
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BAGEL-WORLD : TOWARDS HIGH-QUALITY
VISUAL QUESTION-VISUAL ANSWERING

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper studies Visual Question–Visual Answering (VQ-VA): generating an
image, rather than text, in response to a user’s visual question—an ability that has
recently emerged in proprietary systems such as NanoBanana and GPT-Image. To
also bring this capability to open-source models, we introduce BAGEL-World, a
data-centric framework built around an agentic pipeline for large-scale, targeted
data construction. Leveraging web-scale deployment, this pipeline crawls a mas-
sive amount of ∼1.8M high-quality, interleaved image–text samples for model
training. For evaluation, we further release IntelligentBench, a human-curated
benchmark that systematically assesses VQ-VA along the aspects of world knowl-
edge, design knowledge and reasoning. Training with BAGEL-World yields
strong empirical gains: it helps LightBAGEL attain 45.0 on IntelligentBench,
substantially surpassing the best prior open-source baselines (i.e., 6.81@Light-
BAGEL, 1.94@UniWorld-V1), and significantly narrowing the gap toward lead-
ing proprietary systems (e.g., 81.67@NanoBanana, 82.64@GPT- Image). By re-
leasing the full suite of model weights, datasets, and pipelines, we hope it will
facilitate future research on VQVA.

1 INTRODUCTION

Driven by rapid advances in large multimodal generative models, frontier systems such as GPT-
Image-1 (OpenAI, 2025) and NanoBanana (Nano Banana AI, 2025) now demonstrate exception-
ally strong image generation and editing capabilities, showing reliable instruction following, high-
fidelity synthesis, and improved consistency. Beyond these strengths, they also begin to exhibit an
emergent ability we term Visual Question-Visual Answering (VQ-VA), i.e., responding to a visual
question with an image. As illustrated in Figure 1, when given a photo of a broken window and
asked to speculate about what might be on the ground, NanoBanana generates an image depict-
ing shards of glass; when shown an illustration of the stock market with a bull and asked “What
is the contrasting trend?”, NanoBanana creates an image of a bear to represent a bearish market.
Producing such visual answers requires conditioning on the input image and instruction and, more
critically, leveraging internalized world knowledge and multi-step reasoning to yield contextually
coherent outputs.

Despite this progress, VQ-VA remains largely restricted to proprietary systems such as GPT-Image-1
and NanoBanana. As evident in Figure 1, current open-source models consistently underperform on
these tasks: they often misinterpret the question or lack the world knowledge needed to synthesize an
appropriate visual answer. We hypothesize that the primary bottleneck is data scarcity—open-source
solutions are predominantly trained on standard image-editing datasets that emphasize predefined
operations (e.g., object addition, removal, replacement, style transfer), while underrepresenting free-
form visual generation that demands knowledge and multi-step reasoning.

In this paper, we present BAGEL-World, a data-driven framework to bridge this gap. At its core
is an agentic data-construction pipeline with five modules: (1) Retriever—identifies semantically
and knowledge-driven image pairs from web-interleaved documents; (2) Instruction Generator—
produces free-form questions that require knowledge and reasoning, conditioned on the first image
and using the second image as the answer; (3) Filter—automatically removes low-quality questions
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Input GPT-Image-1 NanoBanana OmniGen-2 Qwen-Image BAGEL-World

Could you create a 
coordinating mug 
for this T-shirt?

Prompt

What is one 
possible prepared 
dish that could be 
made using the 
items shown in the 
basket?

What is the 
material of the item 
in the picture?

What would this 
pantry look like if 
it were neglected 
for several years 
without cleaning or 
maintenance?

What is the 
finished product 
after processing the 
items in the picture?

Open-sourced models❌Close-sourced models✅

Based on this image, 
speculate what might 
be on the ground 
right now.

What can the items in 
the picture be used to 
make?

What contrasting 
market trend is 
symbolized by the 
opposite of the figure 
shown?

Ours✅

Figure 1: Examples of Visual Question–Visual Answering (VQ-VA), highlighting the substantial
gap between existing closed-source models and open-weight models. The rightmost column further
shows that a model trained with BAGEL-World significantly improves VQ-VA performance.

or pairs; (4) Rewriter—rephrases questions to enhance linguistic diversity; and (5) Reasoner—
generates a natural-language reasoning trace that explains how to approach the question, what
knowledge is required, and the detailed transformation from the source image to the target image.

Deployed at web scale, this pipeline successfully curates 1.8M high-quality, interleaved image–text
training samples across three subdomains: world knowledge (covering scientific, spatial, temporal,
and other real-world domains), design knowledge, and reasoning. Moreover, to systematically assess
models’ VQ-VA capability, we introduce IntelligentBench, a human-curated benchmark sourced
from real-world, web-interleaved documents. Each item is designed to probe specific knowledge
and reasoning demands in VQ-VA. Additionally, we leverage VLMs (e.g., GPT-4o (OpenAI, 2025)
and Gemini-2.5-Flash (Comanici et al., 2025) as automatic judges to facilitate large-scale evaluation
and also compare their evaluation against human judgment.

To evaluate the effectiveness of BAGEL-World, we fine-tune LightBAGEL (Anonymous, 2025) (a
fully open-source model, details in the supplementary files) on the 1.8M curated training samples
and evaluate on the IntelligentBench. The results are exciting: while the prior open-source models
only attain trivial performance (e.g., 6.81@LightBagel, 1.94@UniWorld-V1), our BAGEL-World

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Comparison of major image-to-image datasets. QA indicates whether the dataset instruc-
tions are in question format rather than direct prompts. Knowledge-centric denotes whether the
instructions require world knowledge. Real image is true only when both the input and output
images are real. Concepts refers to the number of distinct words in the instructions. Note: For
SEED-Data-Edit, only a subset (0.073M out of 3.7M) consists of real images.

Dataset
(image-to-image) #Size Freeform QA Knowledge

Centric
Real

Image Concepts

MagicBrush (Zhang et al., 2023) 10K ✗ ✗ ✗ ✓ 2K
InstructPix2Pix (Brooks et al., 2023) 313K ✗ ✗ ✗ ✗ 11.6K
HQ-Edit (Hui et al., 2024) 197K ✗ ✗ ✗ ✗ 3.7K
SEED-Data-Edit (Ge et al., 2024) 3.7M ✗ ✗ ✗ ✗ 29.2K
UltraEdit (Zhao et al., 2024) 4M ✗ ✗ ✗ ✗ 3.7K
AnyEdit (Yu et al., 2025) 2.5M ✗ ✗ ✗ ✗ 6.4K
ImgEdit (Ye et al., 2025) 1.2M ✗ ✗ ✗ ✗ -
MetaQuery (Pan et al., 2025) 2.4M ✓ ✗ ✗ ✓ -

Ours 1.8M ✓ ✓ ✓ ✓ 87.9K

substantially lifts the performance to 45.0, as shown in Table 2. Similar improvements can also
be observed when evaluating on other VQ-VA-related benchmarks like RISEBench (Zhao et al.,
2025) and KRIS-Bench (Wu et al., 2025c), where the full results are illustrated in Table 3 and Ta-
ble 4. Moreover, our results demonstrate a substantial narrowing of the gap with leading proprietary
systems such as Gemini (Google, 2024; Comanici et al., 2025) and GPT-4o (OpenAI, 2025).

To summarize, our contributions are as follows: (1) BAGEL-World, an agentic framework for curat-
ing free-form image manipulation data; (2) BAGEL-World 1.8M, a large-scale open-source dataset
targeting knowledge- and reasoning-centric manipulations; (3) IntelligentBench, a human-curated
benchmark for evaluating such abilities; and (4) a new model trained on BAGEL-World that sur-
passes all fully open-source models on multiple benchmarks. We will release the weights, datasets,
pipelines, and benchmark to facilitate future research in Visual Question–Visual Answering.

2 RELATED WORK

I2I Models. Existing I2I models can be broadly categorized into three types: (1) single I2I models,
(2) unified understanding-and-generation (U&G) models, and (3) leading proprietary models. For
single I2I models, InstructPix2Pix (Brooks et al., 2023) leverages synthetic data generated by GPT-
3 (Brown et al., 2020) and Stable Diffusion (Rombach et al., 2022) to train a conditional diffusion
model capable of following human-written editing instructions. Emu Edit (Sheynin et al., 2024) is
also diffusion-based, but it is trained on a diverse spectrum of editing tasks, including region-based
I2I, free-form editing, and traditional computer vision tasks. Modern single I2I models such as
Step1X-Edit (Liu et al., 2025), FLUX.1-Kontext (Labs et al., 2025), and Qwen-Image (Wu et al.,
2025a) have substantially improved editing performance through both data scaling and model scal-
ing. In parallel, U&G Chameleon-Team (2024); Zhou et al. (2024); Pan et al. (2025); Deng et al.
(2025); Lin et al. (2025); Chen et al. (2025) models have gained popularity, benefiting from strong
performance and cross-task learning advantages by combining understanding and generation. As for
proprietary models, NanoBanana (Nano Banana AI, 2025) and GPT-Image-1 (OpenAI, 2025) still
exhibit a noticeable advantage over all other models, particularly showing emerging abilities on I2I
tasks that require world knowledge and reasoning. The main motivation of our work is to narrow
this gap in this specific domain for the open-source community.

Public I2I datasets. MagicBrush (Zhang et al., 2023) introduces a manually annotated dataset
containing 10k triplets, covering four types: single-turn, multi-turn, mask-provided, and mask-free
editing. HQ-Edit (Hui et al., 2024) builds a scalable data collection pipeline leveraging GPT-4V
(Achiam et al., 2023) and DALL·E 3 (Betker et al., 2023), resulting in around 200k editing sam-
ples. UltraEdit (Zhao et al., 2024) employs an automatic pipeline that integrates an LLM and SDXL
(Podell et al., 2023), presenting a 4M-scale dataset consisting of real input images and synthetic
edited images. SEED-Data-Edit (Ge et al., 2024) proposes a hybrid dataset constructed from both
human annotation and automatic pipelines, and further introduces specifically designed high-quality
multi-turn image-editing data. OmniEdit-1.2M (Wei et al., 2024) is built using seven different spe-
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cialist models and employs an importance sampling strategy to improve data quality. ImgEdit (Ye
et al., 2025) and AnyEdit2.5 (Yu et al., 2025) expand the coverage of editing types to 13 and 25,
respectively, thereby enhancing the instruction diversity of image-editing datasets. Motivated by the
strong performance of GPT-Image-1 (OpenAI, 2025) in generation tasks, GPT-IMAGE-EDIT-1.5M
(Wang et al., 2025c) relabels previous OmniEdit, HQ-Edit, and UltraEdit datasets using GPT-Image-
1, further improving the quality of open-source image-editing resources. Despite these advances, ex-
isting I2I datasets are primarily designed for standard image editing tasks. In contrast, ours targets
the Visual Question–Visual Answering task, with a stronger emphasis on knowledge and reasoning.

I2I benchmarks. EmuEdit Benchmark (Sheynin et al., 2024) covers 7 fixed editing types and
adopts L1, CLIP-I, and DINO as scoring metrics to evaluate editing ability. MagicBrushEdit Bench-
mark (Zhang et al., 2023) extends this to 9 predefined tasks and provides two modes: mask-free and
mask-provided. ImageEdit (Ye et al., 2025) further expands to 14 tasks, introduces VLM-based scor-
ing, and supports multi-turn editing with varying difficulty levels. OMNI-EDIT-Bench (Wei et al.,
2024) is a high-resolution, multi-aspect-ratio, multi-task benchmark comprising 434 edits derived
from 62 images, evaluated with both VLM scorers and human judgments. GEdit-Bench (Liu et al.,
2025) contains 606 real-world user editing cases, filtered by humans and scored with VLMs. These
benchmarks are designed for standard image editing evaluation, whereas ours targets the VQVA set-
ting. We also highlight two concurrent reasoning- and knowledge-based image editing benchmarks:
RISEBench (Zhao et al., 2025) and KRIS-Bench (Wu et al., 2025c). To our knowledge, some cases
in RISEBench can be regarded as VQVA instances, and certain domains in KRIS-Bench also over-
lap with this setting. Our benchmark, IntelligentBench, differs in two key aspects: (1) RISEBench
and KRIS-Bench are primarily designed for pixel-level alignment editing, whereas IntelligentBench
includes many cases that require semantic-level reasoning beyond pixel alignment, as illustrated in
Fig. 1; and (2) rather than relying on synthetic images, IntelligentBench is curated from real-world
web content, with each case manually verified and paired with a real reference answer image.

3 METHODS

In this section, we elaborate on the details of the BAGEL-World data framework and Intelligent-
Bench.

3.1 BAGEL-WORLD DATA FRAMEWORK

Motivation. The BAGEL-World framework tackles two key challenges: identifying suitable data
for VQVA and designing a scalable pipeline for its construction. We target image pairs whose
transformations (Image1 ⇔ Image2) inherently require knowledge or reasoning—for example, (car
wheel ⇔ car), (mathematical equation ⇔ its graph), or (window of a house ⇔ broken glass on the
ground). Such transformations capture semantic-level connections rather than superficial pixel-level
alterations. By providing an image and formulating transformation-related questions whose answers
require generating their corresponding counterparts, models can be trained to acquire knowledge-
related VQVA ability. The subsequent step is to identify data sources rich in such pairs and to
develop automated pipelines for large-scale collection and refinement. Inspired by the data used in
large language model pretraining, we regard web-interleaved documents as a particularly promis-
ing candidate, since they naturally contain extensive world knowledge alongside closely associated
images and text. And develop a pipeline to generate VQVA data from web interleave documents.

The BAGEL-World framework, as shown in Fig. 2, consists of two stages: preprocessing and an
agentic pipeline for VQVA data construction. In the preprocessing stage, noisy web-interleaved
documents are processed and assigned semantic labels, with only those belonging to the knowledge
and design categories retained. The agentic pipeline then transforms the filtered documents into
high-quality visual question–visual answering samples. Using this framework, we construct the
1.8M BAGEL-World dataset, comprising 24.35% reasoning, 30.37% design knowledge, and 43.69%
world knowledge. The details are as follows:

Preprocessing. To handle web-scale data, our first goal is to efficiently filter candidate interleaved
documents. The core principle of filtering is to identify documents that contain many images with
strong knowledge connections. We observe that correlations among images within a webpage are
often aligned with the document’s topic. Therefore, we employ the document topic as an initial
criterion for filtering. Since the topic is usually not provided in web data, we design a loop to label
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Figure 2: Illustration of the BAGEL-World framework for creating VQVA data. The framework
consists of two stages: (1) preprocessing, which classifies and filters web-interleaved documents,
and (2) an agentic pipeline that generates VQ-VA samples from the filtered documents. The agentic
pipeline contains five sub-modules: retriever, filter, instruction generator, rewriter, and reasoner.

documents efficiently, inspired by the data pipeline proposed in DeepSeek-Math (Shao et al., 2024).
Specifically, we first use an LLM (Qwen2.5-14B (Yang et al., 2025)) to label a subset of the data
and identify samples of the required types. The labeled data are then used to train a lightweight
FastText (Joulin et al., 2016) classifier, which enables large-scale labeling with high efficiency. Fi-
nally, we apply an LLM again to refine the coarse labels produced by FastText. The final outputs of
preprocessing are web-interleaved documents containing knowledge- and design-related content.

Agent Pipeline for VQ-VA data Creation. We aim to build an automatic data engine that ingests
web-interleaved documents and generates high-quality visual question–visual answering data re-
quiring world knowledge, design knowledge, and reasoning. To achieve this, we design an agentic
pipeline that decomposes the process into subtasks, with each agent worker handling a specific com-
ponent. Each worker is powered by state-of-the-art VLMs (GPT-4o (OpenAI, 2025) and Seed1.5VL-
Thinking (Seed, 2025)), and is guided by carefully designed system prompts and chain-of-thought
reasoning, without memory sharing across workers. We define the agent workers below:

(1) Retriever: selects image pairs from interleaved documents that can serve as the basis for free-
form questions. It focuses on pairs with meaningful transformations, especially those involving non-
trivial relations grounded in knowledge and reasoning. We also find it beneficial for the retriever to
capture the document’s topic; hence, its input is the full document rather than merely the image list.
The detail prompt is provided in Appendix Table 7.

(2) Instruction Generator: produces a natural language question about one image in the pair, with
the other image serving as the answer. For example, given a pair consisting of a car wheel and a
racing car equipped with that wheel, if the question image is the car wheel, the generated question
might be: “What is it used for?” The instructions are deliberately designed to probe diverse forms
of knowledge and reasoning, including but not limited to: temporal or causal relations (e.g., the
same subject over time or ordered steps with clear causal dependencies); compositional or spatial
structures (e.g., part–whole relations, inside–outside contrasts, exploded or sectional views); and
scientific or analytical phenomena (e.g., visual explanations of scientific or mathematical concepts).
The detail prompt is provided in Appendix Table 8.
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(3) Filter: removes low-quality triplets ⟨Question Image, Question Text, Answer Image⟩. Through
careful multi-round human-in-the-loop analysis, we identify several common issues leading to low-
quality data, such as poorly formulated questions, ambiguous or irrelevant answer images, and con-
text shortcuts (i.e., cases where the answer image can be inferred without considering the question
image, relying only on textual cues). To effectively address these issues, we design a multi-score
VLM-based filtering strategy with three sub-scorers: Question Score (QS), Answer Score (AS), and
Context Dependence Score (CDS). The detailed prompts are provided in Appendix Table 9, 10 and
11, respectively. Each score is assigned on a three-level scale 0, 1, 2, and only cases with a summed
score of 6 are retained. In addition, we manually design and iteratively refine the scoring template,
and adopt a chain-of-thought approach during scoring, where the model generates an analysis before
assigning scores, thereby further improving filtering effectiveness.

(4) Rewriter: increases instruction diversity by producing multiple variants of the original questions.
The variants differ in tone, sentence structure, vocabulary, expression, and overall linguistic natu-
ralness. This rewriting process is essential for improving instruction-following ability. The detail
prompt is provided in Appendix Table 12.

(5) Reasoner: generates a language-based chain-of-thought reasoning that explains how to
transform the input image into the output image. The process involves analyzing the question,
observing the question image, identifying necessary changes, determining which elements remain
consistent, and highlighting key modifications. This reasoning trace is then incorporated with the
triplet to construct a new data format quadruplet ⟨Question Image, Question Text, Editing reasoning
trace, Answer Image⟩. This interleaved quadruplet is later used to fine-tune a unified model, i.e.,
LightBAGEL, to improve both reasoning-trace generation and instruction-following ability. The
detail prompt is provided in Appendix Table 13.

High-quality subset curation. Following prior works such as (Deng et al., 2025; Wu et al., 2025a),
which typically adopt multi-stage training, we employ a two-stage strategy: continued pretrain-
ing and supervised fine-tuning (SFT). In the first stage, we train on the full large-scale dataset

How does the animal in the picture 
gather its companions?

What activity is this bicycle specifically 
designed for based on its features?

World knowledge

What is another famous painting by the 
author of this artwork?

Can you present this truck as a single-cab?

Design

What does he need the most right now? Based on the person's hands and clothing, 
infer the upper body of the person.

Reasoning

Figure 3: Examples of IntelligentBench.

for additional steps to further strengthen knowl-
edge and instruction-following ability. In the sec-
ond stage, we focus on a smaller high-quality subset
for fewer steps to improve overall quality. Specif-
ically: (1) we apply stricter filtering, retaining the
best one-third of the data, which yields about 500M
high-quality samples; and (2) leveraging the fact
that video models naturally encode temporal knowl-
edge, we use the Seedance video model (Gao et al.,
2025) to construct a smaller set of about 50k tem-
porally related VQ-VA samples. This second stage
is conducted solely on high-quality data, mixed with
LightBAGEL data.

3.2 INTELLIGENTBENCH

Benchmark data. The purpose of IntelligentBench
is to evaluate the visual question–visual answering
abilities of existing I2I models, where the questions
require knowledge and reasoning to answer. The
benchmark is inspired by open-ended visual question answering in the VLM domain, where a model
is asked a question about an image and provides a textual response. Following this concept, we in-
stead pose free-form questions to I2I models, but require the answers in image format. We further
adopt the domain split introduced in our dataset. In total, 360 cases were manually constructed
by human experts, consisting of 171 world knowledge, 88 design knowledge, and 101 reasoning
cases. The construction of IntelligentBench involves three main steps: (1) Document Review. Hu-
man experts examined about 3k classified interleaved web documents and, from each, selected the
image pair that best represented the document’s content and exhibited strong semantic connections.
(2) Question Design. For each selected image pair, experts designed free-form questions targeting
world knowledge, design knowledge, or reasoning. (3) Expert Cross-Review. All candidate cases
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Table 2: Results on IntelligentBench, a benchmark designed for Visual Question–Visual Answering.
Fully open-source models (both training data and model weights) are shown without shading, open-
weight models are shaded in light blue, and closed-source models are shaded in light gray for clarity.

Model World
Knowledge

Design
Knowledge Reasoning Overall

GPT-Image-1 (OpenAI, 2025) 84.5 80.68 81.19 82.64
Nano Banana (Nano Banana AI, 2025) 81.6 82.95 80.69 81.67
BAGELThink (Deng et al., 2025) 61.99 55.11 62.38 60.42
Qwen-Image (Wu et al., 2025a) 38.07 33.66 32.75 34.31
FLUX.1-Kontext-Dev (Labs et al., 2025) 20.18 24.43 19.80 21.11
OmniGen2 (Wu et al., 2025b) 11.11 13.07 7.92 10.69
Step1X-Edit (Liu et al., 2025) 11.7 10.23 15.35 12.36
UniWorld-V1 (Lin et al., 2025) 2.92 0.57 1.49 1.94
LightBAGEL 6.14 7.39 7.43 6.81

Ours 43.57 46.02 46.53 45.00

were cross-checked by multiple experts, with each independently verifying the cases proposed by
others. Only unanimously agreed-upon cases were retained, resulting in 360 high-quality instances
(171 world knowledge, 88 design knowledge, and 101 reasoning).
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Comparison Types
Gemini-Human
GPT-Human
Human-Human

Figure 4: Alignment between VLM and hu-
man scores. We compare Gemini-2.5-Flash
vs. human experts, GPT-4o vs. human ex-
perts, and agreement among human experts.
We report the Accuracy and Spearman Rank
Correlation Coefficient (SRCC) for compre-
hensive comparison.

Evaluation Metric. We use a VLM as the evalua-
tor, following rules: (1) the VLM is provided with
the question image, question text, reference answer
image, the generated image, and a carefully designed
system prompt; (2) the VLM is required to output a
score as an integer in 0, 1, 2. A detailed explanation
of how the VLM is guided to assign each level (0, 1,
2) is provided in the appendix, and the full prompt is
similar to that used in BAGEL (Deng et al., 2025).

Reverification of Evaluation Accuracy. In this sec-
tion, we examine the reliability of the metric. We
employ four human experts and two state-of-the-
art VLMs to assign scores to the outputs produced
by four different models. We report the agreement
among human experts, as well as the agreement be-
tween VLM scorers and human experts, as shown
in Acc of Figure 4. The average agreement among
humans is 82.5%, while the agreement between hu-
mans and GPT-4o (OpenAI, 2025) is 80.6%, and
between humans and Gemini-2.5-Flash (Comanici
et al., 2025) is 73.1%. Additionally, we report the Spearman Rank Correlation Coefficient (SRCC)
to assess ranking alignment, and the results further show that GPT-4o is more consistent with human
preferences. Therefore, we adopt GPT-4o as our automatic scorer.

4 EXPERIMENTS

Implementation details. We adopt LightBAGEL Anonymous (2025) as our baseline model, since
its architecture, training pipeline, and dataset are fully open source. Details of LightBAGEL are
provided in the supplementary materials. Moreover, its training requires significantly less compute
compared with other models. LightBAGEL is a unified model that combines Qwen2.5-VL-7B (Yang
et al., 2025) as the understanding branch and Wan2.2-TI2V-5B (Wan et al., 2025) as the generation
branch. We incorporate BAGELWorld Editing into the overall training data of LightBAGEL with a
sampling ratio of 25%, and fine-tune the model for a total of 30k steps (≈ 3 days on 32 H200 GPUs).
Both branches are trained following the original LightBAGEL settings with the timestep shift set to
4. We adopt a two-stage training scheme: (1) continued train LightBAGEL on a mixed dataset for
25k steps with AdamW and a cosine learning rate schedule (peak 1 × 10−5). The mixed BAGEL-
World dataset includes the original 40M LightBAGEL, 1.8M BAGELworld-edit. (2) supervised
fine-tuning on a filtered high-quality subset (≈ 13 of the data) for 5k steps with a constant learning
rate of 1× 10−5.
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Table 3: Results on RISEBench. Fully open-source models are shown without shading, open-weight
models are shaded in light blue, and closed-source models are shaded in light gray for clarity.

Model Temporal Causal Spatial Logical Overall
Nano Banana (Nano Banana AI, 2025) 25.9 47.8 37.0 18.8 32.8
GPT-4o-Image (OpenAI, 2025) 34.1 32.2 37.0 10.6 28.9
Gemini-2.0-Flash-exp (Google, 2024) 8.2 15.5 23.0 4.7 13.3
Seedream-4.0 (Bytedance Seed, 2025) 12.9 12.2 11.0 7.1 10.8
BAGELThink (Deng et al., 2025) 5.9 17.7 21.0 1.1 11.9
Qwen-Image-Edit (Wu et al., 2025a) 4.7 10.0 17.0 2.4 8.9
FLUX.1-Kontext-Dev (Labs et al., 2025) 2.3 5.5 13.0 1.2 5.8
Step1X-Edit (Liu et al., 2025) 0.0 2.2 2.0 3.5 1.9
OmniGen (Xiao et al., 2025) 1.2 1.0 0.0 1.2 0.8
EMU2 (Sun et al., 2024) 1.2 1.1 0.0 0.0 0.5
HiDream-Edit (Cai et al., 2025) 0.0 0.0 0.0 0.0 0.0
FLUX.1-Canny (Labs et al., 2025) 0.0 0.0 0.0 0.0 0.0
LightBAGEL 1.1 1.1 3.0 1.1 1.6

Ours 14.1 21.1 14.0 1.1 12.7

Table 4: Results on KRIS-Bench. Fully open-source models are shown without shading, open-
weight models are shaded in light blue, and closed-source models are shaded in light gray for clarity.

Model Factual Conceptual Procedural Overall Average
GPT-4o (OpenAI, 2025) 86.99 80.08 78.61 82.18
Gemini-2.0 (Google, 2024) 73.03 61.92 67.76 67.24
Doubao (ByteDance, 2025) 72.02 64.99 62.94 67.00
OmniGen (Xiao et al., 2025) 44.79 34.23 34.37 38.00
Emu2 (Sun et al., 2024) 57.81 43.75 43.57 48.69
BAGEL-Think (Deng et al., 2025) 62.75 62.49 42.76 57.91
Step1X-Edit (Liu et al., 2025) 53.32 52.51 37.21 49.17
AnyEdit (Yu et al., 2025) 52.06 50.96 37.68 48.21
MagicBrush (Zhang et al., 2023) 54.22 47.30 34.60 46.74
InsPix2Pix (Brooks et al., 2023) 33.38 32.47 25.84 31.22
LightBAGEL 57.62 50.24 41.06 50.33

Ours 62.10 60.11 45.02 57.16

Evaluation setting. For a comprehensive evaluation of BAGEL-WORLD, we consider three do-
mains with five benchmarks: (1) Visual Question–Visual Answering, evaluated on IntelligentBench;
(2) reasoning- and knowledge-informed image editing, evaluated on RISEBench (Zhao et al., 2025)
and KRIS-Bench (Wu et al., 2025c), both of which require precise pixel alignment and strong reason-
ing ability; and (3) standard image editing, evaluated on GEdit-Bench (Liu et al., 2025), constructed
from real-world user editing cases, and ImgEdit-Bench (Ye et al., 2025), designed to assess instruc-
tion adherence, editing quality, and detail preservation. Results on IntelligentBench are shown in
Table 2; results on RISEBench and KRIS-Bench are shown in Tables 3 and 4; and summarized re-
sults on traditional image editing tasks (GEdit-Bench and ImgEdit-Bench) are presented in Table 5.
Following (Deng et al., 2025), for all knowledge-intensive benchmarks, the model is configured to
first output reasoning content before generating the image, whereas for traditional image editing
benchmarks, we directly generate the image. For all benchmarks, we adopt a double-CFG strategy
when evaluating both our model and the baseline LIGHTBAGEL, with the image CFG scale set to
2 and the text CFG scale set to 4. The time shift is fixed at 4 for both training and evaluation.

4.1 RESULTS ON VISUAL QUESTION–VISUAL ANSWERING

Based on IntelligentBench, we evaluate our BAGEL-World model along with other state-of-the-
art closed-source and open-source models, as shown in Table 2. We report the normalized score
(ranging from 0-100) for each subdomain as well as the average score. For each evaluated model,
instances where no result image is returned are assigned 0 points. The results show that BAGEL-
World achieves the best performance among fully open-source models, and the large gap between the
baseline model LightBAGEL and BAGEL-World further supports the effectiveness of our dataset.
(2) BAGEL-World even surpasses Qwen-Image, which was pretrained on large-scale proprietary
data and adopted RL for further improvement. (3) Compared with leading proprietary models such
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Table 5: Results on Standard Image Editing Benchmarks (GEdit-Bench-EN and ImgEdit-Bench).
Higher scores are better. Fully open-source models are shown without shading, open-weight models
are shaded in light blue, and closed-source models are shaded in light gray for clarity.

Model GEdit-Bench-EN ImgEdit-Bench
SC PQ Overall Overall

GPT-4o (OpenAI, 2025) 7.85 7.62 7.53 4.20
Gemini-2.0-flash (Google, 2024) 6.73 6.61 6.32 -
Instruct-Pix2Pix (Brooks et al., 2023) 3.58 5.49 3.68 1.88
MagicBrush (Zhang et al., 2023) 4.68 5.66 4.52 1.90
AnyEdit (Yu et al., 2025) 3.18 5.82 3.21 2.45
ICEdit (Zhang et al., 2025) 5.11 6.85 4.84 3.05
Step1X-Edit (Liu et al., 2025) 7.09 6.76 6.70 3.06
OmniGen2 (Wu et al., 2025b) 7.16 6.77 6.41 3.43
BAGEL (Deng et al., 2025) 7.36 6.83 6.52 3.20
Ovis-U1 (Wang et al., 2025a) – – 6.42 3.98
UniPic (Wang et al., 2025b) 6.72 6.18 5.83 3.49
UniPic 2.0 (Wei et al., 2025) – – 7.10 4.06
UniWorld-V1 (Lin et al., 2025) 4.93 7.43 4.85 3.26
LightBagel 6.56 7.06 6.06 3.65

Ours 6.58 7.00 6.13 3.76

as GPT-4o and Gemini, a performance gap remains, although it has been substantially reduced. Full
qualitative results of all models are provided in Appendix Figure 5- 33.

4.2 RESULTS ON REASONING-IMAGE EDITING BENCHMARK

In this domain, we evaluate our model on RISEBench and KRIS-Bench, as shown in Table 3 and
Table 4, respectively. On RISEBench, the results indicate that: (1) our model achieves performance
comparable to BAGELThink while requiring far less training data; (2) compared with the base-
line model, our data substantially improve its performance; and (3) some large data-privacy models
such as Qwen-Image-Edit and FLUX.1-Kontext-Dev underperform our model, highlighting poten-
tial issues of unbalanced data distribution and the necessity of free-form data like BAGEL-World.
Furthermore, our results in Table 4 show a similar trend: BAGEL-World consistently outperforms
existing fully open-source models. These findings further support the effectiveness of BAGEL-
World and the benefits brought by enhanced VQVA capability. Qualitative results on RISEBench
are provided in Appendix 34.

4.3 RESULTS ON STANDARD IMAGE EDITING BENCHMARK

Here we report standard image editing performance on GEdit-Bench-EN and ImgEdit-Bench, as
shown in Table 5. The complete ImgEdit-Bench results for each subdomain (e.g., add/remove)
are provided in the Appendix Table 6. Our model slightly improves upon LightBAGEL on both
benchmarks. It is worth noting that this minor improvement, compared with the large gains in
VQVA and knowledge-based editing tasks, further highlights the significant domain difference.

5 CONCLUSION

In this work, we introduced Visual Question–Visual Answering, where the answer to a visual ques-
tion is itself an image. To bridge the capability gap with proprietary models, we proposed BAGEL-
World, a scalable data-centric framework driven by an agentic pipeline for constructing high-quality,
diverse training data. Through our web-scale pipeline, we curated 1.8 million high-quality samples
and introduced IntelligentBench to rigorously evaluate this new capability. Experiments show that
training LightBAGEL with our data delivers large gains, which markedly surpasses prior baselines
and closes much of the gap to proprietary systems. We hope this work sheds light on future research.
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6 ETHICS STATEMENT

We have read and will adhere to the ICLR 2026 Code of Ethics, including its principles on re-
sponsible stewardship, fairness, avoidance of harm, transparency, and respect for others’ work. We
explicitly acknowledge this Code and reflect on the wider impacts of our work in line with ICLR
2026 guidance.

Data sources and licensing. This paper constructs a large-scale training dataset and benchmark,
BAGEL-World 1.8M, from publicly available, web-interleaved documents; IntelligentBench items
are drawn from real-world web content with real reference answer images. We will release models,
data, and pipelines following the original licenses of the sources, and respect takedown/opt-out
requests where applicable.

Human subjects and privacy. This work does not involve interaction with human participants,
clinical/behavioral intervention, or the collection of non-public personal data. Human involvement
was limited to curation/quality review of publicly available content. We did not annotate or process
biometric identifiers for the purpose of identification, and we took care to avoid re-identification
risks in line with the Code’s privacy guidance.

Safety and misuse mitigation. To reduce risks of harmful or misleading outputs, our data engine
emphasizes knowledge/design cases rather than sensitive personal content and applies multi-stage,
human-in-the-loop, and VLM-assisted filtering to remove low-quality or sensitive items before train-
ing and evaluation. We will accompany any released artifacts with usage guidelines that discourage
malicious use (e.g., harassment, impersonation, or deceptive media).

Evaluation transparency and bias. We evaluate the dataset with both human raters and VLM-
based judges (e.g., Gemini/GPT-4o). While these scorers improve scalability, they may encode
societal biases; accordingly, we report agreement with human experts and will release evaluation
prompts/protocols to support reproducibility and scrutiny.

Legal compliance and research integrity. We respect confidentiality and intellectual property, and
we commit to accurate reporting of methods and results. If concerns are raised, we will follow
ICLR’s remediation processes.

Conflicts of interest. The authors declare no conflicts of interest and no sponsorship that would
unduly influence the research or its presentation.

7 REPRODUCIBILITY STATEMENT

We support full replication by (1) detailing the data construction pipeline (Section 3.1; Fig-
ure 2)—including preprocessing of web-interleaved documents, the multi-score VLM filtering with
QS/AS/CDS, and instruction rewriting and reasoning traces—and reporting dataset composition for
BAGEL-World (1.8M items; proportions across reasoning, design, and world knowledge). (2) spec-
ifying modeling and training in Section 4—baseline sampling ratios, steps, optimizers/schedules,
and compute —with hyperparameters used in the main experiments.
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A APPENDIX

A.1 LLM USAGE

During the preparation of this manuscript, we used OpenAI’s GPT-5 model for minor language re-
finement and smoothing of the writing. The AI tool was not used for generating original content,
conducting data analysis, or formulating core scientific ideas. All conceptual development, experi-
mentation, and interpretation were conducted independently without reliance on AI tools.
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A.2 COMPLETE RESULTS ON INTELLIGENTBENCH OF DIFFERENT MODELS.

A.3 COMPLETE RESULTS ON IMGEDIT

Table 6: Evaluation of image editing ability on ImgEdit-Bench. Higher scores are better for all
metrics.

Model Add Adjust Extract Replace Remove Background Style Hybrid Action Overall
GPT-4o 4.61 4.33 2.90 4.35 3.66 4.57 4.93 3.96 4.89 4.20

MagicBrush (Zhang et al., 2023) 2.84 1.58 1.51 1.97 1.58 1.75 2.38 1.62 1.22 1.90
Instruct-Pix2Pix (Brooks et al., 2023) 2.45 1.83 1.41 2.01 1.44 1.44 3.55 1.20 1.46 1.88
AnyEdit (Yu et al., 2025) 3.18 2.95 1.14 2.49 2.21 2.88 3.82 1.56 2.65 2.45
UltraEdit (Zhao et al., 2024) 3.44 2.81 2.00 2.96 2.45 2.83 3.76 1.91 2.98 2.70
Step1X-Edit (Liu et al., 2025) 3.88 3.41 1.76 3.40 2.83 3.16 6.63 2.52 2.52 3.06
ICEdit (Zhang et al., 2025) 3.58 3.39 1.73 3.15 2.93 3.08 3.84 2.04 3.68 3.05

OmniGen2 (Wu et al., 2025b) 3.74 3.54 1.77 3.21 2.77 3.57 4.81 2.30 4.14 3.43
BAGEL (Deng et al., 2025) 3.56 3.31 1.88 2.62 2.88 3.44 4.49 2.38 4.17 3.20
Ovis-U1 (Wang et al., 2025a) 4.12 3.92 2.36 4.09 3.57 4.22 4.69 3.23 3.61 3.98
UniPic (Wang et al., 2025b) 3.66 3.51 2.06 4.31 2.77 3.77 4.76 2.56 4.04 3.49
UniPic 2.0 (Wei et al., 2025) - - - - - - - - - 4.06
UniWorld-V1 (Lin et al., 2025) 3.82 3.66 2.31 3.45 3.02 2.99 4.71 2.96 2.74 3.26
LightBagel 4.21 3.39 1.58 4.09 3.39 4.37 4.38 3.47 3.99 3.65

Ours 4.24 3.12 1.39 4.23 3.68 4.21 4.47 3.90 4.59 3.76
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Figure 5: Comprehensive visualization of model performance on IntelligentBench (Subset Design,
part 1/8).
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Figure 6: Comprehensive visualization of model performance on IntelligentBench (Subset Design,
part 2/8).
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Figure 7: Comprehensive visualization of model performance on IntelligentBench (Subset Design,
part 3/8).
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Figure 8: Comprehensive visualization of model performance on IntelligentBench (Subset Design,
part 4/8).
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Figure 9: Comprehensive visualization of model performance on IntelligentBench (Subset Design,
part 5/8).
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Figure 10: Comprehensive visualization of model performance on IntelligentBench (Subset Design,
part 6/8).
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Figure 11: Comprehensive visualization of model performance on IntelligentBench (Subset Design,
part 7/8).
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Figure 12: Comprehensive visualization of model performance on IntelligentBench (Subset Design,
part 8/8).
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Figure 13: Comprehensive visualization of model performance on IntelligentBench (Subset Rea-
soning, part 1/8).
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Figure 14: Comprehensive visualization of model performance on IntelligentBench (Subset Rea-
soning, part 2/8).
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Figure 15: Comprehensive visualization of model performance on IntelligentBench (Subset Rea-
soning, part 3/8).
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Figure 16: Comprehensive visualization of model performance on IntelligentBench (Subset Rea-
soning, part 4/8).
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Figure 17: Comprehensive visualization of model performance on IntelligentBench (Subset Rea-
soning, part 5/8).
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Figure 18: Comprehensive visualization of model performance on IntelligentBench (Subset Rea-
soning, part 6/8).
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Figure 19: Comprehensive visualization of model performance on IntelligentBench (Subset Rea-
soning, part 7/8).
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Figure 20: Comprehensive visualization of model performance on IntelligentBench (Subset Rea-
soning, part 8/8).
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Figure 21: Comprehensive visualization of model performance on IntelligentBench (Subset World
knowledge, part 1/13).
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Figure 22: Comprehensive visualization of model performance on IntelligentBench (Subset World
knowledge, part 2/13).
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Figure 23: Comprehensive visualization of model performance on IntelligentBench (Subset World
knowledge, part 3/13).
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Figure 24: Comprehensive visualization of model performance on IntelligentBench (Subset World
knowledge, part 4/13).
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Figure 25: Comprehensive visualization of model performance on IntelligentBench (Subset World
knowledge, part 5/13).
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Figure 26: Comprehensive visualization of model performance on IntelligentBench (Subset World
knowledge, part 6/13).
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Figure 27: Comprehensive visualization of model performance on IntelligentBench (Subset World
knowledge, part 7/13).
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Figure 28: Comprehensive visualization of model performance on IntelligentBench (Subset World
knowledge, part 8/13).
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Figure 29: Comprehensive visualization of model performance on IntelligentBench (Subset World
knowledge, part 9/13).
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Figure 30: Comprehensive visualization of model performance on IntelligentBench (Subset World
knowledge, part 10/13).
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Figure 31: Comprehensive visualization of model performance on IntelligentBench (Subset World
knowledge, part 11/13).
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Figure 32: Comprehensive visualization of model performance on IntelligentBench (Subset World
knowledge, part 12/13).
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Figure 33: Comprehensive visualization of model performance on IntelligentBench (Subset World
knowledge, part 13/13).
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Figure 34: Qualitative comparison on RISE benchmark.

A.4 COMPLETE PROMPTS FOR EACH WORKER
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###[System Role Instruction]
You are an image-collection assistant.

Task
Given a document that contains N figures (Figure 1 . . . Figure N), select exactly
one pair of figures (x ̸= y) that share a strong, clearly explainable connection.
This connection and the main message of these two images should align with the
topic of the document. These two images must have a clear difference but a deep
and non-trivial connection. If no pair meets the requirement, return [0,0].
Return only the indices in the form [x,y] (e.g. [2,7]).
If no pair meets the requirement, return [0,0].

Key requirement: The connection must show a salient semantic change
that is not immediately obvious from low-level appearance alone; some reason-
ing or domain knowledge is needed to recognise or explain the relationship.

What counts as a strong connection (✓)
1. Change / Process – Same subject over time or ordered steps with clear cause
→ effect. Examples: before → after renovation, seed → sprout, chess move
t → t+1.

2. Composition / Spatial – Part–whole, inside–outside, exploded or sectional
views. Examples: wheel ↔ car, sealed box ↔ opened box, floor plan ↔ 3-D
cut-away.

3. Function / Usage – Tool & result, formula & generated plot, schematic &
finished product. Examples: hammer ↔ nailed board, math equation ↔ its curve,
stencil ↔ printed pattern.

4. Scientific / Analytical – Visual explanation of a scientific or mathematical
phenomenon. Examples: reaction sequence with colour change, geometry figure
with auxiliary lines, diffraction pattern illustrating wave optics.

5. Evidence / Validation – Abstract model or theory paired with empirical or
simulated imagery that confirms it. Examples: unit-circle diagram ↔ sine-wave
plot, probability-density formula ↔ sampled histogram.

6. Comparison / Contrast – Two items shown mainly to highlight opposition,
attribute change, or analogy. Examples: rough vs. finished, night vs. day, cat vs.
dog in identical pose.

Exclude (✗)
• Pairs that are near-duplicates or exhibit only camera/geometry changes
(zoom, crop, rotation, mirroring, minor viewpoint shift).
• Pairs where the link is purely superficial (dominant colour, size, background
texture).
• Pairs where the change is too trivial to require reasoning (e.g. same scene one
second apart with no new event).

Reference cases
Case 1 Rough unfinished house → fully renovated house. (1 Change + 6 Contrast)
Case 2 Tic-Tac-Toe move → immediate counter-move. (1 Change)
Case 3 Sealed cardboard box → opened box with items. (2 Composition)
Case 4 Reaction scheme → photo of precipitate formation. (4 Scientific)
Case 5 Unit-circle diagram → plotted sine wave. (5 Evidence)
Case 6 Math equation → diagram visualising that equation. (3 Function)

Output —— Return only the bracketed pair.
Examples: [1,2], [3,9]
Indices start at 1 and must be different.
If no suitable pair exists, output [0,0].
Now provide the image pair.

Table 7: The prompt of Retriever in BAGEL-World agentic pipeline.
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###[System Role Instruction]
You are an AI teacher preparing an exam consisting of image-based questions.

Input

• Figure 1 — the image shown to the student.
• Figure 2 — the image that will serve as the answer.

Task

Write one question about Figure 1 such that only Figure 2 can answer it.
Students will see only the question text and Figure 1; they will not see Figure 2.
Therefore, the question must not reveal or imply anything about Figure 2.

Guidelines

* The question must be precise, clear, and non-trivial.
* It must depend on details in Figure 1.
* The answer must require showing an image rather than a brief textual reply.
* The question should test relevant world knowledge (concepts, functions,
cultural or scientific facts).
* The question must fit exactly one of the following relation types:
1. Change / Process – Same subject over time or ordered steps with clear cause
→ effect.
Examples: before → after renovation, seed → sprout, chess move t → t+1.
2. Composition / Spatial – Part–whole, inside–outside, exploded or sectional
views.
Examples: wheel ↔ car, sealed box ↔ opened box, floor plan ↔ 3-D cut-away.
3. Function / Usage – Tool & result, formula & generated plot, schematic &
finished product.
Examples: hammer ↔ nailed board, math equation ↔ its curve, stencil ↔ printed
pattern.
4. Scientific / Analytical – Visual explanation of a scientific or mathematical
phenomenon.
Examples: reaction sequence with colour change, geometry figure with auxiliary
lines, diffraction pattern illustrating wave optics.
5. Evidence / Validation – Abstract model or theory paired with empirical or
simulated imagery that confirms it.
Examples: unit-circle diagram ↔ sine-wave plot, probability-density formula ↔
sampled histogram.
6. Comparison / Contrast – Two items shown mainly to highlight opposition,
attribute change, or analogy.
Examples: rough vs. finished, night vs. day, cat vs. dog in identical pose.
* Do not reference Figure 2 in the question text.

Output Format

Return exactly one line, with no line breaks:

[Q:<question sentence>, A:<See this image>]

Table 8: The prompt of Instruction Generator in BAGEL-World agentic pipeline.
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###[System Role Instruction]
You are an AI Scoring Assistant. Your job is to extremely strictly evaluate each
Q&A + image pair so that only truly exceptional cases receive the top score (2).
Unless you are absolutely certain the pair is flawless, default to 1.

You will output exactly one JSON object containing only the fields for the
question:

- QS (0, 1, 2)
- QSR (string, ≤ 100 tokens)

1. Question Score (QS)

Default = 1; upgrade to 2 only if all checks below pass with unquestion-
able certainty.

1. Strict Relevance
- The question must refer directly to objects, shapes, or details clearly visible in
the image.
- If it asks about properties or knowledge not visible or relevant, score ≤ 1.

2. Logical & Factual Soundness
- The question must be internally coherent, accurately reflect what is visible in the
image, and rely on reasoning that aligns with real-world knowledge.
- Any logical contradiction, factual error, or reliance on implausible world
knowledge → score ≤ 1.

3. Clarity & Specificity
- Must be perfectly clear, leaving zero room for interpretation.
- If wording could be improved—even slightly—score 1.

4. Non-Trivial, Logical Transformation
- Must request a significant and meaningful image-based action or deduction.
- Trivial or purely factual look-ups → max 1.

5. No Contradictions
- Every reference (colour, shape, position) must match the image exactly.
- Any mismatch → score 0.

6. No Significant Improvement
- If you can think of any other images, significantly different from the answer
image, that could also improve or answer the question, award a score of 1. Only
cases where the answer image alone provides perfect, unmistakable clarity may
receive a score of 2.

QS Scoring
- 0 – Completely off-topic, incoherent, or contradictory.
- 1 – Relevant but fails ≥ 1 checkpoint or any doubt remains.
- 2 – Passes all checkpoints perfectly, with no conceivable improvement.

Summarize in QSR (≤ 100 tokens).

Output Format
{
"QSR": "concise reasoning, <=100 tokens",
"QS": 0 | 1 | 2

}

Table 9: The prompt of Question Score in BAGEL-World agentic pipeline.
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###[System Role Instruction]
You are an AI Scoring Assistant. Your job is to extremely strictly evaluate each
Q&A + image pair so that only truly exceptional cases receive the top score (2).
Unless you are absolutely certain the pair is flawless, default to 1.

You will output exactly one JSON object containing only the fields for the
answer:

- AS (0, 1, 2)
- ASR (string, ≤ 100 tokens)

Answer Score (AS)

Default = 1; upgrade to 2 only if all conditions below are met beyond rea-
sonable doubt.

1. Exact Fulfilment of Request
- The image must precisely satisfy the question, nothing more, nothing less.

2. Completeness
- Every requested element is fully present. Any omission → score 0.

3. Visual Consistency
- Colours, shapes, positions match exactly unless change is explicitly required.
- Partial or approximate matches → score 1.

4. No Visual Errors
- No artefacts, distortions, or illogical geometry.

5. No Significant Improvement
- If you can think of any other images, significantly different from the answer
image, that could also improve or answer the question, award a score of 1. Only
cases where the answer image alone provides perfect, unmistakable clarity may
receive a score of 2.

AS Scoring
- 0 – Completely off-topic, incoherent, or contradictory.
- 1 – Relevant but fails ≥ 1 checkpoint or any doubt remains.
- 2 – Passes all checkpoints perfectly, with no conceivable improvement.

Output Format
{
"ASR": "concise reasoning, <=100 tokens",
"AS": 0 | 1 | 2

}

Table 10: The prompt of Answer Score in BAGEL-World agentic pipeline.
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###[System Role Instruction]
You are an AI Scoring Assistant. Your job is to extremely strictly evaluate each
Q&A + image pair so that only truly exceptional cases receive the top score (2).
Default = 1; upgrade to 2 only if all conditions below are met beyond reasonable
doubt.

You will output exactly one JSON object containing:
- CDSR (string, ≤ 100 tokens)
- CDS (0, 1, 2)

Context Dependence Score (CDS)

This score evaluates whether, when the question image is completely ig-
nored, the answer image by itself could still correctly answer the question.

- Default = 1
- If the answer image requires little or no reference to the question image to
answer correctly, downgrade to 0, because this indicates poor question design.

CDS Scoring
- 0 – The answer image alone suffices; it depends almost nothing on the question
image.
- 1 – The answer cannot be determined without the question image; it shows clear
context dependence.
- 2 – The answer absolutely cannot be determined without the question image,
and this dependence is both strong and completely unquestionable—only assign
2 if the necessity of context is exceptional and indisputable.

Output Format
{
"CDSR": "reasoning, <=100 tokens",
"CDS": 0 | 1 | 2

}

Table 11: The prompt of Context Dependence Score in BAGEL-World agentic pipeline.
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###[System Role Instruction]
You are an AI assistant.

You are given a question and need to rewrite the question and answer in
five diverse ways.
The rewritten versions should be sufficiently diverse, focusing on the following
aspects:
* Tone: Use variations like formal, informal, casual, polite, direct, or even
imperative.
* Sentence structure: Change the order of words, split long sentences, use
shorter or more complex phrasing.
* Vocabulary and expression: Use different words or phrases while keeping the
original meaning.
* Human-like naturalness: Ensure the questions sound like something a real
person would ask in various situations. Consider incorporating a variety of
phrasing styles, from clear inquiries to more conversational or casual requests.

Please balance your rewrites:
* Provide 3 direct questions (clear and formal phrasing).
* Provide 2 more conversational or command-like phrases.

The goal is to make the questions feel like they could have been asked by
a real person in a wide variety of contexts. Ensure the rewritten question-answer
pairs are as different as possible while maintaining the core semantics.

You will receive a question.

Please provide exactly five rewritten question-answer pairs in JSON
format, each pair should strictly follow this structure:
[
{"q": "your question", "a": "your answer"},
{"q": "your question", "a": "your answer"},
{"q": "your question", "a": "your answer"},
{"q": "your question", "a": "your answer"},
{"q": "your question", "a": "your answer"}

]

Now, give me your rewritten cases:

Table 12: The prompt of Rewriter in BAGEL-World agentic pipeline.
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[System Role Instruction]

You have the following information:
1. question image: [Place or reference the question image here]
2. question text: [Place the text of the question here]
3. answer image: [Place or reference the final answer image here]

Your task is NOT to output the final answer or the image.
Instead, you must:
- Generate a detailed “thinking” or chain-of-thought process that explains how
you reason about the question.
- Do NOT include the final answer text in your output.
- Provide only the reasoning/analysis that leads to the final answer and the answer
image (even though you will not reveal the final answer itself).
- The reasoning/analysis should include some description of the answer image to
help the answer-image-generation.

Below is an example of how your output should look.
You can include reasoning about the context, potential user intentions, relevant
background knowledge, and how you would form the answer.
The length of outputs should be around or shorter than 200 tokens.

Example Output:
First, I notice the user wants to see a vehicle displayed while it’s moving. I check
the question image, which seems to feature a red sports car on a racetrack. The
question text, “Can you display the vehicle while it’s moving?”, suggests they
want a visual depiction of a car in motion.
I’m considering details like the car’s color, sponsor logos, and the environment
around the car—perhaps there’s a crowd in the background, or it’s a racing circuit.
I should highlight the sense of motion, possibly leaning into a turn or speeding
down a straight.
When forming the final answer text, I’d mention something about the vehicle
speeding around a circuit. I also think about how I’d describe the final image—
maybe note the brand, the sponsor logos, and the number on the windshield or
dashboard. Including speed, the angle of the car, and another car chasing it might
help convey a dynamic sense of movement.
Lastly, I recall that the user specifically asked to “display the vehicle while it’s
moving,” so I’d ensure the image description references motion, leaning into a
turn, and the impression of high velocity. This approach should fulfill their request.

Table 13: The prompt of Reasoner in BAGEL-World agentic pipeline.
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