
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MIRA: MEMORY-INTEGRATED REINFORCEMENT
LEARNING AGENT WITH LIMITED LLM GUIDANCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) agents often face high sample complexity in sparse
or delayed reward settings, due to limited prior knowledge. Conversely, large lan-
guage models (LLMs) can provide subgoal structures, plausible trajectories, and
abstract priors that support early learning. Yet heavy reliance on LLMs introduces
scalability issues and risks dependence on unreliable signals, motivating ongo-
ing efforts to integrate LLM guidance without compromising RL’s autonomy. We
propose MIRA (Memory-Integrated Reinforcement Learning Agent), which aug-
ments learning with a structured and evolving memory graph. This graph stores
decision-relevant information, such as trajectory segments and subgoal decompo-
sitions, and is co-constructed from the agent’s high-return experiences and LLM
outputs. From this structure, we derive a utility signal that integrates with advan-
tage estimation to refine policy updates without overriding the reward signal. By
incorporating LLM-derived priors in memory rather than relying on continuous
queries, MIRA reduces dependence on real-time supervision. As training pro-
gresses, the agent’s policy outgrows the initial LLM-derived priors, and the util-
ity term decays, leaving long-term convergence guarantees intact. We establish
theoretical guarantees that this utility-based shaping improves early-stage learn-
ing in sparse reward settings. Empirically, MIRA outperforms RL baselines and
achieves final returns comparable to approaches that depend on frequent LLM
supervision, while requiring substantially fewer online LLM queries.

1 INTRODUCTION

Reinforcement learning (RL) models sequential decision-making as interactions with an environ-
ment, where behavior is learned through reward-driven feedback. RL has achieved strong results
in real-world domains including robotic manipulation, dynamic scheduling, and autonomous plan-
ning (Nourzad et al., 2024; Liu et al., 2024; Luo et al., 2024). However, these advances often rely
on environments with dense and readily accessible rewards. In many tasks, rewards are sparse or
delayed, appearing only when specific goals are reached or when the effect of an action unfolds after
several steps. These weak or infrequent reward signals obscure which past actions contributed to the
outcome, making it difficult to “credit” the eventual reward to the contributing actions (Velu et al.,
2023). This uncertainty weakens the gradient signal and leaves policy updates poorly informed.
Thus, agents become highly data-hungry and require large numbers of interactions to learn useful
behaviors (Devidze et al., 2022). These challenges are further exacerbated under partial observabil-
ity, as agents must generalize from limited state information and often struggle in the early stages of
training (Hausknecht & Stone, 2015; Kurniawati, 2022). In such settings, random exploration rarely
uncovers informative trajectories, leading to slow convergence and high variance in outcomes.

Large language models (LLMs) provide a complementary source of prior knowledge, especially in
environments where rewards are sparse, feedback is delayed, and observations are partial. They have
demonstrated strong capabilities in reasoning over abstract goals, interpreting high-level intent, and
drawing on broad prior knowledge (Jimenez et al., 2023; Brown et al., 2020; Xu et al., 2024). These
properties make them natural candidates for providing structured guidance for RL agents (Schoepp
et al., 2025; Carta et al., 2023). A growing body of work has explored how pretrained LLMs can
support RL to improve sample efficiency. One line of research positions the LLM as an implicit or
explicit reward model, either estimating reward signals from environment descriptions or generating
code to define reward functions (Ma et al., 2025; Kwon et al., 2023; Ma et al., 2023; Fan et al., 2022;

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Rocamonde et al., 2023; Bhambri et al., 2024; Xie et al., 2024). Another line leverages LLMs to
generate high-level plans, policy sketches, or step-by-step guidance during training (Du et al., 2023;
Cao et al., 2024; Hu & Sadigh, 2023; Dasgupta et al., 2023; Wang et al., 2023; Zhou et al., 2023).
A third direction focuses on task-level guidance such as subgoal decomposition, curriculum design,
or goal interpretation from natural language (Brohan et al., 2023; Wang et al., 2024a; Quartey et al.,
2023; Ma et al., 2023; Shinn et al., 2023). We discuss other related approaches in Appendix B.

RESEARCH CHALLENGES. The existing approaches, while having promising results, typically re-
quire frequent (often per-step) LLM supervision and querying, making the agent’s performance
heavily reliant on LLM inference. This dependence introduces several difficulties. First, it can
interfere with the RL learning signal (Zhou et al., 2023), impairing the development of autonomous
decision-making and reducing the agent’s ability to generalize and adapt if the LLM later becomes
unavailable. Second, since LLMs cannot interact directly with the environment or gather real-time
feedback, full reliance on their instructions is suboptimal (Qu et al., 2024; Gao et al., 2024; Cao
et al., 2024) and dilutes the role of environment-driven feedback. Indeed, LLMs carry fundamental
risks such as hallucinated outputs, prompt sensitivity, and limited grounding in physical environ-
ments (Ji et al., 2023b; Tonmoy et al., 2024; Patil & Gudivada, 2024; Li et al., 2024; Bang et al.,
2025), making their outputs potentially unreliable. Frequent queries also raise scalability concerns
due to computational cost and latency (Zhou et al., 2024; Wan et al., 2023). Still, relying solely
on RL ignores the rich, structured knowledge encoded in many LLMs that could accelerate learn-
ing or shape behavior in meaningful ways. Thus, the fundamental challenge lies in incorporating
such guidance effectively and realizing the complementary benefits of using LLM guidance with RL
adaptation over time, without undermining the optimization dynamics that make RL effective.

OUR CONTRIBUTIONS. In this work, we propose MIRA (Memory-Integrated Reinforcement Learn-
ing Agent), a method that integrates LLM-derived guidance into reinforcement learning through
a structured memory graph. The memory graph provides a temporally evolving representation
of task-relevant information, co-constructed from the agent’s own experience and LLM outputs.

Figure 1: Overview of MIRA. Offline priors and
Online suggestions from LLMs pass through a
Screening Unit before populating the memory
graph. MIRA interacts with the environment,
while a Utility module evaluates rollouts against
memory to shape advantage estimates.

Offline priors, pre-processed over environments
or goals, initialize the structure, while infre-
quent online queries conditioned on batches
of partial environment observations refine it
during training. Nodes represent decision-
relevant context, such as trajectory segments,
while edges encode the hierarchical decom-
position linking goals to their subgoals. The
graph is designed to remain compact, adding
minimal overhead relative to standard replay
buffers (Schaul et al., 2015). The memory
graph allows the agent to organize and reuse in-
formation without repeated LLM queries while
having a persistent source of structured knowl-
edge. Over time, the agent can validate, revise,
and extend the structure based on its own expe-
rience, eventually improving performance be-
yond what is achievable through LLM guidance
alone while actively filtering out any mistaken
guidance from online LLM queries. The result-
ing graph limits dependence on real-time LLM
access, alleviating concerns about latency, query cost, and scalability.

To integrate the LLM-derived information into learning, we derive a utility signal from the memory
graph and use it to softly shape advantage estimates in each RL iteration. This signal provides
guidance during early rollouts, reinforcing reward-driven gradients when aligned while moderating
updates and correcting miscalibration that arises from an inaccurate critic. By doing so, it helps
the agent explore more effectively in the sparse-reward regime without overriding the environment’s
feedback. Theoretically, we show that the utility term accelerates early learning. As the agent’s
policy improves and surpasses the usefulness of LLM-derived guidance, the shaping influence fades,
ensuring convergence in the long-horizon limit. We empirically evaluate the effectiveness, sample

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

efficiency, and overhead of incorporating LLM guidance across multiple benchmark environments.
Our contributions are summarized as follows:

• We propose MIRA, a reinforcement learning agent that integrates LLM-derived guidance
through a memory graph co-constructed from agent experience and LLM knowledge. This
graph evolves throughout training, combining offline priors with infrequent online queries
conditioned on batches of partial observations from the environment.

• We develop adaptive advantage shaping, which incorporates utility derived from the
memory graph directly into advantage estimates. This mechanism requires no architec-
tural changes and applies to any advantage-based policy-gradient algorithm.

• We provide theoretical analysis showing that the shaping mechanism preserves the con-
vergence guarantees of Proximal Policy Optimization (PPO) (Schulman et al., 2017a) in
long horizon limit by augmenting, rather than overriding the optimization dynamics.

• We demonstrate empirically that MIRA improves sample efficiency over RL and HRL
baselines, and achieves competitive final returns with far fewer LLM queries than methods
based on continuous supervision (Zhou et al., 2023; Bhambri et al., 2024).

The remainder of this paper is organized as follows. Section 2 details MIRA’s architecture, evolv-
ing memory graph, and adaptive advantage shaping with convergence analysis; Sections 3 and 4
present experimental setup and results across multiple benchmarks; and Section 5 concludes with a
discussion of our findings and possible directions for future work.

2 METHODOLOGY

We now detail the design of our Memory-Integrated Reinforcement Learning Agent (MIRA). Our
desiderata are twofold. (I) Improve early exploration by incorporating task-relevant priors from an
LLM. (II) Minimize reliance on continuous real-time LLM supervision in order to ensure scalability
and maintain autonomous policy learning. Our approach is built on the standard policy-gradient
formulation for reinforcement learning (see Appendix A for background).

2.1 MEMORY GRAPH DESIGN

The agent maintains a compact, evolving memory graph that organizes decision-relevant informa-
tion drawn from both LLM suggestions and agent rollouts. Nodes of the graph represent decision-
relevant context, and edges encode the hierarchical decomposition of goals into subgoals as provided
by the LLM. This structure can be expressed as

G =
{(

(o, a)τj , ζj , r̂j
)
cj

}N

j=1
∪

{
κℓ

}L

ℓ=1
∪ {g▷}. (1)

Each trajectory node j consists of a partial observation oτj and an action aτj . It is also associated
with a goal term ζj ∈ {gj , κ

gj
ℓ } indicating either a final goal (gj) or an abstract subgoal (κ

gj
ℓ) that the

trajectory is intended to complete. In addition, the node stores an estimated reward r̂j for the action
sequence and a confidence score cj derived from the LLM’s generation statistics (e.g., token-level
log probabilities). The second set of nodes {κℓ}Lℓ=1 represents subgoals κℓ provided by the LLM
from the environment description. The final term {g▷} denotes the agent’s target goal(s). Figure 1
includes a sample memory graph for MIRA.

The graph is initialized with offline LLM priors and evolves as training progresses. New nodes
are added when the agent discovers trajectories to known subgoals. Online LLM suggestions may
also be incorporated when available, provided they pass screening (Section 2.2), which describes
the complementary roles of offline and online LLM guidance. Existing nodes are updated when the
agent’s experience validates or strengthens entries that were initially derived from low-confidence
LLM outputs. Nodes are pruned when they are accessed infrequently, signaling reduced relevance
with recent rollouts. Although offline LLM nodes are generally stable, they may also be pruned
when rendered obsolete. This process allows the graph to remain compact and adaptive over time.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.2 OFFLINE AND ONLINE GUIDANCE

MIRA incorporates two complementary forms of LLM guidance, accessed either offline prior to
training or online during training. Offline outputs are generated using full access to the environ-
ment’s task description and global observations. These outputs provide trajectory segments and
subgoal decompositions that initialize the memory graph with structured priors. Offline nodes ac-
celerate early exploration and remain a persistent baseline source of guidance that complements the
adaptive updates introduced by online LLM queries.

Online suggestions are incorporated during training when the agent fails to obtain useful guidance
from its memory graph for several consecutive episodes. The LLM is constrained to the same partial
observability as the agent and, when triggered, may return plans that correspond to short trajecto-
ries. Alternatively, it may provide control signals that shape the agent’s action preferences over an
extended horizon until the current task segment is completed. To filter out low-confidence LLM re-
sponses, which may indicate hallucinations, all online outputs are first passed through the Screening
Unit, and only those that pass are retained. Accepted plans are grafted into the memory graph as
new trajectory segments, while accepted control signals are used directly to bias the agent’s policy
preferences through soft logit injection, i.e., adding a bounded penalty to the logits of discouraged
actions so their probabilities are reduced without overriding the learned policy (Biza et al., 2021).

SCREENING UNIT. To ensure reliability, online outputs are passed through a lightweight Screening
Unit designed to mitigate known limitations of LLMs such as hallucination and reasoning failures (Ji
et al., 2023a; Bubeck et al., 2023; Wang et al., 2022; Zhao et al., 2021). Confidence is estimated in
two complementary ways. When token-level likelihoods are available, we compute the average log
probability across the sequence. When such likelihoods are unavailable or incomplete (e.g., only
top-k likelihoods are provided), we instead measure agreement across multiple completions (i.e.,
independent query–response samples) and retain outputs that appear consistently. Suggestions that
fail to meet a fixed threshold under either criterion are discarded. While this procedure does not
eliminate all high-confidence errors, it serves as an effective filter that reduces the risk of halluci-
nated or low-quality outputs. The screened outputs, referred to as healthy grafts in Figure 1, are
incorporated into the memory graph as new nodes to further help the policy learning.

Together, offline priors and online grafts allow MIRA to combine stable, precomputed knowledge
with adaptive updates, reducing dependence on continuous supervision while maintaining the bene-
fits of structured LLM guidance.

2.3 UTILITY SIGNAL COMPUTATION

Utility is defined at the level of individual state–action pairs, in direct analogy to advantage estima-
tion. It is computed using the same rollouts that are employed for advantage estimation under the
current policy πθ, where θ denotes the policy parameters (Algorithm 1, Line 2). Each state-action in
the trajectory τ = {(ot, at)}Tt=1 is matched against state–action pairs (ot′ , at′) in the stored trajec-
tory τm. The appropriate memory node m is selected based on the environment instance (e.g., the
seed-specific layout) in that training iteration. We then compute the utility signal for each pair t as:

Ut
.
= cm · r̂m · ρ(g▷, ζm) · ∫

(
(ot, at), (ot′ , at′)τm

)
. (2)

The similarity function ∫(·, ·) measures how closely the agent’s behavior aligns with the stored tra-
jectory. It incorporates both action agreement and spatial consistency, such as overlap in grid posi-
tions or directional alignment in tabular settings. To account for semantic context, the raw similarity
score is further weighted by a goal alignment factor ρ(·, ·) defined as the Jaccard similarity between
the set of subgoals inferred by the LLM for the agent’s current target goal and those associated with
the memory entry. This ensures that behaviorally similar paths are downweighted if they pursue
different (sub)goals. Finally, the score is modulated by the confidence cm and estimated reward
r̂m attached to the memory node. This formulation ensures that the utility reflects both behavioral
similarity and semantic alignment with successful prior strategies (see Algorithm 2).

2.4 ADAPTIVE ADVANTAGE SHAPING

We incorporate memory-derived utility into the policy update by augmenting the standard advantage
term. Algorithm 1 outlines the shaped PPO update. At iteration k, trajectories Dk = (st, at, rt) are

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

collected under the current policy πθk . The rollout batch is split into minibatches B for multiple
gradient steps. The likelihood ratio rt compares new and old policies, and the clip parameter εk
constrains rt within (1± εk) as a soft trust region.

The advantage function in policy gradient methods, denoted by At at a given time t, quantifies
how favorable an action at is relative to the average action at state st. It drives learning by
reinforcing actions that have higher-than-expected returns and suppressing those that fall short.

Algorithm 1 Shaped PPO actor (changes)
1: for k = 0, 1, . . . do
2: Collect Dk = {(st, at, rt)} using πθk
3: Compute At and Ut from rollouts
4: Ãt = ηtAt + ξtUt

5: for epoch = 1 to K do
6: for minibatch B ⊂ Dk do
7: rt(θ) = πθ(at|st)/πθk(at|st)
8: Lshaped(πθ) = E

[
min(rt, 1±εk)Ãt

]
9: θ ← θ + αθ∇θ Lshaped(πθ)

10: end for
11: end for
12: end for

However, during early training the critic is
poorly calibrated due to limited exploration, of-
ten producing nearly uniform value estimates
across actions (Henderson et al., 2018). As a re-
sult, the estimated advantages At provide weak
learning signals, even when the agent is follow-
ing behavior that is meaningfully directed to-
ward the task. This can lead to inefficient or un-
stable policy updates. This issue is particularly
pronounced in sparse-reward settings or tasks
with delayed feedback, where the critic lacks
sufficient signal to distinguish between promis-
ing and unproductive behaviors. In such cases,
the estimated advantage At tends to be near-zero
or highly noisy for most timesteps, especially
early in training (see Figure 13, Appendix F).

To address this, we introduce a shaped advantage as:

Ãt = ηtAt + ξtUt, 0 < ηt ≤ 1, ξt ≤ δηt, δ ∈ [0, 1), lim
t→∞

ηt = 1, lim
t→∞

ξt = 0. (3)

This formulation preserves the fundamental role of the advantage function, while refining it with
utility-based guidance. It can be viewed as a cooperative process between the critic and the memory-
derived utility. The critic provides an estimate based on learned reward prediction and bootstrapping,
while the utility term injects an inductive bias derived from language-guided priors. Together, they
form a joint advantage estimator in which each component compensates for the other’s limitations
without distorting policy optimization. When the critic signal is weak due to insufficient value
discrimination, the resulting gradients are uninformative and impair the agent’s ability to bootstrap
from sparse or delayed rewards. The utility term provides additional directional guidance aligned
with task objectives, accelerating learning by compensating for weak or flat gradients. As training
progresses and At becomes more reliable, the utility term naturally assumes a smaller role. This
dynamic is regulated by annealing ξt and ramping ηt toward 1 over training. Rather than overriding
the reward signal, this approach shapes the advantage term, refining the learning signal without
altering the policy or critic structure.

Before turning to experiments, we establish that the proposed shaping mechanism preserves the
policy improvement property of PPO under standard boundedness and scaling assumptions, which
we formally enumerate in Appendix C.1. More broadly, the method remains compatible with any
policy gradient algorithm that relies on advantage estimation, offering a general mechanism for
integrating language-derived priors into RL.
Theorem 1. Let Assumptions 1 and 2a hold. Suppose the agent performs K policy updates using
the shaped surrogate Lshaped(π) = E

[
min

(
rtÃt, clip(rt, 1− εk, 1 + εk)Ãt

)]
, and that each update

satisfies Lshaped
k (πk+1) ≥ Lshaped

k (πk). Then the γ-discounted return improvement after K steps
satisfies

J(πK)− J(π0) ≥
K−1∑
k=0

1

(1− γ) ηk

(
LPPO
k (πk+1) + ξk

(
U bonus
k − Umax

))
, (4)

where U bonus
k denotes the utility contribution at step k and Umax is the maximum per-step utility

adjustment.

This theorem formalizes the benefit of advantage shaping by showing that each update improves
return through both the PPO surrogate, LPPO(π) = E

[
min

(
rtAt, clip(rt, 1− εk, 1 + εk)At

)]
, and

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

the utility contribution. The additional bonus is most evident early in training, when At is small,
which explains the accelerated learning observed empirically.

Proof. Deferred to Appendix C.2.

3 EXPERIMENTAL SETUP

We validate our method through extensive experiments implemented using the RLlib (Liang et al.,
2018). Our evaluation focuses on performance gains, sample efficiency, and the computational
overhead introduced by LLM integration. The objective is to characterize the benefits and trade-offs
of incorporating LLM guidance in RL, including how different levels of LLM capabilities influence
the policy learning dynamics and final policy quality.

3.1 SIMULATION PLATFORM

We consider six distinct environments, which are selected to span discrete vs. visual inputs, short-
vs. long-horizon dependencies, reversible vs. irreversible dynamics, and with vs. without perceptual
distractors, forming a compact yet representative benchmark for sparse-reward RL.

GYMNASIUM TOYTEXT. Gymnasium (Arnoldo et al., 2024) provides simple tabu-
lar environments for controlled analysis of learning dynamics in low-dimensional settings.

Figure 2: Evaluation environments.
Top: REDBALL (navigation to tar-
get), LAVACROSSING (long-horizon
navigation with irreversible haz-
ards), DOORKEY (sparse reward
with key–goal dependency). Bot-
tom: REDBLUEDOOR (sequence-
sensitive toggling), DISTRACTED
DOORKEY (distractor-rich variant
with key–goal dependency).

Despite their simplicity, these environments feature sparse
rewards and require strategic exploration, making them suit-
able for isolating the early-stage benefits of memory-guided
utility shaping. We include FROZENLAKE as a minimal
benchmark where PPO reliably converges to the optimal pol-
icy, enabling us to verify that MIRA preserves convergence
while accelerating early learning.

MINIGRID AND BABYAI. MiniGrid (Chevalier-Boisvert
et al., 2023) and BabyAI (Chevalier-Boisvert et al., 2019) are
suites of lightweight, procedurally generated environments
designed to evaluate exploration and planning in partially
observable, sparse-reward settings. We use these tasks to as-
sess the effectiveness of advantage shaping in long-horizon
decision-making environments that require reasoning under
uncertainty and robustness to irrelevant stimuli. We include
five tasks, selected to cover diverse challenges involving
planning, credit assignment, and distraction resilience (see
Figure 2). We use pixel-based observations (RGB images)
rendered from the environment as the policy inputs, to intro-
duce perceptual complexity and evaluate agent performance
under a more realistic observation setting.

3.2 BASELINE METHODS

PPO (RL BASELINE). We train a tabula rasa PPO agent (Schulman et al., 2017a) that learns purely
from environment interaction and rewards. Network architecture, PPO hyperparameters, and rollout
settings are held fixed across all methods for fair comparison.

HIERARCHICAL RL. We include hierarchical reinforcement learning (HRL) (Matthews et al., 2022)
as a baseline that uses pre-trained LLM option policies for temporal abstraction.

LLM-RS. We consider the method of (Bhambri et al., 2024), which we refer to as LLM-RS. This
approach queries the LLM in real time to generate plans for potential-based reward shaping, with a
verifier refining them for valid action sequences.

LLM4TEACH. We include LLM4Teach (Zhou et al., 2023) as a representative teacher-based
approach. It employs a pre-trained LLM as a policy teacher and guides the RL agent through policy
distillation, and is among the state-of-the-art methods in this category.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4 EXPERIMENTAL RESULTS

We group our experimental observations so as to answer several research questions on MIRA’s
performance. Appendix F provides additional results, including evaluations on unseen seeds to
assess generalization, wall-clock analyses quantifying the overhead of LLM queries and memory
operations, and supplementary plot from sweeps over shaping weights, analyzing their effect on
early-stage learning dynamics and reward progression.

4.1 TABULAR BENCHMARK AND PARTIALLY OBSERVABLE TASKS

HOW DOES MIRA OUTPERFORM PPO IN TERMS OF FASTER EARLY LEARNING AND CONVER-
GENCE, EVEN WHEN PPO ALONE ACHIEVES COMPETITIVE PERFORMANCE? We compare MIRA
to the PPO baseline on FROZENLAKE-8X8, averaging results over four seeds. As shown in Fig-
ure 3, MIRA achieves faster early learning and higher return during the first 2K iterations. PPO
eventually matches this performance, and by convergence, the difference between the two methods
is not statistically significant. In this environment, we use only offline LLM access. Three zero-
shot queries to GPT-o4-mini generate an initial static memory, with the LLM observing the full grid
configuration (matching the agent’s full observability) but not the slipperiness probability, which is
also hidden from the agent. This memory provides utility shaping in the early stages of training.

Figure 3: Mean return on FROZENLAKE-8X8
(left): MIRA accelerates early learning and con-
verges to the same return as PPO. Evolution of
shaping terms ηt, ξt, and ratio δt (right): δt decays
during training, ensuring convergence as δt → 0.

As learning progresses, the influence of shaping
diminishes, η increases toward 1, ξt decreases
toward 0, and the derived ratio δt = ξt/ηt
steadily decays (Figure 3), indicating that util-
ity guidance fades as the agent becomes self-
reliant. Under standard stochastic approxima-
tion theory (Kushner & Yin, 2003), this decay
implies that the critic error is bounded within an
O(δt) neighborhood of the true value function,
which contracts to the exact solution as δt → 0.

HOW EFFECTIVELY DOES MIRA HANDLE
COMPLEX ENVIRONMENTS THAT REQUIRE
LONG-HORIZON EXPLORATION AND REA-
SONING? We next evaluate MIRA on five tasks
designed to isolate distinct challenges in sparse
and partially observable environments. Figure 4 shows mean return and success rate across the four
tasks, with performance averaged over four different seeds. In simpler tasks such as REDBALL,
PPO shows moderate early gains but plateaus well below optimal performance. Although hierar-
chical RL eventually catches up, MIRA reaches optimal returns in under half the training iterations.
In LAVACROSSING, PPO fails to improve beyond near-zero success, indicating ineffective explo-
ration. Hierarchical RL improves steadily but converges more slowly than MIRA. In more complex
tasks such as DOORKEY and REDBLUEDOOR, MIRA achieves substantially higher success rates,
approximately twice those of HRL, while also converging faster.

These gains are achieved with a limited LLM query budget that combines offline and infrequent
online access. Offline queries scale with task complexity. In REDBALL, four zero-shot prompts to
GPT-o4-mini are sufficient to build a useful memory graph, while DOORKEY requires about seven
queries that mix few-shot and zero-shot prompts. Online queries are budgeted separately and also
vary with task complexity. In REDBALL, about seven online queries suffice to suppress irrelevant
actions throughout training. In REDBLUEDOOR, queries are triggered more frequently early in
training to help interpret partial observations and suggest short sequences, such as turning, that align
the agent with the door. Once the red door is discovered and toggled, the offline memory becomes
sufficient. In this task, rooms behind the doors serve only as distractors; baseline agents, including
hierarchical RL, often waste steps exploring them. As shown in Figure 4 (lower right), HRL achieves
higher success rates than PPO but yields similar average return in the beginning due to suboptimal
trajectory use. By contrast, MIRA avoids such inefficiencies by focusing on goal-relevant behavior
earlier in training.

HOW WELL DOES MIRA CONVERT LIMITED LLM QUERIES INTO PERFORMANCE GAINS,
AND HOW DOES THIS TRADE-OFF COMPARE TO QUERY-HEAVY APPROACHES? To further

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 4: Mean return (top) and success rate (bottom) across four MiniGrid and BabyAI tasks.
MIRA consistently outperforms both baselines, achieving faster learning, higher asymptotic return,
and greater success rates. These results are obtained with a small LLM budget, using fewer than ten
offline prompts to build memory graphs plus infrequent online queries to guide exploration.

evaluate MIRA, we compare it to LLM4Teach and LLM-RS in the custom variant environ-
ment DISTRACTED DOORKEY. We also include a Sole LLM baseline, where GPT-o4-mini ex-
ecutes plans under full observability without learning. Figure 5 shows mean return progres-
sion at selected training checkpoints. For Sole LLM, we report average return over 100 seeds
to demonstrate that the task is LLM-solvable and that its outputs provide useful structural guid-
ance. The accompanying bar chart reports amortized return per cumulative LLM query under two
fixed budgets, quantifying how efficiently each method translates queries into performance gains.

Figure 5: Mean return (left): LLM4Teach
shows faster early gains, while MIRA
steadily improves and matches its final re-
turn with fewer queries. LLM-RS bene-
fits early from reward shaping but plateaus
lower. Return per LLM query (right): Un-
der two query budgets, MIRA achieves
higher efficiency.

MIRA achieves higher query efficiency than both
LLM4Teach and LLM-RS. It converts limited LLM ac-
cess, seven offline prompts and 20 ± 3 online queries
per run, into higher return per query. In contrast,
LLM4Teach issues dense supervision, querying the
LLM on every state–action–reward triplet within train-
ing batches, often for more than 500 iterations until the
policy stabilizes. LLM-RS, which uses LLM-generated
reward code, queries once per layout, totaling over 50
calls in our setup. While lighter than LLM4Teach,
this still requires layout-level access throughout train-
ing. Despite its heavier budget, LLM4Teach achieves
comparable final performance to MIRA, while LLM-
RS fails to match MIRA’s return. Notably, LLM-RS
outpaces MIRA early due to reward shaping, but falls
behind later. LLM4Teach shows an early advantage
through front-loaded queries, but at significantly higher
cost. Table 3 and 4 reports results on unseen evaluation
seeds to assess generalization.

4.2 ABLATION STUDIES

ONLINE QUERY FREQUENCY: HOW DO ONLINE LLM QUERIES IMPROVE LEARNING, BE-
YOND WHAT OFFLINE MEMORY PROVIDES? We vary the number of online LLM queries issued
during training of DOORKEY, to assess how constrained usage affects learning efficiency and fi-
nal performance. Each agent begins with the same memory graph, initialized from identical offline
queries, isolating the contribution of dynamic LLM input from that of static memory initialization.
We compare MIRA under three online budgets: zero, a mid budget of 10 queries, and a high bud-
get of 20. As shown in Figure 6 (left), more frequent online access accelerates learning, with the
large-budget variant achieving optimal return in fewer steps (Table 2; Appendix F). Even with just
10 online calls, MIRA substantially outperforms the offline-only variant. Nevertheless, MIRA (of-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 6: Query frequency (left): Agents share the same offline memory but vary in online budgets.
More queries speed learning, with high-budget agents reaching optimal return fastest. Unreliable
LLM (middle): With identical offline memory, screening is disabled and queries are swapped from
GPT-o4-mini to Gemini Pro only in the late phase. Performance remains stable in the late phase,
indicating reduced dependence on online guidance once policy have matured. LLM models (right):
Agents differ only in the LLM used for memory. Gemma3 induces inefficient checking, Claude
favors exploration, while Gemini Pro and o4-mini enable faster learning and task progression.

fline) still yields a notable boost over baseline PPO, indicating that static memory alone can provide
meaningful guidance when dynamic access is unavailable.

UNRELIABLE LLM OUTPUTS: HOW DOES MIRA HANDLE LATE-STAGE EXPOSURE TO DE-
GRADED LLM GUIDANCE ONCE ITS MEMORY IS WELL-FORMED? We evaluate a scenario where
the LLM is swapped at a later training stage and the screening unit is disabled only for this final
online phase in DISTRACTED DOORKEY environment. All agents share the same offline-initialized
memory graph and use GPT-o4-mini with screening during earlier online queries. In the final stage,
we replace the LLM with Gemini Pro and omit screening. By this point, MIRA has accumulated
sufficient experience and memory, allowing it to tolerate low-confidence or incorrect suggestions
without collapsing performance. We prompted both LLMs with a scenario where the agent has al-
ready explored thoroughly and confirmed no key is present (implying it was already collected, since
inventory is unobserved). When asked which action to down-weight, GPT-o4-mini gave a consis-
tent suppression, whereas Gemini returned a misaligned alternative. As shown in Figure 6 (middle),
MIRA remains stable under degraded guidance, though convergence slows and final return drops
slightly. Details of the reasoning trace are given in Figure 11, Appendix D.

REASONING AND PERFORMANCE: HOW DO VARIATIONS IN LLM REASONING AFFECT MEM-
ORY AND DOWNSTREAM RESULTS? We assess MIRA’s sensitivity to the choice of language model
by replacing GPT-o4-mini with alternatives such as GPT-4o (OpenAI, 2024), Claude Sonnet 4 (An-
thropic, 2024), Gemma 3 27B (Ananthanarayanan et al., 2024), Gemini 2.5 Flash and Pro (Chen
et al., 2024). All models go through the same process to ensure comparability. Unlike the ablation
done before, the model swap is applied from the beginning of training. As shown in Figure 6 (right),
the reasoning style shaping the memory graph strongly impacts downstream RL performance. For
instance, Gemma3 performs poorly because it recommends checking the door after every pickup,
leading to wasteful steps. Claude adopts an exploratory policy that yields slow but eventual progress,
showing early improvement followed by plateauing, but it eventually recovers as the memory is
dynamic. GeminiPro and GPT-o4-mini both enable fast early learning, but o4-mini’s memory in-
cludes detours that prove beneficial later, ultimately reaching the highest asymptotic return. These
differences highlight how the reasoning processes behind LLM outputs directly influence MIRA’s
long-term policy quality. Reasoning traces from the LLM appear in Appendix D, Figure 10.

5 CONCLUSION

We propose MIRA, an reinforcement learning (RL) framework that integrates large language model
(LLM) guidance via a memory graph built from high-return trajectories and LLM-inferred informa-
tion. By shaping advantage estimates with a utility signal derived from this memory, MIRA acceler-
ates early learning without requiring continuous LLM supervision. Theoretical and empirical results
on sparse-reward tasks confirm improved sample efficiency and preserved convergence. Limitations
of the current design are discussed in Appendix G. Future work includes extending MIRA to con-
tinuous action spaces and multi-goal domains like Crafter (Hafner et al., 2023), where long-horizon
dependencies and reusable subgoal structure are prominent. We expect that MIRA’s evolving mem-
ory and advantage shaping will be especially valuable in such settings, supporting both reuse and
abstraction across episodes.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure reproducibility of our results. All theoretical assumptions and
complete proofs are included in Appendix C. Appendix D details the environment specifications and
the exact LLM prompts used for both offline and online queries. Appendix H lists the full set of hy-
perparameters for MIRA across every evaluated environment. We also provide pseudocodes for all
proposed algorithms in Algorithms 1 and 2, ensuring clarity and transparency despite their straight-
forward implementation. Together, these materials supply all information necessary to reproduce
our experiments and verify the claims of the paper.

REFERENCES

Ademi Adeniji, Amber Xie, Carmelo Sferrazza, Younggyo Seo, Stephen James, and Pieter
Abbeel. Language reward modulation for pretraining reinforcement learning. arXiv preprint
arXiv:2308.12270, 2023.

Rajat Ananthanarayanan, Jaya Bhosale, Aakanksha Chowdhery, Danny Driess, and et al. Gemma 2
and 3: Open models based on gemini research and technology. arXiv preprint arXiv:2503.19786,
2024. URL https://arxiv.org/abs/2503.19786.

Anthropic. Introducing the claude 4 model family. https://www.anthropic.com/news/
claude-4, 2024. Claude 3.5 Sonnet released June 2024.

Arjun KG Arnoldo et al. A standard interface for reinforcement learning environments. arXiv
preprint arXiv:2407.17032, 2024. URL https://arxiv.org/abs/2407.17032.

Yejin Bang, Ziwei Ji, Alan Schelten, Anthony Hartshorn, Tara Fowler, Cheng Zhang, Nicola
Cancedda, and Pascale Fung. Hallulens: Llm hallucination benchmark. arXiv preprint
arXiv:2504.17550, 2025.

Shreyas Basavatia, Keerthiram Murugesan, and Shivam Ratnakar. Starling: Self-supervised train-
ing of text-based reinforcement learning agent with large language models. arXiv preprint
arXiv:2406.05872, 2024.

Edward Beeching, Jilles Dibangoye, Olivier Simonin, and Christian Wolf. Egomap: Projective
mapping and structured egocentric memory for deep rl. In Joint European conference on machine
learning and knowledge discovery in databases, pp. 525–540. Springer, 2020.

Siddhant Bhambri, Amrita Bhattacharjee, Durgesh Kalwar, Lin Guan, Huan Liu, and Subbarao
Kambhampati. Extracting heuristics from large language models for reward shaping in reinforce-
ment learning. arXiv preprint arXiv:2405.15194, 2024.

Ondrej Biza, Dian Wang, Robert Platt, Jan-Willem van de Meent, and Lawson LS Wong. Action
priors for large action spaces in robotics. arXiv preprint arXiv:2101.04178, 2021.

Charles Blundell, Benigno Uria, Alexander Pritzel, Yazhe Li, Avraham Ruderman, Joel Z Leibo,
Jack Rae, Daan Wierstra, and Demis Hassabis. Model-free episodic control. arXiv preprint
arXiv:1606.04460, 2016.

Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol Hausman, Alexander Herzog, Daniel Ho,
Julian Ibarz, Alex Irpan, Eric Jang, Ryan Julian, et al. Do as i can, not as i say: Grounding
language in robotic affordances. In Conference on robot learning, pp. 287–318. PMLR, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Bruno Huster, Ananth Raghunathan,
Jonathan Ray, and Yang Zhang. Sparks of artificial general intelligence: Early experiments with
gpt-4. In arXiv preprint arXiv:2303.12712, 2023.

10

https://arxiv.org/abs/2503.19786
https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/claude-4
https://arxiv.org/abs/2407.17032

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yuji Cao, Huan Zhao, Yuheng Cheng, Ting Shu, Yue Chen, Guolong Liu, Gaoqi Liang, Junhua
Zhao, Jinyue Yan, and Yun Li. Survey on large language model-enhanced reinforcement learning:
Concept, taxonomy, and methods. IEEE Transactions on Neural Networks and Learning Systems,
2024.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves
Oudeyer. Grounding large language models in interactive environments with online reinforcement
learning. In International Conference on Machine Learning, pp. 3676–3713. PMLR, 2023.

Chang Chen, Yi-Fu Wu, Jaesik Yoon, and Sungjin Ahn. Transdreamer: Reinforcement learning
with transformer world models. arXiv preprint arXiv:2202.09481, 2022.

Zhenzhong Chen, Siddharth Purohit, William Wang, Rohan Anil, and et al. Gemini 1.5 and
2.5: Unlocking multimodal understanding and reasoning in a single model. arXiv preprint
arXiv:2507.06261, 2024. URL https://arxiv.org/abs/2507.06261.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. BabyAI: First steps towards grounded language learning
with a human in the loop. In International Conference on Learning Representations (ICLR), 2019.
URL https://openreview.net/forum?id=rJeXCo0cYX.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems,
Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld:
Modular & customizable reinforcement learning environments for goal-oriented tasks. CoRR,
abs/2306.13831, 2023. URL https://arxiv.org/abs/2306.13831.

Kun Chu, Xufeng Zhao, Cornelius Weber, Mengdi Li, and Stefan Wermter. Accelerating reinforce-
ment learning of robotic manipulations via feedback from large language models. arXiv preprint
arXiv:2311.02379, 2023.

Murtaza Dalal, Tarun Chiruvolu, Devendra Chaplot, and Ruslan Salakhutdinov. Plan-seq-
learn: Language model guided rl for solving long horizon robotics tasks. arXiv preprint
arXiv:2405.01534, 2024.

Ishita Dasgupta, Christine Kaeser-Chen, Kenneth Marino, Arun Ahuja, Sheila Babayan, Felix Hill,
and Rob Fergus. Collaborating with language models for embodied reasoning. arXiv preprint
arXiv:2302.00763, 2023.

Rati Devidze, Parameswaran Kamalaruban, and Adish Singla. Exploration-guided reward shaping
for reinforcement learning under sparse rewards. Advances in Neural Information Processing
Systems, 35:5829–5842, 2022.

Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek
Gupta, and Jacob Andreas. Guiding pretraining in reinforcement learning with large language
models. In International Conference on Machine Learning, pp. 8657–8677. PMLR, 2023.

Rasool Fakoor, Pratik Chaudhari, and Alexander J Smola. P3o: Policy-on policy-off policy opti-
mization. In Uncertainty in artificial intelligence, pp. 1017–1027. PMLR, 2020.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. Advances in Neural Information Processing Systems, 35:
18343–18362, 2022.

Jiaxuan Gao, Shusheng Xu, Wenjie Ye, Weilin Liu, Chuyi He, Wei Fu, Zhiyu Mei, Guangju Wang,
and Yi Wu. On designing effective rl reward at training time for llm reasoning. arXiv preprint
arXiv:2410.15115, 2024.

Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit Gird-
har, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d: Around the world in
3,000 hours of egocentric video. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 18995–19012, 2022.

11

https://arxiv.org/abs/2507.06261
https://openreview.net/forum?id=rJeXCo0cYX
https://arxiv.org/abs/2306.13831

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Matthew Hausknecht, Prithviraj Ammanabrolu, Marc-Alexandre Côté, and Xingdi Yuan. Interac-
tive fiction games: A colossal adventure. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 7903–7910, 2020.

Matthew J Hausknecht and Peter Stone. Deep recurrent Q-learning for partially observable MDPs.
In AAAI fall symposia, volume 45, pp. 141, 2015.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Hengyuan Hu and Dorsa Sadigh. Language instructed reinforcement learning for human-ai coordi-
nation. In International Conference on Machine Learning, pp. 13584–13598. PMLR, 2023.

Ziwei Ji, Nayeon Lee, Richard Frieske, Tiezheng Yu, Dan Su, Yanlin Xu, Etsuko Ishii, Yeon Seon
Bang, Andrea Madotto, and Pascale Fung. A survey of hallucination in natural language genera-
tion. ACM Computing Surveys (CSUR), 55(12):1–34, 2023a.

Ziwei Ji, Tiezheng Yu, Yan Xu, Nayeon Lee, Etsuko Ishii, and Pascale Fung. Towards mitigating
llm hallucination via self reflection. In Findings of the Association for Computational Linguistics:
EMNLP 2023, pp. 1827–1843, 2023b.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in
partially observable stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
Proceedings of the nineteenth international conference on machine learning, pp. 267–274, 2002.

Woo Kyung Kim, SeungHyun Kim, Honguk Woo, et al. Efficient policy adaptation with contrastive
prompt ensemble for embodied agents. Advances in Neural Information Processing Systems, 36:
55442–55453, 2023.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. arXiv preprint arXiv:2110.06169, 2021.

Hanna Kurniawati. Partially observable markov decision processes and robotics. Annual Review of
Control, Robotics, and Autonomous Systems, 5(1):253–277, 2022.

Harold J Kushner and G George Yin. Stochastic approximation and recursive algorithms and appli-
cations. Springer, 2003.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language
models. arXiv preprint arXiv:2303.00001, 2023.

Kimin Lee, Laura Smith, and Pieter Abbeel. Pebble: Feedback-efficient interactive rein-
forcement learning via relabeling experience and unsupervised pre-training. arXiv preprint
arXiv:2106.05091, 2021.

Junyi Li, Jie Chen, Ruiyang Ren, Xiaoxue Cheng, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong
Wen. The dawn after the dark: An empirical study on factuality hallucination in large language
models. arXiv preprint arXiv:2401.03205, 2024.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph Gon-
zalez, Michael Jordan, and Ion Stoica. Rllib: Abstractions for distributed reinforcement learning.
In International conference on machine learning, pp. 3053–3062. PMLR, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. arXiv preprint
arXiv:2209.07753, 2022.

Jessy Lin, Yuqing Du, Olivia Watkins, Danijar Hafner, Pieter Abbeel, Dan Klein, and Anca Dragan.
Learning to model the world with language. arXiv preprint arXiv:2308.01399, 2023.

Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching.
Machine learning, 8(3):293–321, 1992.

Jung-Chun Liu, Chi-Hsien Chang, Shao-Hua Sun, and Tian-Li Yu. Integrating planning and deep
reinforcement learning via automatic induction of task substructures. In The Twelfth International
Conference on Learning Representations, 2024.

Ruishan Liu and James Zou. The effects of memory replay in reinforcement learning. In 2018 56th
annual allerton conference on communication, control, and computing (Allerton), pp. 478–485.
IEEE, 2018.

Wenhao Lu, Xufeng Zhao, Sven Magg, Martin Gromniak, Mengdi Li, and Stefan Wermter. A closer
look at reward decomposition for high-level robotic explanations. In 2023 IEEE International
Conference on Development and Learning (ICDL), pp. 429–436. IEEE, 2023.

Jianlan Luo, Charles Xu, Jeffrey Wu, and Sergey Levine. Precise and dexterous robotic manipulation
via human-in-the-loop reinforcement learning. arXiv preprint arXiv:2410.21845, 2024.

Haozhe Ma, Fangling Li, Jing Yu Lim, Zhengding Luo, Thanh Vinh Vo, and Tze-Yun Leong. Catch-
ing two birds with one stone: Reward shaping with dual random networks for balancing explo-
ration and exploitation. In Forty-second International Conference on Machine Learning, 2025.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via
coding large language models. arXiv preprint arXiv:2310.12931, 2023.

James MacGlashan, Mark K Ho, Robert Loftin, Bei Peng, Guan Wang, David L Roberts, Matthew E
Taylor, and Michael L Littman. Interactive learning from policy-dependent human feedback. In
International conference on machine learning, pp. 2285–2294. PMLR, 2017.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36:46534–46594, 2023.

Michael Matthews, Mikayel Samvelyan, Jack Parker-Holder, Edward Grefenstette, and Tim
Rocktäschel. Hierarchical kickstarting for skill transfer in reinforcement learning. arXiv preprint
arXiv:2207.11584, 2022.

Lina Mezghani, Piotr Bojanowski, Karteek Alahari, and Sainbayar Sukhbaatar. Think before
you act: Unified policy for interleaving language reasoning with actions. arXiv preprint
arXiv:2304.11063, 2023.

Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are sample-efficient world mod-
els. arXiv preprint arXiv:2209.00588, 2022.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937. PmLR, 2016.

Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E Taylor, and Peter Stone.
Curriculum learning for reinforcement learning domains: A framework and survey. Journal of
Machine Learning Research, 21(181):1–50, 2020.

Narjes Nourzad, Jared Coleman, Zhongyuan Zhao, Bhaskar Krishnamachari, Gunjan Verma, and
Santiago Segarra. Actor-twin framework for task graph scheduling. In The Seventeenth Workshop
on Adaptive and Learning Agents, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

OpenAI. Gpt-4o. https://openai.com/index/gpt-4o, 2024. Accessed July 2025.

Fabian Paischer, Thomas Adler, Vihang Patil, Angela Bitto-Nemling, Markus Holzleitner, Sebastian
Lehner, Hamid Eghbal-Zadeh, and Sepp Hochreiter. History compression via language models
in reinforcement learning. In International Conference on Machine Learning, pp. 17156–17185.
PMLR, 2022.

Fabian Paischer, Thomas Adler, Markus Hofmarcher, and Sepp Hochreiter. Semantic HELM: A
human-readable memory for reinforcement learning. Advances in Neural Information Processing
Systems, 36:9837–9865, 2023.

Rajvardhan Patil and Venkat Gudivada. A review of current trends, techniques, and challenges in
large language models (llms). Applied Sciences, 14(5):2074, 2024.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Rudra PK Poudel, Harit Pandya, Stephan Liwicki, and Roberto Cipolla. Recore: Regularized con-
trastive representation learning of world model. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 22904–22913, 2024.

Alexander Pritzel, Benigno Uria, Sriram Srinivasan, Adria Puigdomenech Badia, Oriol Vinyals,
Demis Hassabis, Daan Wierstra, and Charles Blundell. Neural episodic control. In International
conference on machine learning, pp. 2827–2836. PMLR, 2017.

Qian Qiu, Fanyu Zeng, Haigen Yang, Guanyu Xing, and Shuzhi Sam Ge. Memory-augmented
deep deterministic policy gradient. In International Conference on Social Robotics, pp. 41–52.
Springer, 2024.

Yun Qu, Boyuan Wang, Yuhang Jiang, Jianzhun Shao, Yixiu Mao, Cheems Wang, Chang Liu, and
Xiangyang Ji. Choices are more important than efforts: Llm enables efficient multi-agent explo-
ration. arXiv preprint arXiv:2410.02511, 2024.

Benedict Quartey, Ankit Shah, and George Konidaris. Exploiting contextual structure to generate
useful auxiliary tasks. arXiv preprint arXiv:2303.05038, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Krishan Rana, Jesse Haviland, Sourav Garg, Jad Abou-Chakra, Ian Reid, and Niko Suenderhauf.
Sayplan: Grounding large language models using 3d scene graphs for scalable robot task plan-
ning. arXiv preprint arXiv:2307.06135, 2023.

Jan Robine, Marc Höftmann, Tobias Uelwer, and Stefan Harmeling. Transformer-based world mod-
els are happy with 100k interactions. arXiv preprint arXiv:2303.07109, 2023.

Juan Rocamonde, Victoriano Montesinos, Elvis Nava, Ethan Perez, and David Lindner. Vision-
language models are zero-shot reward models for reinforcement learning. arXiv preprint
arXiv:2310.12921, 2023.

Graeme D Ruxton. The unequal variance t-test is an underused alternative to student’s t-test and the
mann–whitney u test. Behavioral Ecology, 17(4):688–690, 2006.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

Sheila Schoepp, Masoud Jafaripour, Yingyue Cao, Tianpei Yang, Fatemeh Abdollahi, Shadan
Golestan, Zahin Sufiyan, Osmar R Zaiane, and Matthew E Taylor. The evolving landscape of
llm-and vlm-integrated reinforcement learning. arXiv preprint arXiv:2502.15214, 2025.

John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. Gradient estimation using
stochastic computation graphs. Advances in neural information processing systems, 28, 2015a.

14

https://openai.com/index/gpt-4o

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015b.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015c.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. In arXiv preprint arXiv:1707.06347, 2017a. URL https://arxiv.
org/abs/1707.06347.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017b.

Younggyo Seo, Danijar Hafner, Hao Liu, Fangchen Liu, Stephen James, Kimin Lee, and Pieter
Abbeel. Masked world models for visual control. In Conference on Robot Learning, pp. 1332–
1344. PMLR, 2023.

Ruizhe Shi, Yuyao Liu, Yanjie Ze, Simon S Du, and Huazhe Xu. Unleashing the power of pre-
trained language models for offline reinforcement learning. arXiv preprint arXiv:2310.20587,
2023.

Kyriacos Shiarlis, Markus Wulfmeier, Sasha Salter, Shimon Whiteson, and Ingmar Posner. Taco:
Learning task decomposition via temporal alignment for control. In International Conference on
Machine Learning, pp. 4654–4663. PMLR, 2018.

Noah Shinn et al. Reflexion: Language agents with verbal reinforcement learning. In NeurIPS,
2023.

David Silver. Lectures on reinforcement learning. URL: https://www.davidsilver.uk/
teaching/, 2015.

Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun Chao, and Yu Su.
LLM-planner: Few-shot grounded planning for embodied agents with large language models.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 2998–3009,
2023a.

Jiayang Song, Zhehua Zhou, Jiawei Liu, Chunrong Fang, Zhan Shu, and Lei Ma. Self-refined
large language model as automated reward function designer for deep reinforcement learning in
robotics. arXiv preprint arXiv:2309.06687, 2023b.

Martin Stolle and Doina Precup. Learning options in reinforcement learning. In International
Symposium on abstraction, reformulation, and approximation, pp. 212–223. Springer, 2002.

Theodore R Sumers, Mark K Ho, Robert D Hawkins, Karthik Narasimhan, and Thomas L Griffiths.
Learning rewards from linguistic feedback. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 6002–6010, 2021.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Richard S Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-MDPs: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–
211, 1999.

SM Tonmoy, SM Zaman, Vinija Jain, Anku Rani, Vipula Rawte, Aman Chadha, and Amitava Das.
A comprehensive survey of hallucination mitigation techniques in large language models. arXiv
preprint arXiv:2401.01313, 6, 2024.

Akash Velu, Skanda Vaidyanath, and Dilip Arumugam. Hindsight-dice: Stable credit assignment
for deep reinforcement learning. arXiv preprint arXiv:2307.11897, 2023.

15

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://www.davidsilver.uk/teaching/
https://www.davidsilver.uk/teaching/

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Xu Wan, Wenyue Xu, Chao Yang, and Mingyang Sun. Think twice, act once: A co-evolution
framework of llm and rl for large-scale decision making. arXiv preprint arXiv:2506.02522, 2025.

Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam, Yu Zheng, Jiachen Liu, Zhongnan Qu, Shen
Yan, Yi Zhu, Quanlu Zhang, et al. Efficient large language models: A survey. arXiv preprint
arXiv:2312.03863, 2023.

Guiding Wang, Yuqi Xie, Kun Jiang, Xiangyu Lu, Weihong Zhang, Haowei Lu, Yitao Xiong, Qian
Li, Chuyuan Xu, Minggang Huang, and et al. Voyager: An open-ended embodied agent with
large language models. arXiv preprint arXiv:2305.16291, 2023.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Yongdong Wang, Runze Xiao, Jun Younes Louhi Kasahara, Ryosuke Yajima, Keiji Nagatani, At-
sushi Yamashita, and Hajime Asama. Dart-llm: Dependency-aware multi-robot task decomposi-
tion and execution using large language models. arXiv preprint arXiv:2411.09022, 2024a.

Yufei Wang, Zhanyi Sun, Jesse Zhang, Zhou Xian, Erdem Biyik, David Held, and Zackory Erick-
son. Rl-vlm-f: Reinforcement learning from vision language foundation model feedback. arXiv
preprint arXiv:2402.03681, 2024b.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256, 1992.

Yue Wu, Yewen Fan, Paul Pu Liang, Amos Azaria, Yuanzhi Li, and Tom M Mitchell. Read and
reap the rewards: Learning to play atari with the help of instruction manuals. Advances in Neural
Information Processing Systems, 36:1009–1023, 2023.

Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, Qian Luo, Victor Zhong, Yanchao Yang, and
Tao Yu. Text2reward: Automated dense reward function generation for reinforcement learning.
In International Conference on Learning Representations (ICLR), 2024 (07/05/2024-11/05/2024,
Vienna, Austria), 2024.

Frank F Xu, Yufan Song, Boxuan Li, Yuxuan Tang, Kritanjali Jain, Mengxue Bao, Zora Z Wang,
Xuhui Zhou, Zhitong Guo, Murong Cao, et al. Theagentcompany: benchmarking llm agents on
consequential real world tasks. arXiv preprint arXiv:2412.14161, 2024.

Shunyu Yao, Rohan Rao, Matthew Hausknecht, and Karthik Narasimhan. Keep calm and explore:
Language models for action generation in text-based games. arXiv preprint arXiv:2010.02903,
2020.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montse Gonzalez Are-
nas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, et al. Language to
rewards for robotic skill synthesis. arXiv preprint arXiv:2306.08647, 2023.

Eric Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
few-shot performance of language models. arXiv preprint arXiv:2102.09690, 2021.

Zihao Zhou, Bin Hu, Chenyang Zhao, Pu Zhang, and Bin Liu. Large language model as a policy
teacher for training reinforcement learning agents. arXiv preprint arXiv:2311.13373, 2023.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning
Wang, Zhihang Yuan, Xiuhong Li, et al. A survey on efficient inference for large language
models. arXiv preprint arXiv:2404.14294, 2024.

Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
to robotic control. In Conference on Robot Learning, pp. 2165–2183. PMLR, 2023.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

APPENDIX

The supplemental material is organized as follows:

• SECTION A reviews background on reinforcement learning definitions and policy gradient
algorithms to make the paper self-contained.

• SECTION B discusses related work relevant to our approach in more depth.

• SECTION C presents the theoretical results and supporting proofs for our method.

• SECTION D describes the LLM prompting procedures in MIRA and presents the corre-
sponding reasoning traces.

• SECTION E provides a more detailed explanation of the construction of memory graph,
expanding on the description in the main paper.

• SECTION F presents extended experiments, including analyses of runtime and detailed nu-
merical results that were not covered in the main text.

• SECTION G outlines limitations of the current design and identifies open challenges.

• SECTION H provides details to support reproducibility of our results.

A BACKGROUND

A.1 STANDARD REINFORCEMENT LEARNING

Reinforcement learning (RL) is typically modeled as a Markov decision process (MDP), defined
by a tuple (S,A, P, r, γ), where S is the state space, A the action space, P the transition function,
r the reward function, and γ ∈ [0, 1) the discount factor. The agent’s behavior is determined by
a policy π, which defines a probability distribution over actions given the current state: π(a|s).
Learning proceeds through interaction with the environment, producing trajectories, sequences of
states, actions, and rewards of the form τ = (s0, a0, r0, s1, a1, r1, . . .), and using them to improve
the policy.

The objective is to learn a policy that maximizes the expected return, defined as the discounted sum
of rewards along a trajectory:

Eπ

[∞∑
t=0

γtr(st, at)

]
. (5)

The environment’s reward function implicitly defines the final goal (g▷) by assigning reward to
behaviors that accomplish the task (Sutton et al., 1998; Silver, 2015). To estimate this objective,
RL algorithms often make use of value functions, which quantify the long-term utility of states or
state-action pairs. The state-value function V (s) denotes the expected return when starting from
state s and following policy π:

V (s) = Eπ

[∞∑
t=0

γtr(st, at) | s0 = s

]
. (6)

The action-value function Q(s, a) further conditions on the first action taken and is defined as:

Q(s, a) = Eπ

[∞∑
t=0

γtr(st, at) | s0 = s, a0 = a

]
. (7)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.1.1 PARTIAL OBSERVABILITY AND CREDIT ASSIGNMENT CHALLENGES

In many real-world scenarios, the environment is only partially observable. In such cases, the MDP
generalizes to a partially observable MDP (POMDP), defined by the tuple (S,A, P, r, γ,O,Ω),
where O is the observation space and Ω is the observation function. The agent does not directly ob-
serve the true state st ∈ S; instead, it receives observations ot from an observation spaceO, sampled
via Ω(ot|st), and must rely on its history of observations and actions to make decisions (Kaelbling
et al., 1998).

These difficulties are further amplified in environments where the agents face sparse and delayed
rewards. Sparse rewards refer to the limited presence of nonzero rewards since this feedback is only
provided upon reaching specific goals (i.e., r(st, at) is typically zero until the agent reaches the final
goal state (g▷) defined by the task). On the other hand, delayed rewards refer to settings where the
consequences of an action are not reflected in the reward until several steps later. In both cases,
the agent must reason over long horizons to determine which actions contributed to the eventual
outcome, a challenge known as the credit assignment problem (Schulman et al., 2015a).

Credit assignment is closely tied to the broader challenge of exploration. Inefficient exploration
occurs when the agent fails to sufficiently cover the state space, limiting its ability to discover
high-return trajectories and improve its policy. This problem is exacerbated in high-dimensional
environments, where the number of possible state-action sequences grows exponentially and ran-
dom exploration becomes increasingly unlikely to encounter informative transitions with sparse or
delayed rewards. In such cases, the combination of large search spaces and limited reward signals
often leads to slow convergence, poor sample efficiency, and high variance in learning outcomes.

A.1.2 SUBGOALS AND ABSTRACTIONS

In long-horizon tasks, reinforcement learning agents often benefit from structuring behavior around
subgoals, intermediate objectives that facilitate progress toward the overall task. The concept of
subgoals in reinforcement learning originated in hierarchical reinforcement learning (HRL), where it
was formalized through the use of temporally extended actions. In particular, the options framework
introduced by Sutton et al. (1999) defines options as high-level actions composed of an initiation
set, a policy, and a termination condition, often interpreted as achieving a subgoal (Stolle & Precup,
2002). These subgoals correspond to intermediate states or conditions that decompose long-horizon
tasks into smaller, temporally coherent segments that make the final goal more attainable when
reached. More broadly, subgoals provide structure for reasoning over extended time horizons and
facilitate learning in sparse-reward settings.

While early approaches focused on explicit or learned state-based subgoals, recent work has ex-
plored abstract subgoals that capture semantic or latent-level progress. These abstractions may
not correspond to a specific state but instead reflect high-level intentions and meaningful progress
(e.g., opening a door, entering a room, or collecting an object). Such abstractions enable reason-
ing at a higher level of granularity and are especially useful in environments with sparse rewards
or delayed feedback. Subgoal discovery and abstraction have also been explored in curriculum
learning, imitation learning, and human-in-the-loop frameworks to improve exploration and sample
efficiency (MacGlashan et al., 2017; Shiarlis et al., 2018; Narvekar et al., 2020).

A.2 POLICY GRADIENT METHODS

Policy gradient methods directly optimize a parameterized policy πθ(a|s) by ascending the gradient
of expected return. The objective is to find parameters θ that maximize:

J(θ) = Eτ∼πθ

[∞∑
t=0

γtr(st, at)

]
, (8)

where τ denotes a trajectory generated by following the current policy. The gradient of this objective
can be estimated via the likelihood ratio trick, yielding the REINFORCE estimator (Williams, 1992):

∇θJ(πθ) = Eπ [∇θ log πθ(at|st)R] , (9)

where Rt is the return from time t onward. While theoretically sound and unbiased, this estimator
suffers from high variance, making it challenging to apply in practice without further refinement.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.2.1 ADVANTAGE-BASED POLICY OPTIMIZATION

To reduce variance and improve sample efficiency, modern policy gradient algorithms often use ad-
vantage functions, which quantify the relative quality of an action compared to the policy’s baseline
behavior. The advantage function is defined as:

A(s, a) = Q(s, a)− V (s), (10)

where Q(s, a) is the expected return from taking action a in state s, and V (s) is the expected return
from s under policy π. Using this formulation, the policy gradient becomes:

∇θJ(πθ) = Eπ [∇θ log πθ(at | st)A] , (11)

which improves stability while preserving unbiasedness.

This idea underpins a family of actor-critic algorithms, where the actor updates the policy using
the advantage-weighted gradient, and the critic estimates value functions used to compute A(s, a).
Representative algorithms in this class include A2C and A3C (Mnih et al., 2016), which leverage
parallel actors to accelerate training and stabilize updates, and PPO (Schulman et al., 2017b), which
constrains policy updates by clipping the policy ratio in the surrogate objective:

LPPO(π) = E [min(rtAt, clip(rt, 1− ε, 1 + ε)At)] , (12)

where ε > 0 is a small trust region parameter that limits how much the policy is allowed to change
at each update.

These methods are widely used in modern deep reinforcement learning due to their scalability and
consistent empirical performance across a range of tasks. Since MIRA operates by shaping the
advantage function, it is compatible with any policy optimization method that relies on advantage-
weighted updates.

B RELATED WORKS

B.1 LANGUAGE MODEL GUIDANCE IN RL

A growing line of work explores how large language models (LLMs) can be integrated into rein-
forcement learning by framing them as auxiliary components within the agent–environment loop. A
recent taxonomy by Cao et al. (2024) outlines the roles of LLMs in RL along four key dimensions:
information processors, reward designers, decision-makers, and generators.

As information processors, LLMs extract and organize task-relevant knowledge from natural lan-
guage, environment descriptions, or prior experience. This includes synthesizing high-level goals,
parsing instructions, and transforming language input into actionable constraints or representa-
tions (Wang et al., 2024a; Shinn et al., 2023). A common approach is to use frozen pre-trained
models to encode task-relevant features without fine-tuning, though they may perform poorly on
out-of-distribution data due to limited adaptability (Radford et al., 2021; Paischer et al., 2022; 2023).
Alternatively, fine-tuned models can better align with task-specific distributions, leading to more ro-
bust RL performance and improved generalization in unseen environments (Kim et al., 2023; Poudel
et al., 2024). In addition, LLMs can convert human instructions or task prompts into formal repre-
sentations or structured goals, and interpret descriptions of the environment, such as objects, layouts,
or dynamics, into usable priors for downstream RL modules. This reduces the burden of language
comprehension for RL agents and improves sample efficiency (Basavatia et al., 2024; Sumers et al.,
2021; Song et al., 2023a; Liang et al., 2022). These models can decouple information processing
from control, with the LLM handling language grounding and feature extraction while the policy
module focuses on decision-making. Such capabilities can reduce learning complexity and acceler-
ate policy acquisition by shaping the agent’s representation space early in training.

As reward designers, LLMs provide auxiliary supervision by scoring agent behavior or generat-
ing rewards. This can take the form of natural language critiques, programmatic reward code, or
goal-conditioned evaluations. In the implicit reward setting, LLMs serve as proxy reward models

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

by either being directly prompted to evaluate agent behavior (Chu et al., 2023; Wu et al., 2023) or
by computing alignment between visual observations and language goals using pretrained vision-
language models (Wang et al., 2024b; Adeniji et al., 2023; Seo et al., 2023; Grauman et al., 2022).
These methods enable reward shaping via natural language instructions or preference feedback and
have been shown to improve learning efficiency and generalization. In the explicit reward setting,
LLMs are used to generate executable code that defines reward functions programmatically. This
includes frameworks that iteratively refine reward code using self-reflection and feedback from train-
ing outcomes (Yu et al., 2023; Madaan et al., 2023; Song et al., 2023b). Compared to manually en-
gineered rewards, these LLM-generated functions offer transparency and adaptability, and in some
cases match or exceed human performance, especially in complex manipulation tasks.

As decision-makers, LLMs output action plans, policy sketches, or even direct action sequences
based on current observations. These methods embed LLMs tightly into the decision loop, either
guiding exploration or dictating behavior in few-shot or zero-shot settings. One approach leverages
pre-trained LLMs for direct action generation, often adapting transformer-based models like Deci-
sion Transformers to treat offline RL as a sequence modeling problem. These LLM-backed policies
show improved generalization, particularly in sparse-reward and long-horizon tasks, by transferring
latent structure learned from large-scale language data. Some methods further fine-tune LLMs using
task-specific trajectories or append small task-specific modules to facilitate adaptation, achieving no-
table gains in sample efficiency and task transfer (Zitkovich et al., 2023; Shi et al., 2023; Mezghani
et al., 2023).
Other works integrate LLMs more loosely as action guides, generating action candidates or ex-
pert priors to support exploration and training. For example, LLMs can prune the action space
by proposing high-probability candidates or decompose complex goals into sequential subtasks,
improving exploration in environments with large or unstructured action spaces (Yao et al., 2020;
Hausknecht et al., 2020; Dalal et al., 2024; Wan et al., 2025). They have also been used to regularize
policy updates, align agent behavior with human intent, or inject expert-level motion plans. Across
both low-level and strategic roles, LLM-based decision-making enables agents to learn from rich,
structured priors and execute more informed behaviors in complex settings.

As generators, LLMs contribute to reinforcement learning by either simulating environmental dy-
namics or providing policy-level explanations to enhance transparency. In the simulation role, LLMs
function as world model simulators that generate trajectories or learn latent dynamics represen-
tations from multimodal data, thereby improving sample efficiency in model-based RL. Recent
work has leveraged Transformer-based architectures to model complex visual or sequential envi-
ronments, demonstrating gains in generalization and long-horizon reasoning. These models either
auto-regressively generate rollouts from pre-trained dynamics or use representation learning to pre-
dict future states and rewards, often incorporating language as an additional modality for grounding
and abstraction (Micheli et al., 2022; Chen et al., 2022; Robine et al., 2023). Separately, LLMs have
been used as policy interpreters to generate human-readable explanations of agent behavior from
state-action histories or decision trees. This facilitates interpretability, improves human trust, and
can inform reward design or debugging, though current work has focused mainly on policy-level
summaries (Lin et al., 2023; Lu et al., 2023).

While MIRA incorporates elements of information processing and LLMs as generators, its overall
orientation remains distinct and more RL-centric from prior LLM-centered approaches. Rather than
positioning the LLM as a decision-maker or continuous feedback provider, MIRA relegates it to
a supporting role that gradually fades over time. LLM outputs are used intermittently to enrich a
structured memory graph that informs, but does not dictate, learning. The primary learning signal
remains grounded in environment interaction, with utility shaping softly modulating advantage esti-
mates rather than overriding the reward function. This design prioritizes policy optimization through
reinforcement learning rather than imitation or prompting

B.2 MEMORY AND BUFFERS IN RL

Augmenting RL agents with structured memory has been proposed as a means of supporting general-
ization, planning, and long-horizon credit assignment. Early works such as Neural Episodic Control
(NEC) and other episodic value-based methods enabled agents to recall high-value past experiences
for more sample-efficient decision-making via memory buffers (Pritzel et al., 2017; Blundell et al.,
2016; Lin, 1992). Subsequent approaches extended this idea by integrating differentiable memory

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

into policy networks (Qiu et al., 2024). Other methods introduce structured representations, such as
subgoal graphs or navigation maps, to facilitate hierarchical planning, exploration, or navigation in
partially observable environments (Beeching et al., 2020; Rana et al., 2023). Across these directions,
the common pattern is to directly query stored structures, either through replay, imitation, or graph
traversal, to guide behavior.

MIRA aligns with this direction by maintaining a structured memory graph populated with high-
return trajectory segments but departs from this pattern in several key ways. First, its memory
graph is co-constructed from high-return agent trajectories and LLM-inferred subgoals, enabling
abstraction and structure difficult to obtain early through interaction alone. Second, rather than
querying memory for action selection or value estimation, MIRA distills the stored information
into a utility signal that modulates advantage estimates during training. This indirect shaping avoids
disrupting the optimization loop or overfitting to specific stored transitions. Finally, MIRA maintains
a compact memory via pruning and infrequent updates, which avoids the inefficiencies of excessive
memory or the brittleness of sparse guidance (Liu & Zou, 2018). This makes MIRA more scalable
and better suited for tasks where long-term structure must complement autonomous learning.

B.3 ADVANTAGE MODIFICATIONS IN RL

Modifying the advantage function has been studied as a way to stabilize learning and improve sam-
ple efficiency in policy optimization. A common approach adjusts the estimation process to better
balance bias and variance. Generalized Advantage Estimation (GAE) (Schulman et al., 2015c) in-
troduces a tunable parameter that interpolates between high-bias low-variance and low-bias high-
variance estimators, and is widely adopted in actor-critic algorithms. Other methods reformulate
policy updates in terms of advantages. Advantage-Weighted Regression (AWR) (Peng et al., 2019)
avoids policy gradients and instead performs weighted regression over actions. P3O (Fakoor et al.,
2020) combines on-policy and off-policy learning by applying advantage-weighted importance sam-
pling to stabilize updates. In the offline RL setting, advantage estimates are often used to filter ex-
perience and address distributional shift. Advantage-based data selection (Kostrikov et al., 2021)
discards transitions with low advantage, helping to focus learning on high-quality samples. Addi-
tional work incorporates auxiliary signals into the advantage estimate. Preference-based RL (Lee
et al., 2021) derives implicit advantage signals from human comparisons, while other approaches
integrate value correction from ensemble critics or confidence measures to adjust learning.

MIRA builds on these ideas but takes a different path. Instead of replacing the estimator or introduc-
ing new objectives, it shapes the advantage using a utility term derived from a structured memory
graph. This utility reflects agent experience and LLM-derived subgoals, allowing guidance with-
out overriding reward feedback. The resulting signal is integrated into PPO’s update rule without
disrupting its optimization dynamics, enabling structured shaping while maintaining scalability and
convergence guarantees.

C THEORETICAL RESULTS

Since the utility term does not alter the policy or critic structure, and enters additively, MIRA pre-
serves the theoretical guarantees of policy gradient methods such as PPO under standard assump-
tions:

C.1 ASSUMPTIONS

Assumption 1 (Boundedness).

a. For all updates k and all (s, a)
|Ak(s, a)| ≤ Amax, |Uk(s, a)| ≤ Umax (13)

b. Define the scale-adjusted shaping term as:
Uk(s, a) = Āk · Uk(s, a), where Āk = ⟨|Ak|⟩ (14)

and set
Umax = Umax · sup

k
Āk (15)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Assumption 2 (Scale control).

a. For all k, the scaling parameters satisfy:

0 < ηk ≤ 1, ξk ≤ δtηk for some δt ∈ [0, 1) (16)

b. Asymptotically, the schedule satisfies:

lim
k→∞

ηk = 1, lim
k→∞

ξk = 0 (17)

Assumption 3 (Trust region).

KL(πk, πk+1) ≤
(1− γ) ε2k

2

(implied by PPO clip ratio rπ ∈ [1− εk, 1 + εk]).

C.2 IMPROVEMENT GUARANTEES

Table 1: Summary of theoretical results. Each entry states the formal claim and the role it plays in
the overall analysis.

Result Claim Gap it fills

Lemma 1
(Single-update bound)

Any shaped update that improves its
surrogate guarantees non-decreasing
return, at least matching PPO up to a
bounded penalty.

Provides a per-step safety guarantee:
every shaped update is non-decreasing,
forming the foundation for later results.

Remark
(Faster early improvement)

Step gain exceeds PPO since the utility
term is positive.

Explains why shaping improves early
learning speed compared to PPO.

Corollary 1
(Trust-region form)

Adds the standard TRPO penalty term
under trust-region assumptions.

Bridges shaped surrogate analysis with
TRPO/PPO’s standard trust-region
guarantees.

Theorem 1
(Finite-horizon improvement)

Cumulative gain over K steps is lower-
bounded by sum of shaped surrogates.

Extends the single-step guarantee to
multiple updates, ensuring monotone
growth and showing how utility terms
can yield larger gains than PPO.

Corollary 2
(Improvement with margin)

If each surrogate exceeds a fixed mar-
gin, cumulative gain is strictly positive.

Establishes a sufficient condition for
guaranteed overall performance im-
provement.

Theorem 2
(Asymptotic convergence)

As training continues, the shaped surro-
gate reduces to standard PPO, ensuring
the same convergence behavior.

Shows shaping vanishes asymptoti-
cally, preserving PPO’s convergence
properties.

Remark
(Critic bias)

TD bias is O(ξkU), which vanishes as
ξk → 0.

Addresses stability concerns for the
critic under shaped updates.

Theorem 3
(Per-step dominance)

The update chosen by optimizing the
shaped surrogate always achieves at
least as much return as PPO’s update
under the same trust-region.

Shows shaped optimization dominates
PPO: when both are optimized step-by-
step, the shaped update is never worse.

Corollary 3
(Limit-return dominance)

In the limit, shaped returns are at least
as large as PPO’s returns.

Guarantees long-run performance of
shaped surrogate dominates PPO.

Lemma 1 (Single update bound). Let πk+1 satisfy Lshaped
k (πk+1) ≥ Lshaped

k (πk) for the surrogate
built with Ãk = ηkAk + ξkUk. Under assumptions 1 and 2,

J(πk+1)− J(πk) ≥
1

(1− γ)ηk

(
Lshaped
k (πk+1)− ξkUmax

)
. (18)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Proof. Performance–difference lemma (PDL) (Kakade & Langford, 2002) yields

J(πk+1)− J(πk) =
1

1− γ
Edπk+1

[Ak]. (19)

where dπ(s, a) is the discounted state–action occupancy measure of policy π: dπ(s, a) = (1 −
γ)

∑
t≥0 γ

t Pr(st = s, at = a | π).

Edπk+1
[Ak]

(a)

≥ Edπk

[
rπk+1Ak

]
(b)
=

1

ηk
Edπk

[
rπk+1ηkAk

]
(c)
=

1

ηk
Edπk

rπk+1

ηkAk + ξkUk︸ ︷︷ ︸
Ãk

−ξkUk




(d)
=

1

ηk

(
Edπk

[
rπk+1Ãk

]
− ξkEdπk

[
rπk+1Uk

])
(20)

Steps (a)–(d) correspond to: (a) approximation of the occupancy ratio by the policy ratio, which
is valid up to first order for small updates (as ensured by PPO’s clipping), (b) insertion of ηk, (c)
add–subtract shaping term, (d) splitting the expectation.

(i) Surrogate term: Since the clipping operation in the PPO objective only reduces the expected
value (i.e. PPO’s surrogate takes the min of the unclipped and clipped terms, it never increases the
expectation), it follows:

Lshaped
k (πk+1) ≤ Edπk

[
rπk+1

Ãk

]
. (21)

(ii) Shaping term: Given the uniform bound |Uk| ≤ Umax and since the importance ratio satisfies
Edπk

[rπk+1
] = 1, we obtain: ∣∣∣Edπk

[
rπk+1

Uk

]∣∣∣ ≤ Umax. (22)

Combining (i)–(ii) and multiplying by 1/(1− γ) proves the claim.

J(πk+1)− J(πk) =
1

1− γ
Edπk+1

[Ak] ≥ 1

(1− γ)ηk

(
Lshaped

k (πk+1)− ξkUmax

)
(23)

Remark (Faster early improvement). Lemma 1 guarantees a larger performance gain than standard
PPO:

J(πk+1)− J(πk) ≥
1

(1− γ) ηk

(
LPPO
k (πk+1) + ξk(U

bonus
k − Umax)

)
(24)

where U bonus
k is the shaped utility contribution at step k. This gap can be large early in training,

providing faster convergence.
Corollary 1 (Trust–region variant of lemma 1). Let Assumptions 1–2 hold, and suppose the KL
trust-region condition of Assumption 3 holds. Then

J(πk+1)− J(πk) ≥
1

(1− γ) ηk

(
Lshaped
k (πk+1)− ξkUmax

)
− 2γ ηk Amax

(1− γ)2
ε2k. (25)

Proof. Start from inequality proved in Theorem 1. Add and subtract 2γ ηkAmax/(1− γ)2ε2k inside
the parentheses and invoke the standard TRPO bound

∣∣Edπk

[
rπk+1

Ak

]∣∣ ≤ 2γAmaxεk/1− γ. The
result is the stated inequality.

Remark. The extra term 2γ(ηkAmax)ε
2
k/(1− γ)2 is identical to the second-order TRPO

penalty Schulman et al. (2015b), so our bound recovers the classical PPO/TRPO guarantee when
ξk=0 and ηk = 1. PPO’s clipping with ratio parameter εk typically implies a KL of order O(ε2k).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Theorem 1 (Restated). [Finite-horizon improvement under shaped surrogate] Same statement as
Theorem 1.

Proof. Apply Lemma 1 at each step k = 0, . . . ,K−1. Since

J(πk+1)− J(πk) ≥
1

(1− γ)ηk

(
Lshaped
k (πk+1)− ξkUmax

)
, (26)

summing over all steps yields:

J(πK)−J(π0) =

K−1∑
k=0

(J(πk+1)− J(πk)) ≥
K−1∑
k=0

1

(1− γ)ηk

(
Lshaped
k (πk+1)− ξkUmax

)
(27)

Applying the same technique as in the remark:

J(πK)− J(π0) ≥
K−1∑
k=0

1

(1− γ) ηk

(
LPPO
k (πk+1) + ξk(U

bonus
k − Umax)

)
(28)

Corollary 2 (Guaranteed improvement with margin). Under the conditions of Theorem 1, assume
that for each step k = 0, . . . ,K−1, the shaped surrogate satisfies Lshaped

k (πk+1) ≥ α, and the
margin satisfies α > δtηmaxUmax. Then the total performance improvement satisfies:

J(πK)− J(π0) ≥
K−1∑
k=0

1

(1− γ)ηk
(α− ξkUmax)

≥ K

(1− γ)ηmax
(α− δt ηmax Umax) > 0. (29)

Proof. From Theorem 1, we have

J(πK)− J(π0) ≥
K−1∑
k=0

1

(1− γ) ηk

(
Lshaped
k (πk+1)− ξk Umax

)
.

By assumption, Lshaped
k (πk+1) ≥ α and ξk ≤ δtηk, so: Lshaped

k (πk+1)− ξkUmax ≥ α− δtηkUmax.

Thus,

1

ηk

(
Lshaped
k (πk+1)− ξkUmax

)
≥ 1

ηk
(α− δt ηk Umax) =

α

ηk
− δt Umax. (30)

Since ηk ≤ ηmax, we have 1
ηk
≥ 1

ηmax
, so:

α

ηk
− δtUmax ≥

α

ηmax
− δtUmax =

1

ηmax
(α− δtηmaxUmax). (31)

Therefore,

J(πK)− J(π0)

≥
K−1∑
k=0

[
1

(1− γ) ηk

(
Lshaped
k (πk+1)− ξk Umax

)]
≥ K

(1− γ) ηmax
(α− δt ηmax Umax) .

This is strictly positive by assumption.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Theorem 2 (Asymptotic convergence under vanishing shaping). Suppose Assumptions 1 and 2
hold. Let {πk} be the sequence of policies generated by shaped surrogate updates satisfying
Lshaped
k (πk+1) ≥ Lshaped

k (πk). Then for any ε > 0, there exists a step Kε such that for all k ≥ Kε,

J(πk+1)− J(πk) ≥
1

(1− γ)

(
LPPO
k (πk+1)− ε

)
, (32)

where LPPO
k is the standard clipped surrogate using Ak.

Proof. From Lemma 1, we have:

J(πk+1)− J(πk) ≥
1

(1− γ)ηk

(
Lshaped
k (πk+1)− ξkUmax

)
. (33)

Since ηk → 1, ξk → 0 (Assumption 2b), Lshaped
k (πk+1)→ LPPO

k (πk+1), we conclude:

J(πk+1)− J(πk)→
1

1− γ
LPPO
k (πk+1). (34)

Thus, for any ε > 0, there exists Kε such that for all k ≥ Kε, we have:

J(πk+1)− J(πk) ≥
1

(1− γ)

(
LPPO
k (πk+1)− ε

)
. (35)

Remark (Critic bias). With |ξkUk| ≤ δtAmax, the extra bias in TD targets is O(δt). Stochastic-
approximation theory therefore gives mean-square convergence of Vθ to an O(δt) neighborhood of
the true value function; as ξk→0 (Assumption 2b) the neighborhood shrinks to a point.
Theorem 3 (Per–step dominance over PPO). Assume 1–3 hold. For each k, denote Fk ={
π | KL(πk∥π) ≤ εk

}
as the KL ball of radius εk centered at πk. Let

πshaped
k+1 := arg max

π∈Fk

Lshaped
k (π), πPPO

k+1 := arg max
π∈Fk

LPPO
k (π), (36)

where Lshaped
k and LPPO

k are the shaped and standard PPO surrogates, respectively. Then, for every
k,

J
(
πshaped
k+1

)
≥ J

(
πPPO
k+1

)
. (37)

Proof. From Lemma 1 we have

J(π)− J(πk) ≥
1

(1− γ) ηk

(
Lshaped
k (π)− ξkUmax

)
, for any π ∈ Fk. (38)

Evaluating this inequality at the two maximisers πshaped
k+1 and πPPO

k+1 yields

J
(
πshaped
k+1

)
− J(πk) ≥

1

(1− γ)ηk

[
Lshaped
k

(
πshaped
k+1

)
− ξkUmax

]
(39)

J
(
πPPO
k+1

)
− J(πk) ≥

1

(1− γ)ηk

[
Lshaped
k

(
πPPO
k+1

)
− ξkUmax

]
(40)

Since πshaped
k+1 maximizes Lshaped

k (·) over the common feasible set Fk, the bracketed term in the first
line is no smaller than that in the second. The common positive factor (1 − γ)−1η−1

k therefore
preserves the ordering, giving

J
(
πshaped
k+1

)
≥ J

(
πPPO
k+1

)
. (41)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Corollary 3 (Limit-return dominates over PPO). Let {πshaped
k } and {πPPO

k } be the policy sequences
generated from the same initial policy π0 by maximizing the shaped and standard PPO surrogates,
respectively, and set

J shaped
k := J(πshaped

k), JPPO
k := J(πPPO

k). (42)

Under Assumptions 1–3, both sequences converge and

lim
k→∞

J shaped
k ≥ lim

k→∞
JPPO
k . (43)

Proof. By assumption, the sequence of policies {πshaped
k } maximizes its surrogate, hence

J shaped
k (πk+1) ≥ J shaped

k (πk). Since rewards are bounded, the discounted return under any policy
satisfies J shaped

k ≤ Rmax/(1− γ). Thus the sequence is monotone and bounded, hence convergent:
J shaped
k → J shaped

∞ . The standard PPO monotonicity argument (Schulman et al., 2017b) yields the
same for {JPPO

k }, i.e. JPPO
k → JPPO

∞ . Theorem 3 ensures J shaped
k+1 ≥ JPPO

k+1 for every k. Taking limits
preserves the inequality:

J shaped
∞ ≥ JPPO

∞ . (44)

D LLM PROMPTING AND REASONING

D.1 GYMNASIUM TOY TEXT

Figure 7: Frozen Lake
(Gymnasium)

FROZEN LAKE is a tabular RL environment where the agent starts in
the top-left and must reach the bottom-right goal while avoiding holes.
For FROZEN LAKE, we provide the LLM with the complete map of
the environment, either as an image (see Figure 7) or as a serialized ar-
ray representation such as [‘F’, ‘F’, ..., ‘H’, ‘F’, ...,
‘G’]. Though the environment is typically stochastic due to slipperi-
ness, the LLM is instructed to assume deterministic transitions.

Part of the prompt is adapted from the official environment descrip-
tion, but for clarity and reproducibility, we include the full version. The
prompt and the LLM’s response are shown in Figure 8.

Figure 8: Prompt and response from GPT-4o-mini for the FROZEN LAKE environment. The LLM
receives a serialized map or a textual description and is asked to provide the best and second-best
safe trajectories from start to goal, avoiding all holes under deterministic dynamics.

D.2 STANDARD
AND CUSTOM MINIGRID AND BABYAI ENVIRONMENTS

Each environment was chosen for a specific purpose:

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

REDBALL involves short-horizon navigation and fast spatial goal acquisition. LAVACROSS-
ING introduces irreversible transitions that require long-horizon planning to avoid dead
ends. DOORKEY requires the agent to acquire a key, unlock a door, and reach the
goal, forming a delayed dependency chain that challenges temporal credit assignment.

Figure 9: Prompt provided to the “Offline
LLM” for the custom MiniGrid variant
DISTRACTED DOORKEY. The prompt
describes the task setting, object roles,
and challenges (e.g., sparse rewards and
distractors), and asks the LLM to confirm
understanding before suggesting helpful
trajectories.

REDBLUEDOOR tests the agent’s ability to commit to
a correct action sequence, as opening the blue door
prematurely ends the episode. At last, DISTRACTED
DOORKEY introduces BabyAI-style distractors (e.g.,
irrelevant balls and boxes) alongside the original multi-
step dependencies of DOORKEY, allowing us to test
whether the LLM can generalize across known task el-
ements and maintain coherent subgoal proposals under
added visual distraction. For standard MiniGrid and
BabyAI environments, we used the environment de-
scriptions provided on the MiniGrid website. For our
custom environment (DISTRACTED DOORKEY), we
mimicked the phrasing and structure of the official Min-
iGrid descriptions (see Figure 9). Unlike in FROZEN
LAKE, obtaining useful trajectories here was not as
straightforward. MiniGrid-style environments often re-
quired multi-round prompting to obtain meaningful and
desired outputs. Moreover, instead of providing an im-
age of the environment, we found it more effective to
use a textual description. This helped reduce confusion
and encouraged the LLM to understand that object lo-
cations (e.g., the key, door, and agent in DOORKEY)
can vary across episodes.

D.3 LLM REASONING PATTERNS ACROSS MODELS

We observed that different LLMs produced very different memory graphs. To better understand
how different models reason about these environments, we recorded not only their output trajecto-
ries but also their internal reasoning processes. For model that include system-level thinking (e.g.,
GPT-o4-mini), this was extracted directly from the response. For models that do not expose inter-
mediate reasoning (e.g., Claude 3), we followed up with an auxiliary prompt such as: “Give me your
reasoning as to why you chose this sequence of actions.”

These responses were not used in the MIRA framework, but we found them surprisingly reveal-
ing. Despite receiving identical prompts, the models relied on starkly different reasoning strategies.
This divergence gave us unexpected insight into how various LLMs process spatial structure, inter-
pret decision sequences, and reason about reinforcement learning dynamics and learning objectives.
Differences that, in turn, shape the quality of their output trajectories. In Figure 10, we present
reasoning snippets from the LLMs’ outputs. We omit the initial sections where models repeat the
prompt or restate the environment description, and instead highlight the specific reasoning steps that
led each model to select a particular trajectory. The influence of these differing reasoning strategies
on RL performance is reflected in the return curves shown in Figure 6.

D.4 CASE STUDY: DISTRACTED DOORKEY

In the ablation study presented in Subsections 4.2, GPT-o4-mini and Gemini return different outputs
when presented with the same situation. Here, we provide the exact prompt and reasoning traces. As
shown in Figure 11, both responses appear plausible at a surface level, but only one is consistent with
the task dynamics: given that sufficient exploration has already occurred, the key is likely collected,
making suppression of the corresponding action the correct response. In this case, the divergence
leads to a drop in performance under the misaligned output.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 10: Reasoning traces produced by different LLM s in response to our custom environment
prompt as part of “Offline LLM” prompting. After confirming they understood the environment,
each model was asked: “If you were to give an RL agent useful trajectories to help solve this, what
would you do?” For models that do not output internal reasoning (e.g., Claude), we issued a follow-
up prompt requesting their thought process. We omit repeated environment restatements and show
only the key parts where the model explains how it decided on the action sequence.

Figure 11: Reasoning traces produced by Gemini and ChatGPT under “Online LLM” prompting.
The prompt emphasizes that sufficient exploration has already been performed and, from the partial
observation, no key is visible. A (flawed but plausible) line of reasoning is that the agent must still
be in the phase of searching for the key, so reducing the probability of toggle appears reasonable to
prioritize movement actions for exploration.

E MEMORY GRAPH CONSTRUCTION DETAILS

In this section, we further explain the procedure for initializing, updating, and pruning MIRA’s
memory graph. As discussed in Section 2, the initial memory graph is constructed from offline
LLM-generated suggestions. Once built for a specific environment, this graph can be reused across
training episodes or even across agents within the same task. Since MIRA is designed to generalize
across diverse settings, figure 12 illustrates how the framework accommodates environments with a
single terminal objective as well as tasks with multiple independent objectives

Given that each task differs slightly, we largely focus our detailed explanation on DOORKEY from
the MiniGrid suite for the rest of the subsections, as it contains multiple subgoals and is sufficiently
complex to show the dynamics of the graph clearly.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

E.1 INITIALIZATION

As shown in figure 10, GPT-o4-mini tends to generate trajectory segments that be-
gin after the key is picked up, with the subgoal “toggle the door”. In con-
trast, models like Claude tend to produce longer, full trajectories from the beginning.

Figure 12: Visualization of MIRA’s mem-
ory graph. Trajectory segments τj are
grouped under subgoal nodes κℓ, which
represent abstract intermediate objectives.
Subgoals can be shared across multiple fi-
nal goals (e.g., κ1 connects to both g▷ and
g′▷), enabling reuse of common behaviors.
The graph evolves during training through
agent discovery and LLM-guided grafts.

Interestingly, segmented trajectories are often more
useful in this environment. Since the environment is
partially observable and reinforcement learning relies
heavily on exploration, allowing the agent to figure out
how to reach the key on its own helps it understand the
overall layout of the environment better. Once the key
is acquired, there is a higher chance that the door has
already entered the agent’s observation window, mak-
ing memory-guided navigation toward the door more
effective.

In addition to segments, the LLM also infers subgoals
(κℓ). While the obvious ones are “Pick up key,” “Open
door,” and “Reach goal,” o4-mini returns more detailed
versions like:

κ1 : Go to key → κ2 : Pick up key →
κ3 : Go to door → κ4 : Toggle door → g▷: Go to goal.

This fine-grained subgoal sequence reflects the environ-
ment’s control logic: the “open door” action is valid
only if the agent is positioned one step away, properly
aligned, and facing the door.

E.2 AGENT-INDUCED UPDATES

During training, new nodes are added to the memory graph based on successful agent interations.
For instance, if the agent finds a short path to the key on its own, and subsequently uses a learned,
memory-guided trajectory to reach the door or goal, the complete sequence is added as a new node.
Moreover, if the agent follows a trajectory with initially low confidence and that trajectory proves
useful for achieving the corresponding goal or subgoal, we treat this as implicit validation and in-
crease the confidence of the associated node.

The memory graph remains lightweight throughout training. Each node stores a trajectory segment
and metadata, and the total graph size stays compact. Compared to experience replay buffers in
standard off-policy RL methods, which retain large volumes of data, the memory graph introduces
negligible computational and memory overhead. To maintain compactness, unused nodes are peri-
odically pruned based on access frequency. Each memory node tracks an access counter, which is
reset every time the node is used. Nodes that are not accessed for 100 episodes are pruned, except
for those corresponding to final goal trajectories (g▷), which are retained since the agent might not
have reached them early on, but they are essential for guiding successful completion later in training.

E.3 ONLINE GRAFTING AND TRIGGERS

Since the agent has a limited number of steps per episode, it may fail to reach any subgoal (e.g.
“Open Door”) with a matching trajectory in the memory graph early on, preventing utility shaping
from activating. To address this, MIRA includes a fallback mechanism: if the computed utility
U is entirely zero for N consecutive episodes, the agent triggers an online LLM query. These
online queries return short plans (e.g., “turn left, move forward, toggle”) based on the agent’s partial
observations to help the agent reorient. Once screened for quality, the new suggestion is grafted into
MIRA. Another way online LLM queries contribute is by influencing the agent’s policy preferences
directly through soft logit injection. Importantly, the online LLM is constrained by the same partial
observability as the agent. It does not receive access to the full environment state and therefore
cannot, for example, determine the presence of a key elsewhere in the grid. Furthermore, since
inventory status is not part of the agent’s observation space, the LLM is unaware of whether the

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

agent has picked up the key. Instead, the LLM receives a batch of recent partial observations and
must infer from them whether any meaningful guidance can be offered.

F EXTENDED EXPERIMENTAL STUDIES

F.1 EARLY ADVANTAGE DYNAMICS

Figure 13: Return curves for different η values
(line styles) under fixed ξ settings (colors). Mark-
ers indicate the first iteration where performance
begins to diverge across η, signaling when At

starts to meaningfully affect learning. Early on,
the critic signal is weak, and Ãt is driven mostly
by the utility term. When ξ is large enough, shap-
ing accelerates the critic’s contribution by up to 50
iterations and leads to around 2.5× higher return
compared to the unshaped case. These results sup-
port the value of softly incorporating utility and
highlight the sensitivity to shaping parameters.

Figure 13 provides empirical support for the
central intuition behind our shaping formula-
tion. We plot return curves for each ξ group
(color), across different η values (line style).
Early in training, return curves within each ξ
group remain tightly clustered, indicating that
At, the critic’s estimate, provides little useful
signal, regardless of how it is weighted. Di-
vergence points, marked on the figure, denote
the first iteration where the return spread across
η values exceeds a certain threshold, signaling
that At has begun contributing meaningfully to
the shaped advantage Ãt = ηtAt + ξtUt.

In the absence of shaping (ξ = 0, gray
lines), this occurs relatively late (iteration 131),
whereas with shaping (ξ > 0), it happens sub-
stantially earlier (iterations 81–113, depending
on ξ). This shows that the utility term not only
supports early learning but also accelerates the
emergence of a reliable critic. These results val-
idate our choice to softly shape advantages, and
emphasize the importance of carefully tuning ξ
and η: insufficient shaping slows critic learn-
ing, which in turn leads to substantially lower mean returns.

F.2 RELATIVE WALL TIME

We measure relative wall-clock time as the end-to-end runtime per iteration to assess
each method’s computational burden. Environments with a more complex step logic,

Figure 14: Wall-clock runtimes across environ-
ments. Time required to reach a 0.5 return (left):
PPO reaches 0.5 only on FROZEN LAKE, while
both MIRA variants converge across tasks. Run-
time for 2k training steps (right): Online MIRA
incurs extra overhead from initial LLM queries,
but this cost reduces wasted exploration and leads
to faster convergence in terms of overall wall time.

such as DISTRACTED DOORKEY, which in-
volves door toggling, key collection, and dis-
tractor dynamics, incur higher per-step sim-
ulation costs. Tasks like REDBLUEDOOR
and LAVACROSSING further increase runtime
through frequent failures that trigger repeated
episode resets and buffer re-initializations.
In contrast, FROZEN LAKE’s tabular, low-
dimensional transitions execute very quickly,
so all methods complete rapidly (we do not
run the online variant here since the offline ap-
proach suffices). Occasional LLM queries in-
troduce network latency that further raises wall
time in the slower domains. As a result, relative
wall time grows with both the intrinsic simula-
tion complexity of the environment and any ad-
ditional algorithmic overhead (e.g., LLM calls).

Figure 14 reports wall-clock times for two mea-
sures: reaching a 0.5 return (left) and complet-
ing a 2k-step run (right). In the left panel, PPO
reaches 0.5 only on FROZEN LAKE, while both

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

MIRA variants converge across all environments. In the right panel, PPO shows the lowest per-step
runtime because online MIRA incurs some additional cost from its initial LLM queries. However,
these early queries reduce wasted exploration, allowing online MIRA to reach 0.5 return much faster
overall, yielding a net gain in efficiency despite the upfront overhead.

F.3 QUERY FREQUENCY PERFORMANCE SUMMARY

Table 2 expands on Figure 6 in Subsection 4.2. It shows how different online query budgets impact
learning progress (SR90Return, indicating the mean return when success rate first exceeds 90%),
final return, and convergence speed (total steps to termination). The results reinforce that while
all MIRA variants outperform PPO, higher online budgets further accelerate training and improve
asymptotic performance.

Table 2: Performance on DOORKEY. SR90Return is the mean return when success rate first exceeds
90%; Final Return is the return at the end of training; Final Step is the total environment steps.
MIRA variants outperform the baseline in both early and final return, with MIRA (large) achieving
the highest values while converging fastest.

Method SR90Return↑ Final Return↑ Final Step↓

Baseline 0 ± 0.002 0.009 ± 0.001 10362
MIRA (offline) 0.233 ± 0.087 0.295 ± 0.123 10351
MIRA (mid) 0.284 ± 0.065 0.902 ± 0.012 10257
MIRA (large) 0.851 ± 0.060 0.91 ± 0.013 9961

F.4 MINIGRID PERFORMANCE SUMMARY

Tables 3 and 4 report detailed numerical results for all four MiniGrid tasks, including mean returns
and success rates averaged over unseen seeds. MIRA consistently outperforms both PPO and the
hierarchical baseline across all environments, including the more complex ones such as DOORKEY
and REDBLUEDOOR. Welch’s t-tests (Ruxton, 2006) show no statistically significant difference
between MIRA and LLM4Teach at the 0.05 level across metrics and environments (see Table 5).
These results support the aggregate performance trends in the main text (Figure 5), demonstrating
that MIRA improves both final return and task completion.

Table 3: Mean return on unseen seeds across MiniGrid environments. MIRA achieves high and
stable success, comparable to LLM4Teach, despite requiring substantially fewer LLM queries.

Method DOORKEY LAVACROSSING REDBLUEDOOR REDBALL

Baseline RL 0.018 ± 0.016 0.012 ± 0.027 0.044 ± 0.042 0.329 ± 0.205
HRL 0.472 ± 0.117 0.468 ± 0.081 0.565 ± 0.027 0.820 ± 0.241
LLM4Teach 0.912 ± 0.075 0.884 ± 0.100 0.901 ± 0.082 0.946 ± 0.051
MIRA 0.898 ± 0.093 0.855 ± 0.132 0.911 ± 0.077 0.942 ± 0.054

F.4.1 T-TEST: MIRA VS. LLM4TEACH

To assess whether the performance differences between LLM4Teach and MIRA are statistically
significant, we conduct Welch’s t-tests on the evaluation metrics across environments and seeds.
Welch’s t-test is a two-sample statistical test that does not assume equal variance. As shown in
Table 5, none of the differences reach significance at the α = 0.05 level. This suggests that MIRA
performs comparably to LLM4Teach across all reported metrics, despite MIRA having small lower
final reward.

G LIMITATIONS

While MIRA improves sample efficiency and reduces reliance on frequent LLM queries, it also
comes with natural trade-offs. The method relies on offline LLM outputs to initialize its memory

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 4: Success rate on unseen seeds across MiniGrid environments. MIRA achieves consistently
high success rates, matching LLM4Teach while requiring fewer queries, and outperforming baseline
and HRL methods.

Method DOORKEY LAVACROSSING REDBLUEDOOR REDBALL

Baseline RL 0.023 ± 0.017 0.017 ± 0.020 0.036 ± 0.043 0.539 ± 0.064
HRL 0.585 ± 0.043 0.489 ± 0.097 0.543 ± 0.032 0.881 ± 0.136
LLM4Teach 0.970 ± 0.004 0.931 ± 0.011 0.956 ± 0.003 0.958 ± 0.021
MIRA 0.953 ± 0.043 0.913 ± 0.077 0.944 ± 0.020 0.956 ± 0.036

Table 5: Welch’s t-test comparing LLM4Teach and MIRA (MR: Mean Return - SR: Success Rate).
None of the differences are statistically significant at α = 0.05.

Metric LLM4Teach MIRA t p 95% CI

DOORKEY (MR) 0.912± 0.075 0.898± 0.093 0.203 0.8495 [–0.181, 0.209]
DOORKEY (SR) 0.970± 0.004 0.953± 0.043 0.682 0.5647 [–0.0885, 0.1225]
LAVACROSSING (MR) 0.884± 0.100 0.855± 0.132 0.303 0.7778 [–0.2443, 0.3023]
LAVACROSSING (SR) 0.931± 0.011 0.913± 0.077 0.401 0.7260 [–0.1681, 0.2041]
REDBLUEDOOR (MR) 0.901± 0.082 0.911± 0.077 –0.154 0.8851 [–0.1906, 0.1706]
REDBLUEDOOR (SR) 0.956± 0.003 0.944± 0.020 1.028 0.4081 [–0.0362, 0.0602]
REDBALL (MR) 0.946± 0.051 0.942± 0.054 0.093 0.9302 [–0.1152, 0.1232]
REDBALL (SR) 0.958± 0.021 0.956± 0.036 0.083 0.9387 [–0.0717, 0.0757]

graph, which, if they include misleading information or are not well aligned with the environment
dynamics, can slow convergence or increase the need for online queries. Our screening and pruning
mechanisms reduce this risk, and in practice it is largely a limitation of current LLMs that is expected
to diminish as models improve. MIRA also introduces shaping terms that require hyperparameter
tuning to avoid instability between the actor and critic. We find, however, that they can be adjusted
with standard procedures. Finally, our current study focuses on discrete action spaces; extending
MIRA to continuous domains without discretization is a natural next step.

H REPRODUCIBILITY

Experiments were run on both a Linux server with Intel Xeon E5-2630 v4 CPUs (40 threads) and
an Apple M2 (8-core CPU, 10-core GPU, 16GB unified memory). All LLM models used in our
experiments correspond to the publicly available versions released in the first week of August 2025.

H.1 SIMULATION PLATFORMS

H.1.1 GYMNASIUM TOY TEXT

ENVIRONMENT DETAILS. Horizon indicates the maximum number of steps per episode before
automatic termination (i.e., maxsteps in the environment configuration).

Table 6: FrozenLake environment details.
Property Value

Observation Type Discrete
Horizon 200
Reward Sparsity Sparse
Action Space 4 (tabular)
Dynamics Slippery, irreversible

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

HYPERPARAMETER. Table 7 provides the main specifications of FrozenLake for PPOConfig in
RLlib.

Table 7: Hyperparameters of FROZENLAKE

Parameter Value

Learning rate 1× 10−4

Batch size 512
Mini-batch size 64
Number of epochs 4
Entropy coefficient 0.01
Discount factor (γ) 0.99
GAE lambda (λ) 0.95
Utility (ξ) [0.9]
Batch mode “complete episodes”

H.1.2 MINIGRID AND BABYAI

ENVIRONMENT DETAILS. Horizon indicates the maximum number of steps per episode before
automatic termination (i.e., maxsteps in the environment configuration).

Table 8: MiniGrid suite details.
Property Value

Observation Type RGB
Reward Sparsity Sparse and delayed
Action Space 7 (tabular)
View Size 7
Horizon 300

Table 9: MiniGrid environments and their dynamics.
Environment Dynamics

REDBALL Reversible
REDBLUEDOOR Irreversible
LAVACROSSING Irreversible
DOORKEY Subgoal seq.
DISTRACTED DOORKEY +Visual distractors

HYPERPARAMETER. Tables 11- 13 provides the main specifications of all the MiniGrid environ-
ments for PPOConfig in RLlib.

OBSERVATION SPACE In MiniGrid environments, the agent receives an RGB image of the grid,
which is passed through a convolutional encoder 15 to extract spatial features relevant for navigation
and interaction.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table 10: Hyperparameters of DOORKEY

Parameter Value

Learning rate 2.5× 10−4

Batch size 1024
Mini-batch size 64
Number of epochs 4
Entropy coefficient 0.01
Discount factor (γ) 0.99
GAE lambda (λ) 0.95
Utility (ξ) [0.25, 0.15]
Batch mode “complete episodes”

Table 11: Hyperparameters of LAVACROSSING

Parameter Value

Learning rate 2.5× 10−4

Batch size 1024
Mini-batch size 64
Number of epochs 4
Entropy coefficient 0.01
Discount factor (γ) 0.99
GAE lambda (λ) 0.95
Utility (ξ) [0.3]
Batch mode “complete episodes”

Table 12: Hyperparameters of REDBLUEDOOR

Parameter Value

Learning rate 5× 10−5

Batch size 1024
Mini-batch size 64
Number of epochs 4
Entropy coefficient 0.01
Discount factor (γ) 0.99
GAE lambda (λ) 0.9
Utility (ξ) [0.]
Batch mode “complete episodes”

Table 13: Hyperparameters of REDBALL

Parameter Value

Learning rate 2× 10−4

Batch size 512
Mini-batch size 64
Number of epochs 4
Entropy coefficient 0.01
Discount factor (γ) 0.99
GAE lambda (λ) 0.95
Utility (ξ) [0.]
Batch mode “complete episodes”

Figure 15: Convolutional encoder architecture used to process the agent’s 56×56×3 RGB observa-
tion in MiniGrid environments. The input passes through a series of Conv2D layers, reducing spatial
dimensions while increasing channel depth. The final activation is flattened and fed to both policy
and value heads. This encoder captures spatial layout, object presence, and agent-centric context for
decision-making.

This CNN processes the visual input into a compact feature vector, capturing object positions, colors,
and layout structure. The resulting embedding is concatenated with a learned directional encoding
and passed to the policy and value heads for action selection and value estimation.

H.2 UTILITY COMPUTER

To shape early learning, MIRA computes a utility signal by comparing the agent’s recent trajec-
tory against stored high-return segments in the memory graph. This comparison identifies partial
matches between the agent’s behavior and past successful subtrajectories, allowing utility values to
be assigned step-wise. The utility signal is sparse, history-dependent, and derived without modify-

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

ing the reward function. When a reference trajectory is matched, utility values are assigned based
on reverse-aligned similarity with reference trajectories; unmatched steps receive zero utility.

In FROZENLAKE, the observation space is discrete and does not include agent orientation. As a
result, direction information is undefined. To ensure consistency with the similarity computation
used in other environments, we adopt one of two equivalent strategies: (i) modify the similarity
pseudocode to ignore direction entirely in this setting (which we use in our implementation), or (ii)
assign a fixed direction value to all trajectory tuples so that the direction field trivially matches by
construction. Both approaches yield the same utility assignments, since direction plays no functional
role in tabular environments.

Algorithm 2 Compute Utility Score

function ∫(·, ·)
for each (oa, aa), (om, am) in rev(τ tail

agent, τm) do
if (pos., dir.) match & aa = am then

return high sim ▷ (1)
else if pos. match & aa = am then

return mod sim ▷ not align direction (0.7)
else if (da ± 1) mod 4 = dm then

return low sim ▷ action aligned direction (0.4)
else

return no sim ▷ (0)
end if

end for
end function

Require: Agent τagent and Reference trajectory τm

x
.
= (o, a, r,meta) ▷ Denote a transition with metadata

Initialize U ← [0, . . . , 0]

Align the tail of τagent to length of τm

for each (xa, xm) ∈ (τ tail
agent, τm) do

∫ ← ∫((oa, aa), (og, ag)) ▷ Compute similarity
ρ← ρ(g▷, ζm) ▷ Compute goal aligment factor
u← cm · r̂m · ρ · ∫
Assign u to corresponding index in U

end for
return U

USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this manuscript, the authors used OpenAI’s ChatGPT to assist with gram-
mar and readability. No research ideas, technical content, or analysis were generated by the tool. All
content was reviewed and verified by the authors, who take full responsibility for the final version.

35

	Introduction
	Methodology
	Memory Graph Design
	Offline and Online Guidance
	Utility Signal Computation
	Adaptive Advantage Shaping

	Experimental Setup
	Simulation Platform
	Baseline Methods

	Experimental Results
	Tabular Benchmark and Partially Observable Tasks
	Ablation Studies

	Conclusion
	Background
	Standard Reinforcement Learning
	Partial Observability and Credit Assignment Challenges
	Subgoals and Abstractions

	Policy Gradient Methods
	Advantage-Based Policy Optimization

	Related Works
	Language Model Guidance in RL
	Memory and Buffers in RL
	Advantage Modifications in RL

	Theoretical Results
	Assumptions
	Improvement Guarantees

	LLM Prompting and Reasoning
	Gymnasium Toy text
	Standard and Custom MiniGrid and BabyAI Environments
	LLM Reasoning Patterns Across Models
	Case Study: Distracted DoorKey

	Memory Graph Construction Details
	Initialization
	Agent-Induced Updates
	Online Grafting and Triggers

	Extended Experimental Studies
	Early Advantage Dynamics
	Relative Wall Time
	Query Frequency Performance Summary
	MiniGrid Performance Summary
	t-test: MIRA vs. LLM4Teach

	Limitations
	Reproducibility
	Simulation Platforms
	Gymnasium Toy text
	Minigrid and BabyAI

	Utility Computer

