 2023) prunes the hardest β% samples, divides the remaining data into non-overlapping k ranges based
on the difficulty scores, and uniformly assigns budgets to each range. Samples are then chosen from each range within the
budget. If a range has fewer data than the assigned budget, the remaining budget is iteratively reassigned to other ranges.
While methodologies based on difficulty scores suffer from a drastic performance drop at low subset ratios, CCS achieves
high performance across a broad range by selecting diverse data with appropriate β and k. However, CCS does not propose
an efficient method to find the desired β and reports the result with the optimal β obtained by grid search, which may require
high computational cost. Since choosing the best performing model among the models trained on each subset chosen by
different β is not fair for comparison to other baselines, including BWS, we reported the result of CCS obtained by setting
the hyperparameter β as 0 in the main experimental results. In this section, we additionally report the results of CCS with
the optimal β found by grid search and compare the performance with those of BWS and oracle window in Table 9. In Table
8, we also report the optimal β for CCS across different selection ratios. For the subset ratios of 10%, 20%, 30%, and 50%,
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we utilize the β values reported in the original paper (marked with †), and for other subset ratio, we conduct a grid search to
find the best β by exploring it with a step size of 10%.

Several key observations emerge from the results. First, CCS after hyperparameter tuning, achieves performance comparable
to the Oracle Window at lower selection ratios (1-10%). This is a natural consequence, given both methods’ ability to
discard the top hardest samples in favor of easier ones at low ratios. However, at higher ratios (20%-90%), CCS’s efficacy
decreases relative to both Oracle Window and BWS, even after tuning β. This decline can be attributed to CCS’s strategy
of selecting samples across a uniform score distribution after pruning the hardest ones. Even CCS adjusts β to 0 or lower
values (e.g., 10 or 20) for ratios beyond 30%, the sample selection with uniform score distribution makes CCS incorporate
not only hard samples but also easy samples, which are less effective in high subset ratios. In comparison, Optimal Window
or BWS, which select samples from a contiguous difficulty range, focus on selecting harder samples as the subset ratio
increases, resulting in better performance. Moreover, we analyze the computational costs associated with CCS and BWS
as summarized in Table 7. Since CCS requires the repeated training of deep neural networks in the process of tuning the
hyperparameter β, it requires significant computational overhead compared to BWS. On the other hand, BWS circumvents
the need for hyperparameter tuning, by solving a simple proxy task to identify the best window subset, which considerably
shortens the time requirement.

Table 7. Time cost (in seconds) to compute CCS and BWS.

Selection ratio 5% 30% 75%

CIFAR-10 CCS 812 3897 3654
BWS 13 59 130

CIFAR-100 CCS 3909 18767 17594
BWS 75 182 339

Table 8. Optimal β (%) at different selection ratios in various dataset.

Selection ratio 1% 5% 10% 20% 30% 40% 50% 75% 90%

CIFAR-10 80 50 30† 10† 10† 10 0† 0 0
CIFAR-100 99 80 50† 40† 20† 20 20† 20 0
ImageNet 80 30 30† 20† 20† 10 10† 10 0

Table 9. Test accuracy of CCS with optimal β at different selection ratios.

Selection ratio 1% 5% 10% 20% 30% 40% 50% 75% 90%

CIFAR-10
CCS 46.58 72.12 81.99 88.89 91.74 93.10 94.09 94.95 95.29

Oracle 47.17 72.89 82.67 89.06 91.80 93.59 94.54 95.23 95.37
BWS 46.10 70.70 82.29 88.74 91.80 93.59 94.54 95.23 95.37

CIFAR-100
CCS 11.01 31.11 45.52 56.09 64.26 68.51 70.80 75.83 78.13

Oracle 10.63 30.39 45.16 58.91 67.51 72.70 75.00 78.42 79.00
BWS 8.43 29.25 44.11 58.30 67.20 72.17 73.83 77.78 79.00

ImageNet
CCS 8.13 31.40 45.10 57.12 62.65 67.54 69.58 73.10 74.59

Oracle 7.97 33.58 48.84 62.83 68.22 71.33 72.74 74.73 75.25
BWS 7.02 33.31 46.72 62.32 67.16 70.47 72.68 74.73 75.25

F. Additional Experiments
F.1. Sliding window experiment for ImageNet dataset

We investigate the efficacy of the window selection approach by varying the starting points and demonstrate the existence of
an optimal window subset. In this process, we arrange the ImageNet samples in descending order based on their Forgetting
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Figure 8. Sliding window experiments in ImageNet dataset to measure the test accuracy of the models trained by window subsets while
changing the starting point of the windows. Samples are sorted in descending order by their difficulty scores. The horizontal lines are
results from random selection. For each subset ratio, there exists the best window, and its starting point shifts toward left as the subset
ratio increases.
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Figure 9. Cross-architecture experiments with CNN (left), and EfficientNet-B0 (right), where samples scores are calculated using ResNet18
model. Full results are reported in Table 16–17.

scores (Toneva et al., 2019), and then select windows of varying sizes, from 10% to 40%. The starting point for these
windows is adjusted from 0 to (100− w)%, incrementing in steps of 5%. Subsequently, we train a ResNet50 model using
these window subsets and present the resulting test accuracies in Fig. 8. Consistent with the observations in Fig. 3, within
the ImageNet dataset, we note that for each subset ratio, there is an optimal starting point. Notably, this optimal point shifts
progressively towards lower values, which correspond to more difficult samples, as the size of the window subset increases.

F.2. Cross architecture robustness

To test the robustness of our method across changes in neural network architectures, we conduct data pruning experiments
on CIFAR-10 while using different architectures during sample scoring and training. The window subsets are constructed
using samples ordered by their Forgetting scores, calculated on ResNet18 architecture. Then, the best window selection
(Alg. 1) and the model training are conducted using a simpler CNN architecture or EfficientNet-B0 architecture. The results
on the CNN architecture are presented in Fig. 9(a), and those on the EfficientNet-B0 are shown in Fig. 9(b). In all cases, our
method (BWS) consistently achieves competitive performances across all selection ratios, demonstrating its robustness to
changes in neural network architectures during data subset selection.

F.3. Robustness to label noise

We test the robustness of BWS in the presence of label noise in the training dataset. We corrupt randomly chosen 20% and
40% samples of CIFAR-10 by random label noise. It has been previously reported that the difficulty score-based selection
methods are susceptible to label noise since such methods tend to assign high scores to label-noise samples (Toneva et al.,
2019; Paul et al., 2021). Thus, these methods often ends up prioritizing the label-noise samples in the selection process,
leading to suboptimal results. On the other hand, our algorithm offers flexibility in choosing window subsets with varying
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Figure 10. Data pruning experiments with CIFAR-10, including (a) 20% label-noise, (b) 40% label-noise. Our method (BWS) attains the
accuracy of the full training dataset despite the presence of label noise. Full results are reported in Table 19-20.

levels of difficulty by changing the starting point, and adopts an approach to select the best window by solving a proxy task
using the kernel ridge regression. To further enhance the robustness of our method, we can modify Alg. 1 to evaluate the
solution of kernel ridge regression using only the low-scoring 50% samples from the training dataset, which will rarely
include label-noise samples, instead of the full dataset. We use EL2N (Paul et al., 2021) as the difficulty score to align the
samples in our algorithm. In Fig. 10, we compare the performance of this modified version of BWS with other baselines.
While difficulty score-based selection and optimization-based selection methods suffer from performance degradation due
to label noise, our method, along with another label noise-robust method, Moderate DS, achieves performance even higher
than what is achievable with the full training dataset, which includes the 20% or 40% label noise, respectively.

G. Ablation studies
G.1. Ablation study on window type: two half-width sliding windows

BWS sorts samples in a dataset by their difficulty scores and then selects the optimal window subset from one continuous
single-interval regime. Thus, the window selection chooses the samples of similar difficulty level. To further examine
possible benefits from non-contiguous subset selection, we conduct an additional experiment on the CIFAR-10 dataset
by finding the optimal two half-width windows while varying their starting points. In detail, we sort the samples from
CIFAR-10 in descending order based on Forgetting score (Toneva et al., 2019) and for a subset of size w%, we search over
all combinations of two half-width windows, denoted by [x1, x1 +w/2]∪ [x2, x2 +w/2] while varying their starting points
(x1, x2) in x1 ∈ [0, 100− w] and x2 ∈ [x1 + w/2, 100− w/2] with a step size of 5%. We train ResNet18 on each subset
and evaluate the corresponding test accuracies. The full results are presented in Fig. 11, and in Table 10 we report the top
five results (the compositions of half-width windows and their test accuracies) for subset ratios ranging from 10 to 40%. We
highlight the cases where the two half-width windows are contiguous to each other with bold letters.

Table 10. Top-five test accuracies and their corresponding half-width window compositions on CIFAR-10 dataset. We highlight the cases
where the two half-width windows are contiguous to each other with bold letters.

Ratio Ranking 1st 2nd 3rd 4th 5th

10% Half-width windows 40-45%, 50-55% 40-45%, 55-60% 45-50%, 55-60% 50-55%, 55-60% 45-50%, 50-55%
Test Acc 83.04 82.87 82.71 82.67 82.46

20% Half-width windows 20-30%, 35-45% 25-35%, 35-45% 20-30%, 40-50% 20-30%, 50-60% 25-35%, 45-55%
Test Acc 89.16 89.06 88.98 88.84 88.77

30% Half-width windows 10-25%, 30-45% 10-25%, 35-50% 5-20%, 30-45% 15-30%, 35-50% 15-30%, 30-45%
Test Acc 92.02 91.98 91.90 91.84 91.80

40% Half-width windows 5-25%, 30-50% 5-25%, 25-45% 10-30%, 35-55% 5-25%, 35-55% 5-25%, 40-60%
Test Acc 93.67 93.59 93.54 93.46 93.40

We can observe that for every considered subset ratio, the top-five best performing cases include contiguous windows or
windows near to each other with the gap of only 5%, even though we allowed flexibility in choosing the two half-width
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Figure 11. Test accuracy of the models trained with two half-width windows of subset ratios 10% (top left), 20% (top right), 30% (bottom
left), and 40 %(bottom right) with varying starting points. The numbers in axes indicate the starting points of each interval, and the color
indicates the test accuracy for each composition of half-width windows. We note that a contiguous window, a point near the diagonal,
attains performance levels comparable to the best performance.

windows far away from each other. This result further supports our use of window selection, which only considers subsets
from a continuous interval of samples based on difficulty scores, in choosing near-optimal subset in an efficient manner
across a broad range of selection ratios.

G.2. Ablation study on window type: wider sliding windows

We also conduct an additional experiment on the CIFAR-10 dataset to explore non-contiguous sample selection by
considering random selection from wider windows. By arranging the samples in descending order according to difficulty
scores and selecting a starting point, denoted as s%, for a given subset ratio of w%, we randomly choose samples within the
range [s, s+ c · w]% , where c is a constant greater than 1. In particular, we sort the CIFAR-10 samples in descending order
based on their Forgetting scores (Toneva et al., 2019), and then select windows of various sizes, ranging from 10% to 40%,
by adjusting the starting point from 0 to (100− cw)% in 5% increments. The window width is cw for a given ratio w% and
a constant c equal to either 1.5 or 2. Subsequently, we randomly select w% of the data from the window, train the ResNet18
network with this subset, and plot the resulting test accuracies in Fig. 12.

We observe that training with a wider window, regardless of the constant c, results in test accuracy curves similar to those
shown in Fig. 3(a). However, the sliding window experiment for wider windows in Fig. 12 shows that the best contiguous
window (horizontal lines) achieves better performance than wider windows, especially in high ratios. Thus, this result
supports the use of a contiguous window subset in sample selection across a broad range of selection ratios.

G.3. Ablation study on difficulty scores

In the implementation of our BWS algorithm, we employ the Forgetting score (Toneva et al., 2019) as a difficulty score. To
test the algorithm’s adaptability to alternative difficulty scores, we examine its performance when configured with the EL2N
score (Paul et al., 2021) and C-score (Jiang et al., 2021). Table 11 presents a comparison of the results obtained by our BWS
algorithm when utilizing the EL2N score and C-score, against those achieved with the Forgetting score. Regardless of the
difficulty score used, all the results demonstrate competitive performances, closely approaching those of the oracle window,
across a wide range of selection ratios. We anticipate that the observed phenomenon arises due to a strong correlation
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(a) One and a half times wider window

0.0 0.2 0.4 0.6 0.8 1.0
Starting point of window

60
65
70
75
80
85
90
95

Te
st

 a
cc

ur
ac

y(
%

)

10%
20%
30%
40%

(b) Twice wider window

Figure 12. Test accuracy using subsets randomly sampled from windows of (a) one and a half times (×1.5) and (b) twice (×2) larger
than the subset ratio, while varying the starting points of these windows. The horizontal lines represent the results from the oracle window,
which is the maximum test accuracy obtained in sliding window experiments, for each subset ratio. Our observations indicate that at lower
subset ratios, there are subsets whose performance is comparable to that of the oracle window, but, at higher subset ratios, the performance
of all subsets consistently falls short of the oracle window.

Table 11. Test accuracy of the BWS algorithm at different data selection ratios, depending on the difficulty score. Due to the high
correlation between the difficulty scores, there is a similar sorting order across the scores. Thus, similar window positions are selected
by BWS, regardless of the specific difficulty score in use. This similarity in subset selection leads to consistently strong performance
regardless of the chosen difficulty score.

Selection methods Selection ratio 1% 5% 10% 20% 30% 40% 50% 75% 90%

BWS with C-score Test accuracy 46.25 71.34 82.02 89.12 91.85 93.62 94.62 95.18 95.28
Window index 85% 55% 45% 25% 15% 5% 0% 0% 0%

BWS with EL2N Test accuracy 45.02 71.87 81.79 88.87 91.59 93.39 94.44 95.06 95.32
Window index 80% 60% 45% 25% 10% 5% 0% 0% 0%

BWS with forgetting Test accuracy 46.10 70.70 82.29 88.74 91.80 93.59 94.54 95.23 95.37
(Ours) Window index 90% 70% 55% 30% 15% 5% 0% 0% 0%

Oracle window Test accuracy 47.17 72.89 82.67 89.06 91.80 93.59 94.54 95.23 95.37
Window index 85% 55% 50% 25% 15% 5% 0% 0% 0%

between the difficulty scores. The rank correlation between the EL2N score (C-score) and the forgetting score used for
comparison is notably high as 0.8836 (0.8500). This suggests that samples sorted by the different difficulty scores would
likely follow a similar order of forgetting score. As a result, the best windows selected by BWS for the two different score
cases exhibit similarity, as shown by Table 11. This consistency shows that the effectiveness of BWS is not limited by the
choice of the difficulty score, highlighting its robustness to the sample scores used in sorting.
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H. Full Results
Table 12 compares the starting points of the window subsets selected by BWS and those of the oracle window subsets. BWS
finds the nearly optimal subsets at broad subset ratios for CIFAR-10/100 and ImageNet dataset. In Table 13-20, the oracle
window achieves the highest performance among the considered methodologies for almost every selection ratio and dataset,
since it finds the best window by directly measuring and comparing the test accuracy of models trained by each window
using the test dataset. Since the oracle window cannot be implemented in practice due to significant computational overhead,
it is fair to compare the performances among the methods except the oracle window. Thus, we highlight the highest and the
second-highest values among the rest of the methodologies except the oracle window in the tables.

Table 12. The starting points (%) of the window subsets obtained by BWS, and those of the oracle window subsets. BWS finds the nearly
optimal subsets at broad subset ratios for all datasets.

Selection ratio 1% 5% 10% 20% 30% 40% 50% 75% 90%

CIFAR-10 BWS(Ours) 90 70 55 30 15 5 0 0 0
Oracle window 85 55 50 25 15 5 0 0 0

CIFAR-100 BWS(Ours) 85 95 75 60 25 10 0 0 0
Oracle window 95 85 80 55 40 20 5 5 0

ImageNet BWS(Ours) 90 75 70 5 0 0 0 0 0
Oracle window 85 65 40 15 5 10 10 0 0

Table 13. Test accuracy of CIFAR-10 dataset on ResNet18. We highlight the highest values in bold and the second-highest values in
underscore.

Selection ratio 1% 5% 10% 20% 30% 40% 50% 75% 90% 100%

Forgetting 30.08±1.79 42.39±1.31 54.31±0.23 79.19±0.26 89.13±0.17 93.41±0.05 94.49±0.02 95.31±0.08 95.14±0.04

95.40±0.08

EL2N 15.27±0.36 27.01±0.76 41.27±0.62 71.67±0.82 87.17±0.48 93.24±0.06 94.43±0.13 95.13±0.05 95.26±0.11
LCMat 41.53±0.61 66.86±1.00 77.48±1.62 87.34±0.22 90.72±0.06 92.45±0.05 93.38±0.07 94.90±0.06 95.19±0.01

AdaCore 39.87±0.75 66.40±1.10 77.84±0.49 86.88±0.05 89.90±0.08 91.48±0.24 92.73±0.17 94.47±0.18 95.04±0.23
CCS 31.86±0.72 58.89±1.43 72.61±3.59 86.64±0.35 90.94±0.55 93.00±0.05 94.09±0.17 94.95±0.21 95.29±0.09

Moderate DS 40.67±0.50 67.53±0.75 76.62±1.29 84.86±0.09 88.46±0.07 90.63±0.01 91.52±0.08 93.69±0.21 94.68±0.07
Random 39.10±0.14 67.14±0.29 78.43±0.72 86.87±0.31 89.91±0.31 91.66±0.06 92.83±0.04 94.40±0.05 95.08±0.19

BWS (Ours) 46.10±2.68 70.70±0.53 82.29±0.35 88.74±0.18 91.80±0.03 93.59±0.17 94.54±0.06 95.23±0.08 95.37±0.07
Oracle window 47.17±0.25 72.89±1.05 82.67±0.43 89.06±0.34 91.80±0.03 93.59±0.17 94.54±0.06 95.23±0.08 95.37±0.07

Table 14. Test accuracy of CIFAR-100 dataset on ResNet50. We highlight the highest values in bold and the second-highest values in
underscore.

Selection ratio 1% 5% 10% 20% 30% 40% 50% 75% 90% 100%

Forgetting 7.01±0.50 20.69±1.13 34.22±1.27 50.95±0.78 61.54±1.06 68.92±0.87 73.84±0.95 78.55±0.44 79.69±0.19

78.81±0.13

EL2N 3.40±0.12 8.15±0.17 14.06±0.48 28.14±1.21 48.13±1.77 52.25±5.85 71.72±0.17 77.33±0.70 78.96±0.10
LCMat 8.43±0.44 28.51±0.65 42.81±0.31 55.77±1.45 64.39±1.02 67.22±0.96 73.11±0.81 77.51±0.37 78.47±0.65

AdaCore 5.56±0.14 22.76±1.20 39.56±2.53 56.81±1.60 65.30±0.64 70.51±0.64 71.18±1.00 76.62±0.47 78.37±0.32
CCS 7.49±0.66 24.34±0.35 40.81±2.11 56.81±1.81 63.35±0.40 67.70±0.64 71.04±0.52 74.94±0.73 78.13±0.31

Moderate DS 6.05±0.29 24.53±1.28 42.23±3.03 54.72±1.76 64.71±1.27 68.71±2.45 72.61±0.31 75.80±0.48 78.48±0.13
Random 5.89±0.52 23.76±1.12 42.03±1.56 55.03±1.17 65.98±0.50 69.23±1.04 72.37±0.13 76.53±0.52 78.29±0.22

BWS (Ours) 8.43±0.49 29.25±1.15 44.11±3.13 58.30±0.65 67.20±1.67 72.17±0.42 73.83±0.72 77.78±0.55 79.00±0.29
Oracle window 10.63±0.87 30.39±2.87 45.16±1.28 58.91±0.52 67.51±1.22 72.70±0.50 75.00±0.23 78.42±0.14 79.00±0.29
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Table 15. Test accuracy of ImageNet dataset on ResNet50. We highlight the highest values in bold and the second-highest values in
underscore.

Selection ratio 1% 5% 10% 20% 30% 40% 50% 75% 90% 100%

Forgetting 4.78±0.10 28.18±0.46 45.84±0.67 60.75±0.60 67.48±0.11 70.26±0.48 72.73±0.09 74.63±0.13 75.53±0.06

75.85±0.07

EL2N 2.10±0.08 9.80±0.03 20.42±0.47 41.14±0.04 54.42±0.39 63.19±0.29 68.19±0.13 73.91±0.36 74.79±0.27
Memorization 0.52±0.04 9.70±0.21 23.80±0.31 44.58±0.09 59.66±0.06 65.92±0.04 70.22±0.02 74.56±0.24 74.94±0.16
SSL Prototype 1.33±0.21 20.07±1.39 37.98±0.08 55.25±1.02 61.97±0.25 66.58±0.28 68.85±0.19 73.43±0.29 74.63±0.28

LCMat 6.01±0.31 32.26±0.84 46.08±0.64 59.02±0.36 65.28±0.21 68.50±0.56 70.30±0.46 74.13±0.12 74.81±0.02
AdaCore 6.01±0.44 31.52±0.58 46.98±0.80 59.26±1.58 65.18±0.05 68.28±0.05 70.72±0.04 73.53±0.13 74.69±0.00

CCS 5.04±0.40 31.83±0.62 46.64±1.08 58.77±0.80 64.85±0.12 67.82±0.24 69.89±0.24 73.57±0.12 74.59±0.03
Moderate DS 5.97±0.60 32.47±0.21 47.83±0.11 58.86±0.14 64.71±0.01 67.47±0.03 69.73±0.08 73.16±0.25 74.67±0.07

Random 6.14±0.01 33.17±0.11 45.87±0.07 59.19±0.04 65.94±0.38 68.23±0.00 70.14±0.31 73.74±0.14 74.83±0.08
BWS (Ours) 7.61±0.84 33.96±1.08 46.64±0.20 62.08±0.51 67.28±0.20 70.53±0.16 72.63±0.14 74.67±0.10 75.28±0.28

Oracle window 7.89±0.27 33.98±0.57 49.21±0.76 62.62±0.30 68.27±0.56 71.35±0.24 72.91±0.38 74.67±0.10 75.28±0.28

Table 16. Test accuracy of CIFAR-10 dataset by training a simple CNN architecture. We highlight the highest values in bold and the
second-highest values in underscore.

Selection ratio 1% 5% 10% 20% 30% 40% 50% 75% 90% 100%

Forgetting 34.01±0.45 46.28±0.67 55.04±0.55 67.98±0.29 75.27±0.08 80.19±0.31 83.45±0.23 86.92±0.17 87.66±0.29

87.64±0.14

EL2N 16.60±0.86 30.58±0.27 42.90±0.18 62.90±0.15 73.67±0.50 79.43±0.36 82.83±0.28 86.72±0.35 87.86±0.09
LCMat 46.42±0.23 65.74±0.65 72.54±0.42 78.19±0.07 81.15±0.11 83.36±0.05 84.65±0.01 86.70±0.29 87.73±0.26

AdaCore 46.72±0.21 66.69±0.43 73.52±0.49 78.64±0.27 81.62±0.16 83.38±0.49 84.71±0.05 86.59±0.21 87.17±0.22
CCS 39.50±0.96 59.86±0.21 68.89±0.44 76.07±0.57 80.55±0.14 83.21±0.44 84.85±0.08 86.78±0.37 87.46±0.21

Moderate DS 48.68±0.46 66.61±0.29 72.64±0.25 76.82±0.28 79.72±0.17 81.35±0.28 82.78±0.24 85.64±0.27 86.91±0.10
Random 46.70±0.91 66.27±0.48 73.65±0.53 78.63±0.37 81.70±0.36 83.04±0.16 84.55±0.10 86.43±0.05 87.23±0.09

BWS (Ours) 52.48±0.42 69.71±0.37 76.17±0.30 80.69±0.06 82.58±0.20 84.34±0.49 84.76±0.22 86.86±0.05 87.68±0.06
Oracle window 53.08±0.29 69.71±0.37 76.17±0.30 80.69±0.06 82.59±0.20 84.34±0.49 85.09±0.16 86.86±0.05 87.68±0.06

Table 17. Test accuracy of CIFAR-10 dataset by training EfficientNet-B0 architecture. We highlight the highest values in bold and the
second-highest values in underscore.

Selection ratio 1% 5% 10% 20% 30% 40% 50% 75% 90% 100%

Forgetting 26.22±0.74 31.84±2.06 39.56±3.81 62.36±6.14 77.14±6.16 84.53±1.51 89.60±1.15 92.23±0.06 92.60±0.22

92.60±0.12

EL2N 14.67±0.28 24.97±0.84 32.32±2.63 60.11±2.11 76.03±0.88 84.82±0.56 88.95±0.74 91.04±0.15 92.01±0.40
LCMat 29.12±2.16 54.45±4.23 67.35±4.97 76.52±1.82 84.88±0.53 87.20±1.08 89.02±0.16 91.47±0.20 92.46±0.31

AdaCore 31.50±2.29 52.96±5.90 69.13±2.58 79.65±0.45 85.06±0.93 86.29±0.96 87.71±1.37 90.64±0.99 91.95±0.10
CCS 26.38±1.58 45.78±4.05 59.21±6.03 76.05±4.40 83.85±1.55 87.93±0.72 88.99±0.52 91.80±0.20 92.27±0.38

Moderate DS 35.10±0.78 55.24±2.45 68.01±3.00 78.91±1.42 80.93±2.77 85.59±0.66 85.26±1.32 89.96±0.48 91.81±0.21
Random 34.34±3.70 48.49±8.17 62.80±8.18 80.71±0.37 84.56±0.46 85.86±0.47 89.10±0.16 91.40±0.18 92.02±0.24

BWS (Ours) 35.86±3.15 58.06±4.62 75.88±1.07 82.46±0.67 86.16±0.49 88.23±0.50 89.84±0.69 92.06±0.21 92.45±0.29
Oracle window 42.65±0.66 64.18±4.56 75.88±1.07 83.47±1.32 86.16±0.49 88.23±0.50 89.84±0.69 92.06±0.21 92.45±0.29

Table 18. Test accuracy of CIFAR-10 dataset by fine-tuning ViT pretrained on ImageNet.We highlight the highest values in bold and the
second-highest values in underscore.

Selection ratio 1% 5% 10% 20% 100%

Forgetting 41.77±8.60 96.95±0.31 98.05±0.12 98.54±0.04

98.60±0.03

EL2N 36.13±8.15 94.90±0.61 97.45±0.26 98.27±0.01
LCMat 66.89±4.74 95.96±0.10 97.47±0.13 98.02±0.10

AdaCore 64.65±4.38 96.17±0.30 97.24±0.17 97.87±0.13
CCS 56.84±7.70 96.77±0.11 97.88±0.14 98.28±0.10

Moderate DS 66.84±3.38 95.87±0.06 97.17±0.14 97.73±0.05
Random 66.34±4.61 96.37±0.21 97.42±0.12 98.01±0.11

BWS (Ours) 71.42±3.54 97.05±0.23 98.03±0.07 98.45±0.04
Oracle window 73.81±2.00 97.16±0.25 98.06±0.09 98.45±0.04
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Table 19. Test accuracy of 20% label-noise CIFAR-10 dataset. We highlight the highest values in bold and the second-highest values in
underscore.

Selection ratio 10% 20% 30% 40% 100%

Forgetting 49.82±0.87 64.52±1.60 69.89±1.10 72.21±0.10

82.66±0.00

EL2N 7.02±0.22 9.48±0.15 21.11±0.19 38.91±0.87
LCMat 59.20±1.21 71.54±1.28 77.77±0.48 81.23±0.42

AdaCore 10.96±0.10 10.85±0.26 39.14±0.65 58.51±0.20
CCS 56.87±0.52 72.20±0.60 77.16±0.61 80.22±0.73

Moderate DS 78.75±0.32 86.53±0.24 89.61±0.32 91.35±0.21
Random 64.24±1.35 75.45±0.67 79.58±0.70 81.99±0.27

BWS (Ours) 78.74±0.56 84.77±0.28 88.06±0.03 89.79±0.08
Oracle window 81.01±0.21 87.32±0.12 90.06±0.06 91.48±0.09

Table 20. Test accuracy of 40% label-noise CIFAR-10 dataset. We highlight the highest values in bold and the second-highest values in
underscore.

Selection ratio 10% 20% 30% 40% 100%

Forgetting 53.90±1.26 66.95±1.09 70.78±0.18 69.65±0.39

72.71±0.40

EL2N 5.75±0.19 5.81±0.17 5.68±0.27 8.63±0.14
LCMat 43.32±0.44 57.73±1.35 65.00±0.39 69.11±0.31

AdaCore 9.76±0.48 10.03±0.09 10.42±0.32 10.73±0.21
CCS 52.08±2.15 64.65±1.34 70.08±0.19 72.09±0.18

Moderate DS 77.69±0.97 86.21±0.19 88.63±0.13 83.42±0.16
Random 50.33±0.40 60.21±1.28 65.01±0.60 67.68±0.65

BWS (Ours) 78.40±0.37 85.42±0.08 87.76±0.17 88.97±0.16
Oracle window 80.58±0.41 86.06±0.17 88.12±0.28 88.97±0.16

Table 21. Comparison of window subsets of CIFAR-10 in terms of their 1) test accuracy, measured on models trained with the window
subsets (top rows) and 2) accuracy of kernel ridge regression on the training dataset (bottom rows). The best performing windows align
well between the two measures.

Ratio Starting point 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90%

10% Test Acc 56.34 58.34 68.54 70.24 74.77 78.54 81.32 81.71 82.24 82.46 82.67 82.29 80.95 80.53 79.75 77.99 77.41 74.88 71.09
Regression Acc 56.93 59.32 61.41 63.94 65.01 65.93 67.03 67.25 67.55 67.81 67.74 67.81 67.73 67.55 67.27 66.91 66.65 65.98 65.10

20% Test Acc 79.08 83.39 86.03 87.79 88.33 89.06 88.74 88.42 88.06 87.23 86.86 86.12 85.37 84.29 83.10 82.09 80.42 - -
Regression Acc 76.27 77.07 77.85 78.98 79.41 79.69 79.83 79.79 79.61 79.49 79.29 79.06 78.86 78.63 78.35 78.16 77.81 - -

30% Test Acc 89.45 91.14 91.77 91.80 91.67 90.94 90.68 89.97 89.47 88.92 88.13 87.47 86.69 85.78 84.47 - - - -
Regression Acc 83.81 84.23 84.42 84.49 84.47 84.34 84.20 84.00 83.85 83.70 83.50 83.33 83.17 83.05 82.86 - - - -

40% Test Acc 93.08 93.59 93.39 93.00 92.46 91.63 91.11 90.54 89.88 89.02 88.46 87.76 86.96 - - - - - -
Regression Acc 87.42 87.48 87.39 87.30 87.19 87.04 86.88 86.71 86.58 86.42 86.29 86.18 86.02 - - - - - -

Table 22. Comparison of window subsets of CIFAR-100 in terms of their 1) test accuracy, measured on models trained with the window
subsets (top rows) and 2) accuracy of kernel ridge regression on the training dataset (bottom rows). The best performing windows align
well between the two measures.

Ratio Starting point 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90%

10% Test Acc 35.64 34.81 28.31 30.53 33.22 33.07 32.12 38.03 34.69 37.98 38.36 43.06 42.24 41.73 43.60 44.11 45.16 42.77 42.70
Regression Acc 11.12 11.23 11.02 10.89 10.96 11.28 12.11 12.34 12.50 12.84 12.88 13.12 13.48 13.60 13.99 14.24 14.16 14.02 14.06

20% Test Acc 48.78 52.02 49.43 53.03 54.39 54.99 56.60 56.51 57.08 56.83 58.70 58.91 58.30 56.26 56.34 56.71 52.96 - -
Regression Acc 25.62 25.58 25.78 25.76 26.48 27.00 27.36 27.59 27.67 27.85 28.17 28.29 28.51 28.44 28.23 27.93 27.30 - -

30% Test Acc 62.25 61.17 62.66 63.78 66.62 67.20 66.56 65.33 67.51 66.61 63.93 64.88 63.09 60.47 59.06 - - - -
Regression Acc 43.27 43.46 43.83 43.85 44.11 44.37 44.22 44.23 44.01 43.78 43.56 43.21 42.56 41.95 40.92 - - - -

40% Test Acc 70.50 69.91 72.17 70.78 72.70 72.11 69.79 71.38 69.06 68.87 67.83 66.25 63.98 - - - - - -
Regression Acc 54.05 54.36 54.44 54.30 53.96 53.67 53.25 52.74 52.23 51.56 50.72 49.73 48.64 - - - - - -
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Table 23. Comparison of window subsets of ImageNet in terms of their 1) test accuracy, measured on models trained with the window
subsets (top rows) and 2) accuracy of kernel ridge regression on the training dataset (bottom rows).

Ratio Starting point 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90%

10% Test Acc 46.78 46.34 46.49 46.89 45.50 47.07 45.82 48.07 49.21 48.00 48.62 47.76 46.73 46.67 46.64 45.03 43.43 40.08 32.68
Regression Acc 35.05 35.45 35.71 35.84 35.74 35.72 35.89 35.99 36.03 36.06 36.05 36.04 36.19 36.23 36.24 36.17 35.90 35.01 32.43

20% Test Acc 61.02 62.08 60.60 62.62 61.49 62.38 62.29 61.34 61.46 61.02 59.77 59.46 58.53 56.91 54.43 52.37 46.93 - -
Regression Acc 44.72 44.91 44.83 44.72 44.59 44.54 44.35 44.21 44.12 43.94 43.89 43.84 43.75 43.65 43.39 42.81 41.30 - -

30% Test Acc 67.28 68.27 67.89 67.90 68.00 67.81 67.85 66.87 66.91 65.68 64.53 62.77 61.66 58.88 55.25 - - - -
Regression Acc 52.19 52.14 51.93 51.70 51.52 51.26 51.04 50.83 50.65 50.46 50.30 50.14 49.86 49.39 48.36 - - - -

40% Test Acc 70.53 70.65 71.35 71.27 70.87 70.31 69.87 68.79 68.42 67.05 66.11 63.92 61.54 - - - - - -
Regression Acc 53.48 53.41 53.23 52.98 52.74 52.54 52.27 52.05 51.87 51.67 51.42 50.99 50.14 - - - - - -

Table 24. Comparison of window subsets of CIFAR-10 dataset with 20% label noise in terms of their 1) test accuracy, measured on models
trained with the window subsets (top rows) and 2) accuracy of kernel ridge regression on the training dataset (middle rows). We also
report the noise portion with each window subset (bottom rows). The best window alignment between the two measures gets less accurate,
compared to the case without label noise, since our method (regression) tends to choose more easier samples. However, such tendency
also makes the choice of window subset mostly composed of clean-label samples.

Ratio Starting point 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90%

10%
Test Acc 6.98 8.93 13.80 31.90 58.00 68.77 75.21 78.29 79.18 79.04 79.85 79.99 81.01 80.86 79.72 79.53 78.74 77.81 75.71

Regression Acc 51.54 55.95 58.10 59.52 60.42 61.68 63.86 64.94 66.11 67.58 68.74 69.64 69.73 70.09 70.20 70.43 70.54 70.13 69.73
Noise Portion 92% 85% 69% 39% 15% 8% 5% 4% 4% 4% 3% 3% 3% 3% 3% 3% 3% 3% 3%

20%
Test Acc 9.56 17.79 35.29 63.55 78.99 84.46 86.52 87.07 87.32 87.17 86.85 86.47 86.32 85.36 84.77 84.08 82.82 - -

Regression Acc 73.28 75.17 76.06 77.03 78.38 78.66 79.05 79.63 80.01 80.47 80.67 80.67 80.66 80.63 80.70 80.60 80.35 - -
Noise Portion 80% 62% 42% 24% 10% 6% 5% 4% 4% 3% 3% 3% 3% 3% 3% 3% 3% - -

30%
Test Acc 20.90 38.99 62.51 79.74 87.82 89.80 90.06 89.83 89.34 88.94 88.46 88.06 87.66 86.93 86.04 - - - -

Regression Acc 80.43 81.39 82.33 83.20 83.45 83.84 84.10 84.30 84.36 84.55 84.47 84.60 84.39 84.41 84.16 - - - -
Noise Portion 59% 44% 30% 17% 8% 5% 4% 4% 3% 3% 3% 3% 3% 3% 3% - - - -

40%
Test Acc 38.21 59.90 77.70 87.11 90.70 91.48 91.32 90.75 90.10 89.79 89.04 88.84 88.16 - - - - - -

Regression Acc 86.19 86.50 86.63 86.87 86.96 87.11 87.21 87.16 87.29 87.39 87.25 87.25 87.16 - - - - - -
Noise Portion 45% 34% 23% 14% 7% 5% 4% 4% 3% 3% 3% 3% 3% - - - - - -

Table 25. Comparison of window subsets of CIFAR-10 dataset with 40% label noise in terms of their 1) test accuracy, measured on models
trained with the window subsets (top rows) and 2) accuracy of kernel ridge regression on the training dataset (middle rows). We also
report the noise portion in each window subset (bottom rows). The best window alignment between the two measures gets less accurate,
compared to the case without label noise, since our method (regression) tends to choose more easier samples. However, such tendency
also makes the choice of window subset mostly composed of clean-label samples.

Ratio Starting point 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90%

10%
Test Acc 6.28 6.12 6.82 7.82 7.60 9.81 21.05 45.22 62.11 73.62 77.57 78.94 80.58 79.96 79.59 78.40 77.92 77.07 75.51

Regression Acc 1.87 1.88 1.47 2.16 3.13 12.03 25.36 46.69 56.92 61.44 63.84 65.21 65.17 65.18 65.45 65.63 65.11 64.73 64.03
Noise Portion 92% 93% 92% 90% 88% 82% 61% 35% 21% 15% 13% 11% 10% 9% 9% 8% 7% 8% 9%

20%
Test Acc 5.61 6.62 6.84 8.17 13.36 28.17 52.85 72.56 82.01 85.09 86.06 85.59 85.42 84.86 83.92 83.01 82.05 - -

Regression Acc 0.89 0.98 1.35 3.32 14.45 39.13 60.53 69.82 73.12 74.90 75.85 75.86 75.93 75.56 75.27 74.93 74.35 - -
Noise Portion 92% 91% 90% 86% 74% 58% 41% 25% 17% 13% 11% 10% 9% 8% 8% 8% 8% - -

30%
Test Acc 5.46 6.71 10.28 17.60 35.26 56.16 72.82 83.20 87.32 88.12 87.76 87.61 86.86 86.17 85.23 - - - -

Regression Acc 0.48 0.98 4.05 18.44 51.29 71.18 79.48 82.93 84.46 85.28 85.45 85.38 85.03 84.82 84.45 - - - -
Noise Portion 90% 88% 80% 69% 56% 44% 32% 21% 14% 12% 11% 9% 9% 8% 8% - - - -

40%
Test Acc 8.50 12.79 22.46 39.42 58.61 72.52 81.96 87.17 88.90 88.97 88.63 88.11 87.28 - - - - - -

Regression Acc 2.85 11.02 30.74 60.30 79.54 86.17 88.11 88.82 89.34 89.46 89.36 89.16 88.91 - - - - - -
Noise Portion 83% 75% 65% 55% 46% 36% 26% 18% 13% 11% 10% 9% 9% - - - - - -

30


