Under review as a conference paper at ICLR 2026

MIRA: MEMORY-INTEGRATED REINFORCEMENT
LEARNING AGENT WITH LIMITED LLLM GUIDANCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) agents often face high sample complexity in sparse
or delayed reward settings, due to limited prior knowledge. Conversely, large lan-
guage models (LLMs) can provide subgoal structures, plausible trajectories, and
abstract priors that support early learning. Yet heavy reliance on LLMs introduces
scalability issues and risks dependence on unreliable signals, motivating ongo-
ing efforts to integrate LLM guidance without compromising RL’s autonomy. We
propose MIRA (Memory-Integrated Reinforcement Learning Agent), which aug-
ments learning with a structured and evolving memory graph. This graph stores
decision-relevant information, such as trajectory segments and subgoal decompo-
sitions, and is co-constructed from the agent’s high-return experiences and LLM
outputs. From this structure, we derive a utility signal that integrates with advan-
tage estimation to refine policy updates without overriding the reward signal. By
incorporating LLM-derived priors in memory rather than relying on continuous
queries, MIRA reduces dependence on real-time supervision. As training pro-
gresses, the agent’s policy outgrows the initial LLM-derived priors, and the util-
ity term decays, leaving long-term convergence guarantees intact. We establish
theoretical guarantees that this utility-based shaping improves early-stage learn-
ing in sparse reward settings. Empirically, MIRA outperforms RL baselines and
achieves final returns comparable to approaches that depend on frequent LLM
supervision, while requiring substantially fewer online LLM queries.

1 INTRODUCTION

Reinforcement learning (RL) models sequential decision-making as interactions with an environ-
ment, where behavior is learned through reward-driven feedback. RL has achieved strong results
in real-world domains 1nclud1ng robotic manrpulatlon dynamic scheduling, and autonomous plan-
ning (s s s). However, these advances often rely
on environments with dense and readily access1ble rewards. In many tasks, rewards are sparse or
delayed, appearing only when specific goals are reached or when the effect of an action unfolds after
several steps. These weak or infrequent reward signals obscure which past actions contributed to the
outcome, making it difficult to “credit” the eventual reward to the contributing actions (s

). This uncertainty weakens the gradient signal and leaves policy updates poorly informed.
Thus, agents become highly data-hungry and require large numbers of interactions to learn useful

behaviors (,). These challenges are further exacerbated under partial observabil-
ity, as agents must generalize from 11m1ted state information and often struggle in the early stages of
training (,). In such settings, random exploratron rarely

uncovers informative traJectorres leadrng to slow convergence and high variance in outcomes.

Large language models (LLMs) provide a complementary source of prior knowledge, especially in
environments where rewards are sparse, feedback is delayed, and observations are partial. They have
demonstrated strong capabilities in reasoning over abstract goals, 1nterpret1ng high-level intent, and
drawing on broad prior knowledge (, ,). These
properties make them natural candidates for providing structured guldance for RL agents (

; ,). A growing body of work has explored how pretrained LLMs can
support RL to improve sample efficiency. One line of research positions the LLM as an implicit or
explicit reward model, either estimating reward signals from environment descriptions or generating
code to define reward functions (, ; s ; s ; s ;

Under review as a conference paper at ICLR 2026

s). Another line leverages LLMs to
generate high- level plans policy sketches or step by-step guldance during tralnlng (, ;
,)-
A third drrectron focuses on task level guidance such as subgoal decomposmon currrculum design,
or goal interpretation from natural language (,
; , ; ,). We discuss other related approaches in Appendlx B.

RESEARCH CHALLENGES. The existing approaches, while having promising results, typically re-
quire frequent (often per-step) LLM supervision and querying, making the agent’s performance
heavily reliant on LLM inference. This dependence introduces several difficulties. First, it can
interfere with the RL learning signal (,), impairing the development of autonomous
decision-making and reducing the agent’s ability to generalize and adapt if the LLM later becomes
unavailable. Second, since LLMs cannot interact directly with the environment or gather real time
feedback, full reliance on their instructions is suboptimal (,

,) and dilutes the role of environment-driven feedback. Indeed, LLMs carry fundamental
risks such as hallucinated outputs, prompt sensmVlty, and limited groundlng in phy51cal environ-
ments (, ;

), making their outputs potentlally unrehable Frequent querles also raise scalablhty concerns
due to computatlonal cost and latency (,). Still, relying solely
on RL ignores the rich, structured knowledge encoded in many LLM:s that could accelerate learn-
ing or shape behavior in meaningful ways. Thus, the fundamental challenge lies in incorporating
such guidance effectively and realizing the complementary benefits of using LLM guidance with RL
adaptation over time, without undermining the optimization dynamics that make RL effective.

OUR CONTRIBUTIONS. In this work, we propose MIRA (Memory-Integrated Reinforcement Learn-
ing Agent), a method that integrates LLM-derived guidance into reinforcement learning through
a structured memory graph. The memory graph provides a temporally evolving representation
of task-relevant information, co-constructed from the agent’s own experience and LLM outputs.
Offline priors, pre-processed over environments
or goals, initialize the structure, while infre-
quent online queries conditioned on batches LanguageModel Language Model Environment
of partial environment observations refine it @ Em

-Partial Observations.

. d
during training. Nodes represent decision- = B =
relevant context, such as trajectory segments, [
while edges encode the hierarchical decom- o Uni Memory Integrated A /
Screening Unit Y "er"e gent Action

position linking goals to their subgoals. The
graph is designed to remain compact, adding
minimal overhead relative to standard replay Utility Computer
buffers (s). The memory ég%g,m,mm
graph allows the agent to organize and reuse in- Uliy Sigoal
formation without repeated LLM queries while

having a persistent source of structured knowl-

edge. Over time, the agent can validate, revise, Figure 1: Overview of MIRA. Offline pI'iOI'S and

—Healthy Grafts—

Memory Graph

and extend the structure based on its own expe- suggestions from LLMs pass through a
rience, eventually improving performance be- before populating the memory
yond what is achievable through LLM guidance graph. MIRA interacts with the environment,
alone while actively filtering out any mistaken While a module evaluates rollouts against

guidance from online LLM queries. The result- memory to shape advantage estimates.
ing graph limits dependence on real-time LLM
access, alleviating concerns about latency, query cost, and scalability.

To integrate the LLM-derived information into learning, we derive a utility signal from the memory
graph and use it to softly shape advantage estimates in each RL iteration. This signal provides
guidance during early rollouts, reinforcing reward-driven gradients when aligned while moderating
updates and correcting miscalibration that arises from an inaccurate critic. By doing so, it helps
the agent explore more effectively in the sparse-reward regime without overriding the environment’s
feedback. Theoretically, we show that the utility term accelerates early learning. As the agent’s
policy improves and surpasses the usefulness of LLM-derived guidance, the shaping influence fades,
ensuring convergence in the long-horizon limit. We empirically evaluate the effectiveness, sample

Under review as a conference paper at ICLR 2026

efficiency, and overhead of incorporating LLM guidance across multiple benchmark environments.
Our contributions are summarized as follows:

* We propose MIRA, a reinforcement learning agent that integrates LLM-derived guidance
through a memory graph co-constructed from agent experience and LLM knowledge. This
graph evolves throughout training, combining offline priors with infrequent online queries
conditioned on batches of partial observations from the environment.

* We develop adaptive advantage shaping, which incorporates utility derived from the
memory graph directly into advantage estimates. This mechanism requires no architec-
tural changes and applies to any advantage-based policy-gradient algorithm.

* We provide theoretical analysis showing that the shaping mechanism preserves the con-
vergence guarantees of Proximal Policy Optimization (PPO) (,) in
long horizon limit by augmenting, rather than overriding the optimization dynamics.

* We demonstrate empirically that MIRA improves sample efficiency over RL and HRL
baselines, and achieves competmve final returns with far fewer LLM queries than methods
based on continuous supervision (s ; s).

The remainder of this paper is organized as follows. Section 2 details MIRA’s architecture, evolv-
ing memory graph, and adaptive advantage shaping with convergence analysis; Sections 3 and 4
present experimental setup and results across multiple benchmarks; and Section 5 concludes with a
discussion of our findings and possible directions for future work.

2 METHODOLOGY

We now detail the design of our Memory-Integrated Reinforcement Learning Agent (MIRA). Our
desiderata are twofold. (I) Improve early exploration by incorporating task-relevant priors from an
LLM. (11) Minimize reliance on continuous real-time LL.M supervision in order to ensure scalability
and maintain autonomous policy learning. Our approach is built on the standard policy-gradient
formulation for reinforcement learning (see Appendix A for background).

2.1 MEMORY GRAPH DESIGN

The agent maintains a compact, evolving memory graph that organizes decision-relevant informa-
tion drawn from both LLM suggestions and agent rollouts. Nodes of the graph represent decision-
relevant context, and edges encode the hierarchical decomposition of goals into subgoals as provided
by the LLM. This structure can be expressed as

g= {((Ova)‘rjﬂcjﬂﬁj)cj }j\[:l U {"W}[f:l U {gp}' (D

Each trajectory node j consists of a partial observation o, and an action a,. It is also associated

with a goal term (; € {g;, /@‘? } indicating either a final goal (g;) or an abstract subgoal (K3 .’) that the
trajectory is intended to complete. In addition, the node stores an estimated reward 7; for the action
sequence and a confidence score c; derived from the LLM’s generation statistics (e.g., token-level
log probabilities). The second set of nodes {r,}#~ | represents subgoals x, provided by the LLM
from the environment description. The final term {g, } denotes the agent’s target goal(s). Figure 1
includes a sample memory graph for MIRA.

The graph is initialized with offline LLM priors and evolves as training progresses. New nodes
are added when the agent discovers trajectories to known subgoals. Online LLM suggestions may
also be incorporated when available, provided they pass screening (Section 2.2), which describes
the complementary roles of offline and online LLM guidance. Existing nodes are updated when the
agent’s experience validates or strengthens entries that were initially derived from low-confidence
LLM outputs. Nodes are pruned when they are accessed infrequently, signaling reduced relevance
with recent rollouts. Although offline LLM nodes are generally stable, they may also be pruned
when rendered obsolete. This process allows the graph to remain compact and adaptive over time.

Under review as a conference paper at ICLR 2026

2.2 OFFLINE AND ONLINE GUIDANCE

MIRA incorporates two complementary forms of LLM guidance, accessed either offline prior to
training or online during training. Offline outputs are generated using full access to the environ-
ment’s task description and global observations. These outputs provide trajectory segments and
subgoal decompositions that initialize the memory graph with structured priors. Offline nodes ac-
celerate early exploration and remain a persistent baseline source of guidance that complements the
adaptive updates introduced by online LLM queries.

Online suggestions are incorporated during training when the agent fails to obtain useful guidance
from its memory graph for several consecutive episodes. The LLM is constrained to the same partial
observability as the agent and, when triggered, may return plans that correspond to short trajecto-
ries. Alternatively, it may provide control signals that shape the agent’s action preferences over an
extended horizon until the current task segment is completed. To filter out low-confidence LLM re-
sponses, which may indicate hallucinations, all online outputs are first passed through the Screening
Unit, and only those that pass are retained. Accepted plans are grafted into the memory graph as
new trajectory segments, while accepted control signals are used directly to bias the agent’s policy
preferences through soft logit injection, i.e., adding a bounded penalty to the logits of discouraged
actions so their probabilities are reduced without overriding the learned policy (,).

SCREENING UNIT. To ensure reliability, online outputs are passed through a lightweight Screening
Unit des1gr1ed to mitigate known llmltatlons of LLMs such as hallucination and reasoning failures (

; s). Confidence is estimated in
two complementary ways. When token-level hkehhoods are available, we compute the average log
probability across the sequence. When such likelihoods are unavailable or incomplete (e.g., only
top-k likelihoods are provided), we instead measure agreement across multiple completions (i.e.,
independent query—response samples) and retain outputs that appear consistently. Suggestions that
fail to meet a fixed threshold under either criterion are discarded. While this procedure does not
eliminate all high-confidence errors, it serves as an effective filter that reduces the risk of halluci-
nated or low-quality outputs. The screened outputs, referred to as healthy grafts in Figure 1, are
incorporated into the memory graph as new nodes to further help the policy learning.

Together, offline priors and online grafts allow MIRA to combine stable, precomputed knowledge
with adaptive updates, reducing dependence on continuous supervision while maintaining the bene-
fits of structured LLM guidance.

2.3 UTILITY SIGNAL COMPUTATION

Utility is defined at the level of individual state—action pairs, in direct analogy to advantage estima-
tion. It is computed using the same rollouts that are employed for advantage estimation under the
current policy my, where 6 denotes the policy parameters (Algorithm 1, Line 2). Each state-action in
the trajectory 7 = {(os, a;)}7_ is matched against state-action pairs (0, as) in the stored trajec-
tory 7,,. The appropriate memory node m is selected based on the environment instance (e.g., the
seed-specific layout) in that training iteration. We then compute the utility signal for each pair ¢ as:

Ui = cm - P - p(8ss Cm) - f((Ot, at), (oy, at’)rm)~ (2

The similarity function [(-, -) measures how closely the agent’s behavior aligns with the stored tra-
jectory. It incorporates both action agreement and spatial consistency, such as overlap in grid posi-
tions or directional alignment in tabular settings. To account for semantic context, the raw similarity
score is further weighted by a goal alignment factor p(-, -) defined as the Jaccard similarity between
the set of subgoals inferred by the LLM for the agent’s current target goal and those associated with
the memory entry. This ensures that behaviorally similar paths are downweighted if they pursue
different (sub)goals. Finally, the score is modulated by the confidence c¢,, and estimated reward
7, attached to the memory node. This formulation ensures that the utility reflects both behavioral
similarity and semantic alignment with successful prior strategies (see Algorithm 2).

2.4 ADAPTIVE ADVANTAGE SHAPING

We incorporate memory-derived utility into the policy update by augmenting the standard advantage
term. Algorithm 1 outlines the shaped PPO update. At iteration k, trajectories Dy = (8¢, a, r¢) are

Under review as a conference paper at ICLR 2026

collected under the current policy 7y, . The rollout batch is split into minibatches 53 for multiple
gradient steps. The likelihood ratio r, compares new and old policies, and the clip parameter ¢y,
constrains r; within (1 & €},) as a soft trust region.

The advantage function in policy gradient methods, denoted by A; at a given time ¢, quantifies
how favorable an action a, is relative to the average action at state s;. It drives learning by
reinforcing actions that have higher-than-expected returns and suppressing those that fall short.
However, . during carly .tra'ining the r itic is Algorithm 1 Shaped PPO actor (changes)
poorly calibrated due to limited exploration, of-
ten producing nearly uniform value estimates It for k =0,1,... do)
across actions (,). Asare- 2 Collect Dy, = {(Stzah 7¢)} using 7o,
sult, the estimated advantages A; provide weak ~3: Compute A; and U/; from rollouts
learning signals, even when the agent is follow- 4 Ay = Ay + & U,
ing behavior that is meaningfully directed to- 5: for epoch =1to K do
ward the task. This can lead to inefficient or un- 6 for minibatch B C Dy, do

7

8

stable policy updates. This issue is particularly re(0) = mo(arlst)/mo, (arlst)

pronounced in sparse-reward settings or tasks Lhaped () = | [min(rt, liak)fl,}
with delayed feedback, where the critic lacks

sufficient signal to distinguish between promis- g. 0 «— 0+ agVe LM (1))

ing and unproductive behaviors. In such cases, 1. end for

the estimated advantage A; tends to be near-zero {[. end for
or highly noisy for most timesteps, especially 12: end for
early in training (see Figure 13, Appendix F).

To address this, we introduce a shaped advantage as:

/It =mA +&U, 0<n <1, & <on, §€[0,1), }g&nt =1, }H&ft = 0. 3)

This formulation preserves the fundamental role of the advantage function, while refining it with
utility-based guidance. It can be viewed as a cooperative process between the critic and the memory-
derived utility. The critic provides an estimate based on learned reward prediction and bootstrapping,
while the utility term injects an inductive bias derived from language-guided priors. Together, they
form a joint advantage estimator in which each component compensates for the other’s limitations
without distorting policy optimization. When the critic signal is weak due to insufficient value
discrimination, the resulting gradients are uninformative and impair the agent’s ability to bootstrap
from sparse or delayed rewards. The utility term provides additional directional guidance aligned
with task objectives, accelerating learning by compensating for weak or flat gradients. As training
progresses and A; becomes more reliable, the utility term naturally assumes a smaller role. This
dynamic is regulated by annealing &; and ramping 7; toward 1 over training. Rather than overriding
the reward signal, this approach shapes the advantage term, refining the learning signal without
altering the policy or critic structure.

Before turning to experiments, we establish that the proposed shaping mechanism preserves the
policy improvement property of PPO under standard boundedness and scaling assumptions, which
we formally enumerate in Appendix C.1. More broadly, the method remains compatible with any
policy gradient algorithm that relies on advantage estimation, offering a general mechanism for
integrating language-derived priors into RL.

Theorem 1. Let Assumptions 1 and 2a hold. Suppose the agent performs K policy updates using
the shaped surrogate L4 (1) = E {min (rt;lt, clip(rs, 1 — e, 1+ ek)flt)}, and that each update

satisfies E‘pr A psr) > E‘Zl”p “!(7t). Then the ~-discounted return improvement after K steps
satisfies

K-1
1
J(rg) = J(mo) = kz:;) A=m (ﬁim(ﬂkﬂ) + & (U™ — Umax)), “4)

where U, ,i’"’”” denotes the utility contribution at step k and Uy, is the maximum per-step utility
adjustment.

This theorem formalizes the benefit of advantage shaping by showing that each update improves
return through both the PPO surrogate, £ () = E [min(r;A¢, clip(ry, 1 — e, 1 + €)A¢) |, and

Under review as a conference paper at ICLR 2026

the utility contribution. The additional bonus is most evident early in training, when A; is small,
which explains the accelerated learning observed empirically.

Proof. Deferred to Appendix C.2.

3 EXPERIMENTAL SETUP

We validate our method through extensive experiments implemented using the RLIib (,

). Our evaluation focuses on performance gains, sample efficiency, and the computational
overhead introduced by LLM integration. The objective is to characterize the benefits and trade-offs
of incorporating LLM guidance in RL, including how different levels of LLM capabilities influence
the policy learning dynamics and final policy quality.

3.1 SIMULATION PLATFORM

We consider six distinct environments, which are selected to span discrete vs. visual inputs, short-
vs. long-horizon dependencies, reversible vs. irreversible dynamics, and with vs. without perceptual
distractors, forming a compact yet representative benchmark for sparse-reward RL.

GYMNASIUM TOYTEXT. Gymnasium (,) provides simple tabu-

lar environments for controlled analysis of learning dynamics in low-dimensional settings.

?
?
B

Despite their simplicity, these environments feature sparse
rewards and require strategic exploration, making them suit-
able for isolating the early-stage benefits of memory-guided
utility shaping. We include FROZENLAKE as a minimal
benchmark where PPO reliably converges to the optimal pol-
icy, enabling us to verify that MIRA preserves convergence
while accelerating early learning.

MINIGRID AND BABYAIL. MiniGrid (

R) and BabyAI (R) are
suites of lightweight, procedurally generated environments
designed to evaluate exploration and planning in partially
observable, sparse-reward settings. We use these tasks to as-

Figure 2: Evaluation environments.
Top: REDBALL (navigation to tar-

sess the effectiveness of advantage shaping in long-horizon
decision-making environments that require reasoning under
uncertainty and robustness to irrelevant stimuli. We include
five tasks, selected to cover diverse challenges involving
planning, credit assignment, and distraction resilience (see
Figure 2). We use pixel-based observations (RGB images)
rendered from the environment as the policy inputs, to intro-
duce perceptual complexity and evaluate agent performance
under a more realistic observation setting.

3.2 BASELINE METHODS

PPO (RL BASELINE). We train a tabula rasa PPO agent (

get), LAVACROSSING (long-horizon
navigation with irreversible haz-
ards), DOORKEY (sparse reward
with key—goal dependency). Bot-
tom: REDBLUEDOOR (sequence-
sensitive toggling), DISTRACTED
DOORKEY (distractor-rich variant
with key—goal dependency).

,) that learns purely

from environment interaction and rewards. Network architecture, PPO hyperparameters, and rollout
settings are held fixed across all methods for fair comparison.

HIERARCHICAL RL. We include hierarchical reinforcement learning (HRL) (,
as a baseline that uses pre-trained LLLM option policies for temporal abstraction.

LLM-RS. We consider the method of (,), which we refer to as LLM-RS. This
approach queries the LLM in real time to generate plans for potential-based reward shaping, with a
verifier refining them for valid action sequences.

LLMA4TEACH. We include LLM4Teach (,) as a representative teacher-based
approach. It employs a pre-trained LLM as a policy teacher and guides the RL agent through policy
distillation, and is among the state-of-the-art methods in this category.

~

Under review as a conference paper at ICLR 2026

4 EXPERIMENTAL RESULTS

We group our experimental observations so as to answer several research questions on MIRA’s
performance. Appendix F provides additional results, including evaluations on unseen seeds to
assess generalization, wall-clock analyses quantifying the overhead of LLM queries and memory
operations, and supplementary plot from sweeps over shaping weights, analyzing their effect on
early-stage learning dynamics and reward progression.

4.1 TABULAR BENCHMARK AND PARTIALLY OBSERVABLE TASKS

How DOES MIRA OUTPERFORM PPO IN TERMS OF FASTER EARLY LEARNING AND CONVER-
GENCE, EVEN WHEN PPO ALONE ACHIEVES COMPETITIVE PERFORMANCE? We compare MIRA
to the PPO baseline on FROZENLAKE-8X8, averaging results over four seeds. As shown in Fig-
ure 3, MIRA achieves faster early learning and higher return during the first 2K iterations. PPO
eventually matches this performance, and by convergence, the difference between the two methods
is not statistically significant. In this environment, we use only offline LLM access. Three zero-
shot queries to GPT-04-mini generate an initial static memory, with the LLM observing the full grid
configuration (matching the agent’s full observability) but not the slipperiness probability, which is
also hidden from the agent. This memory provides utility shaping in the early stages of training.
As learning progresses, the influence of shaping
diminishes, 7 increases toward 1, &; decreases i
toward 0, and the derived ratio §; = & /m: n
steadily decays (Figure 3), indicating that util-
ity guidance fades as the agent becomes self-
reliant. Under standard stochastic approxima-
tion theory (,), this decay MIRA 03

implies that the critic error is bounded within an 0 Baseline L
O(4;) neighborhood of the true value function, 0 1000 | 2000 00 0 3000
which contracts to the exact solution as §; — 0.

1.0 Frozen Lake
Cel

Shaping Terms

Mean Return
o

8]
5=t

Figure 3: Mean return on FROZENLAKE-8X8
(left): MIRA accelerates early learning and con-
verges to the same return as PPO. Evolution of
shaping terms 7, &;, and ratio §; (right): d; decays
during training, ensuring convergence as d; — 0.

HOW EFFECTIVELY DOES MIRA HANDLE
COMPLEX ENVIRONMENTS THAT REQUIRE
LONG-HORIZON EXPLORATION AND REA-
SONING? We next evaluate MIRA on five tasks
designed to isolate distinct challenges in sparse
and partially observable environments. Figure 4 shows mean return and success rate across the four
tasks, with performance averaged over four different seeds. In simpler tasks such as REDBALL,
PPO shows moderate early gains but plateaus well below optimal performance. Although hierar-
chical RL eventually catches up, MIRA reaches optimal returns in under half the training iterations.
In LAVACROSSING, PPO fails to improve beyond near-zero success, indicating ineffective explo-
ration. Hierarchical RL improves steadily but converges more slowly than MIRA. In more complex
tasks such as DOORKEY and REDBLUEDOOR, MIRA achieves substantially higher success rates,
approximately twice those of HRL, while also converging faster.

These gains are achieved with a limited LLM query budget that combines offline and infrequent
online access. Offline queries scale with task complexity. In REDBALL, four zero-shot prompts to
GPT-04-mini are sufficient to build a useful memory graph, while DOORKEY requires about seven
queries that mix few-shot and zero-shot prompts. Online queries are budgeted separately and also
vary with task complexity. In REDBALL, about seven online queries suffice to suppress irrelevant
actions throughout training. In REDBLUEDOOR, queries are triggered more frequently early in
training to help interpret partial observations and suggest short sequences, such as turning, that align
the agent with the door. Once the red door is discovered and toggled, the offline memory becomes
sufficient. In this task, rooms behind the doors serve only as distractors; baseline agents, including
hierarchical RL, often waste steps exploring them. As shown in Figure 4 (lower right), HRL achieves
higher success rates than PPO but yields similar average return in the beginning due to suboptimal
trajectory use. By contrast, MIRA avoids such inefficiencies by focusing on goal-relevant behavior
earlier in training.

How WELL DOES MIRA CONVERT LIMITED LLM QUERIES INTO PERFORMANCE GAINS,
AND HOW DOES THIS TRADE-OFF COMPARE TO QUERY-HEAVY APPROACHES? To further

Under review as a conference paper at ICLR 2026

RedBall o9 DoorKey , LavaCrossing RedBlueDoor

EY

Mean Return

Mean Return
Mean Return

0.0

0 200 4000 6000 0 4000 6000 0 200(4000 6000 0 2000 4000 6000

2000 0) .
Iteration Iteration Iteration

Baseline MIRA Hierarchical RL
RedBall 100, DoorKey 100% LavaCrossing 1002 RedBlueDoor

00 X
Iteration

100%

75%
1
5
-4

Success Rate
Success Rate

0%
4000 6000 0 2000 4000 6000 0 2000 . 4000 6000 0 200
n Iteration

“ o 200 4000 6000

Iteration Iteratiol Iteration
Figure 4: Mean return (top) and success rate (bottom) across four MiniGrid and BabyAlI tasks.
MIRA consistently outperforms both baselines, achieving faster learning, higher asymptotic return,
and greater success rates. These results are obtained with a small LLM budget, using fewer than ten
offline prompts to build memory graphs plus infrequent online queries to guide exploration.

evaluate MIRA, we compare it to LLM4Teach and LLM-RS in the custom variant environ-
ment DISTRACTED DOORKEY. We also include a Sole LLM baseline, where GPT-04-mini ex-
ecutes plans under full observability without learning. Figure 5 shows mean return progres-
sion at selected training checkpoints. For Sole LLM, we report average return over 100 seeds
to demonstrate that the task is LLM-solvable and that its outputs provide useful structural guid-
ance. The accompanying bar chart reports amortized return per cuamulative LLM query under two
fixed budgets, quantifying how efficiently each method translates queries into performance gains.

Mean Return Progression Per Return

MIRA achieves higher query efficiency than both P i

LLMA4Teach and LLM-RS. It converts limited LLM ac- per 20 SORRI—
cess, seven offline prompts and 20 & 3 online queries
per run, into higher return per query. In contrast,

3k 500

LLM4Teach issues dense supervision, querying the im ius

LLM on every state—action—reward triplet within train- per 10 %:

ing batches, often for more than 500 iterations until the -2

policy stabilizes. LLM-RS, which uses LLM-generated axis skitrs o 04 08
reward code, queries once per layout, totaling over 50 LM Teach e S

calls in our setup. While lighter than LLM4Teach,

this still requires layout-level access throughout train- Figure 5: Mean return (left): LLM4Teach
ing. Despite its heavier budget, LLM4Teach achieves ghows faster early gains, while MIRA
Comparable final performance to MIRA, while LLM- Steadﬂy improves and matches its final re-
RS fails to match MIRA’s return. Notably, LLM-RS turn with fewer queries. LLM-RS bene-
outpaces MIRA early due to reward shaping, but falls fjtg early from reward shaping but plateaus
behind later. LLM4Teach shows an early advantage Jower. Return per LLM query (right): Un-
through front-loaded queries, but at significantly higher der two query budgets, MIRA achieves
cost. Table 3 and 4 reports results on unseen evaluation hijgher efficiency.

seeds to assess generalization.

4.2 ABLATION STUDIES

ONLINE QUERY FREQUENCY: HOW DO ONLINE LLM QUERIES IMPROVE LEARNING, BE-
YOND WHAT OFFLINE MEMORY PROVIDES? We vary the number of online LLM queries issued
during training of DOORKEY, to assess how constrained usage affects learning efficiency and fi-
nal performance. Each agent begins with the same memory graph, initialized from identical offline
queries, isolating the contribution of dynamic LLM input from that of static memory initialization.
We compare MIRA under three online budgets: zero, a mid budget of 10 queries, and a high bud-
get of 20. As shown in Figure 6 (left), more frequent online access accelerates learning, with the
large-budget variant achieving optimal return in fewer steps (Table 2; Appendix F). Even with just
10 online calls, MIRA substantially outperforms the offline-only variant. Nevertheless, MIRA (of-

Under review as a conference paper at ICLR 2026

Query Frequency 06 Unreliable LLM LLM Models

MIRA (
MIRA (
MIRA (

Baselin:

=

Mean Return
Mean Return

Mean Return

10000 0 3000 0 1000 2000 3000

Step Count Iteration Iteration

Figure 6: Query frequency (left): Agents share the same offline memory but vary in online budgets.
More queries speed learning, with high-budget agents reaching optimal return fastest. Unreliable
LLM (middle): With identical offline memory, screening is disabled and queries are swapped from
GPT-04-mini to Gemini Pro only in the late phase. Performance remains stable in the late phase,
indicating reduced dependence on online guidance once policy have matured. LLM models (right):
Agents differ only in the LLM used for memory. Gemma3 induces inefficient checking, Claude
favors exploration, while Gemini Pro and 04-mini enable faster learning and task progression.

fline) still yields a notable boost over baseline PPO, indicating that static memory alone can provide
meaningful guidance when dynamic access is unavailable.

UNRELIABLE LLM OUTPUTS: HOW DOES MIRA HANDLE LATE-STAGE EXPOSURE TO DE-
GRADED LLM GUIDANCE ONCE ITS MEMORY IS WELL-FORMED? We evaluate a scenario where
the LLM is swapped at a later training stage and the screening unit is disabled only for this final
online phase in DISTRACTED DOORKEY environment. All agents share the same offline-initialized
memory graph and use GPT-04-mini with screening during earlier online queries. In the final stage,
we replace the LLM with Gemini Pro and omit screening. By this point, MIRA has accumulated
sufficient experience and memory, allowing it to tolerate low-confidence or incorrect suggestions
without collapsing performance. We prompted both LLMs with a scenario where the agent has al-
ready explored thoroughly and confirmed no key is present (implying it was already collected, since
inventory is unobserved). When asked which action to down-weight, GPT-04-mini gave a consis-
tent suppression, whereas Gemini returned a misaligned alternative. As shown in Figure 6 (middle),
MIRA remains stable under degraded guidance, though convergence slows and final return drops
slightly. Details of the reasoning trace are given in Figure 11, Appendix D.

REASONING AND PERFORMANCE: HOW DO VARIATIONS IN LLM REASONING AFFECT MEM-
ORY AND DOWNSTREAM RESULTS? We assess MIRA’s sensitivity to the choice of language model
by replacing GPT-04-mini with alternatives such as GPT-4o (,), Claude Sonnet 4 (

R), Gemma 3 27B (,), Gemini 2.5 Flash and Pro (

,). All models go through the same process to ensure comparability. Unlike the ablation
done before, the model swap is applied from the beginning of training. As shown in Figure 6 (right),
the reasoning style shaping the memory graph strongly impacts downstream RL performance. For
instance, Gemma3 performs poorly because it recommends checking the door after every pickup,
leading to wasteful steps. Claude adopts an exploratory policy that yields slow but eventual progress,
showing early improvement followed by plateauing, but it eventually recovers as the memory is
dynamic. GeminiPro and GPT-04-mini both enable fast early learning, but 04-mini’s memory in-
cludes detours that prove beneficial later, ultimately reaching the highest asymptotic return. These
differences highlight how the reasoning processes behind LLM outputs directly influence MIRA’s
long-term policy quality. Reasoning traces from the LLM appear in Appendix D, Figure 10.

5 CONCLUSION

We propose MIRA, an reinforcement learning (RL) framework that integrates large language model
(LLM) guidance via a memory graph built from high-return trajectories and LLM-inferred informa-
tion. By shaping advantage estimates with a utility signal derived from this memory, MIRA acceler-
ates early learning without requiring continuous LLM supervision. Theoretical and empirical results
on sparse-reward tasks confirm improved sample efficiency and preserved convergence. Limitations
of the current design are discussed in Appendix G. Future work includes extending MIRA to con-
tinuous action spaces and multi-goal domains like Crafter (,), where long-horizon
dependencies and reusable subgoal structure are prominent. We expect that MIRA’s evolving mem-
ory and advantage shaping will be especially valuable in such settings, supporting both reuse and
abstraction across episodes.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure reproducibility of our results. All theoretical assumptions and
complete proofs are included in Appendix C. Appendix D details the environment specifications and
the exact LLM prompts used for both offline and online queries. Appendix H lists the full set of hy-
perparameters for MIRA across every evaluated environment. We also provide pseudocodes for all
proposed algorithms in Algorithms 1 and 2, ensuring clarity and transparency despite their straight-
forward implementation. Together, these materials supply all information necessary to reproduce
our experiments and verify the claims of the paper.

REFERENCES

Ademi Adeniji, Amber Xie, Carmelo Sferrazza, Younggyo Seo, Stephen James, and Pieter
Abbeel. Language reward modulation for pretraining reinforcement learning. arXiv preprint
arXiv:2308.12270, 2023.

Rajat Ananthanarayanan, Jaya Bhosale, Aakanksha Chowdhery, Danny Driess, and et al. Gemma 2
and 3: Open models based on gemini research and technology. arXiv preprint arXiv:2503.19786,
2024. URL https://arxiv.org/abs/2503.19786.

Anthropic. Introducing the claude 4 model family. https://www.anthropic.com/news/
claude-4, 2024. Claude 3.5 Sonnet released June 2024.

Arjun KG Arnoldo et al. A standard interface for reinforcement learning environments. arXiv
preprint arXiv:2407.17032, 2024. URL https://arxiv.org/abs/2407.17032.

Yejin Bang, Ziwei Ji, Alan Schelten, Anthony Hartshorn, Tara Fowler, Cheng Zhang, Nicola
Cancedda, and Pascale Fung. Hallulens: Llm hallucination benchmark. arXiv preprint
arXiv:2504.17550, 2025.

Shreyas Basavatia, Keerthiram Murugesan, and Shivam Ratnakar. Starling: Self-supervised train-
ing of text-based reinforcement learning agent with large language models. arXiv preprint
arXiv:2406.05872, 2024.

Edward Beeching, Jilles Dibangoye, Olivier Simonin, and Christian Wolf. Egomap: Projective
mapping and structured egocentric memory for deep rl. In Joint European conference on machine
learning and knowledge discovery in databases, pp. 525-540. Springer, 2020.

Siddhant Bhambri, Amrita Bhattacharjee, Durgesh Kalwar, Lin Guan, Huan Liu, and Subbarao
Kambhampati. Extracting heuristics from large language models for reward shaping in reinforce-
ment learning. arXiv preprint arXiv:2405.15194, 2024.

Ondrej Biza, Dian Wang, Robert Platt, Jan-Willem van de Meent, and Lawson LS Wong. Action
priors for large action spaces in robotics. arXiv preprint arXiv:2101.04178, 2021.

Charles Blundell, Benigno Uria, Alexander Pritzel, Yazhe Li, Avraham Ruderman, Joel Z Leibo,
Jack Rae, Daan Wierstra, and Demis Hassabis. Model-free episodic control. arXiv preprint
arXiv:1606.04460, 2016.

Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol Hausman, Alexander Herzog, Daniel Ho,
Julian Ibarz, Alex Irpan, Eric Jang, Ryan Julian, et al. Do as i can, not as i say: Grounding
language in robotic affordances. In Conference on robot learning, pp. 287-318. PMLR, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Bruno Huster, Ananth Raghunathan,

Jonathan Ray, and Yang Zhang. Sparks of artificial general intelligence: Early experiments with
gpt-4. In arXiv preprint arXiv:2303.12712, 2023.

10

https://arxiv.org/abs/2503.19786
https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/claude-4
https://arxiv.org/abs/2407.17032

Under review as a conference paper at ICLR 2026

Yuji Cao, Huan Zhao, Yuheng Cheng, Ting Shu, Yue Chen, Guolong Liu, Gaoqi Liang, Junhua
Zhao, Jinyue Yan, and Yun Li. Survey on large language model-enhanced reinforcement learning:
Concept, taxonomy, and methods. IEEE Transactions on Neural Networks and Learning Systems,
2024.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves
Oudeyer. Grounding large language models in interactive environments with online reinforcement
learning. In International Conference on Machine Learning, pp. 3676-3713. PMLR, 2023.

Chang Chen, Yi-Fu Wu, Jaesik Yoon, and Sungjin Ahn. Transdreamer: Reinforcement learning
with transformer world models. arXiv preprint arXiv:2202.09481, 2022.

Zhenzhong Chen, Siddharth Purohit, William Wang, Rohan Anil, and et al. Gemini 1.5 and
2.5: Unlocking multimodal understanding and reasoning in a single model. arXiv preprint
arXiv:2507.06261, 2024. URL https://arxiv.org/abs/2507.06261.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. BabyALl: First steps towards grounded language learning
with a human in the loop. In International Conference on Learning Representations (ICLR), 2019.
URL https://openreview.net/forum?id=rJeXCo0cYX.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems,
Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld:
Modular & customizable reinforcement learning environments for goal-oriented tasks. CoRR,
abs/2306.13831, 2023. URL https://arxiv.org/abs/2306.13831.

Kun Chu, Xufeng Zhao, Cornelius Weber, Mengdi Li, and Stefan Wermter. Accelerating reinforce-
ment learning of robotic manipulations via feedback from large language models. arXiv preprint
arXiv:2311.02379, 2023.

Murtaza Dalal, Tarun Chiruvolu, Devendra Chaplot, and Ruslan Salakhutdinov. Plan-seq-
learn: Language model guided rl for solving long horizon robotics tasks. arXiv preprint
arXiv:2405.01534, 2024.

Ishita Dasgupta, Christine Kaeser-Chen, Kenneth Marino, Arun Ahuja, Sheila Babayan, Felix Hill,
and Rob Fergus. Collaborating with language models for embodied reasoning. arXiv preprint
arXiv:2302.00763, 2023.

Rati Devidze, Parameswaran Kamalaruban, and Adish Singla. Exploration-guided reward shaping
for reinforcement learning under sparse rewards. Advances in Neural Information Processing
Systems, 35:5829-5842, 2022.

Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek
Gupta, and Jacob Andreas. Guiding pretraining in reinforcement learning with large language
models. In International Conference on Machine Learning, pp. 8657-8677. PMLR, 2023.

Rasool Fakoor, Pratik Chaudhari, and Alexander J Smola. P3o: Policy-on policy-off policy opti-
mization. In Uncertainty in artificial intelligence, pp. 1017-1027. PMLR, 2020.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. Advances in Neural Information Processing Systems, 35:
18343-18362, 2022.

Jiaxuan Gao, Shusheng Xu, Wenjie Ye, Weilin Liu, Chuyi He, Wei Fu, Zhiyu Mei, Guangju Wang,
and Yi Wu. On designing effective rl reward at training time for llm reasoning. arXiv preprint
arXiv:2410.15115, 2024.

Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit Gird-
har, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d: Around the world in
3,000 hours of egocentric video. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 18995-19012, 2022.

11

https://arxiv.org/abs/2507.06261
https://openreview.net/forum?id=rJeXCo0cYX
https://arxiv.org/abs/2306.13831

Under review as a conference paper at ICLR 2026

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Matthew Hausknecht, Prithviraj Ammanabrolu, Marc-Alexandre C6té, and Xingdi Yuan. Interac-
tive fiction games: A colossal adventure. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 7903-7910, 2020.

Matthew J Hausknecht and Peter Stone. Deep recurrent Q-learning for partially observable MDPs.
In AAAI fall symposia, volume 45, pp. 141, 2015.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Hengyuan Hu and Dorsa Sadigh. Language instructed reinforcement learning for human-ai coordi-
nation. In International Conference on Machine Learning, pp. 13584—13598. PMLR, 2023.

Ziwei Ji, Nayeon Lee, Richard Frieske, Tiezheng Yu, Dan Su, Yanlin Xu, Etsuko Ishii, Yeon Seon
Bang, Andrea Madotto, and Pascale Fung. A survey of hallucination in natural language genera-
tion. ACM Computing Surveys (CSUR), 55(12):1-34, 2023a.

Ziwei Ji, Tiezheng Yu, Yan Xu, Nayeon Lee, Etsuko Ishii, and Pascale Fung. Towards mitigating
1Im hallucination via self reflection. In Findings of the Association for Computational Linguistics:
EMNLP 2023, pp. 1827-1843, 2023b.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in
partially observable stochastic domains. Artificial intelligence, 101(1-2):99—-134, 1998.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
Proceedings of the nineteenth international conference on machine learning, pp. 267-274, 2002.

Woo Kyung Kim, SeungHyun Kim, Honguk Woo, et al. Efficient policy adaptation with contrastive
prompt ensemble for embodied agents. Advances in Neural Information Processing Systems, 36:
55442-55453, 2023.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit g-
learning. arXiv preprint arXiv:2110.06169, 2021.

Hanna Kurniawati. Partially observable markov decision processes and robotics. Annual Review of
Control, Robotics, and Autonomous Systems, 5(1):253-277, 2022.

Harold J Kushner and G George Yin. Stochastic approximation and recursive algorithms and appli-
cations. Springer, 2003.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language
models. arXiv preprint arXiv:2303.00001, 2023.

Kimin Lee, Laura Smith, and Pieter Abbeel. Pebble: Feedback-efficient interactive rein-
forcement learning via relabeling experience and unsupervised pre-training. arXiv preprint
arXiv:2106.05091, 2021.

Junyi Li, Jie Chen, Ruiyang Ren, Xiaoxue Cheng, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong
Wen. The dawn after the dark: An empirical study on factuality hallucination in large language
models. arXiv preprint arXiv:2401.03205, 2024.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph Gon-

zalez, Michael Jordan, and Ion Stoica. Rllib: Abstractions for distributed reinforcement learning.
In International conference on machine learning, pp. 3053-3062. PMLR, 2018.

12

Under review as a conference paper at ICLR 2026

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. arXiv preprint
arXiv:2209.07753, 2022.

Jessy Lin, Yuqing Du, Olivia Watkins, Danijar Hafner, Pieter Abbeel, Dan Klein, and Anca Dragan.
Learning to model the world with language. arXiv preprint arXiv:2308.01399, 2023.

Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching.
Machine learning, 8(3):293-321, 1992.

Jung-Chun Liu, Chi-Hsien Chang, Shao-Hua Sun, and Tian-Li Yu. Integrating planning and deep
reinforcement learning via automatic induction of task substructures. In The Twelfth International
Conference on Learning Representations, 2024.

Ruishan Liu and James Zou. The effects of memory replay in reinforcement learning. In 2018 56th
annual allerton conference on communication, control, and computing (Allerton), pp. 478-485.
IEEE, 2018.

Wenhao Lu, Xufeng Zhao, Sven Magg, Martin Gromniak, Mengdi Li, and Stefan Wermter. A closer
look at reward decomposition for high-level robotic explanations. In 2023 IEEE International
Conference on Development and Learning (ICDL), pp. 429-436. 1IEEE, 2023.

Jianlan Luo, Charles Xu, Jeffrey Wu, and Sergey Levine. Precise and dexterous robotic manipulation
via human-in-the-loop reinforcement learning. arXiv preprint arXiv:2410.21845, 2024.

Haozhe Ma, Fangling Li, Jing Yu Lim, Zhengding Luo, Thanh Vinh Vo, and Tze-Yun Leong. Catch-
ing two birds with one stone: Reward shaping with dual random networks for balancing explo-
ration and exploitation. In Forty-second International Conference on Machine Learning, 2025.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via
coding large language models. arXiv preprint arXiv:2310.12931, 2023.

James MacGlashan, Mark K Ho, Robert Loftin, Bei Peng, Guan Wang, David L Roberts, Matthew E
Taylor, and Michael L Littman. Interactive learning from policy-dependent human feedback. In
International conference on machine learning, pp. 2285-2294. PMLR, 2017.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36:46534-46594, 2023.

Michael Matthews, Mikayel Samvelyan, Jack Parker-Holder, Edward Grefenstette, and Tim
Rocktéschel. Hierarchical kickstarting for skill transfer in reinforcement learning. arXiv preprint
arXiv:2207.11584, 2022.

Lina Mezghani, Piotr Bojanowski, Karteek Alahari, and Sainbayar Sukhbaatar. Think before
you act: Unified policy for interleaving language reasoning with actions. arXiv preprint
arXiv:2304.11063, 2023.

Vincent Micheli, Eloi Alonso, and Frangois Fleuret. Transformers are sample-efficient world mod-
els. arXiv preprint arXiv:2209.00588, 2022.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928—1937. PmLR, 2016.

Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E Taylor, and Peter Stone.
Curriculum learning for reinforcement learning domains: A framework and survey. Journal of
Machine Learning Research, 21(181):1-50, 2020.

Narjes Nourzad, Jared Coleman, Zhongyuan Zhao, Bhaskar Krishnamachari, Gunjan Verma, and
Santiago Segarra. Actor-twin framework for task graph scheduling. In The Seventeenth Workshop
on Adaptive and Learning Agents, 2024.

13

Under review as a conference paper at ICLR 2026

OpenAl Gpt-4o. https://openai.com/index/gpt-40, 2024. Accessed July 2025.

Fabian Paischer, Thomas Adler, Vihang Patil, Angela Bitto-Nemling, Markus Holzleitner, Sebastian
Lehner, Hamid Eghbal-Zadeh, and Sepp Hochreiter. History compression via language models
in reinforcement learning. In International Conference on Machine Learning, pp. 17156—17185.
PMLR, 2022.

Fabian Paischer, Thomas Adler, Markus Hofmarcher, and Sepp Hochreiter. Semantic HELM: A
human-readable memory for reinforcement learning. Advances in Neural Information Processing
Systems, 36:9837-9865, 2023.

Rajvardhan Patil and Venkat Gudivada. A review of current trends, techniques, and challenges in
large language models (1lms). Applied Sciences, 14(5):2074, 2024.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Rudra PK Poudel, Harit Pandya, Stephan Liwicki, and Roberto Cipolla. Recore: Regularized con-
trastive representation learning of world model. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 22904-22913, 2024.

Alexander Pritzel, Benigno Uria, Sriram Srinivasan, Adria Puigdomenech Badia, Oriol Vinyals,
Demis Hassabis, Daan Wierstra, and Charles Blundell. Neural episodic control. In International
conference on machine learning, pp. 2827-2836. PMLR, 2017.

Qian Qiu, Fanyu Zeng, Haigen Yang, Guanyu Xing, and Shuzhi Sam Ge. Memory-augmented
deep deterministic policy gradient. In International Conference on Social Robotics, pp. 41-52.
Springer, 2024.

Yun Qu, Boyuan Wang, Yuhang Jiang, Jianzhun Shao, Yixiu Mao, Cheems Wang, Chang Liu, and
Xiangyang Ji. Choices are more important than efforts: Llm enables efficient multi-agent explo-
ration. arXiv preprint arXiv:2410.02511, 2024.

Benedict Quartey, Ankit Shah, and George Konidaris. Exploiting contextual structure to generate
useful auxiliary tasks. arXiv preprint arXiv:2303.05038, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748-8763. PMLR, 2021.

Krishan Rana, Jesse Haviland, Sourav Garg, Jad Abou-Chakra, Ian Reid, and Niko Suenderhauf.
Sayplan: Grounding large language models using 3d scene graphs for scalable robot task plan-
ning. arXiv preprint arXiv:2307.06135, 2023.

Jan Robine, Marc Hoftmann, Tobias Uelwer, and Stefan Harmeling. Transformer-based world mod-
els are happy with 100k interactions. arXiv preprint arXiv:2303.07109, 2023.

Juan Rocamonde, Victoriano Montesinos, Elvis Nava, Ethan Perez, and David Lindner. Vision-
language models are zero-shot reward models for reinforcement learning. arXiv preprint
arXiv:2310.12921, 2023.

Graeme D Ruxton. The unequal variance t-test is an underused alternative to student’s t-test and the
mann-whitney u test. Behavioral Ecology, 17(4):688-690, 2006.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

Sheila Schoepp, Masoud Jafaripour, Yingyue Cao, Tianpei Yang, Fatemeh Abdollahi, Shadan
Golestan, Zahin Sufiyan, Osmar R Zaiane, and Matthew E Taylor. The evolving landscape of
IIm-and vlm-integrated reinforcement learning. arXiv preprint arXiv:2502.15214, 2025.

John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. Gradient estimation using
stochastic computation graphs. Advances in neural information processing systems, 28, 2015a.

14

https://openai.com/index/gpt-4o

Under review as a conference paper at ICLR 2026

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889-1897. PMLR,
2015b.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015c.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. In arXiv preprint arXiv:1707.06347,2017a. URL https://arxiv.
org/abs/1707.06347.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017b.

Younggyo Seo, Danijar Hafner, Hao Liu, Fangchen Liu, Stephen James, Kimin Lee, and Pieter
Abbeel. Masked world models for visual control. In Conference on Robot Learning, pp. 1332—
1344. PMLR, 2023.

Ruizhe Shi, Yuyao Liu, Yanjie Ze, Simon S Du, and Huazhe Xu. Unleashing the power of pre-
trained language models for offline reinforcement learning. arXiv preprint arXiv:2310.20587,
2023.

Kyriacos Shiarlis, Markus Wulfmeier, Sasha Salter, Shimon Whiteson, and Ingmar Posner. Taco:

Learning task decomposition via temporal alignment for control. In International Conference on
Machine Learning, pp. 4654—4663. PMLR, 2018.

Noah Shinn et al. Reflexion: Language agents with verbal reinforcement learning. In NeurIPS,
2023.

David Silver. Lectures on reinforcement learning. URL: https://www.davidsilver.uk/
teaching/, 2015.

Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun Chao, and Yu Su.
LLM-planner: Few-shot grounded planning for embodied agents with large language models.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 2998-3009,
2023a.

Jiayang Song, Zhehua Zhou, Jiawei Liu, Chunrong Fang, Zhan Shu, and Lei Ma. Self-refined
large language model as automated reward function designer for deep reinforcement learning in
robotics. arXiv preprint arXiv:2309.06687, 2023b.

Martin Stolle and Doina Precup. Learning options in reinforcement learning. In International
Symposium on abstraction, reformulation, and approximation, pp. 212-223. Springer, 2002.

Theodore R Sumers, Mark K Ho, Robert D Hawkins, Karthik Narasimhan, and Thomas L Griffiths.
Learning rewards from linguistic feedback. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 6002-6010, 2021.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Richard S Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-MDPs: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181—
211, 1999.

SM Tonmoy, SM Zaman, Vinija Jain, Anku Rani, Vipula Rawte, Aman Chadha, and Amitava Das.
A comprehensive survey of hallucination mitigation techniques in large language models. arXiv
preprint arXiv:2401.01313, 6, 2024.

Akash Velu, Skanda Vaidyanath, and Dilip Arumugam. Hindsight-dice: Stable credit assignment
for deep reinforcement learning. arXiv preprint arXiv:2307.11897, 2023.

15

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://www.davidsilver.uk/teaching/
https://www.davidsilver.uk/teaching/

Under review as a conference paper at ICLR 2026

Xu Wan, Wenyue Xu, Chao Yang, and Mingyang Sun. Think twice, act once: A co-evolution
framework of 1lm and rl for large-scale decision making. arXiv preprint arXiv:2506.02522, 2025.

Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam, Yu Zheng, Jiachen Liu, Zhongnan Qu, Shen
Yan, Yi Zhu, Quanlu Zhang, et al. Efficient large language models: A survey. arXiv preprint
arXiv:2312.03863, 2023.

Guiding Wang, Yuqi Xie, Kun Jiang, Xiangyu Lu, Weihong Zhang, Haowei Lu, Yitao Xiong, Qian
Li, Chuyuan Xu, Minggang Huang, and et al. Voyager: An open-ended embodied agent with
large language models. arXiv preprint arXiv:2305.16291, 2023.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Yongdong Wang, Runze Xiao, Jun Younes Louhi Kasahara, Ryosuke Yajima, Keiji Nagatani, At-
sushi Yamashita, and Hajime Asama. Dart-llm: Dependency-aware multi-robot task decomposi-
tion and execution using large language models. arXiv preprint arXiv:2411.09022, 2024a.

Yufei Wang, Zhanyi Sun, Jesse Zhang, Zhou Xian, Erdem Biyik, David Held, and Zackory Erick-
son. Rl-vlm-f: Reinforcement learning from vision language foundation model feedback. arXiv
preprint arXiv:2402.03681, 2024b.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229-256, 1992.

Yue Wu, Yewen Fan, Paul Pu Liang, Amos Azaria, Yuanzhi Li, and Tom M Mitchell. Read and
reap the rewards: Learning to play atari with the help of instruction manuals. Advances in Neural
Information Processing Systems, 36:1009-1023, 2023.

Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, Qian Luo, Victor Zhong, Yanchao Yang, and
Tao Yu. Text2reward: Automated dense reward function generation for reinforcement learning.
In International Conference on Learning Representations (ICLR), 2024 (07/05/2024-11/05/2024,
Vienna, Austria), 2024.

Frank F Xu, Yufan Song, Boxuan Li, Yuxuan Tang, Kritanjali Jain, Mengxue Bao, Zora Z Wang,
Xuhui Zhou, Zhitong Guo, Murong Cao, et al. Theagentcompany: benchmarking llm agents on
consequential real world tasks. arXiv preprint arXiv:2412.14161, 2024.

Shunyu Yao, Rohan Rao, Matthew Hausknecht, and Karthik Narasimhan. Keep calm and explore:
Language models for action generation in text-based games. arXiv preprint arXiv:2010.02903,
2020.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montse Gonzalez Are-
nas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, et al. Language to
rewards for robotic skill synthesis. arXiv preprint arXiv:2306.08647, 2023.

Eric Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
few-shot performance of language models. arXiv preprint arXiv:2102.09690, 2021.

Zihao Zhou, Bin Hu, Chenyang Zhao, Pu Zhang, and Bin Liu. Large language model as a policy
teacher for training reinforcement learning agents. arXiv preprint arXiv:2311.13373, 2023.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning
Wang, Zhihang Yuan, Xiuhong Li, et al. A survey on efficient inference for large language
models. arXiv preprint arXiv:2404.14294, 2024.

Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,

Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
to robotic control. In Conference on Robot Learning, pp. 2165-2183. PMLR, 2023.

16

Under review as a conference paper at ICLR 2026

APPENDIX

The supplemental material is organized as follows:
* SECTION A reviews background on reinforcement learning definitions and policy gradient
algorithms to make the paper self-contained.
* SECTION B discusses related work relevant to our approach in more depth.
* SECTION C presents the theoretical results and supporting proofs for our method.

* SECTION D describes the LLM prompting procedures in MIRA and presents the corre-
sponding reasoning traces.

* SECTION E provides a more detailed explanation of the construction of memory graph,
expanding on the description in the main paper.

* SECTION F presents extended experiments, including analyses of runtime and detailed nu-
merical results that were not covered in the main text.

* SECTION G outlines limitations of the current design and identifies open challenges.

* SECTION H provides details to support reproducibility of our results.

A BACKGROUND

A.1 STANDARD REINFORCEMENT LEARNING

Reinforcement learning (RL) is typically modeled as a Markov decision process (MDP), defined
by a tuple (S, A, P,r,~), where S is the state space, A the action space, P the transition function,
r the reward function, and v € [0, 1) the discount factor. The agent’s behavior is determined by
a policy m, which defines a probability distribution over actions given the current state: 7(a|s).
Learning proceeds through interaction with the environment, producing trajectories, sequences of
states, actions, and rewards of the form 7 = (sg, ag, 70, $1, 01,71, - . .), and using them to improve
the policy.

The objective is to learn a policy that maximizes the expected return, defined as the discounted sum
of rewards along a trajectory:

. lz Vor(se, at)] : 5)
t=0

The environment’s reward function implicitly defines the final goal (g,) by assigning reward to
behaviors that accomplish the task (s s). To estimate this objective,
RL algorithms often make use of value functions, Wthh quantify the long-term utility of states or
state-action pairs. The state-value function V() denotes the expected return when starting from
state s and following policy 7:

o0

Z r(sg,ap) | so = 5] . (6)

t=0

The action-value function (s, a) further conditions on the first action taken and is defined as:

Q(s,a) = E; lZWtT(St,at) | s0 =s,a0 = a] . @)

t=0

17

Under review as a conference paper at ICLR 2026

A.1.1 PARTIAL OBSERVABILITY AND CREDIT ASSIGNMENT CHALLENGES

In many real-world scenarios, the environment is only partially observable. In such cases, the MDP
generalizes to a partially observable MDP (POMDP), defined by the tuple (S, A, P,r,~v,O,Q),
where O is the observation space and €2 is the observation function. The agent does not directly ob-
serve the true state s; € S; instead, it receives observations o; from an observation space O, sampled
via Q(o¢|s¢), and must rely on its history of observations and actions to make decisions (

,)-

These difficulties are further amplified in environments where the agents face sparse and delayed
rewards. Sparse rewards refer to the limited presence of nonzero rewards since this feedback is only
provided upon reaching specific goals (i.e., 7(s¢, a;) is typically zero until the agent reaches the final
goal state (g,) defined by the task). On the other hand, delayed rewards refer to settings where the
consequences of an action are not reflected in the reward until several steps later. In both cases,
the agent must reason over long horizons to determine which actions contributed to the eventual
outcome, a challenge known as the credit assignment problem (,).

Credit assignment is closely tied to the broader challenge of exploration. Inefficient exploration
occurs when the agent fails to sufficiently cover the state space, limiting its ability to discover
high-return trajectories and improve its policy. This problem is exacerbated in high-dimensional
environments, where the number of possible state-action sequences grows exponentially and ran-
dom exploration becomes increasingly unlikely to encounter informative transitions with sparse or
delayed rewards. In such cases, the combination of large search spaces and limited reward signals
often leads to slow convergence, poor sample efficiency, and high variance in learning outcomes.

A.1.2 SUBGOALS AND ABSTRACTIONS

In long-horizon tasks, reinforcement learning agents often benefit from structuring behavior around
subgoals, intermediate objectives that facilitate progress toward the overall task. The concept of
subgoals in reinforcement learning originated in hierarchical reinforcement learning (HRL), where it
was formalized through the use of temporally extended actions. In particular, the options framework
introduced by () defines options as high-level actions composed of an initiation
set, a policy, and a termination condition, often interpreted as achieving a subgoal (

). These subgoals correspond to intermediate states or conditions that decompose long- horlzon
tasks into smaller, temporally coherent segments that make the final goal more attainable when
reached. More broadly, subgoals provide structure for reasoning over extended time horizons and
facilitate learning in sparse-reward settings.

While early approaches focused on explicit or learned state-based subgoals, recent work has ex-
plored abstract subgoals that capture semantic or latent-level progress. These abstractions may
not correspond to a specific state but instead reflect high-level intentions and meaningful progress
(e.g., opening a door, entering a room, or collecting an object). Such abstractions enable reason-
ing at a higher level of granularity and are especially useful in environments with sparse rewards
or delayed feedback. Subgoal discovery and abstraction have also been explored in curriculum
learning, imitation learning, and human-in-the-loop frameworks to improve exploration and sample
efficiency (s ; s ; ,).

A.2 PoLICY GRADIENT METHODS

Policy gradient methods directly optimize a parameterized policy 7y (a|s) by ascending the gradient
of expected return. The objective is to find parameters § that maximize:

J(- 7'~7r9 [ZVT 5t7at

where 7 denotes a trajectory generated by following the current policy. The gradient of this objective
can be estimated via the likelihood ratio trick, yielding the REINFORCE estimator (s):

VQJ(’]TQ) = Eﬂ- [Ve log Wg(at‘st)R] 5 (9)

) ®)

where R; is the return from time ¢ onward. While theoretically sound and unbiased, this estimator
suffers from high variance, making it challenging to apply in practice without further refinement.

18

Under review as a conference paper at ICLR 2026

A.2.1 ADVANTAGE-BASED POLICY OPTIMIZATION

To reduce variance and improve sample efficiency, modern policy gradient algorithms often use ad-
vantage functions, which quantify the relative quality of an action compared to the policy’s baseline
behavior. The advantage function is defined as:

A(s,a) = Q(s,a) — V(s), (10)

where (s, a) is the expected return from taking action a in state s, and V' (s) is the expected return
from s under policy 7. Using this formulation, the policy gradient becomes:

Ve](ﬂg) = Eﬂ [V@ logm(at | St)A] y (11)

which improves stability while preserving unbiasedness.

This idea underpins a family of actor-critic algorithms, where the actor updates the policy using
the advantage-weighted gradient, and the critic estimates value functions used to compute A(s, a).
Representative algorithms in this class include A2C and A3C (,), which leverage
parallel actors to accelerate training and stabilize updates, and PPO (,), which
constrains policy updates by clipping the policy ratio in the surrogate objective:

LPPO(1) = E [min(r; Ay, clip(rs, 1 — e,1 +¢)Ay)], (12)

where £ > 0 is a small trust region parameter that limits how much the policy is allowed to change
at each update.

These methods are widely used in modern deep reinforcement learning due to their scalability and
consistent empirical performance across a range of tasks. Since MIRA operates by shaping the
advantage function, it is compatible with any policy optimization method that relies on advantage-
weighted updates.

B RELATED WORKS

B.1 LANGUAGE MODEL GUIDANCE IN RL

A growing line of work explores how large language models (LLMs) can be integrated into rein-
forcement learning by framing them as auxiliary components within the agent—environment loop. A
recent taxonomy by () outlines the roles of LLMs in RL along four key dimensions:
information processors, reward designers, decision-makers, and generators.

As information processors, LLMs extract and organize task-relevant knowledge from natural lan-
guage, environment descriptions, or prior experience. This includes synthesizing high-level goals,
parsing instructions, and transformmg language input into actionable constraints or representa-
tions (, ,). A common approach is to use frozen pre-trained
models to encode task- relevant features without fine-tuning, though they may perform poorly on
out-of-distribution data due to limited adaptability ().
Alternatively, fine-tuned models can better align with task- spe01ﬁc dlstrlbutlons leadlng to more ro-
bust RL performance and improved generalization in unseen environments (

,). In addition, LLMs can convert human instructions or task prompts 1nto formal repre-
sentations or structured goals, and interpret descriptions of the environment, such as objects, layouts,
or dynamics, into usable priors for downstream RL modules. This reduces the burden of language
comprehens1on for RL agents and improves sample efficiency (,

, ; ,). These models can decouple 1nformat10n processing
from control with the LLM handling language grounding and feature extraction while the policy
module focuses on decision-making. Such capabilities can reduce learning complexity and acceler-
ate policy acquisition by shaping the agent’s representation space early in training.

As reward designers, LLMs provide auxiliary supervision by scoring agent behavior or generat-
ing rewards. This can take the form of natural language critiques, programmatic reward code, or
goal-conditioned evaluations. In the implicit reward setting, LLMs serve as proxy reward models

19

Under review as a conference paper at ICLR 2026

by either being directly prompted to evaluate agent behavior (; ,) or
by computing alignment between v1sual observations and language goals usmg pretrained vision-
language models (

These methods enable reward shaping via natural language 1nstruct10ns or preference feedback and
have been shown to improve learning efficiency and generalization. In the explicit reward setting,
LLMs are used to generate executable code that defines reward functions programmatically. This
includes frameworks that iteratively refine reward code using self-reflection and feedback from train-
ing outcomes (s ; s). Compared to manually en-
gineered rewards, these LLM-generated functions offer transparency and adaptability, and in some
cases match or exceed human performance, especially in complex manipulation tasks.

As decision-makers, LLMs output action plans, policy sketches, or even direct action sequences
based on current observations. These methods embed LLMs tightly into the decision loop, either
guiding exploration or dictating behavior in few-shot or zero-shot settings. One approach leverages
pre-trained LLMs for direct action generation, often adapting transformer-based models like Deci-
sion Transformers to treat offline RL as a sequence modeling problem. These LLM-backed policies
show improved generalization, particularly in sparse-reward and long-horizon tasks, by transferring
latent structure learned from large-scale language data. Some methods further fine-tune LLMs using
task-specrﬁc trajectories or append small task-specific modules to facilitate adaptation, achieving no-
table gains in sample efficiency and task transfer (, ; , ;
;)-
Other works integrate LLMs more loosely as action guides, generating action candidates or ex-
pert priors to support exploration and training. For example, LLMs can prune the action space
by proposing high- probability candidates or decompose complex goals into sequential subtasks,
improving exploration in environments with large or unstructured action spaces (, ;
R ; s). They have also been used to regularize
policy updates, align agent behavror with human intent, or inject expert-level motion plans. Across
both low-level and strategic roles, LLM-based decision-making enables agents to learn from rich,
structured priors and execute more informed behaviors in complex settings.

As generators, LLMs contribute to reinforcement learning by either simulating environmental dy-
namics or providing policy-level explanations to enhance transparency. In the simulation role, LLMs
function as world model simulators that generate trajectories or learn latent dynamics represen-
tations from multimodal data, thereby improving sample efficiency in model-based RL. Recent
work has leveraged Transformer-based architectures to model complex visual or sequential envi-
ronments, demonstrating gains in generalization and long-horizon reasoning. These models either
auto-regressively generate rollouts from pre-trained dynamics or use representation learning to pre-
dict future states and rewards, often 1ncorporat1ng language as an additional modality for grounding
and abstraction (, ,). Separately, LLMs have
been used as policy interpreters to generate human readable explanations of agent behavior from
state-action histories or decision trees. This facilitates interpretability, improves human trust, and
can inform reward des1gn or debugging, though current work has focused mainly on policy-level
summaries (s ; s

While MIRA incorporates elements of information processing and LLMs as generators, its overall
orientation remains distinct and more RL-centric from prior LLM-centered approaches. Rather than
positioning the LLM as a decision-maker or continuous feedback provider, MIRA relegates it to
a supporting role that gradually fades over time. LLM outputs are used intermittently to enrich a
structured memory graph that informs, but does not dictate, learning. The primary learning signal
remains grounded in environment interaction, with utility shaping softly modulating advantage esti-
mates rather than overriding the reward function. This design prioritizes policy optimization through
reinforcement learning rather than imitation or prompting

B.2 MEMORY AND BUFFERS IN RL

Augmenting RL agents with structured memory has been proposed as a means of supporting general-
ization, planning, and long-horizon credit assignment. Early works such as Neural Episodic Control
(NEC) and other episodic value-based methods enabled agents to recall high-value past experiences
for more sample-efficient decision-making via memory buffers (

; ,). Subsequent approaches extended this idea by integrating differentiable memory

20

Under review as a conference paper at ICLR 2026

into policy networks (,). Other methods introduce structured representations, such as
subgoal graphs or navigation maps, to facilitate hlerarchlcal planning, exploration, or navigation in
partially observable environments (,). Across these directions,

the common pattern is to directly query stored structures either through replay, imitation, or graph
traversal, to guide behavior.

MIRA aligns with this direction by maintaining a structured memory graph populated with high-
return trajectory segments but departs from this pattern in several key ways. First, its memory
graph is co-constructed from high-return agent trajectories and LLM-inferred subgoals, enabling
abstraction and structure difficult to obtain early through interaction alone. Second, rather than
querying memory for action selection or value estimation, MIRA distills the stored information
into a utility signal that modulates advantage estimates during training. This indirect shaping avoids
disrupting the optimization loop or overfitting to specific stored transitions. Finally, MIRA maintains
a compact memory via pruning and infrequent updates, which avoids the inefficiencies of excessive
memory or the brittleness of sparse guidance (,). This makes MIRA more scalable
and better suited for tasks where long-term structure must complement autonomous learning.

B.3 ADVANTAGE MODIFICATIONS IN RL

Modifying the advantage function has been studied as a way to stabilize learning and improve sam-
ple efficiency in policy optimization. A common approach adjusts the estimation process to better
balance bias and variance. Generalized Advantage Estimation (GAE) (,) in-
troduces a tunable parameter that interpolates between high-bias low-variance and low-bias high-
variance estimators, and is widely adopted in actor-critic algorithms. Other methods reformulate
policy updates in terms of advantages. Advantage-Weighted Regression (AWR) (,)
avoids policy gradients and instead performs weighted regression over actions. P30 (,

) combines on-policy and off-policy learning by applying advantage-weighted importance sam-
pling to stabilize updates. In the offline RL setting, advantage estimates are often used to filter ex-
perience and address distributional shift. Advantage-based data selection (,)
discards transitions with low advantage, helping to focus learning on high-quality samples. Addi-
tional work incorporates auxiliary signals into the advantage estimate. Preference-based RL (

,) derives implicit advantage signals from human comparisons, while other approaches
integrate value correction from ensemble critics or confidence measures to adjust learning.

MIRA builds on these ideas but takes a different path. Instead of replacing the estimator or introduc-
ing new objectives, it shapes the advantage using a utility term derived from a structured memory
graph. This utility reflects agent experience and LLM-derived subgoals, allowing guidance with-
out overriding reward feedback. The resulting signal is integrated into PPO’s update rule without
disrupting its optimization dynamics, enabling structured shaping while maintaining scalability and
convergence guarantees.

C THEORETICAL RESULTS

Since the utility term does not alter the policy or critic structure, and enters additively, MIRA pre-
serves the theoretical guarantees of policy gradient methods such as PPO under standard assump-
tions:

C.1 ASSUMPTIONS
Assumption 1 (Boundedness).

a. For all updates k and all (s, a)

|Ak(57a)| S Amax7 |Uk(57a)| S Umax (13)
b. Define the scale-adjusted shaping term as:
U(s,a) = Ay - Ug(s,a), where Ay = (|Ax|) (14)
and set
Umax = Umax * SUp Ak: (15)
k

21

Under review as a conference paper at ICLR 2026

Assumption 2 (Scale control).

a. For all k, the scaling parameters satisfy:

0<77k§1a

b. Asymptotically, the schedule satisfies:

li =1 li =
fvns Tk e & =0

Assumption 3 (Trust region).

KL(Wk,Wk+1) S 5

(implied by PPO clip ratio v € [l —eg, 1 +).

C.2

IMPROVEMENT GUARANTEES

& < dmy; for some 6; € [0,1)

(16)

a7

2

(1—7)ex

Table 1: Summary of theoretical results. Each entry states the formal claim and the role it plays in

the overall analysis.

Result

Claim

Gap it fills

Lemma 1
(Single-update bound)

Remark
(Faster early improvement)

Corollary 1

(Trust-region form)

Theorem 1

(Finite-horizon improvement)

Corollary 2

(Improvement with margin)

Theorem 2
(Asymptotic convergence)

Remark
(Critic bias)

Theorem 3

(Per-step dominance)

Corollary 3

(Limit-return dominance)

Any shaped update that improves its
surrogate guarantees non-decreasing
return, at least matching PPO up to a
bounded penallty.

Step gain exceeds PPO since the utility
term is positive.

Adds the standard TRPO penalty term
under trust-region assumptions.

Cumulative gain over K steps is lower-
bounded by sum of shaped surrogates.

If each surrogate exceeds a fixed mar-
gin, cumulative gain is strictly positive.

As training continues, the shaped surro-
gate reduces to standard PPO, ensuring
the same convergence behavior.

TD bias is O(£,U), which vanishes as
£k — 0.

The update chosen by optimizing the
shaped surrogate always achieves at
least as much return as PPO’s update
under the same trust-region.

In the limit, shaped returns are at least
as large as PPO’s returns.

Provides a per-step safety guarantee:
every shaped update is non-decreasing,
forming the foundation for later results.

Explains why shaping improves early
learning speed compared to PPO.

Bridges shaped surrogate analysis with
TRPO/PPO’s standard trust-region
guarantees.

Extends the single-step guarantee to
multiple updates, ensuring monotone
growth and showing how utility terms
can yield larger gains than PPO.

Establishes a sufficient condition for
guaranteed overall performance im-
provement.

Shows shaping vanishes asymptoti-
cally, preserving PPO’s convergence
properties.

Addresses stability concerns for the
critic under shaped updates.

Shows shaped optimization dominates
PPO: when both are optimized step-by-
step, the shaped update is never worse.

Guarantees long-run performance of
shaped surrogate dominates PPO.

Lemma 1 (Single update bound). Let 71 satisfy E;;,h“p ed(mﬂ_l) > [,j;hap ed(wk) for the surrogate
built with Ay, = ni A + £Ug. Under assumptions 1 and 2,

J(Tpy1) = J(mk) >

1
T (&

22

L (m41) = E6Uma).

(18)

Under review as a conference paper at ICLR 2026

Proof. Performance—difference lemma (PDL) (,) yields
1
J(ﬂ-k+1) - J(’/Tk) = ﬁ Ed”k+1 [Ak-]. (19)
where d(s,a) is the discounted state—action occupancy measure of policy m: d(s,a) = (1 —

V) Ym0V Pr(se = s,ar = a| 7).

(@)

Ear,,, [A] > Eay, [Fryi; Ak]
® 1
= TTkEdwk [Tﬂk+177kAk}
o1 (20)
= n—kEdwk Trpsr | MeAk + EUx €Uk
——
Ay
@ 1 1
= % (]Ed,rk [TﬂkJrlAk} _§k]F‘d7rk. [Tﬂk+1Uk])

Steps (a)—(d) correspond to: (a) approximation of the occupancy ratio by the policy ratio, which
is valid up to first order for small updates (as ensured by PPO’s clipping), (b) insertion of 7y, (c)
add-subtract shaping term, (d) splitting the expectation.

(1) Surrogate term: Since the clipping operation in the PPO objective only reduces the expected
value (i.e. PPO’s surrogate takes the min of the unclipped and clipped terms, it never increases the
expectation), it follows:

£ (1) < B, [r,w Ak] : 1)

(ii) Shaping term: Given the uniform bound |Uy| < Upax and since the importance ratio satisfies
Eq, [7r..,] =1, we obtain:

’Edﬁk [rﬂk+1 Uk] ‘ < Umax- (22)

Combining (i)—(ii) and multiplying by 1/(1 —) proves the claim.

1 1
J(mpg1) — J(mg) = —— B, ., [Ak]

1_ ~y)'I’]k (‘C:‘aped(ﬂ—kﬁ»l) - kamax) (23)

>7
“ (-
O

Remark (Faster early improvement). Lemma I guarantees a larger performance gain than standard
PPO:

1
J(mia) = I(m) > (L0 (i) + & (UR — Un) 4

(1=)n
where U li’"”’” is the shaped utility contribution at step k. This gap can be large early in training,
providing faster convergence.

Corollary 1 (Trust-region variant of lemma 1). Let Assumptions 1-2 hold, and suppose the KL
trust-region condition of Assumption 3 holds. Then

1

J(mpq1) = J(me) = 1 =) m

shaped 27 Nk Amax 2
(‘Ck P (Thr1) — §kUmax) T o2 ok (25)

Proof. Start from inequality proved in Theorem 1. Add and subtract 2 Ny Apmax /(1 — 7)25% inside
the parentheses and invoke the standard TRPO bound | Edm [r,rk +1Ak] | < 2vAmaxér/1 — . The
result is the stated inequality. O

Remark. The extra term 2vy(niAmax)es/(1—~)? is identical to the second-order TRPO
penalty (), so our bound recovers the classical PPO/TRPO guarantee when
& =0 and ny, = 1. PPO’s clipping with ratio parameter ¢y, typically implies a KL of order O(%).

23

Under review as a conference paper at ICLR 2026

Theorem 1 (Restated). [Finite-horizon improvement under shaped surrogate] Same statement as
Theorem 1.

Proof. Apply Lemma 1 at each step k =0, ..., K—1. Since
1 haped
— > Stape - max)) 26
(1) — J(mg) > = (ﬁk (my1) — U (26)

summing over all steps yields:

K—

1
J(mie) - Trs) = Jmw) 2 3 o (G0 mes1) ~ @) D)
k:O k=0

=
L

Applying the same technique as in the remark:

K-1

1
J(ri) — J(mo) =];) =L (LZPO(Wk-&-l) + & (UR™ — Umax)) (28)

O

Corollary 2 (Guaranteed improvement with margin). Under the conditions of Theorem 1, assume

that for each step k = 0,...,K—1, the shaped surrogate satisfies Evh“” “Urps1) > o, and the
margin satisfies o > 5t17maxUmdx Then the total performance tmprovement satisfies:

J(TI'K Z - kamax)
k=0
K
—————— (@ — ¢ Mmax Umax 0. (29
jl (1_’7)nmax(a t Tlma; d) > ()
Proof. From Theorem 1, we have
K—1
J(rx) — J(mo) > Z i Shaped(ﬁkﬂ) — &, Unax)-
k=0

By assumption, Es aped (Tga1) > aand & < §ymy, s0: ES ape d(’frk-+1) — & Umax > o — 0 Unax.
Thus,

1 1
— (£ (Mh41) — Umax) = — (& = 01 Unax) = ~— = 8t Una. (30)
Nk Nk Nk
Since N, < Nmax, We have n% > 7 L so:
g - 5tUmax > a - 5tUmax = (a - 6t77maxUmax)~ (31)
Tk Thmax Tmax
Therefore,
J(rx) = J(mo)
K-1
1 shaped K
2 71 N (»C P Us 5 Umax>:| (& — 5 max Umax .
z_: [(1—7)% e (Thern) = (1—7)77max(t)
k=0
This is strictly positive by assumption. O

24

Under review as a conference paper at ICLR 2026

Theorem 2 (Asymptotic convergence under vanishing shaping). Suppose Assumptions 1 and 2
hold. Let {m}} be the sequence of policies generated by shaped surrogate updates satisfying

E;Chaped(ﬂk_‘_l) > Efﬁhapw(wk). Then for any € > 0, there exists a step K. such that for all k > K.,

J(mrs1) — J(mg) > i i - (LFO (mg1) —€) (32)

where /J’,:P O is the standard clipped surrogate using Ay,

Proof. From Lemma 1, we have:

1
Tms) = Tm) 2 o (G0) = Eelimas) (33)

(1—v
Since 0y — 1, & — 0 (Assumption 2b), ﬁzhape‘i(wkﬂ) — LPPO(my11), we conclude:

1
J(7Tk;+1) — J(Tl']g) — EEE}PO(W]C+1). (34)

Thus, for any € > 0, there exists K. such that for all £ > K, we have:

J(Tpy1) — J(mg) > (L (mhy1) —) - (35)

(1-7)
O

Remark (Critic bias). With |,Ux| < 6t Amax, the extra bias in TD targets is O(d:). Stochastic-
approximation theory therefore gives mean-square convergence of Vy to an O(8;) neighborhood of
the true value function; as &, — 0 (Assumption 2b) the neighborhood shrinks to a point.

Theorem 3 (Per—step dominance over PPO). Assume [1-3 hold. For each k, denote Fi, =
{m | KL(my||7w) < ex} as the KL ball of radius ¢ centered at 7. Let

haped shaped
T o= arg max £y (m), mp = arg max Ly (), (36)
TEFk TEFk

where Ezhap “d and EEPO are the shaped and standard PPO surrogates, respectively. Then, for every

k,

Jmi?) = A (37)
Proof. From Lemma 1 we have
1
J(m)—J(mg) > —— (/.:Zhaped(ﬂ) - §kUmax>, forany € Fy. (38)
(=)
Evaluating this inequality at the two maximisers wzhipfd and " yields
< 1 . <
J 71_shaped —J T > |:£shaped 71_shaped _gkUmax:| (39)
(k+1) () (1 _ ’Y)nk k (k+1)
1
J (7)) — J(my) > 7[£Shaped 79) — &xUnm x:| (40)
(mha) — J(mk) > A=y 5 (mhi1) = €eUnma

Since w;thfd maximizes £}’ (-) over the common feasible set Fy, the bracketed term in the first

1

line is no smaller than that in the second. The common positive factor (1 —)~ 77,;1 therefore

preserves the ordering, giving

Jmy) = J(mES).- (41)
L]

25

Under review as a conference paper at ICLR 2026

Corollary 3 (Limit-return dominates over PPO). Lez {my ™} and {nF*O} be the policy sequences

generated from the same initial policy o by maximizing the shaped and standard PPO surrogates,
respectively, and set

Jlihaped — J(thaped)’ J]]:PO — J(WZPO). 42)

Under Assumptions 1-3, both sequences converge and

lim JM > lim JEFO. (43)
k—o0 k—o0
Proof. By assumption, the sequence of policies {m}**'} maximizes its surrogate, hence

SR () > I (). Since rewards are bounded, the discounted return under any policy

satisfies J3**" < Rpnay/(1 — 7). Thus the sequence is monotone and bounded, hence convergent:

Jiheped - yshaped The standard PPO monotonicity argument (,) yields the

same for {JFFO}, i.e. JFFO — JPPO. Theorem 3 ensures J, ;}f‘ied > JPPQ for every k. Taking limits
preserves the inequality:

Jhaped -~ yPPO. (44)

O

D LLM PROMPTING AND REASONING

D.1 GYMNASIUM TOY TEXT

FROZEN LAKE is a tabular RL environment where the agent starts in

the top-left and must reach the bottom-right goal while avoiding holes. o

For FROZEN LAKE, we provide the LLM with the complete map of ~

the environment, either as an image (see Figure 7) or as a serialized ar- o

ray representation such as [‘F’, ‘F’, ..., “‘H’, ‘F', ..., o o
‘G’ 1. Though the environment is typically stochastic due to slipperi-) e o
ness, the LLM is instructed to assume deterministic transitions.) &

Part of the prompt is adapted from the official environment descrip-
tion, but for clarity and reproducibility, we include the full version. The Figure 7: Frozen Lake
prompt and the LLM’s response are shown in Figure 8. (Gymnasium)

FrozenLake involves crossing a frozen lake from the start tile (S) to the goal tile (G) without falling into holes (H), by walking only on frozen tiles
(F). The agent begins at state 0, and the goal is located at the last state of the grid. Any move that would take the agent off the board results in
staying in place, which is safe and sometimes preferable to risky moves. Given the full grid layout and state representations, provide a trajectory
from the start to the goal that avoids all holes and reaches the goal along the shortest safe path. Assume deterministic transitions. Return the best
and second-best safe trajectories from start (S) to goal (G) in the form of Python policy dictionaries. Each key should be a state, and each value
should be the action to take from that state (0=left, 1=down, 2=right, 3=up). Use None for goal or holes.

.. one safe shortest path avoiding all holes is: [0 1+ 2 > 6 -+ 10 » 14 - 15]

Another safe path that’s still short (but one step longer): [0 » 1 -2 > 6 ~» 10 » 9 » 13 » 14 - 15]

best = { 0: 2, 1: 2, 2: 1, 6: 1, 10: 1, 14: 2, 15: None}

second_best = {0: 2,1: 2, 2: 1, 6: 1, 10: 0, 9: 1, 13: 2, 14: 2, 15: None} - ~ @
Chat&PT o4 wini

Figure 8: Prompt and response from GPT-40-mini for the FROZEN LAKE environment. The LLM
receives a serialized map or a textual description and is asked to provide the best and second-best
safe trajectories from start to goal, avoiding all holes under deterministic dynamics.

D.2 STANDARD
AND CUSTOM MINIGRID AND BABYAI ENVIRONMENTS

Each environment was chosen for a specific purpose:

26

Under review as a conference paper at ICLR 2026

REDBALL involves short-horizon navigation and fast spatial goal acquisition. LAVACROSS-
ING introduces irreversible transitions that require long-horizon planning to avoid dead
ends. DOORKEY requires the agent to acquire a key, unlock a door, and reach the
goal, forming a delayed dependency chain that challenges temporal credit assignment.
REDBLUEDOOR tests the agent’s ability to commit to

a correct action sequence, as opening the blue door

prematurely ends the episode. At last, DISTRACTED We are in a MiniGrid environment where the \
: _ . agent must pick up a yellow key, use it to

DOORKEY introduces BabyAl s'tyle dlstrgqtors (e.g.., toggle yellow door, and then reach the green

irrelevant balls and boxes) alongside the original multi- goal tile. The action space follows the standard

step dependencies of DOORKEY, allowing us to test MiniGrid specification.

This environment is challenging for classical RL

whether the LLM can generalize across known task el- algorithms due to its sparse rewards.

ements and maintain coherent subgoal proposals under There is only one key-door pair (yellow), and
added visual distraction. For standard MiniGrid and other abjects like the purple ball and blue bax
BabyAlI environments, we used the environment de- Do you understand this environment?
scriptions provided on the MiniGrid website. For our wnswef yes or no. /

custom environment (DISTRACTED DOORKEY), we
mimicked the phrasing and structure of the official Min-
iGrid descriptions (see Figure 9). Unlike in FROZEN
LAKE, obtaining useful trajectories here was not as
straightforward. MiniGrid-style environments often re-
quired multi-round prompting to obtain meaningful and
desired outputs. Moreover, instead of providing an im-
age of the environment, we found it more effective to
use a textual description. This helped reduce confusion
and encouraged the LLM to understand that object lo-
cations (e.g., the key, door, and agent in DOORKEY)
can vary across episodes.

Figure 9: Prompt provided to the “Offline
LLM” for the custom MiniGrid variant
DISTRACTED DOORKEY. The prompt
describes the task setting, object roles,
and challenges (e.g., sparse rewards and
distractors), and asks the LLM to confirm
understanding before suggesting helpful
trajectories.

D.3 LLM REASONING PATTERNS ACROSS MODELS

We observed that different LLMs produced very different memory graphs. To better understand
how different models reason about these environments, we recorded not only their output trajecto-
ries but also their internal reasoning processes. For model that include system-level thinking (e.g.,
GPT-04-mini), this was extracted directly from the response. For models that do not expose inter-
mediate reasoning (e.g., Claude 3), we followed up with an auxiliary prompt such as: “Give me your
reasoning as to why you chose this sequence of actions.”

These responses were not used in the MIRA framework, but we found them surprisingly reveal-
ing. Despite receiving identical prompts, the models relied on starkly different reasoning strategies.
This divergence gave us unexpected insight into how various LLMs process spatial structure, inter-
pret decision sequences, and reason about reinforcement learning dynamics and learning objectives.
Differences that, in turn, shape the quality of their output trajectories. In Figure 10, we present
reasoning snippets from the LLMs’ outputs. We omit the initial sections where models repeat the
prompt or restate the environment description, and instead highlight the specific reasoning steps that
led each model to select a particular trajectory. The influence of these differing reasoning strategies
on RL performance is reflected in the return curves shown in Figure 6.

D.4 CASE STUDY: DISTRACTED DOORKEY

In the ablation study presented in Subsections 4.2, GPT-04-mini and Gemini return different outputs
when presented with the same situation. Here, we provide the exact prompt and reasoning traces. As
shown in Figure 11, both responses appear plausible at a surface level, but only one is consistent with
the task dynamics: given that sufficient exploration has already occurred, the key is likely collected,
making suppression of the corresponding action the correct response. In this case, the divergence
leads to a drop in performance under the misaligned output.

27

Under review as a conference paper at ICLR 2026

r1ght move forward, turn left. Sweep back and forth across accessible area. when key found: pickup - continue sweeping

. Systematically explore until key is found. turn left, turn right, and forward. Move forward until hit wall (Turn
for wall. Toggle door - navigate to goal. .. %
3ud Sonnet 4

. After attempting to pick up something (even if it wasn't the key), the agent should actively try to approach the door W
to see if it opens. Choose actions (forward, turn left, turn right) randomly with equal probability. .. <)
B

it to your right as you move (forward/turn right pattern). This guarantees you will eventually scan every reachable tile

in the room without getting lost in circles. then go to door.
Gewini 2.5 Flash

~

. Prune Trajectories to Only Keep Useful Segments: Cut out anything before seeing the key (IF pickup occurs at step 10,
I assume from step 11 onward, the key is held. I avoid calling toggle before that point). @
hat&?T 40 Y)

L . The most effective way to do this is a "wall-following" algorithm: pick a wall (e.g., the one on your right) and keep

. Environment is procedurally generated. Therefore, a fixed path will fail, door’s “toggle position” (same row, one
step away in the correct facing). I don’t condition advice on the agent’s true state — because I know I don’t have
access to it. when key found: pickup - wall-following to find door. Toggle door - navigate to goal

)&

. To avoid overfitting, randomly insert small “detours” so the agent sees both variability and reward.: e.g. after
picking up the key, add 1-2 extra forward/turn actions toward a random distractor cell, then re-align to the optimal
path. Keep only clean, successful runs of reasonable length. The random “detour” insertions should also respect the
current map (i.e. pick distractor cells that actually exist), so they’l1l adapt to each seed’s layout.

chat&PT o4 wini V)

Figure 10: Reasoning traces produced by different LLM s in response to our custom environment
prompt as part of “Offline LLM” prompting. After confirming they understood the environment,
each model was asked: “If you were to give an RL agent useful trajectories to help solve this, what
would you do?” For models that do not output internal reasoning (e.g., Claude), we issued a follow-
up prompt requesting their thought process. We omit repeated environment restatements and show
only the key parts where the model explains how it decided on the action sequence.

)

~N
(Lower toggle-it wastes steps until the agent has the key at the door.
Lowering toggle probability biases the agent toward forward progress (moving, navigating, reaching the goal) and
maximize coverage of the grid (visit more cells, check more rooms)
rather than wasting actions *
4 + Y,
N

I would Tlower the probability of the pickup action.

The reasoning is that since the key is not in the agent's observation, the pickup action is not useful for making
progress towards the goal at this time. Lowering its probability would prevent the agent from wasting time trying to
pickup the purple ball, which has no benefit, and would instead encourage it to continue exploring with the other
available actions (turn left, turn right, forward) to find the key. @)

Chat&PT o4 wini

Figure 11: Reasoning traces produced by Gemini and ChatGPT under “Online LLM” prompting.
The prompt emphasizes that sufficient exploration has already been performed and, from the partial
observation, no key is visible. A (flawed but plausible) line of reasoning is that the agent must still
be in the phase of searching for the key, so reducing the probability of toggle appears reasonable to
prioritize movement actions for exploration.

E MEMORY GRAPH CONSTRUCTION DETAILS

In this section, we further explain the procedure for initializing, updating, and pruning MIRA’s
memory graph. As discussed in Section 2, the initial memory graph is constructed from offline
LLM-generated suggestions. Once built for a specific environment, this graph can be reused across
training episodes or even across agents within the same task. Since MIRA is designed to generalize
across diverse settings, figure 12 illustrates how the framework accommodates environments with a
single terminal objective as well as tasks with multiple independent objectives

Given that each task differs slightly, we largely focus our detailed explanation on DOORKEY from
the MiniGrid suite for the rest of the subsections, as it contains multiple subgoals and is sufficiently
complex to show the dynamics of the graph clearly.

28

Under review as a conference paper at ICLR 2026

E.1 INITIALIZATION

As shown in figure 10, GPT-04-mini tends to generate trajectory segments that be-
gin after the key is picked up, with the subgoal “toggle the door”. In con-
trast, models like Claude tend to produce longer, full trajectories from the beginning.
Interestingly, segmented trajectories are often more
useful in this environment. Since the environment is
partially observable and reinforcement learning relies
heavily on exploration, allowing the agent to figure out
how to reach the key on its own helps it understand the
overall layout of the environment better. Once the key
is acquired, there is a higher chance that the door has
already entered the agent’s observation window, mak-
ing memory-guided navigation toward the door more
effective.

In addition to segments, the LLM also infers subgoals

(k¢). While the obvious ones are “Pick up key,” “Open Figure 12: Visualization of MIRA’s mem-
door,” and “Reach goal,” 04-mini returns more detailed ory graph. Trajectory segments 7; are

versions like: grouped under subgoal nodes kg, which
_ represent abstract intermediate objectives.
k1 : Go to key — Kk : Pick up key — Subgoals can be shared across multiple fi-

k3 : Go to door — Ky : Toggle door — g,: Go to goal. nal goals (e.g., k1 connects to both g, and
))] g.), enabling reuse of common behaviors.

This fine-grained subgoal sequence reflects the environ- The graph evolves during training through

ment’s control logic: the “open door” action is valid 40ent discovery and LLM-guided grafts.

only if the agent is positioned one step away, properly

aligned, and facing the door.

E.2 AGENT-INDUCED UPDATES

During training, new nodes are added to the memory graph based on successful agent interations.
For instance, if the agent finds a short path to the key on its own, and subsequently uses a learned,
memory-guided trajectory to reach the door or goal, the complete sequence is added as a new node.
Moreover, if the agent follows a trajectory with initially low confidence and that trajectory proves
useful for achieving the corresponding goal or subgoal, we treat this as implicit validation and in-
crease the confidence of the associated node.

The memory graph remains lightweight throughout training. Each node stores a trajectory segment
and metadata, and the total graph size stays compact. Compared to experience replay buffers in
standard off-policy RL methods, which retain large volumes of data, the memory graph introduces
negligible computational and memory overhead. To maintain compactness, unused nodes are peri-
odically pruned based on access frequency. Each memory node tracks an access counter, which is
reset every time the node is used. Nodes that are not accessed for 100 episodes are pruned, except
for those corresponding to final goal trajectories (g,), which are retained since the agent might not
have reached them early on, but they are essential for guiding successful completion later in training.

E.3 ONLINE GRAFTING AND TRIGGERS

Since the agent has a limited number of steps per episode, it may fail to reach any subgoal (e.g.
“Open Door”) with a matching trajectory in the memory graph early on, preventing utility shaping
from activating. To address this, MIRA includes a fallback mechanism: if the computed utility
U is entirely zero for N consecutive episodes, the agent triggers an online LLM query. These
online queries return short plans (e.g., “turn left, move forward, toggle”’) based on the agent’s partial
observations to help the agent reorient. Once screened for quality, the new suggestion is grafted into
MIRA. Another way online LLM queries contribute is by influencing the agent’s policy preferences
directly through soft logit injection. Importantly, the online LLM is constrained by the same partial
observability as the agent. It does not receive access to the full environment state and therefore
cannot, for example, determine the presence of a key elsewhere in the grid. Furthermore, since
inventory status is not part of the agent’s observation space, the LLM is unaware of whether the

29

Under review as a conference paper at ICLR 2026

agent has picked up the key. Instead, the LLM receives a batch of recent partial observations and
must infer from them whether any meaningful guidance can be offered.

F EXTENDED EXPERIMENTAL STUDIES

F.1 EARLY ADVANTAGE DYNAMICS

Figure 13 provides empirical support for the
central intuition behind our shaping formula-
tion. We plot return curves for each £ group
(color), across different n values (line style).
Early in training, return curves within each &
group remain tightly clustered, indicating that
Ay, the critic’s estimate, provides little useful
signal, regardless of how it is weighted. Di-
vergence points, marked on the figure, denote
the first iteration where the return spread across
1 values exceeds a certain threshold, signaling
that A; has begun contributing meaningfully to

the shaped advantage A = Ay + & UL

In the absence of shaping (£ 0, gray
lines), this occurs relatively late (iteration 131),
whereas with shaping (¢ > 0), it happens sub-
stantially earlier (iterations 81-113, depending
on &). This shows that the utility term not only
supports early learning but also accelerates the
emergence of a reliable critic. These results val-
idate our choice to softly shape advantages, and
emphasize the importance of carefully tuning £
and 7: insufficient shaping slows critic learn-

Early Return

0.6

=

81
92" F

Mean Return

I
o

y

— =00

—— =06 - -

100
Iteration

0.0 - 'F’“ 3

£=0.1
n=08 = = =09 — n=10

131

=03

£=09

150 200

Figure 13: Return curves for different n values
(line styles) under fixed £ settings (colors). Mark-
ers indicate the first iteration where performance
begins to diverge across 7, signaling when A
starts to meaningfully affect learning. Early on,

the critic signal is weak, and A; is
by the utility term. When ¢ is large

driven mostly
enough, shap-

ing accelerates the critic’s contribution by up to 50
iterations and leads to around 2.5x higher return
compared to the unshaped case. These results sup-
port the value of softly incorporating utility and
highlight the sensitivity to shaping parameters.

ing, which in turn leads to substantially lower mean returns.

F.2 RELATIVE WALL TIME

We measure relative wall-clock time as the end-to-end runtime per iteration to assess

each method’s computational burden.
such as DISTRACTED DOORKEY, which in-
volves door toggling, key collection, and dis-
tractor dynamics, incur higher per-step sim-
ulation costs. Tasks like REDBLUEDOOR
and LAVACROSSING further increase runtime
through frequent failures that trigger repeated
episode resets and buffer re-initializations.
In contrast, FROZEN LAKE’s tabular, low-
dimensional transitions execute very quickly,
so all methods complete rapidly (we do not
run the online variant here since the offline ap-
proach suffices). Occasional LLM queries in-
troduce network latency that further raises wall
time in the slower domains. As a result, relative
wall time grows with both the intrinsic simula-
tion complexity of the environment and any ad-
ditional algorithmic overhead (e.g., LLM calls).

Figure 14 reports wall-clock times for two mea-
sures: reaching a 0.5 return (left) and complet-
ing a 2k-step run (right). In the left panel, PPO
reaches 0.5 only on FROZEN LAKE, while both

Time to 0.5 Return
l _@
>
i g o
<)
~] R
I] [o
£ 30 N
2 b | o
= I W
I A
15 Ny
@ .&2’\\\
X . o&m
) N oY ot RS) °
l;\\\’b 3\\0&0 <“*\° \\\\z\“uk Q&gbb 30\«"" 0
< A \:g‘«'”\ & 0.\
Baseline MIRA (offline)

Environments with a more complex step logic,

Time to 2k Step

5 10
Time (min)

MIRA (online)

Figure 14: Wall-clock runtimes across environ-
ments. Time required to reach a 0.5 return (left):
PPO reaches 0.5 only on FROZEN LAKE, while
both MIRA variants converge across tasks. Run-

time for 2k training steps (right):
incurs extra overhead from initial

Online MIRA
LLM queries,

but this cost reduces wasted exploration and leads
to faster convergence in terms of overall wall time.

30

Under review as a conference paper at ICLR 2026

MIRA variants converge across all environments. In the right panel, PPO shows the lowest per-step
runtime because online MIRA incurs some additional cost from its initial LLM queries. However,
these early queries reduce wasted exploration, allowing online MIRA to reach 0.5 return much faster
overall, yielding a net gain in efficiency despite the upfront overhead.

F.3 QUERY FREQUENCY PERFORMANCE SUMMARY

Table 2 expands on Figure 6 in Subsection 4.2. It shows how different online query budgets impact
learning progress (SR90Return, indicating the mean return when success rate first exceeds 90%),
final return, and convergence speed (total steps to termination). The results reinforce that while
all MIRA variants outperform PPO, higher online budgets further accelerate training and improve
asymptotic performance.

Table 2: Performance on DOORKEY. SR90Return is the mean return when success rate first exceeds
90%; Final Return is the return at the end of training; Final Step is the total environment steps.
MIRA variants outperform the baseline in both early and final return, with MIRA (large) achieving
the highest values while converging fastest.

Method SRO0Returnt Final ReturntT Final Step)
Baseline 040.002 0.009 £ 0.001 10362
MIRA (offline) 0.233 4+ 0.087 0.295 + 0.123 10351
MIRA (mid) 0.284 + 0.065 0.902 £ 0.012 10257
MIRA (large) 0.851 +0.060 0.91 + 0.013 9961

F.4 MINIGRID PERFORMANCE SUMMARY

Tables 3 and 4 report detailed numerical results for all four MiniGrid tasks, including mean returns
and success rates averaged over unseen seeds. MIRA consistently outperforms both PPO and the
hierarchical baseline across all environments, including the more complex ones such as DOORKEY
and REDBLUEDOOR. Welch’s t-tests (,) show no statistically significant difference
between MIRA and LLM4Teach at the 0.05 level across metrics and environments (see Table 5).
These results support the aggregate performance trends in the main text (Figure 5), demonstrating
that MIRA improves both final return and task completion.

Table 3: Mean return on unseen seeds across MiniGrid environments. MIRA achieves high and
stable success, comparable to LLM4Teach, despite requiring substantially fewer LLM queries.

Method DOORKEY LAVACROSSING REDBLUEDOOR REDBALL

Baseline RL 0.018 £ 0.016 0.012 £ 0.027 0.044 +0.042 0.329 £ 0.205
HRL 0.472 £ 0.117 0.468 £ 0.081 0.565 +0.027 0.820 £ 0.241
LLM4Teach 0.912 £ 0.075 0.884 +0.100 0.901 £ 0.082 0.946 + 0.051
MIRA 0.898 £0.093 0.855+£0.132 0911 £ 0.077 0.942 + 0.054

F.4.1 T-TEST: MIRA vs. LLM4TEACH

To assess whether the performance differences between LLM4Teach and MIRA are statistically
significant, we conduct Welch’s t-tests on the evaluation metrics across environments and seeds.
Welch’s t-test is a two-sample statistical test that does not assume equal variance. As shown in
Table 5, none of the differences reach significance at the a = 0.05 level. This suggests that MIRA
performs comparably to LLM4Teach across all reported metrics, despite MIRA having small lower
final reward.

G LIMITATIONS

While MIRA improves sample efficiency and reduces reliance on frequent LLM queries, it also
comes with natural trade-offs. The method relies on offline LLM outputs to initialize its memory

31

Under review as a conference paper at ICLR 2026

Table 4: Success rate on unseen seeds across MiniGrid environments. MIRA achieves consistently
high success rates, matching LLM4Teach while requiring fewer queries, and outperforming baseline
and HRL methods.

Method DOORKEY LAVACROSSING REDBLUEDOOR REDBALL

Baseline RL 0.023 +£0.017 0.017 £ 0.020 0.036 £ 0.043 0.539 4 0.064
HRL 0.585 +0.043 0.489 + 0.097 0.543 £0.032 0.881 +=0.136
LLM4Teach 0.970 4+ 0.004 0.931 £ 0.011 0.956 +0.003 0.958 4 0.021
MIRA 0.953 £0.043 0913 £+ 0.077 0.944 + 0.020 0.956 + 0.036

Table 5: Welch’s t-test comparing LLM4Teach and MIRA (MR: Mean Return - SR: Success Rate).

None of the differences are statistically significant at o = 0.05.

Metric LLM4Teach MIRA t p 95% CI
DOORKEY (MR) 0.9124+0.075 0.898 £0.093 0.203 0.8495 [-0.181, 0.209]
DOORKEY (SR) 0.970 +0.004 0.953 £0.043 0.682 0.5647 [-0.0885, 0.1225]
LAVACROSSING (MR) 0.884 +0.100 0.855+0.132 0.303 0.7778 [-0.2443, 0.3023]
LAVACROSSING (SR) 0.931 £0.011 0.913+0.077 0.401 0.7260 [-0.1681, 0.2041]
REDBLUEDOOR (MR) 0.901 £0.082 0.911 +0.077 -0.154 0.8851 [-0.1906, 0.1706]
REDBLUEDOOR (SR) 0.956 £0.003 0.944 +0.020 1.028 0.4081 [-0.0362, 0.0602]
REDBALL (MR) 0.946 +0.051 0.942+0.054 0.093 0.9302 [-0.1152,0.1232]
REDBALL (SR) 0.958 £0.021 0.956 £0.036 0.083 0.9387 [-0.0717,0.0757]

graph, which, if they include misleading information or are not well aligned with the environment
dynamics, can slow convergence or increase the need for online queries. Our screening and pruning
mechanisms reduce this risk, and in practice it is largely a limitation of current LLMs that is expected
to diminish as models improve. MIRA also introduces shaping terms that require hyperparameter
tuning to avoid instability between the actor and critic. We find, however, that they can be adjusted
with standard procedures. Finally, our current study focuses on discrete action spaces; extending
MIRA to continuous domains without discretization is a natural next step.

H REPRODUCIBILITY

Experiments were run on both a Linux server with Intel Xeon E5-2630 v4 CPUs (40 threads) and
an Apple M2 (8-core CPU, 10-core GPU, 16GB unified memory). All LLM models used in our
experiments correspond to the publicly available versions released in the first week of August 2025.

H.1 SIMULATION PLATFORMS

H.1.1 GYMNASIUM TOY TEXT

ENVIRONMENT DETAILS. Horizon indicates the maximum number of steps per episode before
automatic termination (i.e., maxsteps in the environment configuration).

Table 6: FrozenLake environment details.

Property Value
Observation Type Discrete
Horizon 200
Reward Sparsity Sparse
Action Space 4 (tabular)

Dynamics

Slippery, irreversible

32

Under review as a conference paper at ICLR 2026

HYPERPARAMETER. Table 7 provides the main specifications of FrozenLake for PPOConfig in
RLIib.

Table 7: Hyperparameters of FROZENLAKE

Parameter Value
Learning rate 1x1074
Batch size 512
Mini-batch size 64

Number of epochs 4

Entropy coefficient 0.01
Discount factor () 0.99

GAE lambda (\) 0.95

Utility (&) [0.9]

Batch mode “complete episodes”

H.1.2 MINIGRID AND BABYAI

ENVIRONMENT DETAILS. Horizon indicates the maximum number of steps per episode before
automatic termination (i.e., maxsteps in the environment configuration).

Table 8: MiniGrid suite details.

Property Value
Observation Type RGB
Reward Sparsity ~ Sparse and delayed
Action Space 7 (tabular)
View Size 7

Horizon 300

Table 9: MiniGrid environments and their dynamics.

Environment Dynamics
REDBALL Reversible
REDBLUEDOOR Irreversible
LAVACROSSING Irreversible
DOORKEY Subgoal seq.

DISTRACTED DOORKEY +Visual distractors

HYPERPARAMETER. Tables 11- 13 provides the main specifications of all the MiniGrid environ-
ments for PPOConfig in RLIib.

OBSERVATION SPACE In MiniGrid environments, the agent receives an RGB image of the grid,
which is passed through a convolutional encoder 15 to extract spatial features relevant for navigation
and interaction.

33

Under review as a conference paper at ICLR 2026

Table 10: Hyperparameters of DOORKEY

Table 11: Hyperparameters of LAVACROSSING

Parameter Value Parameter Value
Learning rate 2.5 x107* Learning rate 2.5 x 1074
Batch size 1024 Batch size 1024
Mini-batch size 64 Mini-batch size 64
Number of epochs 4 Number of epochs 4

Entropy coefficient 0.01 Entropy coefficient 0.01
Discount factor () 0.99 Discount factor (7y) 0.99

GAE lambda (\) 0.95 GAE lambda () 0.95

Utility (&) [0.25, 0.15] Utility (&) [0.3]

Batch mode “complete episodes” Batch mode “complete episodes”

Table 12: Hyperparameters of REDBLUEDOOR

Table 13: Hyperparameters of REDBALL

Parameter Value Parameter Value
Learning rate 5x107° Learning rate 2x107*
Batch size 1024 Batch size 512
Mini-batch size 64 Mini-batch size 64
Number of epochs 4 Number of epochs 4
Entropy coefficient 0.01 Entropy coefficient 0.01
Discount factor () 0.99 Discount factor () 0.99
GAE lambda (\) 0.9 GAE lambda (\) 0.95
Utility (&) [0.] Utility (&) [0.]
Batch mode “complete episodes” Batch mode “complete episodes”

N

% N flatten

S X

RGBImgObsWrapper x ~
I X icy_branch
I ue_branch

Conv2d

Figure 15: Convolutional encoder architecture used to process the agent’s 56 x 56 x 3 RGB observa-
tion in MiniGrid environments. The input passes through a series of Conv2D layers, reducing spatial
dimensions while increasing channel depth. The final activation is flattened and fed to both policy
and value heads. This encoder captures spatial layout, object presence, and agent-centric context for
decision-making.

This CNN processes the visual input into a compact feature vector, capturing object positions, colors,
and layout structure. The resulting embedding is concatenated with a learned directional encoding
and passed to the policy and value heads for action selection and value estimation.

H.2 UTtiLiITY COMPUTER

To shape early learning, MIRA computes a utility signal by comparing the agent’s recent trajec-
tory against stored high-return segments in the memory graph. This comparison identifies partial
matches between the agent’s behavior and past successful subtrajectories, allowing utility values to
be assigned step-wise. The utility signal is sparse, history-dependent, and derived without modify-

34

Under review as a conference paper at ICLR 2026

ing the reward function. When a reference trajectory is matched, utility values are assigned based
on reverse-aligned similarity with reference trajectories; unmatched steps receive zero utility.

In FROZENLAKE, the observation space is discrete and does not include agent orientation. As a
result, direction information is undefined. To ensure consistency with the similarity computation
used in other environments, we adopt one of two equivalent strategies: (i) modify the similarity
pseudocode to ignore direction entirely in this setting (which we use in our implementation), or (ii)
assign a fixed direction value to all trajectory tuples so that the direction field trivially matches by
construction. Both approaches yield the same utility assignments, since direction plays no functional
role in tabular environments.

Algorithm 2 Compute Utility Score

function [(-,-)
for each (04, aa), (Om; am) in reV(nggnta i) dO
if (pos., dir.) match & a, = a,, then
return high_sim > (1)

else if pos. match & a, = a,, then
return mod_sim > not align direction (0.7)
else if (d, £ 1) mod 4 = d,,, then
return low_sim > action aligned direction (0.4)
else
return no_sim > (0)
end if
end for

end function

Require: Agent 7. and Reference trajectory 7y,

x = (0,a,r, meta) > Denote a transition with metadata

Initialize U « [0, ..., 0]

Align the tail of T,gen to length of 7,

for each (24,) € (T, Tm) doO
[+ [((04,a4), (04,a4)) > Compute similarity
p < p(gs,Cm) > Compute goal aligment factor
U= Crpy T - p- [
Assign u to corresponding index in U

end for

return U

USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this manuscript, the authors used OpenAI’s ChatGPT to assist with gram-
mar and readability. No research ideas, technical content, or analysis were generated by the tool. All
content was reviewed and verified by the authors, who take full responsibility for the final version.

35

	Introduction
	Methodology
	Memory Graph Design
	Offline and Online Guidance
	Utility Signal Computation
	Adaptive Advantage Shaping

	Experimental Setup
	Simulation Platform
	Baseline Methods

	Experimental Results
	Tabular Benchmark and Partially Observable Tasks
	Ablation Studies

	Conclusion
	Background
	Standard Reinforcement Learning
	Partial Observability and Credit Assignment Challenges
	Subgoals and Abstractions

	Policy Gradient Methods
	Advantage-Based Policy Optimization

	Related Works
	Language Model Guidance in RL
	Memory and Buffers in RL
	Advantage Modifications in RL

	Theoretical Results
	Assumptions
	Improvement Guarantees

	LLM Prompting and Reasoning
	Gymnasium Toy text
	Standard and Custom MiniGrid and BabyAI Environments
	LLM Reasoning Patterns Across Models
	Case Study: Distracted DoorKey

	Memory Graph Construction Details
	Initialization
	Agent-Induced Updates
	Online Grafting and Triggers

	Extended Experimental Studies
	Early Advantage Dynamics
	Relative Wall Time
	Query Frequency Performance Summary
	MiniGrid Performance Summary
	t-test: MIRA vs. LLM4Teach

	Limitations
	Reproducibility
	Simulation Platforms
	Gymnasium Toy text
	Minigrid and BabyAI

	Utility Computer

