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Abstract

Multi-agent reinforcement learning has demonstrated significant potential in ad-
dressing complex cooperative tasks across various real-world applications. How-
ever, existing MARL approaches often rely on the restrictive assumption that the
number of entities (e.g., agents, obstacles) remains constant between training and
inference. This overlooks scenarios where entities are dynamically removed or
added during the inference trajectory—a common occurrence in real-world en-
vironments like search and rescue missions and dynamic combat situations. In
this paper, we tackle the challenge of intra-trajectory dynamic entity composi-
tion under zero-shot out-of-domain (OOD) generalization, where such dynamic
changes cannot be anticipated beforehand. Our empirical studies reveal that ex-
isting MARL methods suffer significant performance degradation and increased
uncertainty in these scenarios. In response, we propose FLICKERFUSION, a novel
OOD generalization method that acts as a universally applicable augmentation
technique for MARL backbone methods. Our results show that FLICKERFUSION
not only achieves superior inference rewards but also uniquely reduces uncertainty
vis-à-vis the backbone, compared to existing methods. For standardized evaluation,
we introduce MPEV2, an enhanced version of Multi Particle Environments (MPE),
consisting of 12 benchmarks. Benchmarks, implementations, and trained models
are organized and open-sourced at flickerfusion305.github.io, accompa-
nied by ample demo video renderings.

1 Introduction

Multi-agent reinforcement learning (MARL) is gaining significant attention in the research community
as it addresses real-world cooperative problems such as autonomous driving (Antonio & Maria-
Dolores, 2022), power grid control (Biagioni et al., 2022), and AutoML (Wang et al., 2023b).
Nevertheless, MARL research is commonly over-simplified, in that often, restrictive assumptions
are made. Among these assumptions, we focus on one where the number of entities (e.g., agents,
obstacles) available during training and inference is the same (Wang et al., 2021b; Liu et al., 2023;
Zang et al., 2023; Hu et al., 2024). In response, Iqbal et al. (2021) introduced the concept of dynamic
team composition, where the number of agents varies between training and testing. This concept has
been further explored in subsequent works (Hu et al., 2021; Wang et al., 2023a; Shao et al., 2023;
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(a) Intra-trajectory entity addition at
t = 23 of an ally agent

(b) Intra-trajectory entity addition at
t = 44 of an adversary

(c) Train (3M steps) and inference
with equal number of entities.

Figure 1: Motivating visualizations for intra-trajectory domain generalizing dynamic entity compo-
sition in the Tag environment. The models are trained on varying numbers of preys and predators
sampled uniformly between 1 and 4. During inference (test-time), each scenario starts with one prey
and one predator, with an additional 1 to 3 entities added during the trajectory.

Tian et al., 2023). Despite extensive research, two crucial characteristics ((1) and (2)) frequently
encountered in real-world MARL deployments have been overlooked.

(1) Intra-trajectory Entrance. Consider the following examples where entities enter and leave
intra-trajectory. During a post-tsunami search and rescue (SAR) mission, additional obstacles may
enter and leave during the inference trajectory (Drew, 2021), potentially due to secondary hazards like
collapsing infrastructure. Similarly, in national defense, additional adversaries or allies dynamically
enter and leave during the inference trajectory (Asher et al., 2023). Whether they are allies that
require cooperation or adversaries and obstacles that the allies need to adapt to, this requires on-the-fly
adaptation. Exiting entities have been studied in MARL, such as SMAC (Samvelyan et al., 2019)
where units die, but scenarios where entities enter intra-trajectory have not yet been studied.

Despite seemingly small differences, the dynamics of entering entities differ from dying entities.
Consider a simple predator-prey environment, Tag, in which the ally agents must move to avoid being
tagged by adversaries. Unlike the simple case where an entity dies, intra-trajectory introduces novel
scenarios where new entities enter from the outskirts of the observed region. For instance, when an
ally enters, the existing allies and the new ally can enact a dispersion strategy to spread the attention
of adversaries (Fig. 1a). Or, when a new adversary is introduced, the allies must immediately shift
their initially planned trajectory to evade the new adversary (Fig. 1b). The agents’ decentralized
policies must adapt to this sudden shift in the scenario, without additional training intra-trajectory.
Indeed, as shown in Fig. 1c, existing MARL approaches’ performance deteriorates when entities
enter intra-trajectory.

(2) Zero-shot Domain Generalization. Such performance degradation is more pronounced when
the agents are presented with an entity composition they have never been explicitly trained on. For
instance, in Tag, even though agents are trained with scenarios with at most four adversaries, they
may be presented with five or more adversaries during inference. One naïve solution is to explicitly
train on every possible dynamic scenario a priori, and this is the approach taken by prior literature on
dynamic team composition (Iqbal et al., 2021; Hu et al., 2021). The key underlying assumption is
that one knows the number of entities beforehand during training, which is unrealistic. In search and
rescue (SAR) missions (Niroui et al., 2019), one cannot know all possible combinations of obstacles
and targets (humans to rescue) in advance; in national defense, knowing all potential adversaries’
combinations during combat a priori is impossible. Even when some information of the inference
combination is available a priori, the total number of combinations can be very large and impractical
to train on. This motivates us to study these dynamic MARL scenarios under zero-shot out-of-domain
(OOD) generalization (Min et al., 2020), where here, domain refers to the entity composition.

Prior Attempts. These unexpected dynamic scenarios present a non-trivial problem—each agent is
forced to observe an input-space greater than it was trained on. Prior works (Hu et al., 2021; Zhang
et al., 2023; Shao et al., 2023) all took the approach of appropriately expanding the Q or policy

2



network, via additional parameters, using inductive bias. However, empirically, all fail to deliver
reasonable performance in the considered OOD MARL environment, let alone being consistent,
across environments, and within environments (seeds)—even after extensive hyperparameter tuning
(Table 1; Fig. 5 (top-left)). The high uncertainty of existing methods especially renders them unreliable
for safety-critical applications (Knight, 2002) such as autonomous vehicles (Pek et al., 2020; Feng
et al., 2023), where the deployed method must be robust to changes between train and test-time.

Contribution. We propose a novel, orthogonal approach for OOD MARL, FLICKERFUSION,
that augments the agents’ observation space, introducing no additional parameters test-time. A
high-level schematic overview is provided in Fig. 2. Prior works do not take this alternative approach
as an immediate concern because, given no additional parameters, parts of the input space are lost.
The stochasticity of the augmentation effectively preserves the information of the entire observation—
aggregating the stochastic partial observations across time results in an emulated full observation.

Figure 2: Schematic diagram of FLICKERFUSION.
FLICKERFUSION can be universally attached be-
tween any dynamic observation space and any Q
or policy network. It ensures the network does not
have to initialize extra parameters even as observa-
tion size changes at test-time.

Note that the maximum number of entities need
not be known beforehand, as the entity dropout
can adapt to any OOD entity composition at test-
time. The training is done similarly to “prepare”
for the entity dropouts that the agents will expe-
rience at test time (Sec. 3). Remarkably, this sim-
ple lose and recover approach attains state-of-
the-art performance vis-à-vis inference reward
and uncertainty reduction, relative to an exten-
sive list of existing MARL and other model-
agnostic methods (Sec. 5). Finally, as no prior
benchmarks can evaluate such dynamic MARL
scenarios, we also standardize and present 12
benchmarks (Sec. 4).

Analogy with the Flicker Fusion Phenomena.
FLICKERFUSION is named after the infamous
Flicker Fusion phenomena in physiology (Simonson & Brozek, 1952). The Flicker Fusion phenomena
occurs when an agent perceives a flickering light source as a steady, non-flickering illusion as the
frequency of the flicker passes a certain threshold (Landis, 1954; Levinson, 1968). Here, dropping
entities from agents’ observations represents flickers, and through a stochastic input-space drop out at
each time step, we fuse the flickers to emulate a full-view across the temporal dimension. We revisit
this analogy in Sec. 3.3. Video visualizations of FLICKERFUSION are available on our project site.

2 Preliminaries

Notations. N is the set of natural numbers, and N0 := {0} ∪ N. For a positive integer n ∈ N,
denote [n] := {1, 2, · · · , n}. For two vectors a and b (possibly of different dimensions), a⊕ b is the
concatenated vector [a b]. For a set A, |A| is its cardinality, 2A is its power set, ∆(A) is the set of
all possible probability distributions over A, whose support is potentially a strict subset of A, and
A∗ is the set of all possible A-valued sequences of arbitrary lengths. Also, for an integer n ≤ |A|,(
A
n

)
:= {B ⊂ A : |B| = n}. For a m× n matrix A, denote nrow(A) = n to be the number of row.

Dec-MDP with Dynamic Entities. We follow the de facto MARL framework, Centralized Training
Decentralized Execution (CTDE; Rashid et al. (2018); Foerster et al. (2017)). Our setting can be
described as a Decentralized Markov Decision Process (Dec-MDP; Bernstein et al. (2002); Oliehoek
& Amato (2016)) with dynamic entities (Iqbal et al., 2021; Schroeder de Witt et al., 2019), described
by the tuple ⟨E := Ea∪̇En,Φ, ϕ,S,U , P, P̃ , R, γ⟩.

Entities. E is the (potentially countably infinite) set of all possible entities, that may enter or leave
intra-trajectory, and E is partitioned into the set of (trainable) agents Ea and other non-agent entities
En. For a L ∈ N, we assume each entity takes one of L types (e.g., ally, adversary, obstacle), and
Φ := {e1, e2, · · · , eL} is the set of all possible entity types where eℓ’s are the elementary bases of
RL. For each entity e ∈ E , we denote ϕe ∈ Φ as its type.
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State-Action Spaces. Let S ⊆ Rds be the shared state space of all the entities, and assume
that each entity e ∈ E has a state representation se ∈ S. Following Iqbal et al. (2021), we
assume that se := fe ⊕ ϕe where fe ∈ Rdϕe is the feature vector (e.g., velocity, location).
To deal with potentially entering and leaving of entities, we define the joint state space S as
the space of joint states of all possible entity combinations: S :=

⋃
E⊆E S(E) with S(E) :={

sE ≜ {(e, se) : e ∈ E} : se ∈ S
}

being the space of all possible joint states for a given entity com-
bination E ⊆ E . We assume full observability, i.e., each agent a at their current state sa can observe
oa := {(e, se) : e ∈ E} ∈ S. Similarly, the joint action space U is defined as U :=

⋃
Ea⊆Ea

U(Ea)

with U(Ea) :=
{
uEa ≜ {(a, ua) : a ∈ Ea} : ua ∈ U

}
for some shared action space U .

Transition Dynamics. The dynamics consist of two parts: transitions in the entity composition
and S. Consider the current entity composition Et and state-action pair (st,ut) ∈ S(Et)×U(Et).
The joint state transitions to st+1 ∼ P (·|st,ut, Et) ∈ ∆(S(Et)); note how P also depends on the
current entity composition Et. The entity composition transitions to Et+1 ∼ P̃ (·|Et) ∈ ∆(2E).

Policy Learning. Under decentralized execution, each agent a has its own policy πa : τa 7→
πa(·|τa) ∈ ∆(S), where τa ∈ (S × U)∗ is the observation-action trajectory available to agent a.
Then, the joint policy π is defined as π : (Ea, (τ

a)a∈Ea) 7→ (πa(·|τa))a∈Ea
, where Ea ⊆ Ea is the

current agent composition. The global reward function is R : S ×U 7→ R, which we assume to be
deterministic. The global state-action Q-value is defined as

Qπ(s,u, E) := E

[ ∞∑
t=0

γtR(st,ut)

∣∣∣∣∣s0 = s,u0 = u, E0 = E

]
, (1)

where γ ∈ (0, 1) denotes the discount factor, and E is taken w.r.t. the randomness of P, P̃ , and π.
Eq. (1) is trained centrally via QMIX (Rashid et al., 2018):

Qtot(τ ,u;θ) := g
(
Q1(τ1, u1;θ1

Q), · · · , QN (τN , uN ;θN
Q );h(s,θh)

)
, (2)

where g(·, ·;h(s,θh)) is a monotonic mixing function, parameterized by a hypernetwork (Ha et al.,
2017) conditioned on the global state s. The parameters θ = {θ1

Q, · · · ,θN
Q ,θh} are centrally trained

with the DQN loss (Mnih et al., 2013). After training, the inference for each agent a is done decentrally
as choosing argmaxu Q

a(τa, u;θa
Q).

3 FlickerFusion: A New Approach to OOD MARL

As mentioned in the Introduction, we take a different direction from existing methods. Therefore,
we first revisit the two most popular MARL backbones and unpack the innate cause of domain-shift
performance degradation under them (Sec. 3.1), then introduce our approach (Sec. 3.2, 3.3).

3.1 Towards Domain Generalization Across Entity Composition

In our context, domain is a set of tuples {(N l
ℓ, N

u
ℓ )}ℓ∈[L] ⊂ NL

0 such that

N l
ℓ ≤ min

t≥0
|{e ∈ Et : ϕ

e = eℓ}| ≤ max
t≥0
|{e ∈ Et : ϕ

e = eℓ}| ≤ Nu
ℓ a.s., ∀ℓ ∈ [L]. (3)

In other words, the number of type eℓ entities is between a lower bound, N l
ℓ , and an upper bound,

Nu
ℓ . Given training occurs in-domain, DI , then, it is out-of-domain (OOD), DO, if there exists at

least one ℓ ∈ [L] such that N l
ℓ of DO is strictly greater than Nu

ℓ of DI (see “Out-of-Domain” in
Fig. 3a). Thus, in DO, the learner faces entity-type combinations that she has never seen before. We
illustrate why a naïve application of usual MARL backbones (QMIX-MLP and QMIX-Attention) are
sub-optimal for domain generalization. Note that while we focus on off-policy backbones as they are
the most commonly used, all our discussion can be trivially extended to on-policy networks. Let us
denote θDI

Q as the parameters of the in-domain trained QMIX.
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(a) Entity count domain generaliza-
tion (Orange: OOD1; Green: OOD2)

(b) Drop in reward under domain gen-
eralization

(c) Rise in uncertainty under domain
generalization

Figure 3: Example out-of-domain reward and uncertainty performance (color coded)

MLP Backbone. First, consider QMIX-MLP (Rashid et al., 2018), where an MLP parametrizes the
Q-function. When using QMIX-MLP in OOD scenarios, one must expand θDI

Q to θDO

Q := θDI

Q ⊕ θ′
Q

to take OOD observation oa
DO

as input. This is because |oa
DO
| > |oa

DI
| due to the additionally

introduced entities, where oa
DI

is the in-domain observation. But, because no additional training is
allowed during execution, the choice of initialization of θ′

Q is critical.

Due to the structure of MLPs, θ′
Q must be initialized without prior knowledge or inductive bias of

the encountered OOD scenario, resulting in sub-optimal performance. This approach disregards one
salient prior knowledge: the entity type, ϕe. Suppose the newly added entity is the same type as the
one the learner has seen during training. In that case, it is only natural to initialize the expanded
part using corresponding parts of the already trained Q-network. This can be implemented using
QMIX-Attention (Iqbal et al., 2021), with some essential modifications described below.

Attention Backbone. We consider the tokenizer (Vaswani et al., 2017) defined as T (fe, ϕe) :=
MLP (fe ⊕ ϕe), and let X ∈ RN×dT be a matrix whose each row corresponds to the tokenized
embedding of each entity, and dT is the token embedding size. Then, even though we need to
introduce additional parameter θ′

Q to account for observation of higher dimensionality, it can be
initialized by utilizing the tokenizer and the currently observed entity type. However, there is still
another source of sub-optimality from the inherent structure of the attention mechanism and the fact
that the size of the attention matrix changes, namely, nrow(XDO ) > nrow(XDI ) in

Attention(Q,K,V) := softmax
(
QK⊤
√
dk

)
V, (4)

Q := XaW
Q,K := XWK ,V := XWV , X :=

⊕
E

Tokeni,Xa :=
⊕
Ea

Tokeni, (5)

where
⊕

denotes concatenating the vectors row-wise and WQ,WK ,W V ∈ RdT×dk are trainable
weights. Thus, even with the entity type ϕe prior, the change in X’s size leads to sub-optimality in
Eq. (4) and (5) as the model has never been trained on entity compositions larger than nrow(XDI ).

Empirical Example. For a concrete example, we visualize OOD performance degregation on one
of the benchmarks we describe later in Sec. 4. As seen in Fig. 3b and 3c, both inference reward
and uncertainty sharply deteriorate under OOD generalization. Although this example study uses
a representative backbone MARL method, QMIX-Attention, this pattern of deterioration persists
across different environments and methods.

3.2 Flickering via Entity Dropout

Hereforth, while past works remedy OOD generalization via injecting inductive biases within θ′
Q,

our orthogonal approach ensures that nrow(XDO ) = nrow(XDI ), no longer requiring θ′
Q. In turn,

the key design question becomes how many and which entities to drop.
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How Many to Drop? We consider the approach of artificially limiting the visibility as follows:

X̃DO ← XDO [I, :], I ∈
([

nrow(XDO )
]

nrow(XDI )

)
, (6)

where XDO [I, :] is the submatrix of XDO consisting of the rows of indices in index set I. This
ensure that nrow(X̃DO ) = nrow(XDI ). This approach has a trade-off: one needs not to introduce
new parameters θ′

Q as the observation size is retained, but one loses information regarding the entities
indexed by I ′ :=

[
nrow(XDO )

]
\ I. We refer to this solution (Eq. (6)) as domain-aware entity

dropout (DAED). It is domain-aware as it artificially augments the observation such that it is of
the same size as in-domain. Under the attention backbone, this corresponds to masking the tokens
indexed by I ′, which has been effectively used in prior MARL literature (Iqbal et al., 2021; Shao
et al., 2023). Under an MLP backbone, the non-EDed se’s are concatenated.

The choice of I dictates which and how much information is lost, making it a critical design choice.
Let N train := [N train

1 , · · · , N train
L ] where N train

ℓ is the upper bound on the number of type eℓ
entities encountered during training (Eq. (3)). Let N inf := [N inf

1 , · · · , N inf
L ] be the vector of

the number of entities per type that is encountered during inference. We desire |I ′| to be as small
as possible to minimize the information loss while augmenting the observation size to that of the
in-domain. This is done by dropping max(0, N inf

ℓ −N train
ℓ ) entities for each type eℓ.

Which to Drop? Now that we have determined how many entities of each type to drop, we discuss
which ones to drop. Following Iqbal et al. (2021), we use randomized drop-outs: given ∆, each agent
independently and uniformly samples ∆[ℓ] number of entities of type ℓ to drop. This simple solution
is decentralized across the agents and, “on-average”, results in a “dispersed” view of the entities for
the agents. This is formalized in the following statement, whose proof is deferred to Appendix A:

Proposition 3.1. Let [NA] and [Nℓ] be the set of agents and entities of type ℓ, respectively. Suppose
each agent drops ∆ℓ entities of type ℓ, at uniform and independently. Let d(i) be the (random) number
of agents that have dropped the entity i ∈ [Nℓ]. Then, we have the following in-expectation guarantee:

E

 ∑
i∈[Nℓ]

∣∣∣∣d(i)NA
− ∆ℓ

Nℓ

∣∣∣∣
 ≤√∆ℓ(Nℓ −∆ℓ)

NA
, (7)

which further implies the following high-probability guarantee: for any δ ∈ (0, 1),

P

 ∑
i∈[Nℓ]

∣∣∣∣d(i)NA
− ∆ℓ

Nℓ

∣∣∣∣ ≤ Nℓ

NA

√
1

2
log

Nℓ

δ
+

√
∆ℓ(Nℓ −∆ℓ)

NA

 ≥ 1− δ. (8)

µ̂ := (d(i)/NA)i∈[Nℓ]
is the empirical ratios of the number of agents that have dropped entity i, and

µ := (∆ℓ/Nℓ)i∈[Nℓ]
is the uniform ratio. Thus, even with a random sampling scheme, ∥µ̂− µ∥1 is

small, i.e., the entities are dropped in a way that is minimally overlapping across agents. While this
encourages a dispersed view across the agents, if the entities to be dropped remain fixed throughout
the trajectory, there is still some permanently lost information from the perspective of each agent.

3.3 Fusing the Flickers

We now demonstrate how we can recover some of the lost information, further improv-
ing the trade-off of Eq. (6) to our favor. For each (active) agent a, let Da ⊂ Et be
the set of dropped entities from the perspective of a. If Da remains fixed throughout
the trajectory, then a never sees Da. We alleviate this problem by stochastically changing
Da at each t. In essence, FLICKERFUSION fuses (stochastic sampling at each t) the flick-
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ers (ED). The pseudocodes for train and inference modes are presented in Alg. 1 and 2.

Algorithm 1: FLICKERFUSION (Train)

1 Input: N train, b;
2 for each episode do
3 N̂ train ← Uniform(1,N train);
4 CreateEnvironment(N̂ train);
5 for t = 1, 2, · · · do
6 ∆train

t ← Uniform(0, N̂ train);
7 oa, _← ED(a,∆train

t , Et) for each
agent a ∈ Et,a;

8 Add to central replay buffer;
9 if t% b == 0 then

10 Batch sample from replay buffer;
11 Train θ via QMIX;

Algorithm 2: FLICKERFUSION (Inference)

1 Input: N train;
2 for t = 1, 2, · · · do
3 for a ∈ Et,a (decentrally) do
4 if a is newly introduced then
5 Initialize τa ← {};
6 ∆inf

t ← Observe(t, a)−N train;
7 oa, Nt,a ← ED(a,∆inf

t , Et);
8 τa ← τa ∪ {oa};
9 Choose

ua ← argmaxu Q
a(τa, u;θa

Q ∈ θ);

10 τa ← τa ∪ {{ue}e∈Nt,a};

Train. Alg. 1 shows the pseudocode for FLICKERFUSION in the training phase, taking the in-
domain entity composition N train and learning frequency hyperparameter b as inputs. For each
episode, the environment (entity composition, line 3) and the number of entities to be dropped
(∆train

t , line 6) are both randomized. Here, ED(·, ·, ·) takes the agent a, vector of entities to be
dropped ∆t, and entity list Et, and outputs a randomly dropped out observation oa, satisfying Eq.
(6). This ensures that the network is well-trained over various in-domain combinations (line 3) as
well as various partial observations (line 6), where Uniform(a, b) outputs a random vector whose
i-th coordinate is uniformly sampled between ai and bi. We apply this training procedure to all the
baseline algorithms for our empirical study later.

Inference. Alg. 2 is the pseudocode for FLICKERFUSION in the inference phase, again taking
the in-domain entity composition N train as input. At each time t, the number of entities to be
dropped ∆inf

t is computed from the perspective of agent a, where Observe(t, a) outputs the entity
combination vector observed by agent a (line 6). We implement stochastically changing Da by

Figure 4: From the perspective of the red agent
(A), the dash-lined and lighter background color
entity is dropped out. Due to stochasticity, the en-
tity dropped commonly differs across t.

calling ED at each t such that the random partial
observation (oa), as well as the set of agents
not dropped (Nt,a), are obtained from DAED
(line 7), using which the next action is chosen
greedily (line 9). Importantly, all this is done
decentrally across agents at each time t.

To concretely demonstrate the effect of call-
ing DAED every t (line 7), consider a toy sce-
nario where L = 1, nrow(XDI ) = 4, and
nrow(XDO ) = 5. As illustrated in Fig. 4, each
agent’s view stochastically changes at each t.
The important intuition is that aggregating these
views along the temporal axis gives us a virtually
full view; this is illustrated more clearly on our project site.

4 MPEv2: An Enhanced MARL Benchmark

To ensure that this problem setting does not fall prey to the standardization issue raised by Papoudakis
et al. (2021), we enhance Multi Particle Environments (MPE; Lowe et al. (2017)) to MPEV2,
consisting of 12 open-sourced benchmarks. Although of a different nature, the enhancement is
conceptually similar to the enhancements made to the StarCraft Multi-agent Challenge (SMAC;
Samvelyan et al. (2019)) that led to SMACv2 (Ellis et al., 2023) with stochasticity and SMAC-Exp
(Kim et al., 2023) with multi-stage tasks. While SMAC and MPE are the two most popular MARL
environments (Rutherford et al., 2024), we choose to improve MPE due to its lower computational
requirements (Papoudakis et al., 2021), ensuring accessible research. This is pertinent as OOD dy-
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Table 1: Empirical results, 3M steps (mean final inference reward ±σ)

MPEv2 Environment Spread Repel Tag
Method OOD1 OOD2 OOD1 OOD2 OOD1 OOD2

FLICKERFUSION-Attention -198.4 ±17.0 -230.1 ±18.6 845.6 ±99.1 1070.2 ±215.4 -2.1 ±0.8 -9.4 ±3.8
FLICKERFUSION-MLP -183.7 ±29.4 -209.0 ±25.4 906.1 ±42.3 1189.0 ±48.6 -18.8 ±24.3 -33.7 ±15.9
ACORM (Hu et al., 2024) -244.4 ±24.1 -330.3 ±23.6 153.6 ±773.2 98.1 ±726.6 -247.9 ±174.1 -578.2 ±763.7
ODIS (Zhang et al., 2023) -257.1±38.2 -376.5±84.6 -3532.8±2994.9 -2982.1±2074.4 -1992.0±2331.4 -1723.4±1817.3
CAMA (Shao et al., 2023) -262.2 ±100.6 -464.1 ±244.4 698.2 ±126.2 928.1 ±198.9 -29.6 ±37.8 -31.2 ±28.4
REFIL (Iqbal et al., 2021) -205.0 ±41.0 -289.2 ±29.2 404.6 ±351.2 822.4 ±148.4 -9.3 ±13.0 -15.2 ±9.8
UPDeT (Hu et al., 2021) -222.0 ±80.4 -273.9 ±57.8 -2645.2 ±5006.1 -1929.0 ±3993.5 -129.5 ±50.9 -128.8 ±82.2
Meta DotProd (Kedia et al., 2021) -367.8 ±95.1 -555.9 ±170.4 -12538.6 ±526.5 -9365.7 ±164.2 -7611.4 ±7279.8 -7302.5 ±7436.8
DG-MAML (Wang et al., 2021a) -217.3 ±17.9 -254.0 ±15.3 343.2 ±438.0 623.0 ±420.4 -39.2 ±27.5 -50.8 ±30.8
SMLDG (Li et al., 2020) -258.2 ±38.4 -290.4 ±32.8 -1711.0 ±2093.7 -1211.7 ±1868.4 -210.6 ±120.5 -185.9 ±148.8
MLDG (Li et al., 2018) -413.1 ±47.1 -610.7 ±34.4 -12763.4 ±213.5 -9711.1 ±293.4 -2625.9 ±4899.6 -2333.2 ±4372.1
QMIX-Attention (Iqbal et al., 2021) -190.1 ±8.6 -251.5 ±42.0 719.0 ±141.7 927.4 ±215.1 -14.4 ±9.8 -26.6 ±10.9
QMIX-MLP (Rashid et al., 2018) -209.1 ±27.4 -242.8 ±37.3 380.0 ±195.0 883.7 ±225.6 -41.6 ±16.5 -62.5 ±36.4

MPEv2 Environment Guard Adversary Hunt
Method OOD1 OOD2 OOD1 OOD2 OOD1 OOD2

FLICKERFUSION-Attention -1258.3 ±113.3 -1160.0 ±62.6 60.9 ±24.5 9.9 ±25.9 -297.1 ±20.2 -337.5 ±12.9
FLICKERFUSION-MLP -1127.2 ±66.2 -962.9 ±49.1 56.3 ±20.1 9.3 ±13.2 -278.5 ±17.2 -305.3 ±11.8
ACORM (Hu et al., 2024) -2074.3 ±323.8 -2049.6 ±234.0 56.1 ±18.1 13.1 ±19.2 -367.2 ±59.0 -397.3 ±30.4
ODIS (Zhang et al., 2023) -1449.3 ±80.1 -1442.8 ±278.6 -56.8 ±37.7 -188.7 ±105.2 -667.5 ±99.5 -657.8 ±209.7
CAMA (Shao et al., 2023) -5002.5 ±2008.6 -4656.9 ±2252.9 50.7 ±11.1 26.5 ±14.5 -1063.1 ±397.3 -1131.3 ±565.5
REFIL (Iqbal et al., 2021) -1445.8 ±196.8 -1294.7 ±88.6 14.5 ±16.6 -11.7 ±29.4 -305.0 ±18.6 -347.9 ±14.8
UPDeT (Hu et al., 2021) -2845.5 ±2294.0 -2637.0 ±2393.4 -64.6 ±80.1 -0.6 ±59.6 -340.8 ±82.7 -383.5 ±110.5
Meta DotProd (Kedia et al., 2021) -7507.4 ±550.0 -7620.4 ±504.2 82.3 ±15.5 34.4 ±20.8 -956.0 ±518.1 -1087.9 ±720.7
DG-MAML (Wang et al., 2021a) -1885.3 ±187.3 -1989.1 ±288.6 18.7 ±34.7 6.1 ±40.6 -384.1 ±115.2 -416 ±123.4
SMLDG (Li et al., 2020) -2765.9 ±743.8 -2591.8 ±1013.5 -12.7 ±39.9 -134.8 ±97.8 -601.8 ±283.9 -623.0 ±329
MLDG (Li et al., 2018) -10509.2 ±662.2 -9508.4 ±580.8 -76.2 ±122.3 -162.4 ±201.6 -1164.1 ±511.0 -1386.9 ±724.8
QMIX-Attention (Iqbal et al., 2021) -1252.3 ±75.0 -1202.8 ±137.9 34.7 ±20.1 2.1 ±17.0 -305.3 ±9.7 -347.9 ±15.7
QMIX-MLP (Rashid et al., 2018) -1464.6 ±136.2 -1325.1 ±177.9 17.3 ±34.3 -8.1 ±13.2 -337.8 ±52.7 -357.5 ±14.4

Green: ours ; Yellow: MARL methods ; Red: other model-agnostic methods ; Blue: MARL backbones
Bold represents the best result across column, and underlined represents the second-best

namic entity composition is inherently computationally burdensome, due to dimensionality explosion
vis-à-vis the simulator (benchmark) and model (parameter) size.

MPEV2 consists of six environments, three extensions to the original MPE, and three novel. These
environments were developed a priori to the experiments. All environments support an arbitrary
dynamic entity composition, including intra-trajectory addition and deletion. As visualized in Fig. 3a,
each environment has two benchmarks, OOD1 and OOD2, which assess generalization performance
by increasing the number of parameterized agents and non-agent entities, respectively. Fine-grained
details for each benchmark are presented in Appendix B.

Brief Descriptions. First, we take the three most appropriate (in terms of our dynamic scenarios)
MPE environments, (1) Spread, (2) Adversary, (3) Tag, and add-on arbitrary dynamic entity
scenarios. These are then standardized to six benchmarks, two for each environment. The remaining
three environments are newly created. (4) Guard is a two-entity (agents, targets) environment where
the agents act as bodyguards to the targets. The targets stochastically move point-to-point given a time
interval. The agents’ objective is to emulate guarding multiple moving targets. Furthermore, they are
penalized for colliding with the targets. (5) Repel is a two-entity (agents, adversaries) environment
where agents try to maximize their distance from adversaries without leaving the play region. The play
region is defined for each environment in Appendix B. (6) Hunt is a two-entity (agents, adversaries)
environment where agents hunt down the adversaries. The adversaries (deterministically) move away
from the agents at each time step, therefore requiring agents to cooperate intelligently.

5 Empirical Study

Baselines and Setting. We examine the empirical performance of FLICKERFUSION against 11
relevant baselines. The baselines are divided into 3 categories: (i) MARL backbone methods, (ii)
MARL backbone methods with model-agnostic domain generalization methods, and (iii) recent
relevant MARL methods. (i) The two backbone archiecture we use are QMIX-MLP (Rashid et al.,
2018) and QMIX-Attention (Iqbal et al., 2021). (ii) To ensure that our method is most competitive
vis-à-vis domain generalization, we implement four model-agnostic domain generalization methods
on top of the best performing backbone, QMIX-Attention. These are MLDG (Li et al., 2018), SMLDG
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Figure 5: Additional empirical study visualizations. Top-left is the box-and-whisker plot uncertainty
distributions across methods. The remainder are reward curves of Repel (OOD1), demonstrating that
FLICKERFUSION (red, dark blue) not only performs well at 3M steps, but also converges faster.

(Li et al., 2020), DG-MAML (Wang et al., 2021a), and Meta DotProd (Kedia et al., 2021). More
recent methods are highly domain- and model-specific, leading to logically flawed implementations
if applied to our problem setting. We are the first to enact such rigor in empirically examining
model-agnostic domain generalization methods in the MARL problem setting. (iii) The remaining
five baselines are most relevant to our problem setting. UPDeT (Hu et al., 2021), REFIL (Iqbal et al.,
2021), CAMA (Shao et al., 2023), and ODIS (Zhang et al., 2023) are representative methods that focus
on dynamic team composition. CAMA and ODIS specifically study zero-shot OOD generalization
and show state-of-the-art results. Finally, we include the most recently proposed state-of-the-art
general MARL method, ACORM (Hu et al., 2024).

While related, we do not include Wang et al. (2023a) and Tian et al. (2023). Wang et al. (2023a)’s
implementation is complex, closed-source, and only empirically examined with a PPO (Schulman
et al., 2017) backbone. On-policy RL backbones are notoriously expensive to train for MARL,
resulting in poor scalability (Papoudakis et al., 2021). Similarly, Tian et al. (2023)’s implementation
is complex, closed-source, with only two baselines and no study against their backbone architecture.

We average results over 5 seeds per ⟨benchmark,method⟩ pair. These seeds are randomly picked
and never changed. For fair comparison, the same degree-of-freedom and sample size are used
for hyperparameter tuning on each ⟨benchmark,method⟩—reported in Appendix C. Overlapping
hyperparameters that may significantly influence performance are equalized across methods. Each
seed is trained for 3 million steps, and the 8-sample mean inference reward curve is recorded.
Training steps were determined a priori and never changed. Following Agarwal et al. (2021); Bettini
et al. (2024), we also report the inter-quartile mean (IQM) and the 95% inter-quartile range (IQR)
uncertainty distribution in Appendix D, which do not diverge from main text findings.

Results. Table 1 presents the overall results of final mean rewards. FLICKERFUSION ranks first in
10 out of 12 benchmarks, and it always ranks at least second except for Adversary (OOD2). Using
our FLICKERFUSION method with QMIX-MLP and QMIX-Attention leads to improvements 22
out of 24 times compared to not using it, highlighting the effectiveness of FLICKERFUSION as a
promising plug-in method for OOD MARL. Fig. 5 (top-left) illustrates the box-and-whisker plot of
the uncertainty of each method across all benchmarks. Observe how FLICKERFUSION achieves the
lowest median uncertainty relative to baselines, suggesting that it is the most robust OOD MARL
method across different environments. For instance, Meta DotProd (grey), despite achieving good
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performance in Adversary, displays high uncertainty across the considered environments. This renders
its one-off superior performance in Adversary pragmatically meaningless. Another observation is
that FLICKERFUSION improves agent-wise policy heterogeneity, further detailed in Appendix F.

We also present the full reward curves over the entire horizon for Repel (OOD1) in Fig. 5. Note that
ODIS’s reward curve is unavailable for the first million steps as it includes a pre-training stage (Berg
et al., 2023), and even after that stage, it is still not visible due to its poor performance. The remaining
11 benchmarks’ results are presented in Appendix E.

Compute. Finally, we examine the training compute overhead caused by FLICKERFUSION.
When training 3 million steps, on an RTX 3090 24GB and 15 core machine, QMIX-
MLP→FLICKERFUSION-MLP and QMIX-Attention→FLICKERFUSION-Attention only incurs an
additional 4646.4s → 4838.3s (+4.1%) and 5560.5s → 6066.1s (+9.1%) run-time cost, respec-
tively. Moreover, memory cost is reduced as additional θ′

Q is not needed.

6 Discussion and Takeaways

(1) Novel universal inductive bias injection. We show a new inductive bias encoding method
for OOD MARL. We rigorously investigate the cause of poor performance under OOD. Then, we
systematically identify an orthogonal approach. Our findings highlight that OOD MARL problems are
better solved via input augmentation, rather than encoding priors into new parameters. Our approach
is also universal in that it can easily apply to both MLP and attention backbones.

(2) Potential in non-attention backbones. Unlike other MARL generalization methods that only
work with an attention backbone (Shao et al., 2023; Zhang et al., 2023), FLICKERFUSION works
exceptionally well under MLP and attention architectures. Surprisingly, FLICKERFUSION-MLP often
beats all other existing attention-based methods, even with smaller model (parameter) size (Table 1).
Further, during hyperparameter tuning, all else equal, we find no meaningful relationship between
model size (parameters) and performance. This echoes other domain literature, which shows that
attention may not always be the most optimal design choice (Liu et al., 2021; Zeng et al., 2023).

(3) No reward-uncertainty trade-off. A salient advantage of FLICKERFUSION is its significant
reduction in uncertainty in OOD inference relative to baselines (Fig. 5 (top-left)). Remarkably,
FLICKERFUSION is the only method where the uncertainty decreases relative to backbone. Also,
interestingly, we observe a negative relationship between reward performance and uncertainty. Mean-
ing, better methods vis-à-vis reward (↑) is also on average better in terms of uncertainty (↓). We
provide scatter plots and linear curve fitting analysis in Appendix G.

(4) Online over offline data. While ODIS uses an additional one million offline data set generating
step which results in significant computational overhead, it performs poorly. While it is important to
note that ODIS may be useful when abundant offline data is available a priori, it does not work well
under our problem setting. In short, self-supervised pre-training from offline data for MARL domain
generalization should be used cautiously, especially if offline data is not already available.

(5) Naïve model-agnostic approaches are ill-advised for MARL. Unfortunately, we do not
observe any meaningful improvement in performance when implementing model-agnostic domain
generalizing methods (see the red part in Table 1). On the contrary, the worst performers in terms
of reward and uncertainty come from this pool of methods. However, this is not surprising as these
methods were not created with MARL tasks in mind.
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A Proof of Proposition 3.1

(We follow the proof for sample complexity of learning discrete distribution as in a note by C.
Canonne)

Note that d(i) =
∑

a∈[NA] 1[i ∈ Da], where Da ∈
(
[Nℓ]
∆ℓ

)
is the random entity subset of size

∆ℓ to be dropped by agent a. For each i ∈ [Nℓ], 1[i ∈ Da] ∼ Ber (∆ℓ/Nℓ), and thus, d(i) ∼
Bin(NA,∆ℓ/Nℓ). We then conclude as follows:

E

 ∑
i∈[Nℓ]

∣∣∣∣d(i)NA
− ∆ℓ

Nℓ

∣∣∣∣
 ≤ ∑

i∈[Nℓ]

√√√√E

[(
d(i)

NA
− ∆ℓ

Nℓ

)2
]

(Jensen’s inequality)

=
1

NA

∑
i∈[Nℓ]

√√√√E

[(
d(i)− ∆ℓNA

Nℓ

)2
]

=
1

NA

∑
i∈[Nℓ]

√
NA

∆ℓ

Nℓ

(
1− ∆ℓ

Nℓ

)
(d(i) ∼ Bin(NA,∆ℓ/Nℓ))

=

√
∆ℓ(Nℓ −∆ℓ)

NA
.

Let us now convert the above in-expectation guarantee to a high-probability guarantee via Mc-
Diarmid’s inequality (McDiarmid, 1989). Define si,a = 1[i ∈ Da] ∈ {0, 1} for (i, a) ∈
[Nℓ]× [NA], which is independent across a. Consider the function f defined as f({si,a}a∈[NA]) :=∣∣∣ 1
NA

∑
a∈[NA] si,a −

∆ℓ

Nℓ

∣∣∣. This satisfies the bounded difference property with constant 1
NA

. Thus, we
have that for any ε > 0,

P

 ∑
i∈[Nℓ]

f({si,a}a∈[NA])− E[f({si,a}a∈[NA])] ≥ ε


≤ P

(
∃i ∈ [Nℓ] : f({si,a}a∈[NA])− E[f({si,a}a∈[NA])] ≥

ε

Nℓ

)
≤
∑

i∈[Nℓ]

P

(
f({si,a}a∈[NA])− E[f({si,a}a∈[NA])] ≥

ε

Nℓ

)
(union bound)

≤ Nℓ exp

(
−2(ε/Nℓ)

2

(1/NA)2

)
(McDiarmid’s inequality)

= Nℓ exp

(
−2ε2

(
NA

Nℓ

)2
)
.

All in all, we have that

1−Nℓ exp

(
−2ε2

(
NA

Nℓ

)2
)
≤ P

 ∑
i∈[Nℓ]

∣∣∣∣d(i)NA
− ∆ℓ

Nℓ

∣∣∣∣ ≤ ε+ E

 ∑
i∈[Nℓ]

∣∣∣∣d(i)NA
− ∆ℓ

Nℓ

∣∣∣∣


≤ P

 ∑
i∈[Nℓ]

∣∣∣∣d(i)NA
− ∆ℓ

Nℓ

∣∣∣∣ ≤ ε+

√
∆ℓ(Nℓ −∆ℓ)

NA

 .

Reparametrizing δ = Nℓ exp

(
−2ε2

(
NA

Nℓ

)2)
gives the desired result.
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B Deferred Details for MPEv2

B.1 Common Features of MPEv2

In MPEv2, entities are placed in a 2-dimensional continuous environment. Distances within this
environment are computed using Euclidean metrics. The distance d(ei, ej) between two entities ei
and ej with radii ri ∈ R and rj ∈ R is computed as:

d(ei, ej) = ∥pi − pj∥2 − ri − rj (A1)

where pi ∈ R2 and pj ∈ R2 are position vectors. The play areas are square and centered at the origin
[0, 0]. The coordinates are constrained within the range x ∈ [−B,B] and y ∈ [−B,B], where B is
the half-width of the play area. Each agent can select from five discrete actions at every timestep.
Agents receive a global reward and observe the global state.

Action Shape u ∈ U ∈ N5

Action Space [no_action, move_left, move_right,
move_down, move_up]

Table 2: Action space for agents in MPEV2

The notation vector(n) denotes a vector of size n. ⊕ denotes vector concatenation. U(·, ·) denotes

uniform sampling. δi,j is the Kronecker delta function, defined as δi,j =
{
1 if i = j

0 if i ̸= j
.

B.2 Tag

This environment features na agents and nadv heuristic adversaries that move towards the closest
agent. The primary objective of this scenario is for the agents to learn to avoid collisions with
adversaries while remaining within the defined boundaries.

Entity Types [agent, adversary]

Observation Space
[(entity_type(2) ⊕ entity_pos(2)
⊕ entity_vel(2))*(na + nadv) ⊕
last_action(5)]

Episode Timesteps
(tmax) 200

Play Area {⟨x, y⟩ : x ∈ [−2, 2], y ∈ [−2, 2];x, y ∈ R}
Table 3: Tag environment properties

Let Ea be the set of agents and Eadv be the set of adversaries. The reward for each t for this
environment is given as:

R(·) :=
∑
a∈Ea

(
1outside(xa, ya) ·max

(
−25,min

(
−5|xa|−2,−5|ya|−2

))
− 2 ·

∑
adv∈Eadv

1collision(a, adv)

)
.

(A2)
Agents receive a penalty of -2 for each collision with an adversary and an additional penalty for
traveling beyond the boundaries, with the total boundary penalty capped at -25.
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ninit
a ninit

adv nintra
a nintra

adv

In-Domain U(1, 3) U(1, 3) 1 1
OOD1 5 5 U(1, 2) 0
OOD2 5 5 0 U(1, 2)

Table 4: Number of entities for each domain

ninit
a and ninit

adv represents the initial quantities for agents and adversaries, respectively. nintra
a and

nintra
adv denotes the number of entities added intra-trajectory. These variables are defined either as

fixed values or as ranges from which the number of entities can be randomly sampled.

Agent Adversary
xinit U(−0.25B, 0.25B) U(−B,−0.6B)

yinit U(−0.25B, 0.25B) U(0.6B,B)

xintra B · [U(−1, 1) ·
(δϵ,0 + δϵ,2) + δϵ,1 − δϵ,3]

B · [U(−1, 1) ·
(δϵ,0 + δϵ,2) + δϵ,1 − δϵ,3]

yintra B · [U(−1, 1) ·
(δϵ,1 + δϵ,3) + δϵ,0 − δϵ,2]

B · [U(−1, 1) ·
(δϵ,1 + δϵ,3) + δϵ,0 − δϵ,2]

Table 5: Entity spawning location

The position of entity at the beginning is given as pe := [xinit, yinit] and the position of entity
introduced during the trajectory is given as pe := [xintra, yintra]. Agents are initially placed within
a smaller square centered around the origin and adversaries are distributed along the corner of the
second quadrant using uniform random sampling. The intra-trajectory spawning location pe for
agents and adversaries is determined by randomly selecting one of the four edges ϵ ∈ {0, 1, 2, 3} of a
square boundary.

B.3 Spread

This environment consists of na agents and ntar target landmarks. The agents are trained to effectively
distribute themselves among targets.

Entity Types [agent, target]

Observation Space
[(entity_type(2) ⊕ entity_pos(2)
⊕ entity_vel(2))*(na + ntar) ⊕
last_action(5)]

Episode Timesteps
(tmax) 100

Play Area {⟨x, y⟩ : x ∈ [−1, 1], y ∈ [−1, 1];x, y ∈ R}
Table 6: Spread Environment Properties

Let Ea be the set of agents and Etar be the set of target landmarks. Agents are rewarded for each t
based on the proximity of each target to its nearest agent such that:

R(·) := −
∑

tar∈Etar

min
a∈Ea

(d(a, tar)) . (A3)
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ninit
a ninit

tar nintra
a nintra

tar

In-Domain U(1, 3) U(1, 3) 1 1
OOD1 5 5 U(1, 2) 0
OOD2 5 5 0 U(1, 2)

Table 7: Number of Entities for Each Domain

ninit
a and ninit

tar represent the initial quantities for agents and targets, respectively. nintra
a and nintra

tar
denote the number of entities added intra-trajectory. These variables are defined either as fixed values
or as ranges from which the number of entities can be randomly sampled.

Agent Target
xinit U(−B,B) U(−B,B)

yinit U(−B,B) U(−B,B)

xintra B · [U(−1, 1) ·
(δϵ,0 + δϵ,2) + δϵ,1 − δϵ,3]

B · [U(−1, 1) ·
(δϵ,0 + δϵ,2) + δϵ,1 − δϵ,3]

yintra B · [U(−1, 1) ·
(δϵ,1 + δϵ,3) + δϵ,0 − δϵ,2]

B · [U(−1, 1) ·
(δϵ,1 + δϵ,3) + δϵ,0 − δϵ,2]

Table 8: Entity spawning location

The position of entity at the beginning is given as pe = [xinit, yinit] and the position of entity
introduced during the trajectory is given as pe = [xintra, yintra]. The intra-trajectory spawning
location pe for agents and landmarks is determined by randomly selecting one of the four edges
ϵ ∈ {0, 1, 2, 3} of a square boundary.

B.4 Guard

This environment has na agents and ntar heuristic targets. The objective is to minimize the distance
between each target and its closest agents. Targets move in random directions every 50 timesteps,
while remaining within the boundaries. At a high level, the agents must learn to organize into groups
to cover and track the moving targets.

Entity Types [agent, target]

Observation Space
[(entity_type(2) ⊕ entity_pos(2)
⊕ entity_vel(2))*(na + ntar) ⊕
last_action(5)]

Episode Timesteps
(tmax) 200

Play Area {⟨x, y⟩ : x ∈ [−2, 2], y ∈ [−2, 2];x, y ∈ R}
Table 9: Guard Environment Properties

Let Ea be the set of agents and Etar be the set of heuristic targets. Then, the reward for each t for this
environment is given as:

R(·) := −
∑

tar∈Etar

i∑
k=1

(
min
a∈Ea

d(a, tar)

)
k

− 5 · 1collision(a, tar) where i =

⌈
na

ntar

⌉
. (A4)

Agents are rewarded based on the distances of each target to its i-closest agents, and are penalized for
collisions with targets.
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ninit
a ninit

tar nintra
a nintra

tar

In-Domain U(1, 3) U(1, 2) 1 1
OOD1 5 4 U(1, 3) 0
OOD2 5 4 0 U(1, 2)

Table 10: Number of Entities for Each Domain

ninit
a and ninit

tar represent the initial quantities for agents and targets, respectively. For in-domain
training and testing, these quantities can vary within a specified range, which is used to randomly
determine the number of agents and targets. nintra

a and nintra
tar denote the number of entities added

intra-trajectory.

Agent Target
xinit U(−B,B) U(−0.5B, 0.5B)

yinit U(−B,B) U(−0.5B, 0.5B)

xintra B · [U(−1, 1) ·
(δϵ,0 + δϵ,2) + δϵ,1 − δϵ,3]

B · [U(−1, 1) ·
(δϵ,0 + δϵ,2) + δϵ,1 − δϵ,3]

yintra B · [U(−1, 1) ·
(δϵ,1 + δϵ,3) + δϵ,0 − δϵ,2]

B · [U(−1, 1) ·
(δϵ,1 + δϵ,3) + δϵ,0 − δϵ,2]

Table 11: Entity spawning location

The position of entity at the beginning is given as pe = [xinit, yinit] and the position of entity
introduced during the trajectory is given as pe = [xintra, yintra]. Agents and targets are initially
distributed across the play area using uniform random sampling. The intra-trajectory spawning
location pe for agents and targets is determined by randomly selecting one of the four edges
ϵ ∈ {0, 1, 2, 3} of a square boundary.

B.5 Repel

This environment consists of na agents and nadv heuristic adversaries which move towards the closest
agent. Agents are trained to maximize their distance from adversaries while staying within defined
boundaries.

Entity Types [agent, adversary]

Observation Space
[(entity_type(2) ⊕ entity_pos(2)
⊕ entity_vel(2))*(na + nadv) ⊕
last_action(5)]

Episode Timesteps
(tmax) 150

Play Area {⟨x, y⟩ : x ∈ [−2.5, 2.5], y ∈ [−2.5, 2.5];x, y ∈ R}
Table 12: Repel Environment Properties

Let Ea be the set of agents and Eadv be the set of adversaries. The reward for each t for this
environment is given as:

R(·) :=
∑
a∈Ea

[
1outside(xa, ya) ·max

(
−25,min

(
−5|xa|−2,−5|ya|−2

))]
+

∑
adv∈Eadv

min
a∈Ea

d(a, adv).

(A5)

Thus, agents are rewarded based on how far the nearest agent is to each adversary and receive a
penalty for traveling beyond the boundaries, with the total boundary penalty capped at -25.
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ninit
a ninit

adv nintra
a nintra

adv

In-Domain U(1, 3) U(1, 3) 1 1
OOD1 5 5 U(1, 2) 0
OOD2 5 5 0 U(1, 2)

Table 13: Number of Entities for Each Domain

ninit
a and ninit

adv represent the initial quantities for agents and adversaries, respectively. For in-domain
training and testing, these quantities can vary within a specified range, which is used to randomly
determine the number of agents and adversaries. nintra

a and nintra
adv denote the number of entities

added intra-trajectory.

Agent Adversary
xinit U(−B,B) U(−0.2, 0.2)
yinit U(−B,B) U(−0.2, 0.2)
xintra B · [U(−1, 1) ·

(δϵ,0 + δϵ,2) + δϵ,1 − δϵ,3]
B · [U(−1, 1) ·

(δϵ,0 + δϵ,2) + δϵ,1 − δϵ,3]

yintra B · [U(−1, 1) ·
(δϵ,1 + δϵ,3) + δϵ,0 − δϵ,2]

B · [U(−1, 1) ·
(δϵ,1 + δϵ,3) + δϵ,0 − δϵ,2]

Table 14: Entity spawning location

The position of entity at the beginning is given as pe = [xinit, yinit] and the position of entity
introduced during the trajectory is given as pe = [xintra, yintra]. Adversaries are initially placed
within a smaller square centered around the origin and agents are distributed across the play area
using uniform random sampling. The intra-trajectory spawning location pe for agents and adver-
saries is determined by randomly selecting one of the four edges ϵ ∈ {0, 1, 2, 3} of a square boundary.

B.6 Adversary

This environment features na agents, nadv heuristic adversaries, ntar target landmarks, and ndec

decoy landmarks. Adversaries cannot distinguish between target and decoy landmarks, and move
towards the landmark closest to any agent. At a high level, the agents must learn to stay close to the
targets while guiding adversaries away from them.

Entity Types [agent, adversary, target, decoy]

Observation Space
[(entity_type(4) ⊕ entity_pos(2)
⊕ entity_vel(2))*(na + nadv) ⊕
last_action(5)]

Episode Timesteps
(tmax) 150

Play Area {⟨x, y⟩ : x ∈ [−1.3, 1.3], y ∈ [−1.3, 1.3];x, y ∈ R}
Table 15: Adversary Environment Properties

Let Ea be the set of agents, Eadv the set of adversaries, and Etar the set of target landmarks. The
reward for each t for this environment is given as:

R(·) := −
∑

tar∈Etar

min
a∈Ea

d(a, tar) +
∑

tar∈Etar

min
adv∈Eadv

d(adv, tar). (A6)

Hence, agents are rewarded based the proximity of the nearest agent and adversary to each target, or
more specifically, the difference between the sum of minimum distances from adversaries to each
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target and the sum of minimum distances from agents to each target.

ninit
a ninit

adv ninit
tar ninit

dec nintra
a nintra

adv nintra
tar nintra

dec

In-Domain U(1, 3) U(1, 3) U(1, 2) U(1, 2) 1 1 1 1
OOD1 5 5 U(1, 2) U(1, 2) U(1, 2) 0 1 1
OOD2 5 5 U(1, 2) U(1, 2) 0 U(1, 2) 1 1

Table 16: Number of Entities for Each Domain

ninit
a , ninit

adv , ninit
tar , and ninit

dec represent the initial quantities for each entity type. This can be given a
set value or a range of values used to randomly determine the number of agents and adversaries.
nintra
a , nintra

adv , nintra
tar , and nintra

dec denote the number of entities added intra-trajectory.

Agent Adversary Target Decoy
xinit U(−B,B) U(−B,B) U(−B,B) U(−B,B)

yinit U(−B,B) U(−B,B) U(−B,B) U(−B,B)

xintra B · [U(−1, 1) ·
(δϵ,0 + δϵ,2) + δϵ,1 −

δϵ,3]

B · [U(−1, 1) ·
(δϵ,0 + δϵ,2) + δϵ,1 −

δϵ,3]

U(−B,B) U(−B,B)

yintra B · [U(−1, 1) ·
(δϵ,1 + δϵ,3) + δϵ,0 −

δϵ,2]

B · [U(−1, 1) ·
(δϵ,1 + δϵ,3) + δϵ,0 −

δϵ,2]

U(−B,B) U(−B,B)

Table 17: Entity spawning location

The position of entity at the beginning is given as pe = [xinit, yinit] and the position of entity
introduced during the trajectory is given as pe = [xintra, yintra]. All entities are initially distributed
across the play area using uniform random sampling. The intra-trajectory spawning location pe for
agents and adversaries is determined by randomly selecting one of the four edges ϵ ∈ {0, 1, 2, 3} of a
square boundary.

B.7 Hunt

This environment consists of na agents and nadv heuristic adversaries which move away from the
closest agent while staying within defined boundaries. Agents are trained to minimize their distance
from adversaries.

Entity Types [agent, adversary]

Observation Space
[(entity_type(2) ⊕ entity_pos(2)
⊕ entity_vel(2))*(na + nadv) ⊕
last_action(5)]

Episode Timesteps
(tmax) 200

Play Area {⟨x, y⟩ : x ∈ [−2, 2], y ∈ [−2, 2];x, y ∈ R}
Table 18: Hunt Environment Properties

Let Ea be the set of agents and Eadv be the set of adversaries. The reward for each t for this
environment is given as:

R(·) := −

(
1

nadv

∑
adv∈Eadv

min
a∈Ea

d(a, adv) +
1

na

∑
a∈Ea

min
adv∈Eadv

d(a, adv)

)
. (A7)
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Thus, agents are rewarded based on are rewarded based on the average minimum distances to the
nearest adversaries, as well as the average minimum distances from adversaries to the nearest agents.

ninit
a ninit

adv nintra
a nintra

adv

In-Domain U(1, 3) U(1, 3) 1 1
OOD1 5 5 U(1, 2) 0
OOD2 5 5 0 U(1, 2)

Table 19: Number of Entities for Each Domain

ninit
a and ninit

adv represent the initial quantities for agents and adversaries, respectively. For in-domain
training and testing, these quantities can vary within a specified range, which is used to randomly
determine the number of agents and adversaries. nintra

a and nintra
adv denote the number of entities

added intra-trajectory.

Agent Adversary
xinit U(−B,−0.25B) ∪

U(0.25B,B)
U(−0.25B, 0.25B)

yinit U(−B,−0.25B) ∪
U(0.25B,B)

U(−0.25B, 0.25B)

xintra B · [U(−1, 1) ·
(δϵ,0 + δϵ,2) + δϵ,1 − δϵ,3]

B · [U(−1, 1) ·
(δϵ,0 + δϵ,2) + δϵ,1 − δϵ,3]

yintra B · [U(−1, 1) ·
(δϵ,1 + δϵ,3) + δϵ,0 − δϵ,2]

B · [U(−1, 1) ·
(δϵ,1 + δϵ,3) + δϵ,0 − δϵ,2]

Table 20: Entity spawning location

The position of entity at the beginning is given as pe = [xinit, yinit] and the position of entity
introduced during the trajectory is given as pe = [xintra, yintra]. Adversaries are initially placed
within a smaller square centered around the origin and agents are positioned in discrete regions
at the corners of the play area. The intra-trajectory spawning location pe for agents and adver-
saries is determined by randomly selecting one of the four edges ϵ ∈ {0, 1, 2, 3} of a square boundary.
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C Hyperparameters

C.1 Common Hyperparameters

In the tables below are the hyperparameters used for MLP backbone models (Table 21) and attention
backbone models (Table 22).

Parameters Tag Spread Guard Repel Adversary Hunt
Test interval 20000 20000 20000 20000 20000 20000
Test episodes 15 15 15 15 15 15
Epsilon start 1 1 1 1 1 1
Epsilon finish 0.3 0.05 0.05 0.05 0.05 0.05
Epsilon anneal steps 4000000 500000 500000 500000 1000000 500000
Number of parallel envs 32 8 8 8 8 8
Batch size 32 32 32 32 32 32
Buffer size 5000 5000 5000 5000 5000 5000
Max timesteps 3000000 3000000 3000000 3000000 3000000 3000000
Mixing embed dimension 32 32 32 32 32 32
Hypernet embed dimension 128 128 128 128 128 128
Hypernet activation abs abs abs abs abs abs
Learning rate 0.0005 0.0003 0.0003 0.0003 0.0005 0.0003
RNN hidden dim 128 64 64 128 128 128
RNN input dim (ours) 128 32 64 128 32 256
RNN hidden dim (ours) 128 64 256 128 64 256

Table 21: Hyperparameters (MLP backbone)

Parameters Tag Spread Guard Repel Adversary Hunt
Test interval 20000 20000 20000 20000 20000 20000
Test episodes 15 15 15 15 15 15
Epsilon start 1 1 1 1 1 1
Epsilon finish 0.3 0.05 0.05 0.05 0.05 0.05
Epsilon anneal steps 4000000 500000 500000 500000 1000000 500000
Number of parallel envs 32 8 8 8 8 8
Batch size 32 32 32 32 32 32
Buffer size 5000 5000 5000 5000 5000 5000
Max timesteps 3000000 3000000 3000000 3000000 3000000 3000000
Mixing embed dimension 32 32 32 32 32 32
Hypernet embed dimension 128 128 128 128 128 128
Attention embed dimension 128 128 128 128 128 128
Hypernet activation abs softmax softmax softmax softmax softmax
Learning rate 0.0003 0.0003 0.0003 0.0003 0.0005 0.0003
RNN hidden dim 128 64 64 64 128 128
RNN input dim (ours) 128 64 128 128 256 64
RNN hidden dim (ours) 128 64 128 512 256 256

Table 22: Hyperparameters (Attention backbone)
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C.2 Baseline Model-specific Hyperparameters

In this section, the hyperparameters used for CAMA (Table 23) and UPDeT (Table 24) models are
detailed.

Parameters Tag Spread Guard Repel Adversary Hunt
Cross Entropy weight 0.0005 0.005 0.005 0.005 0.005 0.0005
Club weight 0.1 0.1 0.5 0.1 0.1 0.1
Default attention concentration
rate 1 1 1 1 1 1

Default communication message
compression rate 0.5 0.5 0.5 0.5 0.5 0.5

Gradient clipping 10 10 10 10 10 10
Table 23: CAMA Hyperparameters

Parameters Tag Spread Guard Repel Adversary Hunt
Transformer embed dimension 64 64 64 64 128 64
Number of heads 3 4 4 4 4 3
Number of blocks 2 2 2 2 2 2

Table 24: UPDeT Hyperparameters

Parameters Tag Spread Guard Repel Adversary Hunt
Number of heads 1 1 1 1 1 1
Number of blocks 1 1 1 1 1 1
α 5.0 5.0 5.0 5.0 5.0 5.0
β 0.001 0.001 0.001 0.001 0.001 0.001
λ 5.0 5.0 5.0 5.0 5.0 5.0
Steps of skill discovery 1000000 1000000 1000050 1000050 1000050 1000000
Training steps of QMIX for ex-
tracting offline data 1000000 1000000 1000000 1000000 1000000 1000000

Skill dimension 3 3 3 3 4 3
Table 25: ODIS Hyperparameters
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D Additional Metrics

See Table 26 and for IQM values. Furthermore, see Fig. 6 for the 95% IQM uncertainty figure.

Table 26: Empirical results, 3M steps (IQM final inference reward)

MPEv2 Environment Spread Repel Tag
Method OOD1 OOD2 OOD1 OOD2 OOD1 OOD2

FLICKERFUSION-ATTENTION -193.0 -224.1 784.2 1141.3 -2.92 -11.70
FLICKERFUSION-MLP -190.8 -223.7 912.0 1204.6 -20.23 -58.55
ACORM -229.5 -323.4 559.3 418.0 -241.22 -260.37
ODIS -246.7 -343.1 -2686.9 -3291.3 -1273.53 -1300.17
CAMA -198.0 -283.5 787.1 1005.5 -14.08 -18.55
REFIL -207.5 -300.3 549.0 877.2 -3.11 -12.09
UPDET -208.5 -266.5 -240.0 -350.3 -135.24 -136.67
Meta DotProd -407.9 -642.8 -12447.5 -9302.7 -6186.50 -5793.31
DG-MAML -211.0 -254.9 593.6 770.8 -39.12 -53.81
SMLDG -248.0 -303.2 -161.0 88.5 -182.94 -130.53
MLDG -417.1 -623.0 -12665.1 -9750.1 -193.37 -162.54
QMIX-ATTENTION -192.6 -267.9 752.6 1008.9 -14.90 -25.32
QMIX-MLP -189.4 -216.9 466.8 1016.5 -39.88 -56.07

MPEv2 Environment Guard Adversary Hunt
Method OOD1 OOD2 OOD1 OOD2 OOD1 OOD2

FLICKERFUSION-ATTENTION -1280.2 -1143.2 63.9 6.9 -297.1 -340.3
FLICKERFUSION-MLP -1127.0 -967.2 53.1 8.8 -277.1 -306.1
ACORM -2109.8 -2076.8 61.1 12.6 -339.6 -388.8
ODIS -1458.3 -1332.0 -56.3 -172.7 -654.6 -625.7
CAMA -4994.2 -4328.6 52.1 22.7 -1002.7 -1168.4
REFIL -1445.5 -1261.0 17.9 -20.9 -306.8 -346.1
UPDET -1820.7 -1559.6 -60.7 -1.3 -321.3 -343.0
Meta DotProd -7462.2 -7705.7 79.9 33.9 -870.4 -977.2
DG-MAML -1550.0 -1561.5 26.4 18.0 -334.0 -357.3
SMLDG -2617.3 -2269.9 -10.5 -130.1 -470.6 -470.9
MLDG -10570.8 -9552.6 -68.1 -131.2 -1208.3 -1470.7
QMIX-ATTENTION -1412.6 -1356.2 39.9 -4.0 -312.5 -355.5
QMIX-MLP -1251.3 -1161.0 33.8 2.3 -304.6 -343.9

Green: ours ; Yellow: MARL methods ; Red: other model-agnostic methods ; Blue: MARL backbones
Bold represents the best result across column, and underlined represents the second-best

Figure 6: Box and whisker plots aggregated across all benchmarks
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E Empirical Study (Extended)

The figures below visualize the empirical study results (Figure 7 to 12) for each environment.

(a) FLICKERFUSION vs. Backbone
(b) FLICKERFUSION vs. Model-Agnostic Domain Gen-
eralization

(c) FLICKERFUSION vs. MARL Methods
(d) FLICKERFUSION vs. MARL Methods (zoomed out
for ODIS)

(e) FLICKERFUSION vs. MARL Methods (zoomed out
for ODIS)

Figure 7: Empirical results on Repel (OOD2)
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(a) FLICKERFUSION vs. Backbone (b) FLICKERFUSION vs. Backbone

(c) FLICKERFUSION vs. Model-Agnostic Domain Gen-
eralization

(d) FLICKERFUSION vs. Model-Agnostic Domain Gen-
eralization

(e) FLICKERFUSION vs. MARL Methods (f) FLICKERFUSION vs. MARL Methods

Figure 8: Empirical results on Spread (left: OOD1, right: OOD2)
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(a) FLICKERFUSION vs. Backbone (b) FLICKERFUSION vs. Backbone

(c) FLICKERFUSION vs. Model-Agnostic Domain Gen-
eralization

(d) FLICKERFUSION vs. Model-Agnostic Domain Gen-
eralization

(e) FLICKERFUSION vs. MARL Methods (f) FLICKERFUSION vs. MARL Methods

Figure 9: Empirical results on Guard (left: OOD1, right: OOD2)
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(a) FLICKERFUSION vs. Backbone (b) FLICKERFUSION vs. Backbone

(c) FLICKERFUSION vs. Model-Agnostic Domain Gen-
eralization

(d) FLICKERFUSION vs. Model-Agnostic Domain Gen-
eralization

(e) FLICKERFUSION vs. MARL Methods (f) FLICKERFUSION vs. MARL Methods

Figure 10: Empirical results on Tag (left: OOD1, right: OOD2)
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(a) FLICKERFUSION vs. Backbone (b) FLICKERFUSION vs. Backbone

(c) FLICKERFUSION vs. Model-Agnostic Domain Gen-
eralization

(d) FLICKERFUSION vs. Model-Agnostic Domain Gen-
eralization

(e) FLICKERFUSION vs. MARL Methods (f) FLICKERFUSION vs. MARL Methods

Figure 11: Empirical results on Adversary (left: OOD1, right: OOD2)
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(a) FLICKERFUSION vs. Backbone (b) FLICKERFUSION vs. Backbone

(c) FLICKERFUSION vs. Model-Agnostic Domain Gen-
eralization

(d) FLICKERFUSION vs. Model-Agnostic Domain Gen-
eralization

(e) FLICKERFUSION vs. MARL Methods (f) FLICKERFUSION vs. MARL Methods

Figure 12: Empirical results on Hunt (left: OOD1, right: OOD2)
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F Agent-wise Policy Heterogeneity

Diversity across rows in Figure 13 highlight agent-wise policy heterogeneity. We visualize the
attention matrix of QMIX-Attention and FLICKERFUSION-Attention during inference. For consistent
visualization, we snapshot the matrices at the middle of the episode (tmax/2). Resolving agent-wise
homogeneity enhances the aggregate strategic expressivity of the cooperative system. This can be
qualitatively validated on our site’s demo rendering videos. We visualize all attention matrices for the
remaining benchmarks in (Figure 14 to 22).

(a) QMIX attention matrix (b) FLICKERFUSION attention matrix

Figure 13: Agent-wise policy heterogeneity significantly improved in Spread (OOD1)

(a) QMIX attention matrix (b) FLICKERFUSION attention matrix

Figure 14: Agent-wise policy heterogeneity improved in Spread (OOD2)

(a) QMIX attention matrix (b) FLICKERFUSION attention matrix

Figure 15: Agent-wise policy heterogeneity improved in Adversary (OOD1)
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(a) QMIX attention matrix (b) FLICKERFUSION attention matrix

Figure 16: Agent-wise policy heterogeneity improved in Adversary (OOD2)

(a) QMIX attention matrix (b) FLICKERFUSION attention matrix

Figure 17: Agent-wise policy heterogeneity improved in Guard (OOD1)

(a) QMIX attention matrix (b) FLICKERFUSION attention matrix

Figure 18: Agent-wise policy heterogeneity improved in Guard (OOD2)

(a) QMIX attention matrix (b) FLICKERFUSION attention matrix

Figure 19: Agent-wise policy heterogeneity improved in Repel (OOD1)
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(a) QMIX attention matrix (b) FLICKERFUSION attention matrix

Figure 20: Agent-wise policy heterogeneity improved in Repel (OOD2)

(a) QMIX attention matrix (b) FLICKERFUSION attention matrix

Figure 21: Agent-wise policy heterogeneity improved in Tag (OOD1)

(a) QMIX attention matrix (b) FLICKERFUSION attention matrix

Figure 22: Agent-wise policy heterogeneity improved in Tag (OOD2)
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G Relationship Between Reward and Uncertainty

See Fig. 23 and 24.

(a) (b)

(c) (d)

(e) (f)

Figure 23: Negative relationship between final reward and seed-wise uncertainty (left: OOD1, right:
OOD2). Blue dots are results for each method. Red curve is fitted.
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(a) (b)

(c) (d)

(e) (f)

Figure 24: Negative relationship between final reward and seed-wise uncertainty (left: OOD1, right:
OOD2). Blue dots are results for each method. Red curve is fitted.

37


	Introduction
	Preliminaries
	FlickerFusion: A New Approach to OOD MARL
	Towards Domain Generalization Across Entity Composition
	Flickering via Entity Dropout
	Fusing the Flickers

	MPEv2: An Enhanced MARL Benchmark
	Empirical Study
	Discussion and Takeaways
	Proof of Proposition 3.1
	Deferred Details for MPEv2
	Common Features of MPEv2
	Tag
	Spread
	Guard
	Repel
	Adversary
	Hunt

	Hyperparameters
	Common Hyperparameters
	Baseline Model-specific Hyperparameters

	Additional Metrics
	Empirical Study (Extended)
	Agent-wise Policy Heterogeneity
	Relationship Between Reward and Uncertainty

