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ABSTRACT

Reinforcement learning (RL) agents often face high sample complexity in sparse
or delayed reward settings, due to limited prior knowledge. Conversely, large
language models (LLMs) can provide subgoal structures, plausible trajectories,
and abstract priors that support early learning. Yet heavy reliance on LLMs in-
troduces scalability issues and risks dependence on unreliable signals, motivating
ongoing efforts to integrate LLM guidance without compromising RL’s auton-
omy. We propose MIRA (Memory-Integrated Reinforcement Learning Agent),
which incorporates a structured, evolving memory graph to guide early learning.
This graph stores decision-relevant information, such as trajectory segments and
subgoal decompositions, and is co-constructed from the agent’s high-return ex-
periences and LLM outputs, amortizing LLM queries into a persistent memory
instead of relying on continuous real-time supervision. From this structure, we
derive a utility signal that softly adjusts advantage estimation to refine policy up-
dates without altering the underlying reward function. As training progresses,
the agent’s policy surpasses the initial LLM-derived priors, and the utility term
decays, leaving long-term convergence guarantees intact. We show theoretically
that this utility-based shaping improves early-stage learning in sparse-reward set-
tings. Empirically, MIRA outperforms RL baselines and reaches returns compa-
rable to methods that rely on frequent LLM supervision, while requiring substan-
tially fewer online LLM queries1.

1 INTRODUCTION

Reinforcement learning (RL) models sequential decision-making as interactions with an environ-
ment and learns behavior from reward-driven feedback. RL has achieved strong results in domains
including robotic manipulation, dynamic scheduling, and autonomous planning (Nourzad et al.,
2024; Liu et al., 2024; Luo et al., 2024). However, these advances often rely on environments with
dense, readily accessible rewards. In many tasks, rewards are sparse or delayed, appearing only
when specific goals are reached or several steps after the action unfolds. These weak or infrequent
rewards obscure which past actions influenced the outcome, making it difficult to credit the eventual
reward appropriately (Velu et al., 2023). This uncertainty weakens the gradient signal, leaving pol-
icy updates underinformed. Thus, agents become highly data-hungry and require large numbers of
interactions to learn useful behaviors (Devidze et al., 2022). These challenges intensify under partial
observability, as agents must generalize from limited state information and often struggle early in
training (Hausknecht & Stone, 2015; Kurniawati, 2022). In such settings, random exploration rarely
uncovers informative trajectories, leading to slow convergence and high variance in returns.

Large language models (LLMs) provide a complementary source of prior knowledge, especially in
environments where rewards are sparse, feedback is delayed, and observations are partial. They have
demonstrated capabilities in reasoning over abstract goals, interpreting high-level intent, and lever-
aging broad prior knowledge (Jimenez et al., 2023; Xu et al., 2024). These properties make them

1Project webpage : https://narjesno.github.io/MIRA/
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Figure 1: Offline priors and online LLM suggestions are filtered by a screening unit before being
incorporated into the memory graph as healthy grafts. MIRA agent acts under partial observations,
interacting with the environment. A utility module evaluates trajectory rollouts against the evolving
memory graph, producing a utility signal that shapes advantage estimation and policy updates.

natural candidates for providing structured guidance for RL agents (Schoepp et al., 2025). A grow-
ing body of work has explored how pretrained LLMs can support RL to improve sample efficiency.
One line of research positions the LLM as an implicit or explicit reward model, either estimating
reward signals from environment descriptions or generating code to define reward functions (Ma
et al., 2025; Kwon et al., 2023; Fan et al., 2022; Rocamonde et al., 2023; Bhambri et al., 2024; Xie
et al., 2024). Another line leverages LLMs to generate high-level plans, policy sketches, or step-
by-step guidance during training (Du et al., 2023; Hu & Sadigh, 2023; Dasgupta et al., 2023; Wang
et al., 2023; Zhou et al., 2023). A third direction focuses on task-level guidance such as subgoal
decomposition, curriculum design, or goal interpretation from natural language (Wang et al., 2024a;
Ma et al., 2023; Shinn et al., 2023). Additional related approaches appear in Appendix B.

RESEARCH CHALLENGES. The existing approaches, although promising, typically require frequent
(often per-step) LLM supervision, making the agent’s performance heavily reliant on LLM infer-
ence, which introduces several difficulties. First, it can interfere with the RL learning signal (Zhou
et al., 2023), limiting autonomous decision-making and reducing the agent’s ability to generalize
or adapt if the LLM becomes unavailable. Second, since LLMs cannot interact directly with the
environment or gather real-time feedback, full reliance on their instructions is suboptimal (Qu et al.,
2024; Gao et al., 2024; Cao et al., 2024) and dilutes environment-driven feedback. Indeed, LLMs
carry fundamental risks such as hallucinated outputs, prompt sensitivity, and limited grounding in
physical environments (Ji et al., 2023b; Tonmoy et al., 2024; Bang et al., 2025), making their out-
puts potentially unreliable. Frequent queries also raise scalability concerns due to computational
cost and latency (Zhou et al., 2024; Wan et al., 2023). Still, relying solely on RL ignores the struc-
tured knowledge encoded in LLMs that could accelerate learning or shape behavior in meaningful
ways. Thus, the fundamental challenge lies in incorporating LLM guidance in a way that leverages
its complementary benefits while preserving the optimization dynamics that make RL effective.

OUR CONTRIBUTIONS. In this work, we propose MIRA (Memory-Integrated Reinforcement Learn-
ing Agent), a method that integrates LLM-derived guidance into reinforcement learning through a
structured memory graph. The memory graph provides an evolving representation of task-relevant
information, co-constructed from the agent’s experience and LLM outputs. Offline priors initialize
the structure, while infrequent online queries on batches of partial observations can further refine it
during training. Nodes represent decision-relevant context, such as trajectory segments, and edges
encode the hierarchical decomposition linking goals to their subgoals. The graph is designed to re-
main compact, adding minimal overhead relative to standard replay buffers (Schaul et al., 2015). The
memory graph allows the agent to organize and reuse information without repeated LLM queries,
providing a persistent source of structured knowledge.

Over time, the agent validates, revises, and extends the structure based on its own experience, im-
proving beyond what LLM guidance alone can provide and filtering out mistaken online suggestions.
The resulting graph limits dependence on real-time LLM access, alleviating concerns about latency,
query cost, and scalability. To integrate the LLM-derived information into learning, we derive a
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utility signal from the memory graph and use it to softly shape advantage estimates in each RL it-
eration. This signal guides early rollouts by reinforcing reward-driven gradients when aligned and
moderating updates that arise from an inaccurate critic, helping the agent explore more effectively
in sparse-reward settings without overriding the environment’s feedback. Theoretically, we show
that the utility term accelerates early learning. As the policy improves and surpasses the usefulness
of LLM-derived guidance, the shaping influence fades, ensuring convergence in the long-horizon
limit. We empirically evaluate the effectiveness, sample efficiency, and overhead of incorporating
LLM guidance across multiple benchmark environments.
Our contributions are summarized as follows:

• A MEMORY-INTEGRATED FRAMEWORK FOR LLM GUIDANCE: We propose MIRA,
a reinforcement learning agent that integrates LLM-derived guidance through a memory
graph co-constructed from agent experience and offline or infrequent online LLM outputs.
The graph evolves throughout training, reducing reliance on real-time LLM queries.

• UTILITY-BASED ADVANTAGE SHAPING: We introduce utility-shaped advantage esti-
mation, which incorporates graph-derived utility into advantage computation without ar-
chitectural changes and is compatible with any advantage-based policy-gradient method.

• CONVERGENCE-COMPATIBLE SHAPING: We provide theoretical guarantees showing
that by decaying the shaping influence as the policy improves, we preserve long-horizon
convergence properties of Proximal Policy Optimization (PPO) (Schulman et al., 2017a)
and correct any inaccuracies in LLM outputs.

• EMPIRICAL VALIDATION ACROSS BENCHMARKS: We demonstrate empirically that
MIRA improves sample efficiency over RL and hierarchical baselines and reaches final
performance comparable to methods requiring continuous LLM supervision (Zhou et al.,
2023; Bhambri et al., 2024), while using far fewer online queries.

The remainder of this paper is organized as follows. Section 2 details MIRA’s architecture; Sec-
tions 3 and 4 present experimental setup and results across multiple benchmarks; and Section 5
concludes with a discussion of our findings and possible directions for future work.

2 METHODOLOGY

We now describe the design of MIRA, whose development is guided by two desiderata: (I) improve
early learning by incorporating task-relevant priors from an LLM, (II) minimize reliance on con-
tinuous real-time LLM supervision to ensure scalability and maintain autonomous policy learning.
MIRA is built on the standard policy-gradient formulation for reinforcement learning (Appendix A).

2.1 MEMORY GRAPH DESIGN

The agent maintains an evolving memory graph that organizes information drawn from both
LLM suggestions and agent rollouts. Nodes of the graph represent decision-relevant context,

Figure 2: MIRA’s evolving mem-
ory graph. Trajectory segments τj
are grouped under subgoal nodes κℓ.
Subgoals can be shared across multi-
ple final goals, enabling reuse of com-
mon behaviors.

and edges encode the hierarchical decomposition of goals
into subgoals as provided by the LLM (Figure 2). This
structure can be expressed as

G =
{(

(o, a)τj , ζj , r̂j
)
cj

}N

j=1
∪

{
κℓ

}L

ℓ=1
∪ {g▷}. (1)

Each trajectory node j consists of a partial observation oτj
and an action aτj . It is also associated with a goal term
ζj ∈ {gj , κ

gj
ℓ } indicating either a final goal (gj) or an ab-

stract subgoal (κ
gj
ℓ ) that the trajectory is intended to com-

plete. In addition, the node stores an estimated (sub)goal re-
ward r̂j for the action sequence, reflecting progress toward
completing its associated subgoal, and a confidence score
cj derived from the LLM-derived statistics. The second set
of nodes {κℓ}Lℓ=1 represents subgoals κℓ provided by the
LLM from the environment description. The final term {g▷} denotes the agent’s target goal(s).
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The graph is initialized with offline LLM priors and evolves as training progresses. Nodes are
added or updated when the agent produces trajectory segments that either introduce a novel segment
for a known (sub)goal or achieve a higher estimated return than the existing entry for the same
(sub)goal. Existing nodes can also be updated when the agent’s experience strengthens entries that
were initially derived from low-confidence LLM outputs. Online LLM suggestions may also be
added as new nodes when available, provided they pass screening; an online query is triggered only
when the rollout utility signal remains near zero for several consecutive episodes, indicating that
the current graph offers no helpful guidance. In such cases, the current policy is either exploring
regions unsupported by the memory graph or that the graph itself is missing useful segments.
Nodes are pruned when they remain unused for a fixed horizon of episodes. Each node maintains an
access counter updated whenever it contributes to the utility; nodes whose counters do not change
within this window are removed, reflecting reduced relevance to recent rollouts. Offline LLM nodes,
though generally stable, may also be removed when rendered obsolete. Additional details about
graph construction and environment-specific examples are given in Appendix E. This process keeps
the graph compact and adaptive, while ensuring that any low-quality or misleading prior segments
naturally fade as higher-return agent-generated trajectories replace them or lead to their pruning.

2.2 OFFLINE AND ONLINE GUIDANCE

MIRA incorporates two complementary forms of LLM guidance, accessed either offline prior to
training or online during training. Offline outputs are generated using full access to the task descrip-
tion, providing trajectory segments and subgoal decompositions that initialize the memory graph
with structured priors. Offline nodes accelerate early exploration and remain a persistent baseline
source of guidance that complements the adaptive updates introduced by online LLM queries.

Online suggestions are incorporated during training when the agent fails to obtain useful guidance
(i.e., when the rollout utility remains near zero) from its memory graph for several consecutive
episodes. The LLM is constrained to the same partial observability as the agent and, when trig-
gered, may return plans that correspond to short trajectories. Alternatively, it may provide control
signals that bias the action preferences over an extended horizon until the current task segment is
completed. All online outputs are passed through the Screening Unit, which discards low-confidence
suggestions. Accepted plans are grafted into the memory graph as new trajectory segments, while
accepted control signals bias the policy through soft logit injection, i.e., adding a bounded penalty to
the logits of discouraged actions. This penalty induces only a soft preference before the softmax and
cannot collapse the action distribution. PPO’s clipped objective controls the update size, ensuring
that the injected bias functions as lightweight guidance that the critic can override when it strongly
disagrees with the value estimates (Biza et al., 2021).

SCREENING UNIT. To ensure reliability, online outputs are passed through a lightweight Screening
Unit designed to reduce hallucinations and reasoning failures (Ji et al., 2023a; Bubeck et al., 2023;
Wang et al., 2022; Zhao et al., 2021). Confidence is estimated in two complementary ways. When
token-level likelihoods are available, we compute the geometric mean of the per-token probabilities
of the completion as a confidence measure. When such likelihoods are unavailable or incomplete
(e.g., only top-k likelihoods are provided), we instead estimate confidence by sampling multiple in-
dependent completions and measuring agreement across them. A majority-consistency test is then
applied to retain only those outputs that appear reliably across the sampled completions. Sugges-
tions that fail to meet a fixed threshold under either criterion are discarded. While this procedure
does not eliminate all high-confidence errors, it serves as an effective filter that reduces the risk of
hallucinated or low-quality outputs. The screened outputs, referred to as healthy grafts in Figure 1,
are incorporated into the memory graph as new nodes to further help the policy learning.

2.3 UTILITY SIGNAL COMPUTATION

Utility is defined at the level of individual state–action pairs and is computed from the same roll-
outs used for advantage estimation under the current policy. Each state-action in the trajectory
τ = {(ot, at)}Tt=1 is matched against the corresponding state–action pairs (ot′ , at′) in the stored
trajectory τm. The appropriate memory node m is selected based on the environment instance (e.g.,
the seed-specific layout) in that training iteration. We then compute the utility for each pair t as:

Ut
.
= cm · r̂m · ρ(g▷, ζm) · ∫

(
(ot, at), (ot′ , at′)τm

)
. (2)
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Steps that do not match any stored trajectory segment receive zero utility. The similarity function
∫(·, ·) measures how closely the agent’s behavior aligns with the stored trajectory. It incorporates
both action agreement and spatial consistency, such as overlap in grid positions or directional align-
ment in tabular settings (Algorithm 3). To capture semantic structure, the raw similarity score is
weighted by a goal-alignment factor ρ(·, ·). Each subgoal description specifies a target object or
region and a high-level action applied to it; simple rule-based parsing yields a paired entity and
action-phase token. The Jaccard similarity between the entity–phase token sets extracted from
the agent’s target subgoal and each memory entry defines ρ. This weighting increases the influ-
ence of memory entries that share underlying entities or action phases with the target subgoal and
downweights matches corresponding to unrelated parts of the task (Algorithm 4). Thus, a transition
contributes to utility only when both its behavioral similarity and its semantic alignment with the
relevant subgoal are high. Finally, the score is modulated by the confidence cm and estimated reward
r̂m attached to the memory node (Algorithm 5). This formulation also helps limit the influence of
incorrect LLM guidance that may have passed screening. When an LLM suggestion is inaccurate, its
influence naturally diminishes: such segments typically contribute little utility since their estimated
reward is low or their similarity score remains small, reflecting weak positional alignment or in-
consistent action patterns between the agent’s rollout and the stored LLM-derived segment. Further
details on the utility computation are presented in Appendix F.

2.4 ADAPTIVE ADVANTAGE SHAPING

We incorporate memory-derived utility into the policy update by augmenting the standard advantage
term. Algorithm 1 outlines the shaped PPO update. At iteration k, trajectories Dk = {(st, at, rt)}
are collected under the policy πθk . The rollout batch is split into minibatches B for multiple gradient
steps. The likelihood ratio rt compares new and old policies, and the clip parameter εk constrains
rt within (1± εk) as a soft trust region.

The advantage function in policy gradient methods, denoted by At at a given time t, quantifies
how favorable an action at is relative to the average action at state st. It drives learning by
reinforcing actions that have higher-than-expected returns and suppressing those that fall short.

Algorithm 1 Shaped PPO actor (changes)
for k = 0, 1, . . . do

Collect Dk = {(st, at, rt)} using πθk
Compute At and Ut from rollouts
Ãt = ηtAt + ξtUt

for epoch = 1 to K do
for minibatch B ⊂ Dk do

rt(θ) = πθ(at|st)/πθk(at|st)
Lshaped(πθ) = E

[
min(rt, 1±εk)Ãt

]
θ ← θ + αθ∇θ Lshaped(πθ)

end for
end for

end for

However, during early training the critic is
poorly calibrated due to limited exploration, of-
ten producing nearly uniform value estimates
across actions (Henderson et al., 2018). As a re-
sult, the estimated advantages At provide weak
learning signals, even when the agent is follow-
ing behavior that is meaningfully directed to-
ward the task. This issue is particularly pro-
nounced in sparse-reward settings or tasks with
delayed feedback, where the critic lacks suf-
ficient signal to distinguish between promis-
ing and unproductive behaviors. In such cases,
the estimated advantage tends to be near-zero
or highly noisy for most timesteps, especially
early in training (Figure 15).

To address this, we introduce a shaped advantage as:

Ãt = ηtAt + ξtUt, 0 < ηt ≤ 1, ξt ≤ δηt, δ ∈ [0, 1), lim
t→∞

ηt = 1, lim
t→∞

ξt = 0. (3)

This formulation preserves the fundamental role of the advantage function, while refining it with
utility-based guidance. It forms a cooperative process between critic predictions and the memory-
derived utility. The critic provides an estimate based on learned reward prediction and bootstrapping,
while the utility term injects an inductive bias derived from language-guided priors. Together, they
form a joint estimator in which each component compensates for the other’s limitations without dis-
torting policy optimization. When the critic signal is weak due to insufficient value discrimination,
the resulting gradients are uninformative and impair the agent’s ability to bootstrap from sparse or
delayed rewards. The utility term provides additional directional guidance aligned with task objec-
tives, accelerating learning by compensating for weak or flat gradients (Figure 15, Appendix G).
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As training progresses and the policy becomes more accurate, the critic’s advantage estimates At

become more reliable. Accordingly, the shaping weight ξt is annealed to reduce the direct influence
of the utility term and ηt is ramped toward 1 over training. Since the LLM-derived signals can be
imperfect, annealing ξt prevents inaccuracies in those signals from being preserved in the asymptotic
regime. This ensures that the final policy is optimized with respect to the true reward function
R and remains consistent with PPO’s stability guarantees. Early in training, however, ξt remains
large enough for the utility to accelerate exploration using the LLM’s possibly imperfect, but still
useful, prior knowledge. As ξt decays, any suboptimalities in these priors are naturally learned away,
yielding the benefits of shaping during the sparse-reward phase, without biasing long-run behavior
or altering the policy or critic structure. See remark C.4 for more explanation.

Before turning to experiments, we provide an interpretive perspective on how adaptive advantage
shaping affects optimization in sparse-reward regimes and in Appendix establish that the proposed
shaping mechanism preserves the policy improvement property of PPO under standard boundedness
and scaling assumptions, which we formally enumerate in Appendix C.1. More broadly, the method
remains compatible with policy gradient algorithms that relies on advantage estimation, offering a
general mechanism for integrating language-derived priors into RL.

Theorem 1 (Non-Vanishing Updates in Sparse-Reward Regimes). Define the shaped surrogate
Lshaped(θ)

.
= E

[
∇θ log πθ(at|st) Ãt

]
, and the PPO surrogate Lppo(π) = E[∇θ log πθ(at|st)At] .

Consider a training iteration k such that the expected magnitude of the PPO advantage is small,
i.e., E[|At|] ≤ εA for some εA ≈ 0. Under Assumptions 1–3, the expected norm of the shaped PPO
policy update satisfies ∥∥Lshaped

k

∥∥ ≥ ξk
∥∥LU

k

∥∥−O(εA),

where LU
k

.
= E[∇θ log πθ(at|st)Ut] .

Proof. Deferred to Appendix C.

3 EXPERIMENTAL SETUP

Figure 3: Evaluation environments.
Top: REDBALL (navigation to tar-
get), LAVACROSSING (long-horizon
navigation with irreversible hazards),
DOORKEY (sparse reward with
key–goal dependency).
Bottom: REDBLUEDOOR (sequence-
sensitive toggling), DISTRACTED
DOORKEY (distractor-rich variant
with key-goal dependency).

We validate our method through extensive experiments im-
plemented using the RLlib (Liang et al., 2018). Our eval-
uation focuses on performance gains, sample efficiency,
and the computational overhead introduced by LLM inte-
gration. The objective is to characterize the benefits and
trade-offs of incorporating LLM guidance in RL, including
how different levels of LLM capabilities influence the pol-
icy learning dynamics and final policy quality.

3.1 SIMULATION PLATFORM

We consider six distinct environments, which are selected
to span discrete vs. visual inputs, short- vs. long-horizon
dependencies, reversible vs. irreversible dynamics, and
with vs. without perceptual distractors, forming a compact
yet representative benchmark for sparse-reward RL.

GYMNASIUM TOYTEXT. Gymnasium (Arnoldo et al.,
2024) provides simple tabular environments for controlled
analysis of learning dynamics in low-dimensional settings.
Despite their simplicity, these environments feature sparse
rewards and require strategic exploration, making them
suitable for isolating the early-stage benefits of memory-guided utility shaping. We include
FROZENLAKE as a minimal benchmark where PPO reliably converges to the optimal policy, en-
abling us to verify that MIRA preserves convergence while accelerating early learning.

MINIGRID AND BABYAI. MiniGrid (Chevalier-Boisvert et al., 2023) and BabyAI (Chevalier-
Boisvert et al., 2019) are suites of lightweight, procedurally generated environments designed to
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evaluate exploration and planning in partially observable, sparse-reward settings. We use these tasks
to assess the effectiveness of advantage shaping in long-horizon decision-making environments that
require reasoning under uncertainty and robustness to irrelevant stimuli. We include five tasks, se-
lected to cover diverse challenges involving planning, credit assignment, and distraction resilience
(Figure 3). We use pixel-based observations (RGB images) rendered from the environment as the
policy inputs, to introduce perceptual complexity and evaluate agent performance under a more
realistic observation setting.

3.2 BASELINE METHODS

PPO (RL BASELINE). We train a tabula rasa PPO agent (Schulman et al., 2017a) that learns purely
from environment interaction and rewards. Network architecture, PPO hyperparameters, and rollout
settings are held fixed across all methods for fair comparison.

HIERARCHICAL RL. We include hierarchical reinforcement learning (HRL) (Matthews et al., 2022)
as a baseline that uses pre-trained LLM option policies for temporal abstraction.

LLM-RS. We consider the method of (Bhambri et al., 2024), which we refer to as LLM-RS. This
approach queries the LLM in real time to generate plans for potential-based reward shaping, with a
verifier refining them for valid action sequences.

LLM4TEACH. We include LLM4Teach (Zhou et al., 2023) as a representative teacher-based
approach. It employs a pre-trained LLM as a policy teacher and guides the RL agent through policy
distillation, and is among the state-of-the-art methods in this category.

4 EXPERIMENTAL RESULTS

To assess how effectively MIRA addresses the challenges raised in the introduction, we structure our
core experiments around three guiding questions. These questions examine whether utility-shaped
advantages compensate for PPO’s weak early gradients in sparse-reward, long-horizon, and par-
tially observable settings, and whether amortizing limited LLM guidance into a persistent memory
structure provides sufficient return while supporting scalability and avoiding latency. Formally:

• Q1: How does MIRA improve early learning efficiency and convergence relative to PPO,
even when PPO’s final performance is competitive?

• Q2: How well does MIRA perform in long-horizon environments that demand extended
exploration and multi-step reasoning?

• Q3: How effectively does MIRA translate a limited number of LLM queries into perfor-
mance gains compared to query-heavy methods?

To isolate the contribution of individual components in MIRA’s design, we further conduct ablations
organized around three additional questions. These probe how online queries complement offline-
initialized memory, and how sensitive MIRA is to degraded, incorrect, or stylistically varied LLM
outputs. Formally:

• Q4: How do online LLM queries improve learning, beyond what offline memory provides?

• Q5: How does MIRA handle late-stage exposure to degraded LLM guidance once its mem-
ory is well-formed?

• Q6: How do variations in LLM reasoning affect memory and downstream results?

Appendix G provides additional results, including evaluations on unseen seeds to assess generaliza-
tion, wall-clock analyses of LLM-query overhead (Figure 16), and measurements of memory growth
(Figure 17). We also report ablations on the screening threshold (Figure 14) and prompt wording
(Figure 13), each examining its effect on overall learning behavior and addressing aspects of Q5. In
addition, supplementary plots from sweeps over shaping weights (Figure 15) are included to analyze
their impact on early-stage learning dynamics and reward progression.
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Figure 5: Mean return (top) and success rate (bottom) across four MiniGrid and BabyAI tasks.
MIRA consistently outperforms both baselines, achieving faster learning, higher asymptotic return,
and greater success rates. These results are obtained with a small LLM budget, using fewer than ten
offline prompts to build memory graphs plus infrequent online queries to guide exploration.

4.1 TABULAR BENCHMARK AND PARTIALLY OBSERVABLE TASKS

Q1: We evaluate two variants of MIRA on FROZENLAKE-8X8, an offline-only version and an
online-only version, and compare them to the PPO baseline, averaging results over four seeds. In
the offline variant, three zero-shot GPT-o4-mini queries generate an initial memory graph. The LLM
observes the grid layout (matching the agent’s full observability) but does not receive the slipperiness
probability, which is hidden from both. As shown in Figure 4, this initialization results in faster early
learning, and the offline variant maintains a higher return than PPO throughout, and the online-only
variant in the first 1K iterations. The online-only variant begins with an empty memory graph,
without any global information about the map and issues LLM queries during training.

Figure 4: Mean return on FROZENLAKE (left):
Both MIRA variants improve early-stage learning
relative to PPO, while PPO eventually attains a
comparable asymptotic return. Evolution of shap-
ing terms ηt, ξt, and ratio δt (right): δt decays
during training, ensuring convergence as δt → 0.

Since the layout is deterministic and the action
set is small, these online queries can infer short
segments from the agent’s rollouts and popu-
late the memory graph as training progresses.
This provides a faster improvement rate than
the offline variant, though it requires more LLM
queries. PPO eventually catches up, and by
convergence, the asymptotic returns of all three
methods become comparable. During training,
the shaping signal primarily affects the early it-
erations. As the policy improves, η increases,
ξt decreases, i.e. the shaping ratio δt = ξt/ηt
decays, reducing reliance on memory. Un-
der standard stochastic approximation condi-
tions (Kushner & Yin, 2003), this decay keeps
the critic error within an O(δt) neighborhood
of the true value, which vanishes as δt → 0.

Q2: We next evaluate MIRA on five tasks designed to isolate distinct challenges in sparse and
partially observable environments. Figure 5 shows mean return and success rate across the four
tasks, with performance averaged over four different seeds. In simpler tasks such as REDBALL,
PPO shows moderate early gains but plateaus well below optimal performance. Although hierar-
chical RL eventually catches up, MIRA reaches optimal returns in under half the training iterations.
In LAVACROSSING, PPO fails to improve beyond near-zero success, indicating ineffective explo-
ration. Hierarchical RL improves steadily but converges more slowly than MIRA. In more complex
tasks such as DOORKEY and REDBLUEDOOR, MIRA achieves substantially higher success rates,
approximately twice those of HRL, while also converging faster.

These gains are achieved with a limited LLM query budget that combines offline and infrequent
online access. Offline queries scale with task complexity. In REDBALL, four zero-shot prompts to
GPT-o4-mini are sufficient to build a useful memory graph, while DOORKEY requires about seven
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queries that mix few-shot and zero-shot prompts. Online queries are budgeted separately and also
vary with task complexity. In REDBALL, about seven online queries suffice to suppress irrelevant
actions throughout training. In REDBLUEDOOR, queries are triggered more frequently early in
training to help interpret partial observations and suggest short sequences, such as turning, that align
the agent with the door. Once the red door is discovered and toggled, the offline memory becomes
sufficient. In this task, rooms behind the doors serve only as distractors; baseline agents, including
hierarchical RL, often waste steps exploring them. As shown in Figure 5 (lower right), HRL achieves
higher success rates than PPO but yields similar average return in the beginning due to suboptimal
trajectory use. By contrast, MIRA avoids such inefficiencies by focusing on goal-relevant behavior
earlier in training.

Figure 6: Mean return (left):
LLM4Teach shows faster early gains,
while MIRA steadily improves and
matches its final return with fewer
queries. LLM-RS benefits early from
reward shaping but plateaus lower.
Return per LLM query (right): Under
two query budgets, MIRA achieves
higher efficiency.

Q3: To further evaluate MIRA, we compare it to
LLM4Teach and LLM-RS in the custom variant environ-
ment DISTRACTED DOORKEY. We also include a Sole
LLM baseline, where GPT-o4-mini executes plans under
full observability without learning. Figure 6 shows mean
return progression at selected training checkpoints. For
Sole LLM, we report average return over 100 seeds to
demonstrate that the task is LLM-solvable and that its
outputs provide useful structural guidance. The accom-
panying bar chart reports amortized return per cumulative
LLM query under two fixed budgets (10 and 20 queries,
both below the usage of any method), quantifying how
each method translates queries into performance gains.

MIRA achieves higher query efficiency than both
LLM4Teach and LLM-RS, using about 30 queries per
run (seven offline and 20 ± 3 online) to obtain higher
return per query. In contrast, LLM4Teach issues
dense supervision, querying the LLM once on every
state–action–reward triplet within training batches, which
in our experimental setup corresponds to more than 500
queries before the policy stabilizes. LLM-RS, which uses
LLM-generated reward code, queries once per layout, totaling over 50 calls in our setup. While
lighter than LLM4Teach, this still requires layout-level access throughout training. Despite its heav-
ier budget, LLM4Teach achieves comparable final performance to MIRA, while LLM-RS fails to
match MIRA’s return. Notably, LLM-RS outpaces MIRA early due to reward shaping, but falls be-
hind later. LLM4Teach shows an early advantage through front-loaded queries, but at a significantly
higher cost. Tables in Appendix G report results on unseen evaluation seeds to assess generalization.

4.2 ABLATION STUDIES

Q4 (ONLINE QUERY FREQUENCY): We vary the number of online LLM queries issued during
training of DOORKEY, to assess how constrained usage affects learning efficiency and final perfor-
mance. Each agent begins with the same memory graph, initialized from identical offline queries,
isolating the contribution of dynamic LLM input from that of static memory initialization. We com-
pare MIRA under three online budgets: zero, a mid budget of 10 queries, and a high budget of 20.
As shown in Figure 7 (left), more frequent online access accelerates learning, with the large-budget
variant achieving optimal return in fewer steps (Table 1, Appendix G). Even with just 10 online
calls, MIRA substantially outperforms the offline-only variant. Nevertheless, MIRA (offline) still
yields a notable boost over baseline PPO, indicating that static memory alone can provide meaning-
ful guidance when dynamic access is unavailable. Given this noticeable improvement over PPO, the
offline-only variant is a practical choice when run-time LLM access is restricted or when latency
makes online queries impractical, since it relies entirely on the memory graph constructed offline.
When limited run-time access is available, the online variant becomes preferable because dynamic
queries update the memory during exploration and accelerate learning, at the cost of additional wall-
clock time associated with LLM calls (Figure 16, Appendix G).

Q5 (UNRELIABLE LLM OUTPUTS): We evaluate a scenario where the LLM is swapped at a later
training stage and the screening unit is disabled only for this final online phase in DISTRACTED
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Figure 7: Ablation Studies. Query frequency (left): Agents share the same offline memory but vary
in online budgets. More queries accelerate learning, with high-budget agents achieving optimal re-
turns more quickly. Unreliable LLM (middle): With identical offline memory, screening is disabled
and queries are swapped from GPT-o4-mini to Gemini Pro only in the late phase. Performance
remains stable in the late phase, indicating reduced dependence on online guidance once policy
have matured. LLM models (right): Agents differ only in the LLM used for memory. Performance
differences reflect divergent reasoning styles: Gemma3 induces inefficient checking, Claude favors
cautious exploration, while Gemini Pro and o4-mini enable faster learning.

DOORKEY environment. All agents share the same offline-initialized memory graph and use GPT-
o4-mini with screening during earlier online queries. In the final stage, we replace the LLM with
Gemini Pro and omit screening. By this point, MIRA has accumulated sufficient experience and
memory, allowing it to tolerate low-confidence or incorrect suggestions without collapsing perfor-
mance. We prompted both LLMs with a scenario where the agent has already explored thoroughly
and confirmed no key is present (implying it was already collected, since inventory is unobserved).
When asked which action to down-weight, GPT-o4-mini gave a consistent suppression, whereas
Gemini returned a misaligned alternative. As shown in Figure 7 (middle), MIRA remains stable
under degraded guidance, though convergence slows and final return drops slightly. Details of the
LLM responses are shown in Figure 12, Appendix D.

Q6 (REASONING AND PERFORMANCE): We assess MIRA’s sensitivity to the choice of language
model by replacing GPT-o4-mini with alternatives such as GPT-4o (OpenAI, 2024), Claude Son-
net 4 (Anthropic, 2024), Gemma 3 27B (Ananthanarayanan et al., 2024), Gemini 2.5 Flash and
Pro (Chen et al., 2024). All models go through the same process to ensure comparability. Unlike
the ablation done before, the model swap is applied from the beginning of training. As shown in
Figure 7 (right), the reasoning style shaping the memory graph strongly impacts downstream RL
performance. For instance, Gemma3 performs poorly because it recommends checking the door
after every pickup, leading to wasteful steps. Claude adopts an exploratory policy that yields slow
but eventual progress, showing early improvement followed by plateauing, but it eventually re-
covers as the memory is dynamic. GeminiPro and GPT-o4-mini both enable fast early learning,
but o4-mini’s memory includes detours that prove beneficial later, ultimately reaching the highest
asymptotic return. These differences highlight how the reasoning processes behind LLM outputs
directly influence MIRA’s long-term policy quality. Figure 11 in Appendix D presents the reasoning
traces produced by different LLM models used.

5 CONCLUSION AND FUTURE WORK

We propose MIRA, a reinforcement learning (RL) framework that integrates large language model
(LLM) guidance via a memory graph built from high-return trajectories and LLM-inferred infor-
mation. By shaping advantage estimates with a utility signal derived from this memory, MIRA
accelerates early learning without requiring continuous LLM supervision. Theoretical and empiri-
cal results on sparse-reward tasks confirm improved sample efficiency and preserved convergence.
Limitations of the current design are discussed in Appendix H. Extending MIRA to continuous-
control and vision-based domains is a natural next step. Prior LLM-guided robotics work shows
that semantic subgoals can be grounded in continuous spaces through learned affordances or visual
embeddings (Brohan et al., 2023; Huang et al., 2022). In such settings, MIRA’s discrete similar-
ity function can be replaced with comparisons in a latent representation space, e.g., using encoder
features or R3M-style embeddings (Nair et al., 2022), while memory scalability can be maintained
through clustered or hierarchical organization. These adaptations would allow MIRA’s memory
graph and utility-based shaping to apply beyond grid worlds and support longer-horizon tasks with
richer state spaces. Extending MIRA to multi-goal domains such as Crafter (Hafner et al., 2023),
where reusable subgoal structure is prominent, is another promising direction.
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APPENDIX

The supplemental material is organized as follows:

• SECTION A reviews background on reinforcement learning definitions and policy gradient
algorithms to make the paper self-contained.

• SECTION B discusses related work relevant to our approach in more depth.

• SECTION C presents the theoretical results and supporting proofs for our method.

• SECTION D describes the LLM prompting procedures in MIRA and presents the corre-
sponding reasoning traces.

• SECTION E provides a more detailed explanation of the construction of memory graph,
expanding on the description in the main paper.

• SECTION F provides a more detailed explanation of the utility calculation and includes the
complete pseudocode, expanding on the description in the main paper.

• SECTION G presents extended experiments, including analyses of runtime and detailed
numerical results that were not covered in the main text.

• SECTION H outlines limitations of the current design and identifies open challenges.

• SECTION I provides details to support reproducibility of our results.

A BACKGROUND

A.1 STANDARD REINFORCEMENT LEARNING

Reinforcement learning (RL) is typically modeled as a Markov decision process (MDP), defined
by a tuple (S,A, P, r, γ), where S is the state space, A the action space, P the transition function,
r the reward function, and γ ∈ [0, 1) the discount factor. The agent’s behavior is determined by
a policy π, which defines a probability distribution over actions given the current state: π(a|s).
Learning proceeds through interaction with the environment, producing trajectories, sequences of
states, actions, and rewards of the form τ = (s0, a0, r0, s1, a1, r1, . . . ), and using them to improve
the policy.

The objective is to learn a policy that maximizes the expected return, defined as the discounted sum
of rewards along a trajectory:

Eπ

[ ∞∑
t=0

γtr(st, at)

]
. (4)

The environment’s reward function implicitly defines the final goal (g▷) by assigning reward to
behaviors that accomplish the task (Sutton et al., 1998; Silver, 2015). To estimate this objective,
RL algorithms often make use of value functions, which quantify the long-term utility of states or
state-action pairs. The state-value function V (s) denotes the expected return when starting from
state s and following policy π:

V (s) = Eπ

[ ∞∑
t=0

γtr(st, at) | s0 = s

]
. (5)

The action-value function Q(s, a) further conditions on the first action taken and is defined as:

Q(s, a) = Eπ

[ ∞∑
t=0

γtr(st, at) | s0 = s, a0 = a

]
. (6)
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A.1.1 PARTIAL OBSERVABILITY AND CREDIT ASSIGNMENT CHALLENGES

In many real-world scenarios, the environment is only partially observable. In such cases, the MDP
generalizes to a partially observable MDP (POMDP), defined by the tuple (S,A, P, r, γ,O,Ω),
where O is the observation space and Ω is the observation function. The agent does not directly ob-
serve the true state st ∈ S; instead, it receives observations ot from an observation spaceO, sampled
via Ω(ot|st), and must rely on its history of observations and actions to make decisions (Kaelbling
et al., 1998).

These difficulties are further amplified in environments where the agents face sparse and delayed
rewards. Sparse rewards refer to the limited presence of nonzero rewards since this feedback is only
provided upon reaching specific goals (i.e., r(st, at) is typically zero until the agent reaches the final
goal state (g▷) defined by the task). On the other hand, delayed rewards refer to settings where the
consequences of an action are not reflected in the reward until several steps later. In both cases,
the agent must reason over long horizons to determine which actions contributed to the eventual
outcome, a challenge known as the credit assignment problem (Schulman et al., 2015a).

Credit assignment is closely tied to the broader challenge of exploration. Inefficient exploration
occurs when the agent fails to sufficiently cover the state space, limiting its ability to discover
high-return trajectories and improve its policy. This problem is exacerbated in high-dimensional
environments, where the number of possible state-action sequences grows exponentially and ran-
dom exploration becomes increasingly unlikely to encounter informative transitions with sparse or
delayed rewards. In such cases, the combination of large search spaces and limited reward signals
often leads to slow convergence, poor sample efficiency, and high variance in learning outcomes.

A.1.2 SUBGOALS AND ABSTRACTIONS

In long-horizon tasks, reinforcement learning agents often benefit from structuring behavior around
subgoals, intermediate objectives that facilitate progress toward the overall task. The concept of
subgoals in reinforcement learning originated in hierarchical reinforcement learning (HRL), where it
was formalized through the use of temporally extended actions. In particular, the options framework
introduced by Sutton et al. (1999) defines options as high-level actions composed of an initiation
set, a policy, and a termination condition, often interpreted as achieving a subgoal (Stolle & Precup,
2002). These subgoals correspond to intermediate states or conditions that decompose long-horizon
tasks into smaller, temporally coherent segments that make the final goal more attainable when
reached. More broadly, subgoals provide structure for reasoning over extended time horizons and
facilitate learning in sparse-reward settings.

While early approaches focused on explicit or learned state-based subgoals, recent work has ex-
plored abstract subgoals that capture semantic or latent-level progress. These abstractions may
not correspond to a specific state but instead reflect high-level intentions and meaningful progress
(e.g., opening a door, entering a room, or collecting an object). Such abstractions enable reason-
ing at a higher level of granularity and are especially useful in environments with sparse rewards
or delayed feedback. Subgoal discovery and abstraction have also been explored in curriculum
learning, imitation learning, and human-in-the-loop frameworks to improve exploration and sample
efficiency (MacGlashan et al., 2017; Shiarlis et al., 2018; Narvekar et al., 2020).

A.2 POLICY GRADIENT METHODS

Policy gradient methods directly optimize a parameterized policy πθ(a|s) by ascending the gradient
of expected return. The objective is to find parameters θ that maximize:

J(θ) = Eτ∼πθ

[ ∞∑
t=0

γtr(st, at)

]
, (7)

where τ denotes a trajectory generated by following the current policy. The gradient of this objective
can be estimated via the likelihood ratio trick, yielding the REINFORCE estimator (Williams, 1992):

∇θJ(πθ) = Eπ [∇θ log πθ(at|st)R] , (8)

where Rt is the return from time t onward. While theoretically sound and unbiased, this estimator
suffers from high variance, making it challenging to apply in practice without further refinement.
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A.2.1 ADVANTAGE-BASED POLICY OPTIMIZATION

To reduce variance and improve sample efficiency, modern policy gradient algorithms often use ad-
vantage functions, which quantify the relative quality of an action compared to the policy’s baseline
behavior. The advantage function is defined as:

A(s, a) = Q(s, a)− V (s), (9)

where Q(s, a) is the expected return from taking action a in state s, and V (s) is the expected return
from s under policy π. Using this formulation, the policy gradient becomes:

∇θJ(πθ) = Eπ [∇θ log πθ(at | st)A] , (10)

which improves stability while preserving unbiasedness.

This idea underpins a family of actor-critic algorithms, where the actor updates the policy using
the advantage-weighted gradient, and the critic estimates value functions used to compute A(s, a).
Representative algorithms in this class include A2C and A3C (Mnih et al., 2016), which leverage
parallel actors to accelerate training and stabilize updates, and PPO (Schulman et al., 2017b), which
constrains policy updates by clipping the policy ratio in the surrogate objective:

LPPO(π) = E [min(rtAt, clip(rt, 1− ε, 1 + ε)At)] , (11)

where ε > 0 is a small trust region parameter that limits how much the policy is allowed to change
at each update.

These methods are widely used in modern deep reinforcement learning due to their scalability and
consistent empirical performance across a range of tasks. Since MIRA operates by shaping the
advantage function, it is compatible with any policy optimization method that relies on advantage-
weighted updates.

B RELATED WORKS

B.1 LANGUAGE MODEL GUIDANCE IN RL

A growing line of work explores how large language models (LLMs) can be integrated into rein-
forcement learning by framing them as auxiliary components within the agent–environment loop. A
recent taxonomy by Cao et al. (2024) outlines the roles of LLMs in RL along four key dimensions:
information processors, reward designers, decision-makers, and generators.

As information processors, LLMs extract and organize task-relevant knowledge from natural lan-
guage, environment descriptions, or prior experience. This includes synthesizing high-level goals,
parsing instructions, and transforming language input into actionable constraints or representa-
tions (Wang et al., 2024a; Shinn et al., 2023). A common approach is to use frozen pre-trained
models to encode task-relevant features without fine-tuning, though they may perform poorly on
out-of-distribution data due to limited adaptability (Radford et al., 2021; Paischer et al., 2022; 2023).
Alternatively, fine-tuned models can better align with task-specific distributions, leading to more ro-
bust RL performance and improved generalization in unseen environments (Kim et al., 2023; Poudel
et al., 2024). In addition, LLMs can convert human instructions or task prompts into formal repre-
sentations or structured goals, and interpret descriptions of the environment, such as objects, layouts,
or dynamics, into usable priors for downstream RL modules. This reduces the burden of language
comprehension for RL agents and improves sample efficiency (Basavatia et al., 2024; Sumers et al.,
2021; Song et al., 2023a; Liang et al., 2022). These models can decouple information processing
from control, with the LLM handling language grounding and feature extraction while the policy
module focuses on decision-making. Such capabilities can reduce learning complexity and acceler-
ate policy acquisition by shaping the agent’s representation space early in training.

As reward designers, LLMs provide auxiliary supervision by scoring agent behavior or generat-
ing rewards. This can take the form of natural language critiques, programmatic reward code, or
goal-conditioned evaluations. In the implicit reward setting, LLMs serve as proxy reward models
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by either being directly prompted to evaluate agent behavior (Chu et al., 2023; Wu et al., 2023) or
by computing alignment between visual observations and language goals using pretrained vision-
language models (Wang et al., 2024b; Adeniji et al., 2023; Seo et al., 2023; Grauman et al., 2022).
These methods enable reward shaping via natural language instructions or preference feedback and
have been shown to improve learning efficiency and generalization. In the explicit reward setting,
LLMs are used to generate executable code that defines reward functions programmatically. This
includes frameworks that iteratively refine reward code using self-reflection and feedback from train-
ing outcomes (Yu et al., 2023; Madaan et al., 2023; Song et al., 2023b). Compared to manually en-
gineered rewards, these LLM-generated functions offer transparency and adaptability, and in some
cases match or exceed human performance, especially in complex manipulation tasks.

As decision-makers, LLMs output action plans, policy sketches, or even direct action sequences
based on current observations. These methods embed LLMs tightly into the decision loop, either
guiding exploration or dictating behavior in few-shot or zero-shot settings. One approach leverages
pre-trained LLMs for direct action generation, often adapting transformer-based models like Deci-
sion Transformers to treat offline RL as a sequence modeling problem. These LLM-backed policies
show improved generalization, particularly in sparse-reward and long-horizon tasks, by transferring
latent structure learned from large-scale language data. Some methods further fine-tune LLMs using
task-specific trajectories or append small task-specific modules to facilitate adaptation, achieving no-
table gains in sample efficiency and task transfer (Zitkovich et al., 2023; Shi et al., 2023; Mezghani
et al., 2023).
Other works integrate LLMs more loosely as action guides, generating action candidates or ex-
pert priors to support exploration and training. For example, LLMs can prune the action space
by proposing high-probability candidates or decompose complex goals into sequential subtasks,
improving exploration in environments with large or unstructured action spaces (Yao et al., 2020;
Hausknecht et al., 2020; Dalal et al., 2024; Wan et al., 2025). They have also been used to regularize
policy updates, align agent behavior with human intent, or inject expert-level motion plans. Across
both low-level and strategic roles, LLM-based decision-making enables agents to learn from rich,
structured priors and execute more informed behaviors in complex settings.

As generators, LLMs contribute to reinforcement learning by either simulating environmental dy-
namics or providing policy-level explanations to enhance transparency. In the simulation role, LLMs
function as world model simulators that generate trajectories or learn latent dynamics represen-
tations from multimodal data, thereby improving sample efficiency in model-based RL. Recent
work has leveraged Transformer-based architectures to model complex visual or sequential envi-
ronments, demonstrating gains in generalization and long-horizon reasoning. These models either
auto-regressively generate rollouts from pre-trained dynamics or use representation learning to pre-
dict future states and rewards, often incorporating language as an additional modality for grounding
and abstraction (Micheli et al., 2022; Chen et al., 2022; Robine et al., 2023). Separately, LLMs have
been used as policy interpreters to generate human-readable explanations of agent behavior from
state-action histories or decision trees. This facilitates interpretability, improves human trust, and
can inform reward design or debugging, though current work has focused mainly on policy-level
summaries (Lin et al., 2023; Lu et al., 2023).

While MIRA incorporates elements of information processing and LLMs as generators, its overall
orientation remains distinct and more RL-centric from prior LLM-centered approaches. Rather than
positioning the LLM as a decision-maker or continuous feedback provider, MIRA relegates it to
a supporting role that gradually fades over time. LLM outputs are used intermittently to enrich a
structured memory graph that informs, but does not dictate, learning. The primary learning signal
remains grounded in environment interaction, with utility shaping softly modulating advantage esti-
mates rather than overriding the reward function. This design prioritizes policy optimization through
reinforcement learning rather than imitation or prompting

B.2 MEMORY AND BUFFERS IN RL

Augmenting RL agents with structured memory has been proposed as a means of supporting general-
ization, planning, and long-horizon credit assignment. Early works such as Neural Episodic Control
(NEC) and other episodic value-based methods enabled agents to recall high-value past experiences
for more sample-efficient decision-making via memory buffers (Pritzel et al., 2017; Blundell et al.,
2016; Lin, 1992). Subsequent approaches extended this idea by integrating differentiable memory
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into policy networks (Qiu et al., 2024). Other methods introduce structured representations, such as
subgoal graphs or navigation maps, to facilitate hierarchical planning, exploration, or navigation in
partially observable environments (Beeching et al., 2020; Rana et al., 2023). Across these directions,
the common pattern is to directly query stored structures, either through replay, imitation, or graph
traversal, to guide behavior.

MIRA aligns with this direction by maintaining a structured memory graph populated with high-
return trajectory segments but departs from this pattern in several key ways. First, its memory
graph is co-constructed from high-return agent trajectories and LLM-inferred subgoals, enabling
abstraction and structure difficult to obtain early through interaction alone. Second, rather than
querying memory for action selection or value estimation, MIRA distills the stored information
into a utility signal that modulates advantage estimates during training. This indirect shaping avoids
disrupting the optimization loop or overfitting to specific stored transitions. Finally, MIRA maintains
a compact memory via pruning and infrequent updates, which avoids the inefficiencies of excessive
memory or the brittleness of sparse guidance (Liu & Zou, 2018). This makes MIRA more scalable
and better suited for tasks where long-term structure must complement autonomous learning.

B.3 ADVANTAGE MODIFICATIONS IN RL

Modifying the advantage function has been studied as a way to stabilize learning and improve sam-
ple efficiency in policy optimization. A common approach adjusts the estimation process to better
balance bias and variance. Generalized Advantage Estimation (GAE) (Schulman et al., 2015b)
introduces a tunable parameter that interpolates between high-bias low-variance and low-bias high-
variance estimators, and is widely adopted in actor-critic algorithms. Other methods reformulate
policy updates in terms of advantages. Advantage-Weighted Regression (AWR) (Peng et al., 2019)
avoids policy gradients and instead performs weighted regression over actions. P3O (Fakoor et al.,
2020) combines on-policy and off-policy learning by applying advantage-weighted importance sam-
pling to stabilize updates. In the offline RL setting, advantage estimates are often used to filter ex-
perience and address distributional shift. Advantage-based data selection (Kostrikov et al., 2021)
discards transitions with low advantage, helping to focus learning on high-quality samples. Addi-
tional work incorporates auxiliary signals into the advantage estimate. Preference-based RL (Lee
et al., 2021) derives implicit advantage signals from human comparisons, while other approaches
integrate value correction from ensemble critics or confidence measures to adjust learning.

MIRA builds on these ideas but takes a different path. Instead of replacing the estimator or introduc-
ing new objectives, it shapes the advantage using a utility term derived from a structured memory
graph. This utility reflects agent experience and LLM-derived subgoals, allowing guidance with-
out overriding reward feedback. The resulting signal is integrated into PPO’s update rule without
disrupting its optimization dynamics, enabling structured shaping while maintaining scalability and
convergence guarantees.

C THEORETICAL RESULTS

Since the utility term does not alter the policy or critic structure, and enters additively, MIRA
preserves standard stability and asymptotic properties of policy gradient methods such as PPO under
standard assumptions:

C.1 ASSUMPTIONS

Assumption 1 (Boundedness).

a. For all updates k and all (s, a)
|Ak(s, a)| ≤ Amax, 0 ≤ Uk(s, a) ≤ Umax (12)

b. Define the scale-adjusted shaping term as:
Uk(s, a) = Āk · Uk(s, a), where Āk = ⟨|Ak|⟩ (13)

and set
Umax = Umax · sup

k
Āk (14)
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Assumption 2 (Scale control).

a. For all k, the scaling parameters satisfy:

0 < ηk ≤ 1, ξk ≤ δtηk for some δt ∈ [0, 1) (15)

b. Asymptotically, the schedule satisfies:

lim
k→∞

ηk = 1, lim
k→∞

ξk = 0 (16)

Assumption 3 (Trust region).

KL(πk, πk+1) ≤
(1− γ) ε2k

2

(implied by PPO clip ratio rπ ∈ [1− εk, 1 + εk]).

C.2 STABILITY AND SAFETY RESULTS

Lemma 1 (Bounded Shaped Policy Updates). Under Assumptions 1 (Boundedness), 2 (Scale Con-
trol), and 3 (Trust Region), the magnitude of each shaped PPO policy update is uniformly bounded.

Proof. By definition, the shaped advantage satisfies

|Ãt| ≤ ηt|At|+ ξt|Ut|.

Using Assumption 1 and Assumption 2(a), we obtain

|Ãt| ≤ ηtAmax + ξtUmax ≤ ηtAmax + δtηtUmax ≤ (1 + δt)Amax.

Under the PPO trust-region constraint in Assumption 3, the likelihood ratio is clipped and the score
function ∇θ log πθ(at|st) has bounded second moment. Consequently, the policy gradient update

Lshaped
k = E

[
∇θ log πθ(at|st) Ãt

]
is uniformly bounded in norm.

Theorem 2 (Non-Divergence under Trust Region). Under Assumptions 1 (Boundedness), 2 (Scale
Control), and 3 (Trust Region), the PPO updates computed using the shaped advantage Ãt = ηtAt+
ξtUt remain within the prescribed trust region. In particular, the KL divergence between successive
policies is uniformly bounded, and the optimization does not diverge.

Proof. At iteration k, PPO computes the policy update by maximizing a clipped surrogate objective
of the form

Lk(θ) = E
[
min

(
rt(θ) Ãt, clip(rt(θ), 1− εk, 1 + εk) Ãt

)]
,

where rt(θ) = πθ(at|st)/πθk(at|st). The clipping operation enforces

rt(θ) ∈ [1− εk, 1 + εk],

which implies the trust-region bound in Assumption 3 (see Schulman et al. (2017b)).

This constraint depends only on the policy parameterization and the clipping threshold εk, and
is independent of the specific form of the advantage estimator. Therefore, optimizing the shaped
surrogate induces the same likelihood-ratio constraint as standard PPO.

By Lemma 1 (Bounded Shaped Policy Updates), the resulting policy update has uniformly bounded
magnitude. Combining bounded update magnitude with the likelihood-ratio constraint yields

KL(πk ∥πk+1) ≤ (1−γ)ε2k
2 .

Hence, the sequence of shaped PPO updates remains within the prescribed trust region, and the
optimization does not diverge.
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C.3 ASYMPTOTIC BEHAVIOR

Theorem 3 (Asymptotic Equivalence to PPO). Let {πk} be the sequence of policies produced by
PPO using the shaped advantage

Ãt = ηtAt + ξtUt, (17)

where Ut is computed on-policy from the same rollouts as At. Under Assumptions 1 (Boundedness),
2 (Scale Control), and 3 (Trust Region), the shaped update is asymptotically equivalent to the stan-
dard PPO update. In particular, any stationary point of PPO is also a stationary point of the shaped
objective.

Proof. The PPO policy gradient update with shaped advantage is given by

Lshaped
k = E(st,at)∼πk

[
∇θ log πθ(at|st) Ãt

]
. (18)

Substituting the definition of Ãt yields

Lshaped
k = ηk LPPO

k + ξk LU
k , (19)

where

LPPO
k

.
= E[∇θ log πθ(at|st)At] , (20)

LU
k

.
= E[∇θ log πθ(at|st)Ut] . (21)

By Assumption 1, both At and Ut are uniformly bounded. Under the trust-region constraint in
Assumption 3, the score function ∇θ log πθ(at|st) has bounded second moment, ensuring that both
gradient components are finite.

By Assumption 2(b),
lim
k→∞

ηk = 1, lim
k→∞

ξk = 0, (22)

which implies
lim
k→∞

Lk = LPPO
k . (23)

Therefore, the shaped update converges to the standard PPO update. Any policy π⋆ satisfying
LPPO(π⋆) = 0 is also a stationary point of the shaped objective asymptotically.

C.4 EARLY-TRAINING ADVANTAGE

Theorem[reinstate] (Non-Vanishing Updates in Sparse-Reward Regimes).

Proof. Recall that the shaped advantage is defined as

Ãt = ηkAt + ξkUt,

and the corresponding shaped policy gradient is

Lshaped
k

.
= E

[
∇θ log πθ(at|st) Ãt

]
.

By linearity of expectation, the shaped gradient decomposes as

gshapedk = ηkLPPO
k + ξkLU

k , (24)

where
gPPO
k

.
= E[∇θ log πθ(at|st)At] , gUk

.
= E[∇θ log πθ(at|st)Ut] .

By assumption, the expected magnitude of the PPO advantage is small, E[|At|] ≤ εA. Under As-
sumption 1, |At| ≤ Amax, and under the trust-region constraint (Assumption 3), the score function
∇θ log πθ(at|st) has bounded second moment. Consequently, there exists a constant C > 0 such
that ∥∥LPPO

k

∥∥ ≤ C E[|At|] ≤ C εA.
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Figure 9: Prompt and response from GPT-4o-mini for the FROZENLAKE environment. The LLM
receives a serialized map or a textual description and is asked to provide the best and second-best
safe trajectories from start to goal, avoiding all holes under deterministic dynamics.

Taking norms on both sides of Eq. equation 24 and applying the triangle inequality yields∥∥Lshaped
k

∥∥ ≥ ξk
∥∥LU

k

∥∥− ηk
∥∥LPPO

k

∥∥.
Substituting the above bound on ∥LPPO

k ∥ gives∥∥Lshaped
k

∥∥ ≥ ξk
∥∥LU

k

∥∥− ηkCεA.

Since 0 < ηk ≤ 1 by Assumption 2, the second term is O(εA), and we obtain∥∥Lshaped
k

∥∥ ≥ ξk
∥∥LU

k

∥∥−O(εA),

which completes the proof.

Remark (Bias–Variance Trade-off). The shaping mechanism can also be interpreted through the
lens of the bias–variance trade-off in policy gradient estimation. Standard PPO relies on advantage
estimates (e.g., GAE or Monte Carlo returns) that depend on long-horizon rollouts and typically
exhibit high variance, particularly in early training. In contrast, the utility signal Ut depends only
on the current state–action pair and its similarity to stored high-return trajectories, yielding a lower-
variance but biased learning signal. Initializing ξ0 > 0 stabilizes early optimization by injecting
this bias, while the decay schedule ξk → 0 gradually restores reliance on reward-based advantage
estimates as the policy and critic become more reliable.

D LLM PROMPTING AND REASONING

D.1 GYMNASIUM TOY TEXT

Figure 8: Frozen Lake
(Gymnasium)

FROZENLAKE is a tabular RL environment where the agent starts in the
top-left and must reach the bottom-right goal while avoiding holes. For
FROZENLAKE, we provide the LLM with the complete map of the envi-
ronment, either as an image (Figure 8) or as a serialized array repre-
sentation such as [‘F’, ‘F’, ..., ‘H’, ‘F’, ..., ‘G’].
Though the environment is typically stochastic due to slipperiness, the
LLM is instructed to assume deterministic transitions.

Although much of the prompt is directly from the official environment
description, for clarity and reproducibility, we include the full version.
The prompt and the LLM’s response are shown in Figure 9.

D.2 STANDARD AND CUSTOM MINIGRID AND BABYAI ENVIRONMENTS

Each environment was chosen for a specific purpose: REDBALL involves short-horizon navigation
and fast spatial goal acquisition. LAVACROSSING introduces irreversible transitions that require
long-horizon planning to avoid dead ends. DOORKEY requires the agent to acquire a key, unlock a
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Figure 10: Prompt to Offline LLM for the custom MiniGrid variant DISTRACTED DOORKEY. The
prompt describes the task setting, object roles, and challenges, and asks the LLM to confirm under-
standing before suggestions.

door, and reach the goal, forming a delayed dependency chain that challenges temporal credit assign-
ment. REDBLUEDOOR tests the agent’s ability to commit to a correct action sequence, as opening
the blue door prematurely ends the episode. At last, DISTRACTED DOORKEY introduces BabyAI-
style distractors (e.g., irrelevant balls and boxes) alongside the original multi-step dependencies of
DOORKEY, allowing us to test whether the LLM can generalize across known task elements and
maintain coherent subgoal proposals under added visual distraction. For standard MiniGrid and
BabyAI environments, we used the environment descriptions provided on the MiniGrid website.
For our custom environment (DISTRACTED DOORKEY), we mimicked the phrasing and structure
of the official MiniGrid descriptions (Figure 10). Unlike in FROZEN LAKE, obtaining useful tra-
jectories here was not as straightforward. MiniGrid-style environments often required multi-round
prompting to obtain meaningful and desired outputs. Moreover, instead of providing an image of
the environment, we found it more effective to use a textual description. This helped reduce confu-
sion and encouraged the LLM to understand that object locations (e.g., the key, door, and agent in
DOORKEY) can vary across episodes.

D.3 LLM REASONING PATTERNS ACROSS MODELS

We observed that different LLMs produced very different memory graphs. To better understand
how different models reason about these environments, we recorded not only their output trajecto-
ries but also their internal reasoning processes. For model that include system-level thinking (e.g.,
GPT-o4-mini), this was extracted directly from the response. For models that do not expose inter-
mediate reasoning (e.g., Claude 3), we followed up with an auxiliary prompt such as: “Give me your
reasoning as to why you chose this sequence of actions.”

These responses were not used in the MIRA framework, but we found them surprisingly reveal-
ing. Despite receiving identical prompts, the models relied on starkly different reasoning strategies.
This divergence gave us unexpected insight into how various LLMs process spatial structure, inter-
pret decision sequences, and reason about reinforcement learning dynamics and learning objectives.
Differences that, in turn, shape the quality of their output trajectories. In Figure 11, we present
reasoning snippets from the LLMs’ outputs. We omit the initial sections where models repeat the
prompt or restate the environment description, and instead highlight the specific reasoning steps that
led each model to select a particular trajectory. The influence of these differing reasoning strategies
on RL performance is reflected in the return curves shown in Figure 7.

D.4 CASE STUDY: DISTRACTED DOORKEY

In the ablation study presented in Subsections 4.2, GPT-o4-mini and Gemini return different outputs
when presented with the same situation. Here, we provide the exact prompt and reasoning traces. As
shown in Figure 12, both responses appear plausible at a surface level, but only one is consistent with
the task dynamics: given that sufficient exploration has already occurred, the key is likely collected,
making suppression of the corresponding action the correct response. In this case, the divergence
leads to a drop in performance under the misaligned output.
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Figure 11: Reasoning traces produced by different LLMs in response to our custom environment
prompt as part of “Offline LLM” prompting. After confirming they understood the environment,
each model was asked: “If you were to give an RL agent useful trajectories to help solve this, what
would you do?” For models that do not output internal reasoning (e.g., Claude), we issued a follow-
up prompt requesting their thought process. We omit repeated environment restatements and show
only the key parts where the model explains how it decided on the action sequence.

Figure 12: Reasoning traces produced by Gemini and ChatGPT under “Online LLM” prompting.
The prompt emphasizes that sufficient exploration has already been performed and, from the partial
observation, no key is visible. A (flawed but plausible) line of reasoning is that the agent must still
be in the phase of searching for the key, so reducing the probability of toggle appears reasonable to
prioritize movement actions for exploration.

E MEMORY GRAPH CONSTRUCTION DETAILS

In this section, we further explain the procedure for initializing, updating, and pruning MIRA’s
memory graph. As discussed in Section 2, the initial memory graph is constructed from offline
LLM-generated suggestions. Once built for a specific environment, this graph can be reused across
training episodes or even across agents within the same task. Since MIRA is designed to generalize
across diverse settings, figure 2 illustrates how the framework accommodates environments with a
single terminal objective as well as tasks with multiple independent objectives

Given that each task differs slightly, we largely focus our detailed explanation on DOORKEY from
the MiniGrid suite for the rest of the subsections, as it contains multiple subgoals and is sufficiently
complex to show the dynamics of the graph clearly.
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E.1 INITIALIZATION

As shown in figure 11, GPT-o4-mini tends to generate trajectory segments that begin after the key
is picked up, with the subgoal “toggle the door”. In contrast, models like Claude tend to produce
longer, full trajectories from the beginning. Interestingly, segmented trajectories are often more
useful in this environment. Since the environment is partially observable and reinforcement learning
relies heavily on exploration, allowing the agent to figure out how to reach the key on its own helps
it understand the overall layout of the environment better. Once the key is acquired, there is a higher
chance that the door has already entered the agent’s observation window, making memory-guided
navigation toward the door more effective.

In addition to segments, the LLM also infers subgoals (κℓ). While the obvious ones are “Pick up
key,” “Open door,” and “Reach goal,” o4-mini returns more detailed versions like:

κ1 : Go to key → κ2 : Pick up key → κ3 : Go to door → κ4 : Toggle door → g▷: Go to goal.

This fine-grained subgoal sequence reflects the environment’s control logic: the “open door” action
is valid only if the agent is positioned one step away, properly aligned, and facing the door.

Moreover, for each memory segment, an estimated subgoal reward r̂m is stored in the node that
reflects geometric progress toward completing its associated subgoal. In discrete environments (e.g.,
MiniGrid), progress is computed using the normalized shortest-path distance between the states in
the segment and the subgoal’s target location.

E.2 AGENT-INDUCED UPDATES

During training, new nodes are added to the memory graph or existing ones are updated whenever
the agent produces trajectory segments that improve upon what the graph already stores, either by
providing a new segment for a (sub)goal or by achieving a higher estimated return than the current
entry for that (sub)goal. For example, if the agent independently discovers a shorter path to the
key and then follows a memory-guided trajectory to reach the door or goal, the resulting sequence
is added as a new node in the graph. Likewise, if the agent successfully executes a trajectory that
was initially stored with low confidence from the offline LLM, we treat this behavior as implicit
validation and increase the confidence of the corresponding memory node.

The memory graph remains lightweight throughout training. Each node stores a trajectory segment
and metadata, and the total graph size stays compact. Compared to experience replay buffers in
standard off-policy RL methods, which retain large volumes of data, the memory graph introduces
negligible computational and memory overhead. To maintain compactness, unused nodes are peri-
odically pruned based on access frequency. Each memory node tracks an access counter, which is
reset every time the node is used. Nodes that are not accessed for 100 episodes are pruned, except
for those corresponding to final goal trajectories (g▷), which are retained since the agent might not
have reached them early on, but they are essential for guiding successful completion later in training.

Algorithm 2 summarizes the add, update, and prune operations that govern how the memory graph
is maintained during training.

E.3 ONLINE GRAFTING AND TRIGGERS

Since the agent has a limited number of steps per episode, it may fail to reach any subgoal (e.g.
“Open Door”) with a matching trajectory in the memory graph early on, preventing utility shaping
from activating. To address this, MIRA includes a fallback mechanism: if the computed utility
U is entirely zero for N consecutive episodes, the agent triggers an online LLM query. These
online queries return short plans (e.g., “turn left, move forward, toggle”) based on the agent’s partial
observations to help the agent reorient. Once screened for quality, the new suggestion is grafted into
MIRA. Another way online LLM queries contribute is by influencing the agent’s policy preferences
directly through soft logit injection. Importantly, the online LLM is constrained by the same partial
observability as the agent. It does not receive access to the full environment state and therefore
cannot, for example, determine the presence of a key elsewhere in the grid. Furthermore, since
inventory status is not part of the agent’s observation space, the LLM is unaware of whether the
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agent has picked up the key. Instead, the LLM receives a batch of recent partial observations and
must infer from them whether any meaningful guidance can be offered.

F UTILITY COMPUTATION

In this section, we provide a detailed explanation of the utility computation introduced in the main
text, clarifying how each component contributes to the shaping term. The utility measures how
closely the agent’s trajectory aligns with high-return segments stored in the memory graph. When a
reference trajectory is matched, utility values are assigned based on reverse-aligned similarity with
reference trajectories; unmatched steps receive zero utility. Below, we describe the role of each
factor in the computation (Equation 2) and provide pseudocode for the full procedure.

F.1 SIMILARITY SCORE

The similarity function assigns a score based on the information extracted from the agent’s and the
reference transition’s observations. Depending on the environment, these observations may include
position, orientation, or action. For example, in FROZENLAKE, observations are discrete and include
only position, so direction is omitted in the similarity check. High similarity indicates that the agent
is reproducing a locally meaningful portion of a successful stored trajectory, whereas low or zero
similarity reflects small or no meaningful match.

Algorithm 2 Evolving Memory Graph During Training
Require: Memory graph G, new trajectory and metadata (τ ′, ζ ′, r̂′, c′), prune window W

Mζ ← {m ∈ G : ζm = ζ ′}
if source = ONLINELLM then

if ¬SCREENING then
return G ▷ Discard online LLM suggestion

end if
end if
ifMζ = ∅ ▷ No existing segment for this subgoal then

Create node m′ ← (τ ′, ζ ′, r̂)c′
Initialize accessm′ ← 0
Insert m′ into G

else
m← argmaxm∈Mζ

r̂m
if r̂′ > r̂m then

(τm, r̂m)← (τ ′, r̂′)
cm ← c′

end if
if source = AGENT then
cm ← min(1, cm +∆c) ▷ Agent validation increases confidence

end if
end if
for each node m ∈ G do

if accessm = 0 for W episodes then
Remove m from G ▷ Prune nodes unused within inactivity window

end if
end for
return G

F.2 GOAL ALIGNMENT

The goal-alignment factor ρ scales utility based on how closely the subgoal associated with a
matched memory segment relates to the subgoal that the current transition corresponds to. Although
the RL agent never observes subgoal labels, the environment state uniquely identifies which subgoal
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Algorithm 3 Similarity Score ∫
Require: Agent xa and Reference xm annotated transition (metadata)

if (pos., dir.) ∈ (oa, om) match & aa = am then
return ∫ = high sim ▷ (1)

else if pos. ∈ (oa, om) match & aa = am then
return ∫ = mod sim ▷ not align direction (0.7)

else if (da ∈ oa)± 1 mod 4 = dm ∈ om then
return ∫ = low sim ▷ action aligned direction (0.4)

else
return ∫ = no sim ▷ (0)

end if

phase the transition belongs to, for example, in DOORKEY environment, whether the agent is still
approaching the key or has already picked it up and is proceeding toward the door. Each memory
node carries a subgoal label generated by the LLM. These subgoal descriptions consistently identify
(i) the object or region involved and (ii) the high-level action applied to it. We extract these two
components through simple rule-based parsing over the LLM-generated subgoals, yielding an entity
token (e.g., key, door, ball) and an action-phase tag (e.g., navigate). The alignment score ρ is then
calculated as the Jaccard similarity between the token pair of the memory node’s subgoal and the
token pair associated with the transition under evaluation. As a result, locally similar transitions only
contribute to utility when they align semantically with the relevant subgoal, preventing behaviorally
similar but semantically unrelated memory segments from influencing the utility signal.

Algorithm 4 Goal Alignment ρ
Require: Agent ζa and Reference ζm subgoal

ta ← TOKENS(ζa) ▷ Agent entity–phase token
tm ← TOKENS(ζm) ▷ Memory entity–phase token
I∩ ← tm ∩ ta
I∪ ← tm ∪ ta
return ρ = |I∩|/|I∪|

With the similarity score ∫ and alignment factor ρ established, we combine them with the memory-
stored quantities r̂m (estimated subgoal reward) and cm (LLM confidence) to construct the utility
used in advantage shaping.

Algorithm 5 Compute Utility Score
Require: Agent τagent and Reference τm trajectory

x
.
= (o, a, r,meta) ▷ Denote a transition with metadata (e.g. subgoals)

Initialize U ← [0, . . . , 0]

Align the tail of τagent to length of τm

for each (xa, xm) ∈ (τ tail
agent, τm) do

∫ ← ∫((oa, aa), (om, am)) ▷ Compute similarity
ρ← ρ(ζa, ζm) ▷ Compute goal aligment factor
u← cm · r̂m · ρ · ∫
Assign u to corresponding index in U

end for
return U
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G EXTENDED EXPERIMENTAL STUDIES

G.1 SENSITIVITY AND ROBUSTNESS STUDIES

G.1.1 PROMPT ROBUSTNESS

Figure 13: FrozenLake robustness to
prompt wording. MIRA achieves similar
performance under the original and alter-
native prompts, showing stability to natural
variations in task description.

To evaluate robustness to reasonable variations in
prompt wording, we repeated the FROZENLAKE ex-
periment using an alternative prompt with simpler
phrasing but identical task information. In this vari-
ant, the prompt stated that “FrozenLake is a grid
where S is the start, G is the goal, F are safe tiles,
and H are holes. The agent moves from state 0 using
actions 0=left, 1=down, 2=right, 3=up, and moves
that go off the grid keep the agent in place and are
safe. Using the grid and assuming deterministic tran-
sitions, provide a shortest safe path from S to G that
avoids all holes, and return the best and second-best safe paths as Python dictionaries mapping each
visited state to its action, using None for the goal or holes.’’ Figure 13 compares MIRA under the
original and alternative prompts. The learning curves and final returns are closely aligned, showing
that MIRA’s performance is stable under natural variations in how the environment description is
presented.

G.1.2 THRESHOLD SENSITIVITY

Figure 14: Sensitivity to the screening
threshold. Lenient thresholds graft more
candidate nodes into memory early, pro-
ducing broader shaping during exploration
but a slower overall improvement rate.
Stricter thresholds delay graph growth yet
yield sharper mid-training gains once high-
confidence nodes appear. All settings con-
verge to a narrow performance band.

To assess the sensitivity of the screening rule, we
conduct a study that varies the acceptance threshold
while keeping the overall method fixed. The thresh-
old, therefore, controls when and how densely the
graph is populated, not whether shaping exists at all.
The main results of the paper uses k = 3 LLM com-
pletions, which was chosen for efficiency across all
experiments. For this diagnostic test only, we set
k = 4 to obtain cleaner fractional thresholds cor-
responding to meaningful agreement levels on the
DOORKEY environment. We evaluate three settings:
a lenient majority rule (τ ≥ 2/4), a stricter majority
rule (τ ≥ 3/4), and unanimous agreement (τ = 1).

Figure 14 shows that the threshold primarily affects
the early phase of learning. With a lenient thresh-
old, more candidate suggestions are grafted as healthy
graph nodes and added to the memory. This leads the
agent to receive utility bonuses on more states while
it is still exploring. As a result, even if some early nodes may be slightly misaligned, the overall
trend still pushes the agent toward regions that have higher returns. It is then up to the agent to cor-
rect those nodes through experience or increase their confidence if they turn out to be helpful, which
explains why the overall improvement can be slower in this setting. In the stricter settings, fewer
suggestions pass the screening, so graph growth is delayed and the shaping signal remains sparse.
Early learning progresses more slowly, but once these high-confidence nodes enter the graph, they
produce larger and more coherent utility bonuses along trajectories that already correlate with high
return, which creates the steeper rise visible in the mid-training region. The near-final performance
still lies in a narrow band, since the shaping term is bounded and eventually dominated by the learned
value function. This behavior is consistent with the design of our utility-based shaping, using the
LLM’s possibly imperfect but often still useful knowledge to accelerate the initial learning phase
while ensuring stable progress as more reliable evidence accumulates.
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G.2 EARLY ADVANTAGE DYNAMICS

Figure 15: Return curves for different η val-
ues under fixed ξ settings. Markers indicate
the first iteration where performance begins
to diverge, signaling when At starts to mean-
ingfully affect learning. Early on, the critic
signal is weak, and Ãt is driven mostly by the
utility term. When ξ is large enough, shaping
accelerates the critic’s contribution by up to
50 iterations and leads to around 2.5× higher
return compared to the unshaped case.

Figure 15 provides empirical support for the central
intuition behind our shaping formulation. We plot
return curves for each ξ group (color), across dif-
ferent η values (line style). Early in training, return
curves within each ξ group remain tightly clustered,
indicating that At, the critic’s estimate, provides lit-
tle useful signal, regardless of how it is weighted.
Divergence points, marked on the figure, denote the
first iteration where the return spread across η values
exceeds a certain threshold, signaling that At has be-
gun contributing meaningfully to the shaped advan-
tage Ãt = ηtAt + ξtUt.

In the absence of shaping (ξ = 0, gray lines), this
occurs relatively late (iteration 131), whereas with
shaping (ξ > 0), it happens substantially earlier
(iterations 81–113, depending on ξ). This shows
that the utility term not only supports early learn-
ing but also accelerates the emergence of a reliable
critic. These results validate our choice to softly
shape advantages, and emphasize the importance of
carefully tuning ξ and η: insufficient shaping slows
critic learning, which in turn leads to substantially lower mean returns.

Remark (Optimization Landscape in Sparse-Reward Regimes). In sparse-reward environ-
ments, standard policy gradient methods such as PPO may exhibit near-zero expected gradients
in early training, as reward-based advantage estimates At are often uninformative until a success-
ful trajectory is observed. The non-vanishing update result (Theorem 1) implies that the proposed
shaping objective induces a consistent gradient signal ξk∇θE[U ] even when reward-based advan-
tages are weak. This additional structure modifies the local optimization landscape by providing an
informative descent direction derived from trajectory similarity, thereby facilitating earlier and more
stable optimization.

G.3 RELATIVE WALL TIME

Figure 16: Wall-clock runtimes across environ-
ments. Time required to reach a 0.5 return (left):
PPO reaches 0.5 only on FROZEN LAKE, while
both MIRA variants converge across tasks. Run-
time for 2k training steps (right): Online MIRA
incurs extra overhead from initial LLM queries,
but this cost reduces wasted exploration and leads
to faster convergence in terms of overall wall time.

We measure relative wall-clock time as the
end-to-end runtime per iteration to assess each
method’s computational burden. Environments
with a more complex step logic, such as DIS-
TRACTED DOORKEY, which involves door
toggling, key collection, and distractor dy-
namics, incur higher per-step simulation costs.
Tasks like REDBLUEDOOR and LAVACROSS-
ING further increase runtime through frequent
failures that trigger repeated episode resets and
buffer re-initializations. In contrast, FROZEN
LAKE’s tabular, low-dimensional transitions
execute very quickly, so all methods complete
rapidly (we do not run the online variant here
since the offline approach suffices). Occasional
LLM queries introduce network latency that
further raises wall time in the slower domains.
As a result, relative wall time grows with both
the intrinsic simulation complexity of the en-
vironment and any additional algorithmic over-
head (e.g., LLM calls).
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Figure 16 reports wall-clock times for two measures: reaching a 0.5 return (left) and completing a
2k-step run (right). In the left panel, PPO reaches 0.5 only on FROZEN LAKE, while both MIRA
variants converge across all environments. In the right panel, PPO shows the lowest per-step runtime
because online MIRA incurs some additional cost from its initial LLM queries. However, early
queries reduce wasted exploration, allowing online MIRA to reach 0.5 return much faster overall,
yielding a net gain in efficiency despite the upfront overhead.

A complete view of these trade-offs comes from considering both Figure 16 and the right-hand
panel of Figure 7. Together, they show how higher return and wall-clock time interact when online
LLM latency is present. Although online MIRA incurs additional latency from occasional queries,
a substantial portion of this cost is offset by faster policy improvement: the agent spends less time
in unproductive exploration and reaches competent behavior sooner. This can be seen directly by
comparing the left and right panels of Figure 16: online MIRA has slightly higher per-step runtime,
yet it reaches the 0.5 return threshold earlier in wall-clock time. The right-hand panel of Figure 7
reinforces this result, showing that the higher cost of online queries is compensated by more rapid
performance gains.

G.4 MEMORY GROWTH ANALYSIS

Figure 17: Memory size growth over train-
ing. Early growth is followed by conver-
gence once trajectories become consistent,
with final sizes increasing from REDBALL
to DOORKEY to DISTRACTED DOORKEY
in line with task complexity.

We examine how the memory graph evolves dur-
ing training. MIRA updates the graph only when
computing the utility term during advantage estima-
tion, so memory expansion occurs once per training
batch rather than at every environment step. Because
batches contain full trajectories, their lengths vary
across environments. To obtain a consistent summary
across tasks, we record the memory size every 100
training iterations.

Figure 17 reports memory growth for REDBALL,
DOORKEY, and DISTRACTED DOORKEY. In all
three environments, memory grows quickly during
early training, reflecting the period where the agent
encounters diverse high-return segments and, when
applicable, issues LLM queries that generate candidate memory additions. As trajectories converge
to a consistent solution, memory expansion slows and eventually stabilizes. The plateau levels re-
flect the structural demands of each task: REDBALL retains only a small set of nodes due to its
simple subgoal structure, whereas DOORKEY and DISTRACTED DOORKEY require a richer collec-
tion of region-anchored segments. DISTRACTED DOORKEY ends up with the largest memory, as
the distractor objects create additional path variants that help guide the agent, while the total size
remains bounded and does not grow throughout later training.

G.5 QUERY FREQUENCY PERFORMANCE SUMMARY

Table 1 expands on Figure 7 in Subsection 4.2. It shows how different online query budgets impact
learning progress (SR90Return, indicating the mean return when success rate first exceeds 90%),
final return, and convergence speed (total steps to termination). The results reinforce that while
all MIRA variants outperform PPO, higher online budgets further accelerate training and improve
asymptotic performance.

Table 1: Performance on DOORKEY. SR90Return is the mean return when success rate first exceeds
90%; Final Return is the return at the end of training; Final Step is the total environment steps.
MIRA variants outperform the baseline in both early and final return, with MIRA (large) achieving
the highest values while converging fastest.

Method SR90Return↑ Final Return↑ Final Step↓

Baseline 0 ± 0.002 0.009 ± 0.001 10362
MIRA (offline) 0.233 ± 0.087 0.295 ± 0.123 10351
MIRA (mid) 0.284 ± 0.065 0.902 ± 0.012 10257
MIRA (large) 0.851 ± 0.060 0.91 ± 0.013 9961
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G.6 MINIGRID PERFORMANCE SUMMARY

Tables 2 and 3 report detailed numerical results for all four MiniGrid tasks, including mean returns
and success rates averaged over unseen seeds. MIRA consistently outperforms both PPO and the
hierarchical baseline across all environments, including the more complex ones such as DOORKEY
and REDBLUEDOOR. Welch’s t-tests (Ruxton, 2006) show no statistically significant difference
between MIRA and LLM4Teach at the 0.05 level across metrics and environments (Table 4). These
results support the aggregate performance trends in the main text (Figure 6), demonstrating that
MIRA improves both final return and task completion.

Table 2: Mean return on unseen seeds across MiniGrid environments. MIRA achieves high and
stable success, comparable to LLM4Teach, despite requiring substantially fewer LLM queries.

Method DOORKEY LAVACROSSING REDBLUEDOOR REDBALL

Baseline RL 0.018 ± 0.016 0.012 ± 0.027 0.044 ± 0.042 0.329 ± 0.205
HRL 0.852 ± 0.017 0.798 ± 0.090 0.830 ± 0.021 0.939 ± 0.046
LLM4Teach 0.912 ± 0.075 0.884 ± 0.100 0.901 ± 0.082 0.946 ± 0.051
MIRA 0.898 ± 0.093 0.855 ± 0.132 0.911 ± 0.077 0.942 ± 0.054

G.6.1 T-TEST: MIRA VS. LLM4TEACH

To assess whether the performance differences between LLM4Teach and MIRA are statistically
significant, we conduct Welch’s t-tests on the evaluation metrics across environments and seeds.
Welch’s t-test is a two-sample statistical test that does not assume equal variance. As shown in
Table 4, none of the differences reach significance at the α = 0.05 level. This suggests that MIRA
performs comparably to LLM4Teach across all reported metrics, despite MIRA having small lower
final reward.

H LIMITATIONS

While MIRA improves sample efficiency and reduces reliance on frequent LLM queries, it also
comes with natural trade-offs. The method relies on offline LLM outputs to initialize its memory
graph, which, if they include misleading information or are not well aligned with the environment
dynamics, can slow convergence or increase the need for online queries. Our screening and pruning
mechanisms reduce this risk, and in practice it is largely a limitation of current LLMs that is expected
to diminish as models improve. MIRA also introduces shaping terms that require hyperparameter
tuning to avoid instability between the actor and critic. We find, however, that they can be adjusted
with standard procedures. Finally, our current study focuses on discrete action spaces; extending
MIRA to continuous domains without discretization is a natural next step.

I REPRODUCIBILITY

Experiments were run on both a Linux server with Intel Xeon E5-2630 v4 CPUs (40 threads) and
an Apple M2 (8-core CPU, 10-core GPU, 16GB unified memory). All LLM models used in our
experiments correspond to the publicly available versions released in the first week of August 2025.

I.1 SIMULATION PLATFORMS

I.1.1 GYMNASIUM TOY TEXT

ENVIRONMENT DETAILS. Horizon indicates the maximum number of steps per episode before
automatic termination (i.e., maxsteps in the environment configuration).
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Table 3: Success rate on unseen seeds across MiniGrid environments. MIRA achieves consistently
high success rates, matching LLM4Teach while requiring fewer queries, and outperforming baseline
and HRL methods.

Method DOORKEY LAVACROSSING REDBLUEDOOR REDBALL

Baseline RL 0.023 ± 0.017 0.017 ± 0.020 0.036 ± 0.043 0.539 ± 0.064
HRL 0.897 ± 0.013 0.841 ± 0.085 0.892 ± 0.012 0.956 ± 0.025
LLM4Teach 0.970 ± 0.004 0.931 ± 0.011 0.956 ± 0.003 0.958 ± 0.021
MIRA 0.953 ± 0.043 0.913 ± 0.077 0.944 ± 0.020 0.956 ± 0.036

Table 4: Welch’s t-test comparing LLM4Teach and MIRA (MR: Mean Return - SR: Success Rate).
None of the differences are statistically significant at α = 0.05.

Metric LLM4Teach MIRA t p 95% CI
DOORKEY (MR) 0.912± 0.075 0.898± 0.093 0.203 0.8495 [–0.181, 0.209]
DOORKEY (SR) 0.970± 0.004 0.953± 0.043 0.682 0.5647 [–0.0885, 0.1225]
LAVACROSSING (MR) 0.884± 0.100 0.855± 0.132 0.303 0.7778 [–0.2443, 0.3023]
LAVACROSSING (SR) 0.931± 0.011 0.913± 0.077 0.401 0.7260 [–0.1681, 0.2041]
REDBLUEDOOR (MR) 0.901± 0.082 0.911± 0.077 –0.154 0.8851 [–0.1906, 0.1706]
REDBLUEDOOR (SR) 0.956± 0.003 0.944± 0.020 1.028 0.4081 [–0.0362, 0.0602]
REDBALL (MR) 0.946± 0.051 0.942± 0.054 0.093 0.9302 [–0.1152, 0.1232]
REDBALL (SR) 0.958± 0.021 0.956± 0.036 0.083 0.9387 [–0.0717, 0.0757]

Table 5: FrozenLake environment details.
Property Value

Observation Type Discrete
Horizon 200
Reward Sparsity Sparse
Action Space 4 (tabular)
Dynamics Slippery, irreversible

HYPERPARAMETER. Table 6 provides the main specifications of FrozenLake for PPOConfig in
RLlib.

Table 6: Hyperparameters of FROZENLAKE

Parameter Value

Learning rate 1× 10−4

Batch size 512
Mini-batch size 64
Number of epochs 4
Entropy coefficient 0.01
Discount factor (γ) 0.99
GAE lambda (λ) 0.95
Utility (ξ) [0.9]
Batch mode “complete episodes”

I.1.2 MINIGRID AND BABYAI

ENVIRONMENT DETAILS. Horizon indicates the maximum number of steps per episode before
automatic termination (i.e., maxsteps in the environment configuration).
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Table 9: Hyperparameters of DOORKEY

Parameter Value

Learning rate 2.5× 10−4

Batch size 1024
Mini-batch size 64
Number of epochs 4
Entropy coefficient 0.01
Discount factor (γ) 0.99
GAE lambda (λ) 0.95
Utility (ξ) [0.25, 0.15]
Batch mode “complete episodes”

Table 10: Hyperparameters of LAVACROSSING

Parameter Value

Learning rate 2.5× 10−4

Batch size 1024
Mini-batch size 64
Number of epochs 4
Entropy coefficient 0.01
Discount factor (γ) 0.99
GAE lambda (λ) 0.95
Utility (ξ) [0.3]
Batch mode “complete episodes”

Table 11: Hyperparameters of REDBLUEDOOR

Parameter Value

Learning rate 5× 10−5

Batch size 1024
Mini-batch size 64
Number of epochs 4
Entropy coefficient 0.01
Discount factor (γ) 0.99
GAE lambda (λ) 0.9
Utility (ξ) [0.25]
Batch mode “complete episodes”

Table 12: Hyperparameters of REDBALL

Parameter Value

Learning rate 2× 10−4

Batch size 512
Mini-batch size 64
Number of epochs 4
Entropy coefficient 0.01
Discount factor (γ) 0.99
GAE lambda (λ) 0.95
Utility (ξ) [0.2]
Batch mode “complete episodes”

Table 7: MiniGrid suite details.
Property Value

Observation Type RGB
Reward Sparsity Sparse and delayed
Action Space 7 (tabular)
View Size 7
Horizon 300

Table 8: MiniGrid environments and their dynamics.
Environment Dynamics

REDBALL Reversible
REDBLUEDOOR Irreversible
LAVACROSSING Irreversible
DOORKEY Subgoal seq.
DISTRACTED DOORKEY +Visual distractors

HYPERPARAMETER. Tables 10- 12 provides the main specifications of all the MiniGrid environ-
ments for PPOConfig in RLlib.

OBSERVATION SPACE In MiniGrid environments, the agent receives an RGB image of the grid,
which is passed through a convolutional encoder 18 to extract spatial features relevant for navigation
and interaction.
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Figure 18: Convolutional encoder architecture used to process the agent’s 56×56×3 RGB observa-
tion in MiniGrid environments. The input passes through a series of Conv2D layers, reducing spatial
dimensions while increasing channel depth. The final activation is flattened and fed to both policy
and value heads. This encoder captures spatial layout, object presence, and agent-centric context for
decision-making.

This CNN processes the visual input into a compact feature vector, capturing object positions, colors,
and layout structure. The resulting embedding is concatenated with a learned directional encoding
and passed to the policy and value heads for action selection and value estimation.

I.2 LLM CONFIDENCE SETTINGS

For completions where token-level likelihoods are available, confidence is computed using an expo-
nential of the geometric-mean log-probability (exp (1/L

∑
log pi)) with a fixed likelihood threshold

of τ ≥ 0.65. When likelihoods are unavailable, we obtain k independent completions (k = 3) and
retain only outputs that pass a majority-consistency test with a fixed agreement threshold τ ≥ 2/3.

USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this manuscript, the authors used OpenAI’s ChatGPT to assist with gram-
mar and readability. No research ideas, technical content, or analysis were generated by the tool. All
content was reviewed and verified by the authors, who take full responsibility for the final version.
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