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Abstract

Three-dimensional organoids have emerged as powerful models for studying human
development, disease and drug response in vitro. Yet, their analysis remains con-
strained by standard imaging and characterisation techniques, which are invasive,
require exogenous labelling and offer limited multiplexing. Here, we present a non-
invasive, label-free imaging platform that integrates Raman microspectroscopy with
deep learning-based hyperspectral unmixing for unsupervised, spatially resolved
biochemical analysis of neural organoids. Our approach enables high-resolution
mapping of cellular and subcellular structures in both cryosectioned and intact
organoids, achieving improved imaging accuracy and robustness compared to
conventional methods for hyperspectral analysis. This work establishes a versa-
tile framework for high-content, label-free (bio)chemical phenotyping with broad
applications in organoid research and beyond.

1 Introduction

The ability to image and accurately characterise the architecture and molecular composition of cells
and tissues has been central to advancing biological and medical sciences. To this end, a broad
array of techniques – ranging from histological staining and immunofluorescence to omics-based
profiling – has been developed, each offering distinct insights across spatial and molecular scales1–6.
Nonetheless, a fundamental challenge persists: most available methods are inherently invasive and/or
require molecular labelling.

These constraints become particularly limiting as scientific research shifts toward complex, three-
dimensional (3D) tissue models, such as organoids. Over the past decade, neural organoids derived
from pluripotent stem cells have emerged as powerful biological models of the developing human
brain, recapitulating key features of early developmental dynamics and organisation7–10. Compared
to two-dimensional (2D) neural cell culture models, neural organoids exhibit enhanced complexity
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and three-dimensional structures, providing a more advanced representation of tissue architecture7,10,
cellular diversity11,12 and functional network formation13. Consequently, neural organoids have
spurred new opportunities for studying human brain development, disease and drug response in
vitro14–17. Yet, despite growing interest, organoid research remains constrained by the limitations of
conventional methods for tissue imaging and characterisation. There is a pressing need for techniques
that can interrogate spatial organisation and dynamics in intact organoid systems under physiologi-
cally relevant settings, without prior knowledge of specific molecular targets or the introduction of
exogenous labels.

Currently, immunofluorescence staining combined with fluorescence microscopy is widely used as
a gold standard, reference technique for visualising the morphological organisation of 2D and 3D
cellular models, owing to its high specificity and spatial resolution18,19. In this approach, fluorophore-
conjugated antibodies are used to selectively bind to and visualise specific target molecules20. Despite
its strengths, however, this technique has several inherent limitations. First, while protein labelling
is generally well-established, detecting other biomolecular classes, such as carbohydrates, lipids
and various small molecules (e.g. drugs and metabolites), often requires more specialised probes or
labelling strategies, or is not possible altogether. Additionally, immunofluorescence staining involves
multiple washing and permeabilisation steps, which can disrupt cellular architecture and compromise
membrane integrity, potentially leading to artefactual results21. These steps may also displace small
molecules such as drugs, metabolites and other transient compounds, obscuring their true spatial
localisation in situ within cells and tissues. While other labelling strategies, such as fluorescent protein
tagging, genetic modifications and dye-based staining, may help avoid these washing steps, they
remain label-based (i.e. targets must be known and available), and issues with labelling non-proteins
persist. Furthermore, regardless of the labelling strategy, the intrinsic spectral overlap of fluorescent
markers constrains multiplexing, typically to four targets in standard fluorescence microscopy22, or
seven in more advanced techniques23,24. Moreover, genetic modifications used in live-cell imaging
to express fluorescent protein reporters can be costly, time-consuming, and may induce poorly
understood side effects, such as protein aggregation or disruption of ion transport dynamics. Enabling
non-invasive, label-free analysis would thus be essential to expand the potential of neural organoids
in neurodevelopmental research, disease modelling, drug screening and beyond.

Raman spectroscopy (RS), a technique within vibrational spectroscopy, offers a promising alternative
for biochemical analysis. Unlike fluorescence-based imaging, RS provides molecular contrast through
the analysis of the intrinsic inelastic light scattering of molecules, thereby enabling non-invasive, label-
free chemical characterisation with minimal sample preparation25–27. Consequently, RS has become
a ubiquitous analytical technique across the life and physical sciences28–38, with increasing use in
analysing biological specimens such as cells and tissues39–44. In the context of neurodevelopment, RS
has been applied to profile neural cells at various stages of differentiation. Yet, most studies to date
have focused on 2D cultures of individual cell types with RS measurements acquired at a single-cell
level – e.g. distinguishing neural stem cells from neurons by identifying distinct cell-specific spectral
signatures45–49. The application of RS to complex three-dimensional cultured tissues containing
multiple cell types, such as neural organoids, remains challenging due to their high biochemical
heterogeneity, which hinders signal unmixing and interpretation. Recently, Bruno et al. explored the
use of supervised machine learning to classify RS spectra from cortical organoids at four predefined
maturation time points (weeks 6, 12, 16 and 20)50. However, their approach focused on single-point
prediction and did not explore the three-dimensional architecture, cellular interactions and functional
complexity intrinsic to neurodevelopment. So far, the use of RS for spatially resolved analysis of
neural organoid structure and maturation remains unexplored.

Our lab recently reported a technique based on RS for 3D biochemical imaging and drug distribution
analysis in liver organoids51. The proposed methodology relied on the acquisition of ‘tissue phantoms’
– i.e. calibrated reference spectra from biomolecules of interest, which were used to guide the
estimation of chemical concentration maps across the scanned area using ordinary least squares with
non-negativity constraint52. This enabled the detection and visualisation of key biomolecules and
drugs in situ in whole liver organoids. Nonetheless, the approach has two limitations. First, it assumes
that target biomolecules are known, thereby restricting potential applications and undermining the
label-free capabilities of RS. Second, the performance and robustness of ordinary least squares for
chemical estimation can be compromised by complex mixtures, experimental noise and artefacts, and
variations introduced during data calibration and preprocessing, leading to inaccurate qualitative and
quantitative analysis. To address these limitations, we recently introduced a deep learning framework
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Figure 1: Schematic diagram of our organoid imaging pipeline combining Raman microspectroscopy
and deep learning-enhanced hyperspectral analysis.

for RS chemometrics, using hyperspectral unmixing autoencoder neural networks, which enabled
fully unsupervised, label-free (bio)chemical analysis with enhanced accuracy compared to established
chemometric techniques53.

Building on this work, we present here a pipeline for non-invasive, label-free biochemical imaging of
neural organoids based on spontaneous Raman microspectroscopy and unsupervised autoencoder-
based hyperspectral unmixing analysis. We show that our approach achieves improved organoid
imaging compared to standard methods for RS analysis, as validated against fluorescence microscopy,
and enables detailed morphochemical imaging and spatially resolved analysis in both cryosectioned
and intact neural organoids with subcellular resolution.

2 Deep learning-enhanced Raman microspectroscopy

We begin by discussing the technical methodology behind our organoid imaging pipeline based
on Raman microspectroscopy combined with autoencoder-based hyperspectral unmixing. Figure 1
provides an overview of our approach.

Raman measurements were collected from fixed neural organoid samples by performing point-wise
imaging scans across predefined regions of interest. Volumetric scans were generated by acquiring
sequential scans along the axis perpendicular to the imaging plane (e.g. sampling at different depths
along the z-axis). Acquired data were preprocessed to remove non-specific signal contributions and
spectral artefacts, such as cosmic spikes, autofluorescence baselines and dark noise (see Appendix A).
This was done using RamanSPy – an open-source Python toolbox for RS data analysis we recently
developed54.

After preprocessing, hyperspectral unmixing was performed to derive constituent spectral components
(endmembers) and quantify their relative contributions (abundances) in each measurement55,56.
This was achieved using a custom autoencoder neural network model designed for hyperspectral
unmixing. The model builds upon our previously reported approach53, with substantial extensions
and optimisations across the entire pipeline, spanning preprocessing, network architecture, training
strategy and endmember estimation (see Appendix A for more details). Briefly, the autoencoder
architecture included: (i) an encoder responsible for abundance estimation, which comprised a multi-
branch spectral convolutional block followed by a five-layer fully connected network, and (ii) a one-
layer decoder responsible for endmember identification. Our model incorporated relevant physical
constraints in the representation learning process, namely, constraining the learnt endmembers
and abundances to be non-negative through the use of appropriate activation functions and weight
clipping, and constraining the mixing process to linear mixing through the use of a single-layer
linear decoder. Models were trained on individual scans or datasets in an unsupervised manner by
minimising a reconstruction loss based on the weighted sum of the mean squared error and spectral
angle divergence57 between input spectra and output reconstructions. The number of endmembers to
extract for each scan/dataset was determined using principal component analysis (PCA)58,59.

After model training, learnt endmember signatures and their corresponding abundances were derived,
generating multi-channel abundance images/volumes with channels rendering chemical maps of the
distribution of learnt endmembers. The obtained endmembers and abundances were examined to
filter out components linked to non-tissue signals, such as background and noise. The remaining
tissue-specific endmembers were characterised via peak assignment, whereby prominent peaks were
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linked to chemical bonds to identify essential biomolecular species, such as nucleic acids, proteins,
lipids and carbohydrates. Peak identification was guided by established reference materials40. The
corresponding abundance maps were visualised as morphochemical images showing the spatial
distribution of the obtained chemical components to study organoids’ morphology and biochemical
composition.

Further technical details regarding data acquisition, preprocessing and unmixing analysis are presented
in Appendix A.

3 Experimental validation against fluorescence microscopy

To validate that our method produces accurate morphochemical organoid reconstructions, we evalu-
ated its performance against fluorescence microscopy and standard methods for hyperspectral RS
analysis. To this end, defined tissue regions within two day-30 neural organoid cryosections were
imaged using confocal Raman microspectroscopy, followed by immunostaining and fluorescence
microscopy (Figure 2A). Raman imaging was performed first to avoid potential signal interference
from staining molecules. To ensure morphological diversity, we selected areas containing both
distinct neural rosette structures and surrounding neural tissue for downstream imaging (Figure 2B).
Raman imaging was performed over areas of 600 µm×600 µm and 400 µm×400 µm from the two
respective sections, with a pixel size of 2 µm (Figures 4C and 5C in Appendix B). Subsequently, the
organoid sections were stained for nuclei (DAPI), cell membranes (DiO), neural progenitor cells
(SOX2) and neurons (TUJ1), and fluorescence microscopy images were taken to validate and correlate
with organoid morphology predicted by RS (Figures 4B and 5B in Appendix B).

Using our autoencoder-based imaging pipeline, we analysed the acquired RS data from the first
organoid section to infer its biochemical composition. Our method extracted four tissue-specific
endmembers, which we associated with contributions from lipids, nucleic acids and proteins (Fig-
ure 4D–E in Appendix B). Figure 2C shows a side-by-side comparison between the predicted
abundance maps of the two endmembers related to nucleic acid-rich and lipid-rich species and the
corresponding fluorescence microscopy images of nuclei (DAPI) and cell membranes (DiO), respec-
tively. We observed that our RS imaging pipeline accurately reconstructed individual nuclei, aligning
with the DAPI staining across the imaged tissue (Figure 2C (right), and Figure 4F in Appendix B).
It also effectively captured important membrane features, including both fine cellular membranes
and prominent structures such as the apical domain of the visible neural rosette. Qualitatively, we
observed strong correspondence between the lipid-rich component obtained with RS and the DiO
signal around the apical domain of the rosette and with the TUJ1 signal outside the rosette (Figure 4B
in Appendix B).

Having shown that our method accurately reconstructs key cellular components in cryosectioned
neural organoid samples, we used the data collected from the second organoid section to compare the
unmixing performance of our developed approach against a range of standard chemometric methods
for multivariate analysis. This included methods for dimensionality reduction (principal component
analysis (PCA)58,59, non-negative matrix factorisation (NMF)60), clustering (k-means clustering61,62),
and hyperspectral unmixing (N-FINDR63 and vertex component analysis (VCA)64 for endmember
identification, applied together with non-negative least squares (NNLS)52 for abundance estimation).
Our autoencoder-based pipeline derived six tissue-specific endmembers, which we characterised as
lipid-, nucleic acid- and protein-rich species (Figure 5D in Appendix B). Visual examination of the
estimated abundance maps revealed major cellular and subcellular features, including membranes,
nuclei, cytoplasmic regions and apical domains of neural rosettes (Figure 5E in Appendix B).
Compared to standard methods, our approach offered improved robustness to artefacts and noise and
produced more discriminative and interpretable abundance maps, enabling better-delineated imaging
reconstruction of organoid morphology (Figure 6 in Appendix B).

To quantitatively assess the performance of our autoencoder-based pipeline, we evaluated the im-
age similarity between Raman-based reconstructions and fluorescence microscopy images in an
overlapping organoid region. To this end, we spatially aligned both modalities and computed the
Pearson’s correlation coefficient (Pearson) and structural similarity index measure (SSIM)65 between
RS-derived abundance maps of nuclei and membranes and fluorescence images of DAPI and DiO,
respectively. We benchmarked the performance of our method against two conventional chemometric
approaches: (i) univariate analysis, and (ii) multivariate hyperspectral unmixing using VCA and
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Figure 2: Deep learning-enhanced Raman microspectroscopy enables accurate morphochemical
imaging of neural organoids as validated against fluorescence microscopy. A, Schematic diagram
of our validation strategy, which involved the collection of paired Raman imaging and fluorescence
microscopy data from neural organoid cryosections. B, Brightfield microscopy images of the two
day-30 neural organoid cryosections imaged for validation. Marked areas show the regions used for
validation in C and D, respectively. Scale bars: 200 µm. C, Imaging results on first organoid section.
Comparison of fluorescence microscopy images of DAPI (nuclei) and DiO (membranes) (left), and
RS-based abundance reconstructions of nucleic acid and lipids derived with our autoencoder pipeline
(right). Arrow indicates the lumen of the present neural rosette. Scale bar: 100 µm. D, Imaging
results on second organoid section. Comparison of fluorescence microscopy images of DAPI (nuclei)
and DiO (membranes) (left), and RS-based abundance reconstructions of nucleic acid and lipids
derived with three methods for Raman imaging, including univariate analysis, unmixing analysis
with VCA and NNLS, and our autoencoder pipeline. Similarity metrics, namely Pearson’s correlation
coefficient (Pearson) and structural similarity index measure (SSIM), were performed with respect to
the respective downscaled fluorescence images. The highest achieved similarity scores are indicated
by underlined bold text. Arrow indicates the lumen of the present neural rosette. Scale bar: 50 µm.
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NNLS. Univariate analysis was performed using the intensity profiles at 794 cm−1 and 1454 cm−1,
which we found to be indicative of nuclear and lipid-rich membrane regions, respectively (Figure 5D
in Appendix B).

As shown in Figure 2D, our autoencoder-based pipeline achieved the highest reconstruction accuracy
across all evaluations – both quantitatively, with superior Pearson and SSIM scores, and qualitatively,
with more interpretable and biologically relevant output. Nuclear regions were recovered with higher
accuracy, with visually better-defined nuclei and lower non-specific signal. Membrane-associated
structures were also more clearly delineated, enabling the visualisation of both large-scale features
such as apical domains and individual cellular membranes.

Furthermore, our approach demonstrated improved robustness to experimental noise, maintaining
consistent reconstruction quality under reduced denoising conditions. In comparison, the perfor-
mance of conventional methods deteriorated markedly, yielding noisier, less interpretable spectral
components and abundance profiles, or failing to converge to a solution during unmixing altogether
(Figure 7 in Appendix B).

4 Biochemical imaging of intact neural organoids at subcellular resolution

After demonstrating that our method achieves accurate subcellular imaging of 2D cryosectioned
neural organoid tissue, we performed higher-resolution Raman imaging of a tissue region within an
intact 3D neural organoid. The ability to resolve and visualise subcellular structures in intact organoid
tissues in their native environment is critical for interrogating neurodevelopmental processes, such as
nuclear positioning, polarity establishment and lumen formation, and studying their effect on brain
tissue organisation, architecture and function.

To this end, we acquired a larger 400 × 346 Raman imaging scan taken with 1 µm pixel size
from an intact day-10 neural organoid sample (Figure 3A). Using our Raman imaging pipeline,
we analysed the data and identified six tissue-specific components. The spectral endmembers and
corresponding abundance maps are presented in Figure 3B and Figure 3C, respectively. Endmember 1
(red) exhibited a lipid-rich profile with prominent peaks at 1077 cm−1 (C–C and C–O stretching,
phospholipids), 1305 cm−1, 1448 cm−1 and 1657 cm−1. Its abundance map outlined membrane-
like structures, along with more confined bright spots resembling lipid droplets. Endmember 2
(grey) was characterised by vibrations associated with both protein and lipid species, with peaks
at 1000 cm−1, 1124 cm−1 (C–C and C–N stretching), 1249 cm−1, 1311 cm−1, 1454 cm−1 and
1654 cm−1. Its abundance was observed in regions partially overlapping with membranes, as
well as in isolated domains, possibly indicating cytoplasmic or extracellular matrix compartments.
Endmember 3 (blue) was marked by strong nucleic acid bands at 790 cm−1 and 1095 cm−1, alongside
protein-associated bands (1005 cm−1, 1249 cm−1, 1328 cm−1, 1455 cm−1 and 1659 cm−1). As in
previous analyses, the abundance map revealed well-defined spherical compartments consistent with
individual cell nuclei. Endmember 4 (green) presented a distinct protein-rich signature with peaks
at 1005 cm−1, 1251 cm−1, 1454 cm−1 and 1662 cm−1, along with vibrations associated with ring
breathing modes in nucleic acid bases at 1573 cm−1. The abundance map highlighted cellular-level
compartments resembling cytoplasmic regions, as well as small punctate structures within nuclei with
high signal intensity, potentially corresponding to biomolecular condensates. Endmember 5 (yellow)
displayed a mixed profile comprising bands linked to proteins (1259 cm−1, 1326 cm−1, 1453 cm−1

and 1662 cm−1) and nucleic acid (1095 cm−1). This component appeared more diffusely distributed,
with substantial spatial overlap with endmember 3. Endmember 6 (purple) presented a noisier
signature, with carbohydrate-associated bands at 493 cm−1 (glycogen), 850 cm−1 (C–O–C skeletal
mode, glycogen) and 938 cm−1 (C–C stretching), along with peaks linked to proteins and nucleic
acids at 754 cm−1 and 1103 cm−1. The abundance overlapped with endmember 4, particularly
around nuclear condensates, potentially reflecting glycoproteins within cell nuclei.

To further inspect the spatial reconstructions produced by our imaging pipeline, we examined
magnified fields from selected regions within the imaged organoid tissue (Figures 3D and 3E).
The resulting reconstructions revealed consistent, well-defined cellular features, which delineated
individual cells and subcellular structures resembling nuclei, cytoplasmic regions, cellular membranes
and nuclear condensates.
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Figure 3: Biochemical imaging of intact neural organoids at subcellular resolution. A, Snapshot of
collected Raman imaging data from an intact day-10 neural organoid sample, showing the intensity
profile at the 1659 cm−1 band (proteins and lipids). Scale bar: 50 µm. B–E, Results of hyperspectral
unmixing analysis. B, Derived tissue-specific endmember signatures. Endmembers scaled for
visualisation purposes (maximum intensity set to 1). C, Corresponding abundance maps. Scale bar:
50 µm. D, Zoomed-in abundance images of a selected area (area marked in C, bottom right panel).
Scale bar: 20 µm. E, Further zoomed-in abundance image (area marked in D). Scale bar: 10 µm.

These results demonstrate the effectiveness of our imaging platform in intact organoid tissues,
allowing us to resolve complex biochemical heterogeneity and interrogate key morphological features
at cellular and subcellular scales in an unsupervised, label-free manner.

5 Discussion

We have developed here a method for non-invasive, label-free organoid imaging based on Raman
microspectroscopy combined with unsupervised autoencoder-based hyperspectral analysis. We
showed that our approach is effective at discerning key biochemical components in unlabelled Raman
spectroscopy measurements, enabling the visualisation of structural and morphological features in
both cryosectioned and intact neural organoids and at different scales and resolutions.

By eliminating the need for destructive preparation steps and external labels, our workflow offers
simpler sample preparation that does not compromise organoid integrity, with potential for live-
organoid analysis. This opens new avenues for research into early neurodevelopment, but also
in developmental diseases and drug discovery, where our approach could allow studying disease
aetiology in neural organoid disease models or visualising drug distribution in situ. We note that
our pipeline can also be applied to other types of samples, including other types of organoids and
tissues. Beyond imaging, it can also be used as a feature extraction technique in RS for downstream
applications – e.g. organoid phenotyping, disease classification, drug response modelling.
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A Extended methods

A.1 Raman microspectroscopy

Raman spectroscopy measurements were performed using a confocal Raman microscope (alpha300 R,
WITec GmbH) equipped with a 532 nm solid-state laser (WITec GmbH). Laser power at the sample
plane was set to about 48mW for the two organoid cryosections or 32mW for the intact sample.
Backscattered light was collected through a water immersion objective – 20× (Zeiss W N-Achroplan,
N.A.= 0.5) for organoid cryosections or 63× (Zeiss W Plan-Apochromat, N.A.= 1) for intact
sample, and delivered via a 10 µm single-mode silica fiber to an imaging spectrograph (Newton,
Andor Technology Ltd) with a 600 groove/mm grating and a thermoelectrically cooled CCD detector
(−60◦C). The system provided a spectral resolution of ∼ 2–3 cm−1 over the wavenumber range
0–3670 cm−1. Spectra were acquired using an integration time of 0.5 seconds.
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A.2 Spectral preprocessing of Raman imaging data

Acquired Raman spectroscopy measurements were exported as MATLAB files using the WITec
Project FIVE Suite software and loaded in Python using RamanSPy54. Following this, each scan was
individually preprocessed using RamanSPy as follows: (1) spectral cropping whereby wavenumbers
less than 300 cm−1 were removed; (2) cosmic rays removal, using the algorithm reported by Whitaker
and Hayes66, with a kernel size m = 3 and z-value threshold τ = 6; (3) denoising with a third-order
Whittaker smoother67 with λ = 103; (4) baseline correction with asymmetric least squares68 with
λ = 105; and (5) global vector normalisation, where intensity values were divided by the ℓ2-norm
of the spectrum with the highest norm in the given scan. Additionally, wavenumber calibration was
performed on our cryosection scans by calculating the median position of the laser peak (Rayleigh
scattering) and setting it to zero.

A.3 Hyperspectral unmixing analysis

Chemometric analysis was performed using a custom autoencoder neural network model designed for
blind hyperspectral unmixing. In this context, Raman measurements xi ∈ Rb are treated as mixtures
xi = F(M,αi) of a set of n unknown endmember components M ∈ Rn×b based on their relative
abundances αi ∈ Rn in a given measurement xi.

To decompose a set of Raman measurements X ∈ Rm×b (i.e. a given scan) into endmember
components M and their relative abundances A ∈ Rm×n, we train an autoencoder model A consisting
of an encoder module E and a decoder module D. The encoder was responsible for mapping input
spectra x into latent space representations z = E(x), and the decoder was responsible for mapping
these latent representations into reconstructions of the original input x̂ = D(z) = D(E(x)) =
A(x). The model was trained in an unsupervised manner by minimising the reconstruction error
between the input x and the output x̂. During this process, the model was guided to learn the
endmember components M and their relative abundances A through the introduction of related
physical constraints. Below, we provide additional details about the developed architecture and
training procedure. For more information about hyperspectral unmixing, the reader is pointed to
previous works by Keshava and Mustard55 and Li et al.56.

The encoder E comprised two separate blocks applied sequentially. The first part was a multi-branch
convolutional block comprising four parallel convolutional layers with kernel sizes of 5, 10, 15 and
20, designed to capture patterns at multiple spectral scales. Each convolutional layer contained 32
filters with ReLU activation, He initialisation69 and ‘same’ padding. Batch normalisation70 and
dropout with a rate of 0.271 were applied to each convolutional layer to improve training stability
and generalisation. The outputs of the four convolutional layers were merged channel-wise through
a fully connected layer to yield an output of dimension matching that of the input spectrum. The
rationale behind this was to transform intensity values into representations that capture local spectral
features (e.g. peak shape, width, local neighbourhood) and thus promote better generalisability. The
second part of the encoder was a fully connected dimensionality reduction block, applied to learn
patterns between the learnt spectral features. This block comprised a series of fully connected layers
of sizes 256, 128, 64 and 32 with He initialisation and ReLU activation. Batch normalisation and
dropout (rate of 0.5) were also applied at each fully connected layer. The block was followed by
a final fully connected layer (Xavier uniform initialisation72) that reduced the final 32 features to
a latent space of size n. The number n was treated as a hyperparameter that encodes the number
of endmembers to extract, with latent representations treated as abundance fractions. To improve
interpretation, non-negativity was enforced in the latent space using a ‘softly-rectified’ hyperbolic
tangent function f(x) = 1

γ log(1 + eγ∗tanh(x)), with γ = 10, as we previously reported53. This
ensured that latent values were constrained to the range (0, 1) in accordance with the abundance
non-negativity constraint, but does not enforce abundances to sum to one (abundance sum-to-one
constraint).

The decoder D consisted of a single fully connected layer (Xavier uniform initialisation) mapping
the n-dimensional latent space representations back to the original spectral dimension b. In this layer,
we used a linear activation and no bias term. Under this setup, the decoder mimics linear unmixing,
where endmember signatures are encoded in the learnt weight matrix of the decoder layer53. A
non-negative kernel constraint was used to enforce the non-negativity of endmember signatures using
weight clipping during training. To accelerate model training, the weight matrix in the linear decoder
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layer was initialised before training using endmember signatures derived with vertex component
analysis64.

Autoencoder models were trained for 5 epochs using the Adam optimiser73 with a batch size of 32.
The learning rate was set to 0.001. An exponential learning rate decay was used to ensure stable
convergence, applying a factor of 0.9 to the learning rate after each epoch. The training loss L was
defined as a weighted sum of the mean squared error (MSE) and spectral angle divergence (SAD)
between input spectra x and output reconstructions x̂:

L(x, x̂) = SAD(x, x̂) + λMSE(x, x̂), (1)

where
MSE(x, x̂) =

1

b
||x− x̂||2, (2)

with b denoting the dimension of x (i.e. the number of spectral bands), and

SAD(x, x̂) = arccos (
x · x̂

∥x∥2 ∥x̂∥2
). (3)

The weighting factor λ was set to 1000.

The number of endmembers to derive was estimated individually for each scan of interest using
principal component analysis. Specifically, we computed the cumulative explained variance as a
function of the number of principal components and manually selected the number of components at
the point where the increase in explained variance visually plateaued.

Image similarity analysis between RS abundance images and fluorescence microscopy images was
performed using Pearson’s Correlation Coefficient (PCC) and Structural Similarity Index Measure
(SSIM). Fluorescence images were first aligned to the corresponding RS images and then downscaled
to match the RS image dimensions prior to analysis.

PCC was calculated as:

PCC =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
√∑

i(yi − ȳ)2
, (4)

where xi and yi represent pixel intensities of the RS and fluorescence microscopy images, respectively,
and x̄, ȳ are their mean intensities.

The Structural Similarity Index Measure (SSIM) was computed as:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (5)

where µx, µy denote means; σ2
x, σ2

y variances; σxy covariance; and C1, C2 constants.

Autoencoder model implementation, training, and evaluation steps were carried out using Tensor-
Flow74. Analysis with baseline chemometric methods was performed using RamanSPy54.

B Extended results

(see the following four pages)
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Figure 4: Extended results for Raman imaging scan of a first day-30 neural organoid cryosection. A,
Brightfield image of a sectioned neural organoid tissue region imaged using Raman spectroscopy
(blue) and fluorescence microscopy (red). Scale bar: 200 µm. B, Fluorescence microscopy images
with markers for nuclei (DAPI), membranes (DiO), neural progenitors (SOX2) and neurons (TUJ1). C,
Raman intensity profile at the 1659 cm−1 band (linked to proteins and lipids). Image size: 300× 300
pixels. Step size: 2 µm. Scale bar: 100 µm. D–E, Result of hyperspectral unmixing analysis.
D, Derived tissue-specific endmember signatures. Endmembers scaled for visualisation purposes
(maximum intensity set to 1). E, Corresponding abundance maps. Scale bar: 100 µm. Endmember 1
(green) presented a lipid-rich spectral signature with distinct peaks at 1307 cm−1, 1455 cm−1, and
1663 cm−1. Its abundance was consistent with membrane structures, including cellular membranes
and the apical domain of the visible neural rosette. The signal of this endmember showed a high
degree of visual overlap with DiO and TOJ1. Endmember 2 (blue) displayed a nucleic acid-rich profile
with a prominent band at 783 cm−1, alongside vibrations linked to proteins (1338 cm−1, 1472 cm−1

and 1668 cm−1). Strong glass signal was also observed around 570 cm−1 and 1100 cm−1. The
abundance map revealed well-defined, spherical compartments, closely resembling cell nuclei, with
increased density within the present neural rosette structure. Endmembers 3 (red) and 4 (grey)
shared similar spectral signatures, dominated by protein-associated peaks around ∼1010 cm−1,
∼1100 cm−1, ∼1265 cm−1, ∼1320 cm−1, ∼1460 cm−1, and ∼1670 cm−1. Both endmembers were
generally broadly distributed across the sample. Endmembers 3 showed increased signal at the
apical domain of the present rosette, potentially suggesting structural proteins. The abundance of
endmember 4 was increased within the rosette structure. F, Overlaid images of DAPI and endmember
associated with nucleic acids (2-N). Scale bars: 25 µm.
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Figure 5: Extended results for Raman imaging scan of a second day-30 neural organoid cryosection.
A, Brightfield image of a sectioned neural organoid tissue imaged using Raman spectroscopy (blue)
and fluorescence microscopy (red). Scale bar: 200 µm. B, Fluorescence microscopy images with
markers for nuclei (DAPI), membranes (DiO) and neurons (TUJ1). Due to partial tissue detachment
during the staining process, a localised increase in fluorescence intensity was observed at the tissue
edge. This peripheral region was identified as an artefact and was therefore excluded from subsequent
analyses. C, Raman intensity profile at the 1659 cm−1 band (linked to proteins and lipids). Image
size: 200× 200 pixels. Step size: 2 µm. Scale bar: 100 µm. D–E, Result of hyperspectral unmixing
analysis. D, Derived tissue-specific endmember signatures. Endmembers scaled for visualisation
purposes (maximum intensity set to 1). E, Corresponding abundance maps. Scale bar: 100 µm.
Endmember 1 (green) exhibited a lipid-rich profile with prominent peaks at 1313 cm−1, 1452 cm−1,
and 1666 cm−1. The corresponding abundance map presented morphological architecture consistent
with membrane-like structures, including individual cellular membranes and the apical domain of
the present neural rosette. Endmember 2 (blue) displayed a strong nucleic acid band at 794 cm−1,
alongside several vibrations linked to protein species (1354 cm−1, 1463 cm−1 and 1669 cm−1),
as well as bands attributed to the glass slide at (581 cm−1 and 1102 cm−1). The abundance map
revealed well-defined, spherical compartments, closely resembling cell nuclei. Endmembers 3 (red),
4 (grey) and 5 (yellow) exhibited similar spectral signatures, dominated by protein-associated peaks
around ∼1015 cm−1, ∼1100 cm−1, ∼1265 cm−1, ∼1330 cm−1, ∼1460 cm−1, and ∼1670 cm−1.
Endmember 4 showed a broad spatial distribution, likely corresponding to cytoplasmic or general
background tissue signal. Endmembers 3 and 5, which showed a more pronounced 1460 cm−1 band,
and an increased signal near the edge of the tissue section, likely due to tissue curling, as well as the
basal domains of the present neural rosettes. Endmember 6 (magenta) presented a noisier signature,
with prominent protein-associated peaks at 1131 cm−1 (C–N stretching), 1274 cm−1, and 1366 cm−1

(tryptophan). Its spatial distribution showed substantial overlap with that of Endmember 4.
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Figure 6: Comparative analysis of different chemometric methods on Raman imaging scan of a day-
30 neural organoid cryosection. Methods include: principal component analysis (PCA), non-negative
matrix factorisation (NMF), k-means clustering, N-FINDR + non-negative least squares (NNLS),
vertex component analysis (VCA) + NNLS, our autoencoder (AE) pipeline. Abundance images were
normalised for visualisation purposes. Endmember signatures displayed on the right correspond to
the analyses performed with a random seed set to 42. Scale bar: 100 µm (bottom right, marked in
orange).
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Figure 7: Comparative analysis of different chemometric methods on Raman imaging scan of a
day-30 neural organoid cryosection in the presence of higher degrees of experimental noise. Higher
noise levels were simulated by applying a more conservative denoising procedure with a second-order
Savitzky-Golay filter with a window size of 775. Methods include: principal component analysis
(PCA), non-negative matrix factorisation (NMF), k-means clustering, N-FINDR + non-negative least
squares (NNLS), vertex component analysis (VCA) + NNLS, our autoencoder (AE) pipeline. One of
the analyses with VCA+NNLS failed to converge, with the NNLS implementation terminating after
exceeding the maximum number of iterations. Abundance images were normalised for visualisation
purposes. Endmember signatures displayed on the right correspond to the analyses performed with a
random seed set to 42. Scale bar: 100 µm (bottom right, marked in orange).

18


	Introduction
	Deep learning-enhanced Raman microspectroscopy
	Experimental validation against fluorescence microscopy
	Biochemical imaging of intact neural organoids at subcellular resolution
	Discussion
	Extended methods
	Raman microspectroscopy
	Spectral preprocessing of Raman imaging data
	Hyperspectral unmixing analysis

	Extended results

