
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AGENTOCCAM: A SIMPLE YET STRONG BASELINE
FOR LLM-BASED WEB AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Autonomy via agents based on large language models (LLMs) that can carry out
personalized yet standardized tasks presents a significant opportunity to drive hu-
man efficiency. There is an emerging need and interest in automating web tasks
(e.g., booking a hotel for a given date within a budget). Being a practical use
case itself, the web agent also serves as an important proof-of-concept example
for various agent grounding scenarios, with its success promising advancements
in many future applications. Meanwhile, much prior research focuses on hand-
crafting their web agent strategies (e.g. agent’s prompting templates, reflective
workflow, role-play and multi-agent systems, search or sampling methods, etc.)
and the corresponding in-context examples. However, these custom strategies of-
ten struggle with generalizability across all potential real-world applications. On
the other hand, there has been limited study on the misalignment between a web
agent’s observation and action representation, and the data on which the agent’s
underlying LLM has been pre-trained. This is especially notable when LLMs
are primarily trained for language completion rather than tasks involving embod-
ied navigation actions and symbolic web elements. In our study, we enhance an
LLM-based web agent by simply refining its observation and action space, align-
ing these more closely with the LLM’s capabilities. This approach enables our
base agent to significantly outperform previous methods on a wide variety of web
tasks. Specifically, on WebArena, a benchmark featuring general-purpose web in-
teraction tasks, our agent AGENTOCCAM surpasses the previous state-of-the-art
and concurrent work by 9.8 (+29.4%) and 5.9 (+15.8%) absolute points respec-
tively, and boosts the success rate by 26.6 points (+161%) over similar plain web
agents with its observation and action space alignment. AGENTOCCAM’s simple
design highlights the LLMs’ impressive zero-shot performance in web tasks, and
underlines the critical role of carefully tuning observation and action spaces for
LLM-based agents.

1 INTRODUCTION

AI agents leveraging large language models (LLMs) show great potential in automating repetitive
and programmatic tasks and thereby alleviating human workloads (Gao et al., 2024; Xi et al., 2023;
Yang et al., 2024). LLMs showcase remarkable capabilities in perception, reasoning and planning
primarily due to their pre-training and post-training. However, their effectiveness is significantly
constrained when task-specific observation and action representations diverge from the parametric
knowledge encoded during training of LLMs. For instance, in web-based tasks, these agents perform
notably below human levels (Zhou et al., 2023b; Koh et al., 2024a).

To improve web task performance by LLM-based agents, recent work focuses on designing better
agent policies with either handcrafted prompting templates (Sodhi et al., 2024) or hard-coded auto-
prompting strategies (Fu et al., 2024; Wang et al., 2024). While those pre-defined strategies can be
effective for certain tasks, they struggle to generalize to diverse websites and varying skill require-
ments. Another emerging trend is to adopt sampling or search algorithms for a dynamic exploration
of web navigation actions, which reduces dependence on pre-defined strategies but increases the
cost on LLM inferences. (Koh et al., 2024b; Zhang et al., 2024; Pan et al., 2024).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

RootWebArea 'Wireless Headphones'
link [1312] 'My Account'
link [1310] 'My Wish List 9 items'...

Aligned Observation

RootWebArea [1] 'Wireless Headphones' [focused: True]
link [1312] 'My Account'

StaticText [761] 'My Account'
link [1310] 'My Wish List 9 items'

StaticText [762] 'My Wish List '
StaticText [763] '9 items'...

My goal is, to list
reviewers, if any, who
mention ear cups being

small.

Previous Approaches:
Compound LLM Policy

click

go_back

type note

stop branch prune

LLM Policy Original Observation

Given the web observation
and available actions, click

the "review" link!

Aligned
Actions

observation

Environment

click ...

...new_tab ...

...

... ...go_back

Original
Actions

Web Server

Agent

action

AgentOccam: Action and
Observation Space Alignment

+ Action Space: More Compact

+ Observation Space: Less
Redundant Yet As Informative

Figure 1: Overview of AGENTOCCAM. Unlike previous work that works intensively on designing
compound LLM policies, we enhance the web agent simply by aligning the web interaction action
and observation space with the functioning LLM’s acquired knowledge and skills during its training.

In this work, we aim to enhance an LLM-based web agent’s proficiency by optimizing the text-
based task understanding and reasoning of existing LLMs, rather than refining the agent strategies.
Automating web tasks is challenging, as the agent needs to i) accurately extract information from
web pages with varying formats and encoded scripts, and ii) issue appropriate embodied actions,
selecting from those defined merely on web (e.g. scrolling, clicking, or hovering over buttons).
These web observation and action spaces are less common in both, the pre- and post-training data of
LLMs, preventing the LLMs from fully realizing their potential in accomplishing general-purpose
web tasks. Therefore, we study how to properly tune the observation and actions for LLM-based
web agents, to align them with the functioning LLMs capacities learned during pre-training.

As shown in Figure 1, our proposed method comprises of three components: i) We reduce non-
essential actions to minimize the agent’s embodiment and trivial interaction needs; ii) We refine
the observation by eliminating redundant and irrelevant web elements, and restructuring web con-
tent blocks for more succinct yet as informative representations; iii) We introduce two planning
actions (branch and prune), which enables the agent to self-organize navigation workflow with
a planning tree, and use the same structure to filter the previous traces for history replay. We imple-
ment these components by generic rules that applies to all types of markup-language-formatted web
pages, without leveraging task-related information on the test benchmark.

By combining the three techniques mentioned above, our proposed agent AGENTOCCAM per-
forms substantially better on web tasks across websites in the WebArena environments (Zhou et al.,
2023b). AGENTOCCAM outperforms the previous state-of-the-art approach by 9.8 absolute points
(+29.4%) and surpasses concurrent work by 5.9 absolute points (+15.8%). Notably, unlike most
prior work, we do not use any in-context examples, additional online search or sampling, nor spe-
cialized prompting templates or agent roles to play well. In contrast, AGENTOCCAM delivers such
strong performance with an unexpectedly simple approach: letting the LLM issue actions within the
processed and augmented observation and action spaces. Compared with a similar plain web agent
without these proposed observation and action space changes, AGENTOCCAM increases the success
rate by 26.6 absolute points (+161%).

In summary, the primary contribution of this work are as follows. First, we develop a new state-of-
the-art agent, AGENTOCCAM, for web tasks. On the WebArena benchmark consisting of 812 tasks
across five diverse websites (e.g., shopping, searching on a forum), AGENTOCCAM outperforms
previous and concurrent work significantly. Second, we shed light on the strong zero-shot perfor-
mance of LLMs on web tasks with our simple agentic workflow, in sharp contrast to many more
complex compound agent policies. Last, our work on aligning the observation and action spaces is
orthogonal to agentic strategies and can be combined with future advances in that aspect.

1AWM supports two scenarios: in offline scenarios it directly leverage an offline dataset, and in online
scenarios it relies on a domain-specific evaluator from Pan et al. (2024) which requires offline data to train.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Comparison of essential components for different web agents.

Essential Components Task-specific
Strategies

Additional
Module

In-context
Examples

Offline
Data

Online
Search

AutoGuide (Fu et al., 2024) NO YES YES YES NO
SteP (Sodhi et al., 2024) YES YES YES NO NO
AutoRefine (Pan et al., 2024) NO YES YES YES YES
LM-Tree Search (Koh et al., 2024b) NO YES YES YES YES
AWM (Wang et al., 2024) NO YES YES YES1 NO
WebPilot (Zhang et al., 2024) NO YES YES NO YES
AGENTOCCAM NO NO NO NO NO

2 RELATED WORK

LLM-based Web Agent Advances in large language and multi-modal foundation models have
significantly boosted the development of autonomous agents to solve web tasks. Techniques trans-
lating LLMs to powerful decision-making agents (Yao et al., 2022b; Shinn et al., 2024) have led to
progress in web agents, and have inspired many techniques that design inference time agent strate-
gies. Many prior approaches improve the agent system by designing modular systems with special-
ized LLMs or roles, aiming to break down complex tasks (Sun et al., 2024; Prasad et al., 2024).
Other works leverage LLMs to extract common patterns from examples or past experience (Zheng
et al., 2023; Fu et al., 2024; Wang et al., 2024). However, this line of work often relies on pre-defined
control hierarchy, prompt templates or examples to act accurately in the test environments. For ex-
ample, SteP (Sodhi et al., 2024) utilizes a stack-based approach for dynamic multi-level control in
the web tasks but relies on task-specific atomic policies with environment-related information hard-
coded in prompt template. Another line of work focuses on improving web agents’ performance by
leveraging more online examples from the environments. Many of them (Zhou et al., 2023a; Zhang
et al., 2024; Putta et al., 2024) adapt Monte Carlo Tree Search (MCTS) methods, expanding inter-
mediate states (tree nodes) in one task repeatedly by multiple trials over that task. Among them,
WebPilot (Zhang et al., 2024) also adds a global optimization layer for high-level planning. Koh
et al. (2024b) use a trained value function to guide search and to back-trace on the task execution
tree. Auto Eval and Refine (Pan et al., 2024) trains a separate evaluator, and improves the task execu-
tion using reflective thinking (Shinn et al., 2024) on past trials in the same task. However, sampling
or resetting multiple times in the same task, not only increases the inference cost significantly, but
also limits its applicability when failed task is not revocable. As a comparison, we highlight the
simplicity of our method and its difference with related agent approaches in Table 1.

Fine-tuned or Trained Models for Web Tasks Fine-tuning language or multimodal models
for web tasks is another effective approach to enhance decision-making capabilities on the web
tasks (Yin et al., 2024; Hong et al., 2024; Lai et al., 2024; Putta et al., 2024). Although fine-tuning
promises more adaptivity and optimization space, the size of task-specific fine-tuned models is often
not comparable with the most powerful closed-source models. As for training models to follow nat-
ural language command on the computer or the web, there is also some early research before LLMs
emerged, using semantic parsing (Artzi & Zettlemoyer, 2013), reinforcement learning (Branavan
et al., 2009) and imitation learning (Liu et al., 2018; Humphreys et al., 2022). However, those fine-
tuned agents, limited by the base model’s capacities, fail to match those constructed with LLMs.

Simulated Web Agent Environments Web agent development has been supported by increas-
ingly complex web simulators for training and evaluation. These range from basic platforms like
MiniWoB (Shi et al., 2017) and its extension MiniWoB++ (Liu et al., 2018), to more sophisticated
environments such as WebShop (Yao et al., 2022a), WebArena (Zhou et al., 2023b), and Visual-
WebArena (Koh et al., 2024a). These simulators progressively incorporate real-world complexities,
from simple form-filling to tasks across multiple full-featured websites. In this work, we focus only
on the text modality, and use WebArena to evaluate our method’s task success and generalizability
as it contains different types of websites and task-intents in a single suite.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 PROBLEM FORMULATION

We formalize the web interaction process by a Partially Observable Markov Decision Process
(POMDP, Littman (2009); Spaan (2012)): ⟨O,S,A, P,R, p0, γ⟩. In POMDPs, an observation
o ∈ O consist of information that the agent receives from the web environment, e.g. HTMLs,
as well as any instructions and prompts. In this work, we consider the text modality only. A state
s ∈ S denotes the whole underlying (unobserved) state of the agent and the environment such that
the state transition is Markovian. An action a ∈ A is either a command recognized by the web
environment, or any other unrecognized token sequence that will lead to staying in the current state.
P denotes a deterministic state transition function that records the change in the webpage state given
the current state and agent action. R is the reward function that decides the success or failure of the
agent’s sequence of actions. In the WebArena environment used in our work, the reward is only as-
signed at the end of an agent-web interaction episode. p0 denotes the initial state distribution which
is uniform over 812 tasks in WebArena and discounting factor γ is set to 1.

To solve POMDP, a common goal is to find a decision policy π(at|ht) maximizing the expected
cumulative reward, where ht denotes the observation history {o0, o1, ..., ot}. In LLM-based web
agent design, that is translated to designing a policy π(at|ht) with the help of one or more base LLM
policy πLLM and a set of algorithmic modules. In this work, we work on a special class of policies
that can be expressed as: π(g(at)|ht) = πLLM(at|f(ht)), where f and g are rule-based functions
that process the observation (including action instructions) and actions for the LLM policy. We name
it the observation and action space alignment problem. Notice that under such problem setting, all of
our changes apply only to the observations and the actions. We emphasize not all agent strategies in
previous approaches can be represented in this way. For example: search-based algorithms require
a control program on the top to select actions and trigger back-tracing; methods with evaluators,
reflective thinking or memory modules also necessitate a managing center to alternate between the
main LLM and these helper segments or role-playing LLMs. In contrast, we aim to answer the
following question in our work: Can we build a strong web agent with the base LLM policy
πLLM by optimizing only the observation and action mapping f and g?

4 METHOD

Rather than introducing any new modules or hierarchical structures on top of the base LLM, our
method focuses on a simple web agent workflow that inputs the web observations to a general-
purpose LLM-API and uses the LLM outputs as actions directly. In this section, we describe the
process of aligning web navigation tasks, which necessitates embodiment knowledge, with the pre-
dominantly static and text-centric nature of LLM training. Section 4.1 discusses our strategies (sum-
marized in Figure 2) for refining the action space to be more compact and reducing the need for the
agent’s embodiment capabilities. Section 4.2 outlines our methods (summarized in Figure 4) for
condensing web content descriptions to be both brief and informative, and identifying key web ele-
ments and relevant steps for retention to organize the agent’s memory in a pertinent manner.

4.1 ACTION SPACE ALIGNMENT

A web agent’s action space defines the valid commands it can use to interact with web environment.
Based on our observation of common failure modes in web agents, there are two key problems that
need to be solve by editing the action space: i) removing irrelevant actions that LLMs struggle to
understand and frequently misuse, and ii) improve the memorization and planning ability when the
task execution requires navigating multiple potential paths to successfully execute. We propose that
the first can be corrected simply by removing and combining actions. The second one was often
solved in the previous work by handcrafted rules or strategies, making these approaches hard to
generalize. In this work, we address the second problem by adding actions to allow the LLM to
autonomously generate plans and manage the task workflow. Both of these proposed solutions are
explained in details below and in Figure 2.

Simplifying the Action Space. First, we eliminate actions that can be replicated using similar
actions or replace multiple actions by one action with the same expressiveness (illustrated in Figure 2
step 1). Specifically, we remove the noop action, signifying “no operation”, as a distraction to the
agent in most cases. Similarly, tab operations, which manage the focusing, opening, or closing of

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Action Space Alignment

Essential Actions

click typescroll go_back

note stop go_home*

Low-Embodiment Actions

click typescroll go_back

note stop go_home*
Planning Tree

Objective

Plan 1

branch

Plan 2

Objective

Plan 1

prune

Plan 2

Objective

Plan 1

Core Navigation Actions

Planning Actions

For Navigation

For Workflow Management

For Improved Decision-Making

click type go_back go_home*

note stop

branch prune

Basic Actions noop click

hover type press scroll

Tab Operations tab_focus

new_tab tab_close

Page Operations go_back

go_forward goto

Original Actions

* Only valid in
multisite tasks.1. Remove Non-essential Actions

1. Avoid arbitrary scrolling.
2. Package atomic actions to higher-level operations.

2. Disable Scrolling

3. Plan via Generation

Figure 2: In aligning the action space with LLM pre-training, we only retain high-utility actions
and lessen the demand for advanced embodiment skills (steps 1 and 2). Additionally, we incorporate
planning steps, allowing the agent to autonomously manage task breakdown and execution (step 3).

tabs are removed because they are only needed in a limited cases of multi-site tasks requiring two
tabs. Furthermore, we limit page navigation actions like go forward and goto, as their utility
is greatly constrained by the agent’s poor memory of the relationship between a page’s URL and
its content. By eliminating these less effective actions, our goal is to minimize distractions and
boost the agent’s concentration on more meaningful operations. In addition, we introduce the note
action, allowing the agent to record key observations for subsequent conclusions, and the stop
action, enabling the agent to autonomously conclude the trajectory with answers. We also add a
go home command for multi-site tasks, enabling the agent to navigate directly to the homepage
where all available sites are listed.

Second, we eliminate actions that heavily require embodiment knowledge and simplify low-level
actions into more abstract operations as shown in Figure 2 step 2. In particular, we reduce commands
that LLM-based agents struggle with unless provided with detailed context-specific guidance, like
hover or press (the latter is for pressing key combinations, often shortcuts). To properly use these
actions requires LLMs to have embodied thinking of the current scenario, especially regarding the
mouse position, which it has not acquired during the training. Additionally, we remove the scroll
action, opting instead to load the full page content as the web state. This change is in response
to our observation that agents tend to engage in aimless and repetitive scrolling when an essential
link is not visible at the top of the page, wasting steps without making progress. Furthermore, we
streamline the agent’s interaction with drop-down menus; instead of selecting the menu and then an
option, a single click command with the ID of desired option now suffices. The list of all actions
in original and reduced action space are shown in Table 3, together with the frequency they are taken
in different agents.

Planning via Generation. Web tasks often requires solution that requires navigating multiple paths
(e.g. extracting information from one page and submitting it to another page, like the task of creating
a refund request on the contact us page for a broken product (task template 154), which requires
parsing the order ID and refund amount from the order pages). We propose adding of two actions
(branch and prune) to generate plans in a tree structure and save them for future observations.
As Figure 2 step 3 shows, the LLM-generated plans starts with a root node being the objective of the
task. The branch action will generate new subplans under the current node, decomposing high-
level objectives into smaller, more manageable subgoals. Conversely, the prune action allows the
agent to give up the current sub-plan (often after repetitive failed attempts) and seek for alternatives.
Together with the branch and the prune actions, the LLM can edit the planning tree autonomously.
Note that these two planning actions are of no difference from the native navigation actions
in the web environment (e.g. click, type) and the LLM is free to choose when to take these actions
to update the plan. The generated plan provides a context for future action generation and enhances
the consistency of actions in one trajectory. This approach leverages the intrinsic planning ability in
LLM itself. We argue that this increases the generalization performance as this design has minimum
dependency on prior knowledge.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Agent
Prompt

General
Instruction

Online Task
Information Step Objective Previous Interaction Current Observation... Page Length History Length

E.g., You are a seasoned web navigator. You need to issue an action for this step…

E.g., Interaction History Summary: highlight all key information in the PREVIOUS INTERACTION section.
Reason: Provide your rationale for proposing the subsequent action commands. Action: Select your action.

...

Task Description

Output Specifications

Figure 3: The components of our web navigation agent’s prompt. It includes a general instruction
outlining the task and the desired output, as well as online task information providing the current
goal, the agent’s past interactions, and the latest observations. Notably, the sections on previous
interactions and current observation use the most tokens. These can be attributed to two main factors:
the length of the pages and the extent of history span, with current observation primarily depending
on page length and past interactions on both page length and history span.

Original Web Environment Description
RootWebArea [1] 'Wireless Headphones' [focused: True]

link [1312] 'My Account'
StaticText [761] 'My Account'

link [1310] 'My Wish List 9 items'
StaticText [762] 'My Wish List '
StaticText [763] '9 items'

link [1314] 'Sign Out'
StaticText [764] 'Sign Out'

StaticText [765] 'Welcome, Emma Lopez!'

RootWebArea 'Wireless Headphones'
link [1312] 'My Account'
link [1310] 'My Wish List 9 items'
link [1314] 'Sign Out'
text 'Welcome, Emma Lopez!'

Refined Web Environment
Description

table 'Orders'
row '| Order | Date | Order Total | Status | Action |'
row '| --- | --- | --- | --- | --- |'
row "| 000000191 | 6/21/24 | 8,368.88 | Pending | View Order link [46850] 'View Order'"

Refined Web Content Block

1. Remove
redundant text.

2. Convert HTML
or accessibility
tree to Markdown.

Plan 0 Step 0

Subplan 1

Subplan 2

Subsubplan 3

Step 1 Step 2 Step 3

Step 4

Step 5 Step 6

Current step

Step

Step Invisible step

Visible step
Tree-Structured Web Elements Planning Tree

Observation Space Alignment

main
table 'Orders'
caption

StaticText 'Orders'
row

columnheader 'Order #' [required: False]
StaticText 'Order #'

columnheader 'Date' [required: False]
StaticText 'Date'

columnheader 'Order Total' [required: False]
StaticText 'Order Total'

columnheader 'Status' [required: False]
StaticText 'Status'

columnheader 'Action' [required: False]
StaticText 'Action'

row
gridcell '000000191' [required: False]

StaticText '000000191'
gridcell '6/21/24' [required: False]

StaticText '6/21/24'
gridcell '$8,368.88' [required: False]

StaticText '$8,368.88'
gridcell 'Pending' [required: False]

StaticText 'Pending'
gridcell 'View Order' [required: False]

link [46850] 'View Order'
StaticText 'View Order'

Original Web Content Block

RootWebArea

Ancestor node
Pivotal node

Sibling node
Descendent node
Other invisible node

(e.g., text 'View Order')

(e.g., link 'My Order')

(e.g., text '$742.42')

(e.g., link 'View Order')

1. Simplify Web Page Elements

2. Selectively Replay Web
Elements in One Page 3. Selectively Replay Past Pages

Figure 4: To align the task’s observation space with the base model’s pre-training, we condense
a single-page length by removing unnecessary texts that repetitively describe the web page’s func-
tionality and layout (step 1), and by identifying page elements relevant to the task for the agent to
remember (step 2). Additionally, we optimize the agent workflow memory through a stacked plan-
ning tree, viewing each new plan as a separate goal and excluding past steps’ information dedicated
to previous plans to enhance memory conciseness (step 3).

4.2 OBSERVATION SPACE ALIGNMENT

The observation space of web agents consists of task objectives, instructions, previous interaction,
the current web text descriptions or screenshots (see Figure 3 and Appendix C for our agent). Among
them, previous interactions and current web content consumes the most number of tokens, which
scales with the length of a single page and the length of history. This often results in a long context
window, which not only increases the LLM inference cost but also poses challenges for LLM to
extract related information accurately. Therefore, our primary focus in refining the observation is to
target these two aspects. Additionally, the alignment of observations is outlined in Figure 4.

Simplifying Web Page Observations. The content on web pages are represented in HTML or ac-
cessibility tree format in most text-only web agents. These formats are designed towards front-end
loading and rendering, containing numerous formatting tokens making them lengthy and repeti-
tive, as illustrated in Figure 4 Step 1. Our goal is to optimize the representation to make it more
readable to LLMs in one single page. Specifically, we merge function-descriptive web elements
(e.g., StaticText [761] ‘My Account’) with interactive elements that share the same la-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

bel (e.g., link [1312] ‘My Account’). We then convert table and list blocks to Markdown,
eliminating repetitive structural tokens (e.g., columnheader, gridcell). Consequently, we
achieve a more concise representation while keeping the same information.

Replaying Observation History Selectively. Taking observation history as input is important for
decision-making agents to act consistently for tasks needing long horizons, given the prior that the
observation state only contains partial information about the environment’s state. For web tasks, it
is also important to include both observation and action history as some key information may not be
displayed on the current page. However, the observation history will also significantly scale up the
context length and increase reasoning difficulty as well as inference cost. We address this issue by
only selecting the most important and related information on previous web page, according to two
rules based on the “pivotal” nodes (defined later) and the planning tree.

First, we observe that only small amount of content on a web page is pertinent to a specific task
among several steps and is worth to replay in future steps. For example, in tasks requiring the agent
to find all reviews with in three months, it is unnecessary to keep other reviews or some unrelated
links like Contact Us on the page. Thus we employ a simple rule to identify this small amount
of content by leveraging the tree structure of web data (e.g. accessibility tree). To do this, we first
instruct the agent to pinpoint the crucial web elements denoted as “pivotal” nodes, every time the
agent generates an action. The agent is then programmed to include only the pivotal nodes’ ancestor
nodes (indicating their global hierarchy and position), sibling nodes (providing immediate context),
and descendant nodes (offering detailed characteristics) in the future observations as illustrated in
Figure 4 Step 2. This effectively narrows down the volume of data and level of noise passed to future
context of LLM inference.

Second, we observe that not all previous steps’ observation needs to be noted during the inference
of future step. Thus we can leverage the planning tree generated by the agent itself to keep the
agent’s focus sharp. Specifically, when the agent initiates a branch action to develop a new plan,
we treat this new plan as a separate goal. Steps taken for earlier plans and their observations will be
dismissed in the current plan’s observation window, as depicted in Figure 4 step 3. This allows the
agent to focus only on information dedicated to the current plan for a sub-task.

5 EXPERIMENTAL RESUTS AND ANALYSIS

Environment. We utilize WebArena (Zhou et al., 2023b), an interactive web simulator, as our
benchmark. WebArena consists of fully functional websites from four common domains: e-
commerce platforms (OneStopShop), social forums for idea and opinion exchange (Reddit), collab-
orative software development (e.g. GitLab), and content management for creation and management
of online data (online store management). The platform additionally includes utility tools: a map,
a calculator and a scratchpad, and Wikipedia to enable human-like task-solving. The benchmark
consists of 812 tasks generated from 241 templates. A template here is a parametric form of a task
intent, allowing for multiple instantiations with different values. Each task is accompanied by a spe-
cific evaluator/reward function that programmatically checks the correctness of the final information
with respect to the desired ground truth information and the alignment of intermediate actions with
the overall task objective 2. We use GPT-4-turbo-2024-04-09 (Achiam et al., 2023) to build
our AGENTOCCAM.

Baselines. We compare AGENTOCCAM with the following prior and concurrent work: 1) We-
bArena agent: the Chain-of-Thought (CoT) prompted agent included in the WebArena benchmark
(Zhou et al., 2023b). 2) SteP (Sodhi et al., 2024): a stack-based approach on top of 14 human-written
atomic strategies tailored to solving WebArena. 3) WebPilot (Zhang et al., 2024): a multi-agent,
multi-level MCTS based agent that reports state-of-the-art overall performance on WebArena. 4)
Agent Workflow Memory (AWM) (Wang et al., 2024): a method automatically summarizing work-
flow from past experience. SteP has made their code and interaction trajectories public. Hence, we
are able to fully replicate the agents from WebArena and SteP with GPT-4-turbo in identical web

2We identified and corrected errors in the original evaluators, with details discussed in Appendix A. Our
approach outperforms the baseline methods with both original or corrected evaluators.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Comparison of the success rate (SR) of AGENTOCCAM with baseline agents on WebArena.

Agent Model SR (%) Shopping Shopping Admin GitLab Map Reddit Multisite
(#812) (#187) (#182) (#180) (#109) (#106) (#48)

WebArena-Replication GPT-4-Turbo 16.5 16.6 15.9 10.0 22.9 21.7 16.7
SteP-Replication GPT-4-Turbo 33.3 33.2 32.4 26.7 35.8 52.8 12.5
AWM GPT-4 35.5 - - - - - -
WebPilot GPT-4o 37.2 - - - - - -
AGENTOCCAM GPT-4-Turbo 43.1 40.6 45.6 37.8 46.8 61.3 14.6

All Shopping Shopping admin Gitlab Map Reddit Multisite
0

50

Su
cc

es
s

R
at

e

Vanilla
 Actions

Above + X Scrolling
Above + Obs Opt.

Above + History
AgentOccam (Above + Planning)

Figure 5: Ablation study of AGENTOCCAM’s action and observation space refinement. We incre-
mentally add refinement components and evaluate their marginal performance gains.

environments as our methods, for a fair comparison.3 WebPilot and AWM, being concurrent works
with this paper, do not yet provide source code or resulting trajectories, limiting our analysis of these
works to just reporting the aggregated performance numbers included in their technical reports. Our
analysis focuses on SteP as it is the most performant method prior to this work.

Question 1: How well does AGENTOCCAM perform? As seen from the results in Table 2, our
agent AGENTOCCAM, which optimizes the action and observation space, now sets a new SOTA
on the WebArena benchmark. It increases the overall success rate from 37.2% to 43.1%, a 15.8%
relative improvement over best results among previous and concurrent work. We observe that
AGENTOCCAM not only accomplishes tasks in the template that is previously unsolvable, like up-
dating personal information on OneStopShop (task template 165), but it also raises the success rate
for templates with mixed results previously, such as setting a homepage URL on a GitLab profile
(task template 331). This is further illustrated in Figure 6 in the appendix.

Question 2: How much does each observation and action space change contribute to AGEN-
TOCCAM? We evaluate the contribution of each component in AGENTOCCAM described in Sec-
tion 4 to its overall success by incrementally integrating them into the vanilla agent (WebArena-
Replication) and assessing the marginal performance gain shown in Figure 5. The details of each
incremental experiment are as follows:

i) Removal of non-essential actions (↓ Actions): Narrowing the action space can reduce the
level of distraction for LLM policies and significantly improves performance across all tested web-
sites as shown in Figure 5. By removing rarely used actions like tab focus,go forward,
hover and press, the agent spends less steps wandering around and explores more efficiently
using actions such as click and type. Table 3 shows it reduces hundreds of hover and goto
actions while significantly increase the number of click and type.

ii) Disabling scrolling (Above + X Scrolling): We observe that LLM policies tend to use
scroll up and down often when they do not know what to do (since these action are revertible).
Consequently, it significantly delays the task execution and causes looping over in certain tasks. As
a result, disabling the scrolling action and passing the entire page to agent proves advantageous,
especially for GitLab and Reddit tasks. However, this strategy increases the number of observation
tokens, which will be addressed by subsequent refinements.

3In our experiments, we note that all agents can occasionally fails due to errors from the WebArena simula-
tor, such as exceeding posting rate limits in Reddit or the login expires. In that case, we restart the experiments.

4We remove stop in the statistics for the vanilla WebArena agent as this action is excluded in their officially
defined action space. However, their agent is allowed by code to generate stop to end the trajectory.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Action statistics for the ablation study of AGENTOCCAM’s components. Each number in
the table represents the frequency of an action across all the tasks within the experiment setting.
Actions noop, go forward, tab focus and tab close are not included since they are not
used even once in vanilla agent and removed in our method.

Exp. click hover type press scroll new tab go back goto note stop go home branch prune
Vanilla 2328 126 1024 7 132 20 71 511 - -4 - - -

↓ Actions 7119 - 2531 - 370 - 52 - 194 512 36 - -
Above + X Scrolling 7033 - 2390 - - - 100 - 219 536 42 - -
Above + Obs Opt. 6890 - 2040 - - - 56 - 201 571 23 - -
Above + History 4625 - 1286 - - - 94 - 112 801 54 - -

AGENTOCCAM 4720 - 1159 - - - 339 - 197 769 42 34 47

Table 4: Average observation tokens per step across WebArena sites.

Exp. All Shopping Shopping Admin GitLab Map Reddit Multisite
Vanilla 2210.2 2272.1 2460.2 2199.1 1883.2 2132.4 1751.0

↓ Actions 1652.0 1644.7 2133.1 1981.3 912.0 1081.2 1296.8
Above + X Scrolling 3376.2 3148.0 5403.7 3364.9 1378.1 2603.6 1975.5
Above + Obs Opt. 2891.1 1722.5 4791.7 2560.8 1476.4 3332.3 1619.4
Above + History 3051.3 1802.6 5140.2 3153.3 862.1 3156.1 2030.3

AGENTOCCAM 2930.9 1634.2 4920.7 3126.8 1056.0 3697.8 1282.5

iii) Simplifying web page elements (Above + Obs Opt.): We remove redundant text and web
format as show in Figure 4 Step 1. This results in fewer tokens in the context window, as outlined
in Table 4. It helps the agent focus on web elements crucial to task success across all websites and
boosts the performance on all task types, except on Gitlab, where this sometimes leads the agent to
overlook simpler solutions (task id 394).

iv) Selective replay of web elements in one page (Above + History): In this experiment, we
follow step 2 shown in Figure 4 to add a subset of elements from previous web pages as history.
We observe that it allows the agent to avoid repetitive actions in tasks, significantly decreasing the
steps needed for task completion as demonstrated in Table 5. However, this addition slightly hurts
performance in tasks with dense single-page content or those requiring navigation across multiple
pages, as shopping and Reddit tasks success rate drops by 3.2 and 6.0 points.

v) Planning via generation and selective replay of past pages (AGENTOCCAM; Above +
Planning): We introduce actions branch and prune to generate actions and exclude histor-
ical steps not in the current sub-plan from the current prompt context. This results in performance
gains in tasks across nearly all websites, alongside a reduction in the required observation tokens.
The actions branch and prune are both primarily used in correcting a failed strategy and trying
an alternative path. For example, in the task of identifying the nearest national park to Boston (task
id 265), the agent employs a branch action to adopt an alternative search strategy after a failed
search attempt. In a GitLab task (id 563) the agent after multiple failed attempts uses the Create
project button opts for a prune action to explore other methods.

Question 3: Could the power of AGENTOCCAM be combined with other agentic strategies?
A natural question to ask next is if we can combine these changes with other common agent strate-
gies or prior work, since the changes in observation and action space are orthogonal and comple-
mentary to them. We showcase two example studies to answer this question: one with the SteP
method (Sodhi et al., 2024) and another action selection method with LLM-as-a-judge.

The judge method is motivated by our observation of the high variation from the agent’s behavior.
In some key steps, the agent has certain probability of generating the correct action but often failing
to do so, making it hard for the agent to recover from later pages. For instance, when tasked with
identifying the most suitable subreddit for posting (task template 6100), the AGENTOCCAM agent
tends to hastily choose less relevant subreddits and gets stuck there. To address this, we direct the
AGENTOCCAM to generate all possible suitable actions instead of one action at each step. These
action candidates are then evaluated by another LLM (GPT-4-turbo as well) prompted to be play
the role of a judge and select the best action. The prompts for the judge are included in Appendix C.

Table 6 shows that a AGENTOCCAM + SteP agent, enhanced with task strategies, outperforms the
standalone SteP method but doesn’t match AGENTOCCAM’s base performance. Additionally, com-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: Average number of steps per task across all WebArena sites.

Exp. All Shopping Shopping Admin GitLab Map Reddit Multisite
Vanilla 6.2 6.2 6.6 5.9 5.7 7.4 4.4

↓ Actions 13.3 10.6 14.3 14.8 11.9 15.2 13.7
Above + X Scrolling 12.7 9.0 14.0 14.8 12.7 13.0 14.0
Above + Obs Opt. 12.0 8.5 13.2 15.4 10.2 12.1 13.2
Above + History 8.6 5.6 9.6 10.3 8.3 7.6 12.9

AGENTOCCAM 9.0 6.7 9.2 10.8 8.5 8.6 13.4

Table 6: Success rate (SR) of AGENTOCCAM combined with agent strategies on WebArena.

Agent Model SR (%) Shopping Shopping Admin GitLab Map Reddit Multisite
(#812) (#187) (#182) (#180) (#109) (#106) (#48)

AGENTOCCAM GPT-4-Turbo 43.1 40.6 45.6 37.8 46.8 61.3 14.6
AGENTOCCAM + SteP GPT-4-Turbo 41.1 46.5 36.3 36.7 47.7 50.9 18.8
AGENTOCCAM + Judge GPT-4-Turbo 45.7 43.3 46.2 38.9 52.3 67.0 16.7

bining AGENTOCCAM with a judge role through an action prediction and selection pipeline rectifies
some of the base agent’s behavioral misconduct.

By analyzing the trajectories of each method, we observe that the task-specific strategy like SteP can
help when the strategy fits the task requirement. For example, in the task of "Draft an email
to the shop owner via their contact us function for a coupon as
{reason}" (task template 163), the AGENTOCCAM + SteP and SteP agents excel by prompting
the agent explicitly not to click the submit button after drafting, where AGENTOCCAM fails to
follow. However, for tasks outside the designed strategies, these hints can mislead the agent, leading
to 2 points drop in overall success rate of AGENTOCCAM + SteP compared to AGENTOCCAM
only. An example is task 639, where the agent, guided by SteP’s instruction "Under forums,
you will see only a subset of subreddits. To get the full list
of subreddits, you need to navigate to the Alphabetical option.",
repetitively navigates away from the appropriate subreddit, and generates reasons for its action
selection that "Clicking on the ’Alphabetical’ link will help us access
a more comprehensive Reddit list.", demonstrating how hard-coded strategies can
distract the agent and hurt generalizability.

The AGENTOCCAM + Judge agent, combining the AGENTOCCAM’s generated action list with the
second opinion from a LLM judge increases its overall success rate by 2.6%, by completing tasks
where it may well fail due to intermediate decision flaws. For example, in choosing the right sub-
reddit for a post (task template 6100), the base AGENTOCCAM might hastily pick from an initial
list, whereas the AGENTOCCAM + Judge agent conducts a thorough search using post keywords or
explores the entire forum list before drafting the post. This approach minimizes errors due to rushed
decisions, increasing the likelihood of successfully completing task series.

6 CONCLUSION

In this paper, we proposed a simple but efficient LLM-based web navigation agent AGENTOCCAM
that refines its observation and action space by making them more readable and friendly to the LLMs
trained on language. Compared with other agent methods, AGENTOCCAM shows a surprising sim-
plicity in its policy workflow design with no additional modules, LLM calls or in-context example
requirements. Despite its simplicity, AGENTOCCAM outperform prior and concurrent work on We-
bArena by 9.8 (SteP) and 5.9 (WebPilot) absolute points respectively. Our result underlines that it is
important to keep the agent architecture simple for its generalizability, unless an additional module
is necessary, echoing the principle of Occam’s razor. In summary, we hope AGENTOCCAM provides
both strong groundwork as well as insights for the future research and development of web agents.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

report. arXiv preprint arXiv:2303.08774, 2023.

Yoav Artzi and Luke Zettlemoyer. Weakly supervised learning of semantic parsers for mapping
instructions to actions. Transactions of the association for computational linguistics, 1:49–62,
2013.

Satchuthananthavale RK Branavan, Harr Chen, Luke Zettlemoyer, and Regina Barzilay. Reinforce-
ment learning for mapping instructions to actions. In Proceedings of the Joint Conference of the
47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language
Processing of the AFNLP, pp. 82–90, 2009.

Yao Fu, Dong-Ki Kim, Jaekyeom Kim, Sungryull Sohn, Lajanugen Logeswaran, Kyunghoon Bae,
and Honglak Lee. Autoguide: Automated generation and selection of state-aware guidelines for
large language model agents, 2024. URL https://arxiv.org/abs/2403.08978.

Chen Gao, Xiaochong Lan, Nian Li, Yuan Yuan, Jingtao Ding, Zhilun Zhou, Fengli Xu, and Yong
Li. Large language models empowered agent-based modeling and simulation: A survey and
perspectives. Humanities and Social Sciences Communications, 11(1):1–24, 2024.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14281–14290, 2024.

Peter C Humphreys, David Raposo, Tobias Pohlen, Gregory Thornton, Rachita Chhaparia, Alistair
Muldal, Josh Abramson, Petko Georgiev, Adam Santoro, and Timothy Lillicrap. A data-driven
approach for learning to control computers. In International Conference on Machine Learning,
pp. 9466–9482. PMLR, 2022.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Russ Salakhutdinov, and Daniel Fried. VisualWebArena: Evaluating
multimodal agents on realistic visual web tasks. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 881–905, Bangkok, Thailand, August 2024a. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.50. URL https:
//aclanthology.org/2024.acl-long.50.

Jing Yu Koh, Stephen McAleer, Daniel Fried, and Ruslan Salakhutdinov. Tree search for language
model agents, 2024b. URL https://arxiv.org/abs/2407.01476.

Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yuxuan Chen, Pengbo Shen, Hao Yu, Hanchen
Zhang, Xiaohan Zhang, Yuxiao Dong, et al. Autowebglm: A large language model-based web
navigating agent. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 5295–5306, 2024.

Michael L Littman. A tutorial on partially observable markov decision processes. Journal of Math-
ematical Psychology, 53(3):119–125, 2009.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
learning on web interfaces using workflow-guided exploration. arXiv preprint arXiv:1802.08802,
2018.

Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and Alane Suhr. Autonomous
evaluation and refinement of digital agents. In First Conference on Language Modeling, 2024.

Archiki Prasad, Alexander Koller, Mareike Hartmann, Peter Clark, Ashish Sabharwal, Mohit
Bansal, and Tushar Khot. ADaPT: As-needed decomposition and planning with language mod-
els. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Findings of the Association for
Computational Linguistics: NAACL 2024, pp. 4226–4252, Mexico City, Mexico, June 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-naacl.264. URL
https://aclanthology.org/2024.findings-naacl.264.

11

https://arxiv.org/abs/2403.08978
https://aclanthology.org/2024.acl-long.50
https://aclanthology.org/2024.acl-long.50
https://arxiv.org/abs/2407.01476
https://aclanthology.org/2024.findings-naacl.264

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Pranav Putta, Edmund Mills, Naman Garg, Sumeet Motwani, Chelsea Finn, Divyansh Garg, and
Rafael Rafailov. Agent q: Advanced reasoning and learning for autonomous ai agents. arXiv
preprint arXiv:2408.07199, 2024.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of bits: An
open-domain platform for web-based agents. In International Conference on Machine Learning,
pp. 3135–3144. PMLR, 2017.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Paloma Sodhi, SRK Branavan, Yoav Artzi, and Ryan McDonald. Step: Stacked llm policies for web
actions. In First Conference on Language Modeling, 2024.

Matthijs TJ Spaan. Partially observable markov decision processes. In Reinforcement learning:
State-of-the-art, pp. 387–414. Springer, 2012.

Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, and Chao Zhang. Adaplanner: Adaptive plan-
ning from feedback with language models. Advances in Neural Information Processing Systems,
36, 2024.

Zora Zhiruo Wang, Jiayuan Mao, Daniel Fried, and Graham Neubig. Agent workflow memory,
2024. URL https://arxiv.org/abs/2409.07429.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model based agents:
A survey. arXiv preprint arXiv:2309.07864, 2023.

Ke Yang, Jiateng Liu, John Wu, Chaoqi Yang, Yi R Fung, Sha Li, Zixuan Huang, Xu Cao, Xingyao
Wang, Yiquan Wang, et al. If llm is the wizard, then code is the wand: A survey on how code
empowers large language models to serve as intelligent agents. arXiv preprint arXiv:2401.00812,
2024.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information Pro-
cessing Systems, 35:20744–20757, 2022a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022b.

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khyathi Chandu, Kai-Wei Chang, Yejin Choi, and
Bill Yuchen Lin. Agent lumos: Unified and modular training for open-source language agents. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 12380–12403,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.acl-long.670. URL https://aclanthology.org/2024.acl-long.670.

Yao Zhang, Zijian Ma, Yunpu Ma, Zhen Han, Yu Wu, and Volker Tresp. Webpilot: A versatile and
autonomous multi-agent system for web task execution with strategic exploration, 2024. URL
https://arxiv.org/abs/2408.15978.

Longtao Zheng, Rundong Wang, Xinrun Wang, and Bo An. Synapse: Trajectory-as-exemplar
prompting with memory for computer control. In The Twelfth International Conference on Learn-
ing Representations, 2023.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Lan-
guage agent tree search unifies reasoning acting and planning in language models. arXiv preprint
arXiv:2310.04406, 2023a.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for build-
ing autonomous agents. arXiv preprint arXiv:2307.13854, 2023b.

12

https://arxiv.org/abs/2409.07429
https://aclanthology.org/2024.acl-long.670
https://arxiv.org/abs/2408.15978

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A EVALUATOR RECTIFICATIONS

We only modify the evaluator when it’s deemed erroneous due to the wrong task labels or misuse of
evaluating functions. When the task definition and corresponding evaluation metric match to some
extent but might be misleading to most agents and even to human, we still keep the original ones
to ensure the slightest reasonable changes. We emphasize that we re-implement WebArena’s
base agent SteP’s agent with the same web environment and modified evaluators as AGEN-
TOCCAM for a fair comparison. For example, we keep the evaluators of shopping tasks defined
with template 163, requiring the agent to "Draft an email to the shop owner via
their contact us function for a coupon as {reason}", which doesn’t explic-
itly specify whether to submit the drafted email. However, the evaluator is defined to assess the not
yet submitted email. All capable LLM-based agents we have tested, which have been aligned to be
helpful, will for sure submit the email if not directly prompted to behave in the way the evaluator
desires, leading the email field to be blank and thus failing those tasks. Another example of this
kind is the Reddit task asking the agent to find the most appropriate subreddit to post (task template
6100), where the assessment of appropriation is very subjective. In all those tasks, we follow the
original evaluators, though their evaluation outcomes are arguably questionable.

We categorize our evaluator modification into two classes, namely label errors and improper evalu-
ation function selection, raise representative examples for each class, and list all the changes made.

Label errors: We find there exist evaluator definition errors and some typos in the correct answers.
In the later cases, the tasks always require exact matching, where any well-aligned LLM-agent
would correct those typos in their generation. We thus rectify those errors:

i) Evaluator definitions contain errors. For example, in the Reddit task 584, the eval-
uator would open up the wrong page for the evaluation. Another case in point is
the shopping task 261, where the url match evaluator is constrained to identify-
ing one correct url (<server host>:7770/electronics/headphones.html),
misjudging the same page (of the identical content) with a different url
(<server host>:7770/electronics.html?cat=60). Tasks fall in this category
include: 261-264, 707-709, 584.

ii) The answer contains typos or grammatical errors. For example the is car necessary in
NYC in task 601, or the budge in task 603. More tasks of this kind include: task id 489, 583, 601,
603, 606, 608.

Improper evaluation function selection: Evaluator problems are more obvious in this case with
the following types:

i) Use the exact match function that compares whether the answer given by a human label-er and
the answer returned by the agent is identically the same. Errors occur when the agent returns a full-
form or a more complete answer, where the evaluators’ labels cannot match. For example, in Reddit
task 644 that requires the agent to post a meeting notice with the meeting date, where the keyword
match for such date is exactly the Dec 15th, where the evaluator would judge other answers like
December 15th as incorrect, where we change the keyword matching to one that could match
both Dec 15th and December 15th. (In other cases with a single answer, we simply replace
exact match with fuzzy match, which for instance in task 254 it could match 4125785000
with the agent’s answer The phone number is 4125785000; or replace exact match
with must include, which for instance in task 363 it could match 778m with the agent’s an-
swer 778 m.) It also demands that the answer should strictly include expressions like virtual
meetup, where the agent might add other words in the virtual and meetup. In that sense,
we also split the keyword virtual meetup into two separate keywords, i.e., virtual and
meetup. Tasks of this kind include: task id 146, 178-182, 254, 308-312, 330, 363-367, 415-418,
528-532, 640-649, 653-657, 679.

ii) Use the poorly defined fuzzy match function, that would view the answer returned as un-
qualified for the missing-from-expression answer exploration process, or assess answers with more
detailed answers as partially correct (reward=0). We thus shift our prompt for the fuzzy match
function from: “Help a teacher to grade the answer of a student given a question. Keep in mind that
the student may use different phrasing or wording to answer the question. The goal is to evaluate
whether the answer is semantically equivalent to the reference answer.” to “Help a teacher to grade

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

the answer of a student given a question. Keep in mind that the student has executed the actions to
get the answer. They are allowed to use different phrasing or wording to answer the question. The
goal is to evaluate whether the key points in the reference answer are included in the student’s an-
swer. We allow answers with additional information that doesn’t contradict the reference answer
and review them as fully (not partially) correct.”

iii) Misuse the fuzzy match function by splitting the keyword list for matching into a list, where
each of the keyword and the entire answer, would be evaluated as partially correct (reward=0). In
other words, no answer would be assessed as the correct answer (even the gloden-standard answer
itself) due to such evaluator function misuse. This could be inferred from the function and the
evaluator’s definition. Tasks of this type include: task id 16-20, In such tasks, we simply merge
the list of keywords into a string, concatenated with "; ". For instance, for task 16, the previous
fuzzy match field is ["driving: 2min", "walking: 16min"], and we modify it
to ["driving: 2min; walking: 16min"].

Table 7: Action statistics.

Exp. click hover type scroll go back goto note stop go home branch prune
AgentOccam 4715 - 1159 - 339 - 197 769 42 34 47

AgentOccam + SteP 5235 198 1407 11 25 132 124 1733 - - -
AgentOccam + Judge 4893 - 1297 - 261 - 127 726 94 220 41

Table 8: Average number of steps per task across all WebArena sites.

Exp. All Shopping Shopping Admin GitLab Map Reddit Multisite
AgentOccam 9.0 6.7 9.2 10.8 8.5 8.6 13.3

AgentOccam + SteP 11.6 10.3 12.0 10.6 12.0 14.6 11.0
AgentOccam + Judge 9.4 6.7 10.5 10.6 9.6 8.4 13.5

Table 9: Average observation tokens per step across WebArena sites.

Exp. All Shopping Shopping Admin GitLab Map Reddit Multisite
AgentOccam 2932.1 1634.2 4920.7 3126.8 1056.0 3697.8 1282.9

AgentOccam + SteP 2601.1 1675.2 3833.3 2983.8 1196.4 3071.4 1581.9
AgentOccam + Judge 2646.4 1773.8 4181.2 2848.4 729.7 3285.4 1433.2

B ADDITIONAL EXPERIMENT DETAILS

We include the trial statistics for experiments that combine AGENTOCCAM with other compound
agent policies like SteP’s strategies and our newly proposed Judge agent. Specifically, 7 shows
these well performing agent are equally open to web environment exploration, actively issuing
environment-changing actions like click and type. Not surprisingly, the AGENTOCCAM + SteP
agent frequently issuing un-interactive actions like hover. From Table 8, we can observe that
AGENTOCCAM finish the task with the fewest steps, often yielding a task result with 9 steps. Last,
from Table 9, those three agents’ token consumptions are of comparative orders of magnitude.

As shown in Figure 6, agents that combing AGENTOCCAM with compound agent policies possess
different behavioral success patterns. For AGENTOCCAM + SteP, it benefits in tasks where the agent
could easily be guided with detailed instructions, such as shopping tasks, with more success (green)
blocks and denser success rate in tasks defined with the identical templates. However, it falls short
in tasks that require generalizable skills like shopping admin tasks, and in tasks where task-specific
strategies distract, like reddit tasks. On the contrary, AGENTOCCAM + Judge agent shares similar
patterns with the AGENTOCCAM agent except that some of the success blocks are denser, thanks to
the behavior rectification enabled by the action generation and selection pipeline.

In addition, we add the success rate figures of the ablation studies in Table 10, which has been
visually represented in Figure 5.

We attach the trajectory logs for the experiments of AGENTOCCAM, AGENTOCCAM +SteP, AGEN-
TOCCAM +Judge, and ablation study of simplifying web page elements (Above + Obs Opt.)
in supplementary, since agent behaviors in some tasks were referred to in the main text. We cannot
attach logs of other experiments due to the space limit of supplementary material.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

(a) Shopping. (b) Shopping admin. (c) GitLab. (d) Map. (e) Reddit. (f) Multisite.

Figure 6: Success patterns of AGENTOCCAM (leftmost in each sub figure), AGENTOCCAM + SteP,
and AGENTOCCAM + Judge (rightmost) across different sites on WebArena. The y-axis represents
task ids, with green indicating successful trials and grey indicating unsuccessful trials. Notably,
tasks defined with the same templates are clustered together.

Table 10: Comparison of the success rate (SR) of AGENTOCCAM with baseline agents on We-
bArena.

Agent Model SR (%) Shopping Shopping Admin GitLab Map Reddit Multisite
(#812) (#187) (#182) (#180) (#109) (#106) (#48)

Vanillar GPT-4-Turbo 16.5 16.6 15.9 10.0 22.9 21.7 16.7
↓ Actions GPT-4-Turbo 25.9 23.5 23.6 24.4 34.9 33.0 12.5
Above + X Scrolling GPT-4-Turbo 31.7 26.2 25.3 35.0 33.0 52.8 14.6
Above + Obs Opt. GPT-4 37.1 35.8 37.4 26.7 45.0 57.5 16.7
Above + History GPT-4 38.2 33.7 40.1 31.7 50.5 51.9 14.6
AGENTOCCAM GPT-4-Turbo 43.1 40.6 45.6 37.8 46.8 61.3 14.6

C AGENT PROMPTS

We list all agent prompts.

C.1 AGENTOCCAM

The general prompt template:

• With planning

You are an AI assistant performing tasks on a web browser.
You will be provided with task objective, current step, web page observations, previous plans,
and interaction history.
You need to issue an action for this step.

Generate the response in the following format:
{output_instructions}

You are ONLY allowed to use the following action commands.
Strictly adheres to the given format. Only issue one single action.
If you think you should refine the plan, use the following actions:
{planning_instructions}
Otherwise, use the following actions:
{navigation_instructions}

• Without planning

You are an AI assistant performing tasks on a web browser.
You will be provided with task objective, current step, web page observations,
and other relevant information.
You need to issue an action for this step.

Generate the response in the following format:
{output_instructions}

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

You are ONLY allowed to use the following action commands.
Strictly adheres to the given format. Only issue one single action.
{navigation_instructions}

Output specifications:

• Interaction history summary: Emphasize all important details in the INTERACTION
HISTORY section.

• Observation description: Describe information in the CURRENT OBSERVATION sec-
tion. Emphasize elements and features that are relevant or potentially helpful for fulfilling
the objective in detail.

• Reason: Provide your rationale for proposing the subsequent action commands here.
• Action: Select your action here.
• Observation Highlight: List the numerical ids of elements on the current webpage based

on which you would issue your action. Also include elements on the current webpage you
would attend to if you fail in the future and have to restore to this step. Don’t include
elements from the previous pages. Select elements at a higher hierarchical level if most
their children nodes are considered crucial. Sort by relevance and potential values from
high to low, and separate the ids with commas. E.g., “1321, 52, 756, 838”.

Action space specifications:

• click: n element with its numerical ID on the webpage. E.g., “click [7]” If clicking on a
specific element doesn’t trigger the transition to your desired web state, this is due to the
element’s lack of interactivity or GUI visibility. In such cases, move on to interact with
OTHER similar or relevant elements INSTEAD.

• type: type [id] [content] [press enter after=0|1]: To type content into a field with a specific
ID. By default, the ”Enter” key is pressed after typing unless “press enter after” is set to
0. E.g., “type [15] [Carnegie Mellon University] [1]” If you can’t find what you’re looking
for on your first attempt, consider refining your search keywords by breaking them down
or trying related terms.

• go back: go back: To return to the previously viewed page.
• note: note [content]: To take note of all important info w.r.t. completing the task to enable

reviewing it later. E.g., “note [Spent $10 on 4/1/2024]”
• stop: stop [answer]: To stop interaction and return response. Present your answer within

the brackets. If the task doesn’t require a textual answer or appears insurmountable, indicate
“N/A” and additional reasons and all relevant information you gather as the answer. E.g.,
“stop [5h 47min]”

• branch: branch [parent plan id] [new subplan intent]: To create a new subplan based on
PREVIOUS PLANS. Ensure the new subplan is connected to the appropriate parent plan
by using its ID. E.g., “branch [12] [Navigate to the “Issue” page to check all the issues.]”

• prune: prune [resume plan id] [reason]: To return to a previous plan state when the current
plan is deemed impractical. Enter the ID of the plan state you want to resume. E.g., “prune
[5] [The current page lacks items “black speaker,” prompting a return to the initial page to
restart the item search.]”

• go home: go home: To return to the homepage where you can find other websites.

Observation space example:

RootWebArea [1] ’Dashboard / Magento Admin’
link [178] ’Magento Admin Panel’
menubar [85]

link [87] ’DASHBOARD’
link [90] ’SALES’
link [96] ’CATALOG’
link [102] ’CUSTOMERS’
link [108] ’MARKETING’
link [114] ’CONTENT’
link [120] ’REPORTS’
link [138] ’STORES’
link [144] ’SYSTEM’

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

link [150] ’FIND PARTNERS & EXTENSIONS’
heading ’Dashboard’
link [254] ’admin’
link [256]
textbox [894] [required: False]
main

text ’Scope:’
button [262] ’All Store Views’
link [265] ’What is this?’
button [240] ’Reload Data’
HeaderAsNonLandmark [898] ’Advanced Reporting’
text "Gain new insights and take command of your business’ performance, using our dynamic product, order,...
link [902] ’Go to Advanced Reporting’
text ’Chart is disabled. To enable the chart, click’
link [906] ’here’
text ’Revenue’
text ’Tax’
text ’Shipping’
text ’Quantity’
tablist [57]

tab [59] ’The information in this tab has been changed. This tab contains invalid data...
link [67] ’The information in this tab has been changed. This tab contains invalid data...

text ’The information in this tab has been changed.’
text ’This tab contains invalid data. Please resolve this before saving.’
text ’Loading...’

tab [61] ’The information in this tab has been changed. This tab contains invalid data...
link [69] ’The information in this tab has been changed. This tab contains invalid data...

text ’The information in this tab has been changed.’
text ’This tab contains invalid data. Please resolve this before saving.’
text ’Loading...’

tab [63] ’The information in this tab has been changed. This tab contains invalid data...
link [71] ’The information in this tab has been changed. This tab contains invalid data...

text ’The information in this tab has been changed.’
text ’This tab contains invalid data. Please resolve this before saving.’
text ’Loading...’

tab [65] ’The information in this tab has been changed. This tab contains invalid data...
link [73] ’The information in this tab has been changed. This tab contains invalid data...

text ’The information in this tab has been changed.’
text ’This tab contains invalid data. Please resolve this before saving.’
text ’Loading...’

tabpanel ’The information in this tab has been changed. This tab contains invalid data...
table

row ’| Product | Price | Quantity |’
row ’| --- | --- | --- |’
row ’| Sprite Stasis Ball 65 cm | 27.00 | 6 |’
row ’| Quest Lumaflex Band | 19.00 | 6 |’
row ’| Sprite Yoga Strap 6 foot | 14.00 | 6 |’
row ’| Sprite Stasis Ball 55 cm | 23.00 | 5 |’
row ’| Overnight Duffle | 45.00 | 5 |’

text ’Lifetime Sales’
text ’Average Order’
text ’Last Orders’
table

row ’| Customer | Items | Total |’
row ’| --- | --- | --- |’
row ’| Sarah Miller | 5 | 194.40 |’
row ’| Grace Nguyen | 4 | 190.00 |’
row ’| Matt Baker | 3 | 151.40 |’
row ’| Lily Potter | 4 | 188.20 |’
row ’| Ava Brown | 2 | 83.40 |’

text ’Last Search Terms’
table

row ’| Search Term | Results | Uses |’
row ’| --- | --- | --- |’
row ’| tanks | 23 | 1 |’
row ’| nike | 0 | 3 |’
row ’| Joust Bag | 10 | 4 |’
row ’| hollister | 1 | 19 |’
row ’| Antonia Racer Tank | 23 | 2 |’

text ’Top Search Terms’
table

row ’| Search Term | Results | Uses |’
row ’| --- | --- | --- |’
row ’| hollister | 1 | 19 |’
row ’| Joust Bag | 10 | 4 |’
row ’| Antonia Racer Tank | 23 | 2 |’
row ’| tanks | 23 | 1 |’
row ’| WP10 | 1 | 1 |’

contentinfo
link [244]
text ’Copyright 2024 Magento Commerce Inc. All rights reserved.’
text ’ver. 2.4.6’
link [247] ’Privacy Policy’
link [249] ’Account Activity’
link [251] ’Report an Issue’

C.2 JUDGE USED IN AGENTOCCAM + JUDGE EXPERIMENTS

The general prompt template:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

You are a seasoned web navigator.
You now assess the value and risk of serveral web navigation actions based on the objective,
the previous interaction history and the web’s current state.
Then, you select the action with the most value and least risk
with which you would earn the maximum objective fulfillment reward in the future.

Adhere to the following output format:
{output_instructions}

Note that ‘branch‘ and ‘prune‘ are planning actions that will modify the PREVIOUS PLAN section
and won’t interact with the web environment.

Output specifications:

• Plan progress assessment: Review critically why the plans have not been ful-
filled or the objective achieved. Justify your assessment with detailed evidence
drawn from the objective, observations, and actions taken. Itemize the assessment
using this format: “- plan [{plan id}]\ n\t[{step ids taken for this milestone}]
[{concrete proof from observation}] [{why milestone a not successful}]\
n\t[{step ids taken for this milestone}] [{concrete proof from observation}]
[{why milestone b not successful}]\ n\t...”.

• Action assessment: Assess the value and risk of each action. Consider both the best-
case and worst-case outcomes resulting from its implementation. Itemize the assessment
using this format: “- action [action id]: [action value, including but not limited to what
outcomes you can expect by executing the action, or whether the note is of the most correct
and comprehensive content] [action risk, including but not limited to whether the note/stop
content is correct, and whether you can gather more information by continuing playing
rather than ending the trial] [best case] [worst case]”.

• Action selection: List the numerical id of your selected action here. You can only choose
one action. E.g., “1”.

18

	Introduction
	Related Work
	Problem Formulation
	Method
	Action Space Alignment
	Observation Space Alignment

	Experimental resuts and analysis
	Conclusion
	Evaluator Rectifications
	Additional Experiment Details
	Agent Prompts
	AgentOccam
	Judge Used in AgentOccam + Judge Experiments

