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ABSTRACT

In a sequence-to-sequence (seq2seq) framework, the use of an unobserved latent
variable, such as latent alignment and representation, is important to address the
mismatch problem between the source input and target output sequences. Existing
seq2seq literature typically learns the latent space by only consuming the source
input, which might produce a sub-optimal latent variable for predicting the tar-
get. In this paper, we introduce EM-Network that can yield the promising latent
variable by leveraging the target sequence as the model’s additional training in-
put. The target input is used as guidance to provide the target-side context and
reduce the candidates of the latent variable. The proposed framework is trained in
a new self-distillation setup, allowing the original sequence model to benefit from
the latent variable of the EM-Network. Specifically, the EM-Network’s prediction
serves as a soft label for training the inner sequence model, which only takes the
source as input. We conduct comprehensive experiments on two types of seq2seq
models: connectionist temporal classification (CTC) for speech recognition and
attention-based encoder-decoder (AED) for machine translation. Experimental
results demonstrate that the EM-Network significantly advances the current state-
of-the-art approaches. It improves over the best prior work on speech recognition
and establishes state-of-the-art performance on WMT’14 and IWSLT’14 datasets.

1 INTRODUCTION

Throughout the literature on deep learning, sequence-to-sequence (seq2seq) learning has achieved
great success in a wide range of applications, especially in speech and natural language processing.
Given a source-target pair (x,y), a task of the seq2seq learning is to learn a function for mapping
a source sequence x to a target sequence y, which generally suffers from source-target mismatch
problems, e.g., unequal length, different domain, and modality mismatch. To deal with this issue,
learning the latent variable z and how to improve its quality are deemed critically important in
sequence modeling. For example, in automatic speech recognition (ASR), the connectionist tem-
poral classification (CTC) (Graves et al., 2006) model defines the latent alignment z to learn the
mapping between the speech feature x and the word sequence y, as shown in Figure 1. For the
counterpart speech synthesis task, some studies (Kim et al., 2020; 2021) have proposed learning
an internal alignment z between the text x and the corresponding speech y. In natural language
processing (NLP), BERT family models (Devlin et al., 2019; Liu et al., 2019; Lan et al., 2020) em-
ploy masked language modeling (MLM) to learn the contextualized representations z, where the
randomly masked tokens are predicted given the context of other tokens. From the perspective of z,
the self-supervised learning (SSL)-based pre-training enables the model to obtain the robust latent
representation z from the input x, which offers the desired performance for predicting the target y
on the downstream task.

However, it is difficult to learn the optimal latent variable for the learning task. For example, in
the case of ASR, CTC models often converge to sub-optimal alignment distributions and produce
over-confident predictions (Liu et al., 2018; Yu et al., 2021; Miao et al., 2015). Since there is an
exponential number of possible alignment paths, and the alignment information between source and
target sequences is rarely available during training, settling on the optimal alignment is quite chal-
lenging. From the feature perspective, powerful representation is important to achieve the desired
performance. For the recent NLP studies, including machine translation (MT), a large pre-trained
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Figure 1: (Left) Conventional sequence model converts the source x into the target y through the
latent variable z. (Middel) EM-Network can estimate the promising latent variable z by using the
additional training input y. For the AED model, the masked version of the target ỹ is used instead
of the whole target y. (Right) EM-Network is trained with a self-distillation setup, where EM-
Network’s predcition serves as soft labels for training the original sequence model.

LM is highly required to obtain the contextualized representation (Zhu et al., 2020; Wu et al., 2021;
Xu et al., 2021). In this paper, we propose a novel framework termed EM-Network that can effec-
tively improve the quality of the latent variable z and thus the overall quality of the seq2seq model.
In particular, EM-Network encapsulates two key components. First, the proposed framework lever-
ages the target sequence as the model’s additional training input, where the target input y is used as
guidance to capture the target-side context and reduce the candidates of z. Second, based on the us-
age of the target input, we present a new self-distillation strategy as collaborative training, where the
original sequence model can benefit from the EM-Network’s knowledge in a one-stage manner. The
prediction of the EM-Network serves as a soft label for training the inner sequence model, which
consumes only the source input. The proposed self-distillation acts as a sort of regularization for the
seq2seq model, and its performance gain comes from a deep mutual learning scheme (Zhang et al.,
2018), where the students learn collaboratively and teach each other. However, the main difference
from the previous mutual learning approaches (Zhang et al., 2018; Liang et al., 2021) is that the pro-
posed method utilizes the target input when training the EM-Network instead of merely considering
the ground truth as the sole target in training. Since the target input is used as guidance to provide
the target-side information, the prediction of the EM-Network (teacher mode) is more accurate than
that of the inner sequence model (student mode). Therefore, the sequence model can effectively
benefit from the soft labels of the EM-Network, which will be additionally discussed in Section 6.
In addition, we attempt to apply the proposed self-distillation to the CTC framework, an unexplored
area in mutual learning research.

Modeling the conditional probability of the EM-Network (teacher mode) is determined by whether
the latent variable is explicitly defined, as shown in Figure 1. The CTC computation adopts the
alignment z, and it is difficult to settle on the optimal alignment with the conventional framework.
The proposed EM-Network computes the posterior P (z|x, y) for the loss, which aims at predicting
a better CTC alignment z by leveraging the source and target inputs. Therefore, the CTC model
distilled from the EM-Network does not have to consider the exponential number of possible CTC
alignments. We theoretically show that the proposed objective function can serves as the proposed
Q-function and is justified from the EM-like algorithm perspective.

For the attention-based encoder-decoder (AED), where there is no explicit latent alignment, it is
challenging to directly apply the same training scheme as the EM-Network for CTC. Simply taking
the target y as the additional input may cause an obvious but trivial solution, where the model
converges with the conditional probability P (y|x, y) = δ(y). Inspired by the MLM, we present an
alternative that employs the masked version of target ỹ as the additional input instead of using the
whole target y. The EM-Network for AED computes the posterior P (ỹ|x, y) for loss and provides
more robust contextualized representations that can benefit the learning task.

We conduct comprehensive experiments on multiple benchmarks, including ASR and MT tasks.
The CTC and AED models are considered for ASR and MT tasks, respectively. Experimental results
demonstrate that the EM-Network improves over the best prior work on ASR and establishes SOTA
performance on WMT’14 and IWSLT’14 datasets.
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Figure 2: Overview of the EM-Network. Note that the EM-Network includes the parameters of the
sequence model. Green components (ϕ), orange components (ρ), blue components (θ) represent the
parameters of the EM-Network, the auxiliary network, and the sequence model, respectively. When
the sequence model is based on the AED, teacher forcing is applied to the inner sequence model
during the training.

2 METHODOLOGY

In this section, we introduce how to design the EM-Network for learning better latent variable z
(Section 2.1 and Section 2.2), and its applications with CTC (Section 2.3) and AED (Section 2.4).
We further provide a theoretical interpretation of the proposed framework from an EM-like algo-
rithm perspective in Section 3.

2.1 THE ARCHITECTURE OF EM-NETWORK

EM-Network. As shown in Figure 2, EM-Network mainly consists of two parts: (1) a sequence
model that performs the original learning task given the source input x, and (2) an auxiliary network
to learn a meaningful representation of both source x and target y. We add the auxiliary network on
top of the conventional sequence model. For the convenience of notation, we let ϕ, θ, and ρ denote
the parameters of the EM-Network, the sequence model, and the auxiliary network, respectively.
Note that the EM-Network includes the parameters of the sequence model, where θ ⊂ ϕ.

Sequence Model. Since the sequence model in the EM-Network performs the same task as the
conventional seq2seq models, we can flexibly select the architecture of the sequence model de-
pending on the task demands. For example, in our ASR experiments, the conventional CTC model
consisting of 12 transformer (Vaswani et al., 2017) blocks, is applied as the sequence model. For
the MT task, the architecture of the sequence model follows that of the BiBERT (Xu et al., 2021).

Auxiliary Network. The auxiliary network performs a fusion of the source x and target y repre-
sentations when generating the prediction, and its architecture is based on the self and cross-attention
modules. Specifically, the cross-attention takes the representation of x as the query and the repre-
sentation of y as the key-value pairs.

2.2 TRAINING AND INFERENCE PROCEDURES

Self-distillation. EM-Network first yields the predictions, which serve as soft labels in distillation,
by encoding both the source x and target y inputs (teacher mode). Then, the sequence model learns
the parameter θ to predict the soft labels given the source input x (student mode).

Training. In the proposed framework, there are three kinds of losses during the training phase:
(1) the original sequence learning loss Lorg(θ), such as CTC loss and frame-wise cross entropy
(CE), with the source input x to train the sequence model, (2) the proposed sequence learning loss
Lem(ϕ) given both source and target inputs for training the EM-Network, and (3) self-distillation
loss Lkd(ϕ, θ) that trains the sequence model to predict the soft labels generated from the EM-
Network. We optimize the following loss to train the proposed framework:

Ltrain(ϕ, θ) = Lorg(θ) + Lem(ϕ) + αLkd(ϕ, θ) (1)

where α is a tunable parameter. In our self-distillation manner, the soft labels from the EM-Network
are updated in each iteration since ϕ is affected by the two losses Lem(ϕ) and Lkd(ϕ, θ).
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Inference. During the inference, only the sequence model is used to generate the prediction. Since
the auxiliary network is removed during the inference, the additional computational load of ρ is only
required for the training procedure. In our SSL-based ASR experiments, about 10 M parameters are
used as the auxiliary parameters to train the EM-Network, where the number of parameters of θ is
about 93 M. For the fully-supervised ASR setting, the number of parameters of θ is about 13 M, and
only 1 M parameters are required for the auxiliary network.

As aforementioned in Section 1, EM-Network can cover two popular loss functions for sequence
learning: CTC and CE objective. We begin in the CTC objective setting (Secion 2.3) and then turn
to the CE-based EM-Network (Section 2.4).

2.3 EM-NETWORK FOR CTC

Standard CTC Objective. Before describing the proposed method in the CTC framework (Graves
et al., 2006), it might be beneficial to briefly discuss the CTC objective function. Given an input
sequence x, the core idea of CTC is leveraging intermediate alignment z by allowing label repetitions
possibly interleaved with a special blank token (ϵ). CTC trains the sequence model θ to minimize
the following loss function:

Lorg−ctc(θ) = − logP (y|x; θ) = − log
∑

y=B(z)

P (z|x; θ) (2)

where B is a many-to-one mapping in the CTC algorithm with y = B(z). B−1(y) is the set of
possible alignments z compatible to y. The mapping is done by merging repeated labels from the
paths and then removing all blank tokens (ϵ), e.g., B({ϵ,a,a,ϵ,ϵ,a,b,b}) = {aab}) where {aab} denotes
y and the sequence {ϵ,a,a,ϵ,ϵ,a,b,b} represents z.

Modeling Conditional Probability with Target Input. As mentioned earlier, the crucial chal-
lenge is how to use the target input while preventing the trivial solution. Since the CTC algorithm
explicitly adopts the latent alignment z, we can easily apply the target y as the EM-Network’s input.
The relationship between z and y is many-to-one, which can be formulated as B(z) = y. Intuitively,
it is challenging to predict z (many) given the target y (one). Therefore, the training objective func-
tion with the target input can be given as

Lem−ctc(ϕ) = − log
∑

y=B(z)

P (z|x, y;ϕ). (3)

The target input is used as guidance to provide the target-side information and reduce the candidates
of the latent variable.

Distillation Loss. EM-Network is trained in a self-distillation setup where the prediction given
source and target inputs serves as a soft label for training the original sequence model. The distilla-
tion loss in the proposed method is as follows:

Lkd−ctc = ∥ẑem − ẑorg∥22 (4)

where ẑem and ẑorg are softmax outputs of the EM-Network and the sequence model, respectively.
Note that the argmax value of ẑ is the predicted CTC alignment. Since the conventional distil-
lation loss using CE or Kullback-Leibler (KL)-divergence generally fails to converge in the CTC
framework, as reported in previous studies (Senior et al., 2015; Takashima et al., 2018; 2019; Yoon
et al., 2021b), we follow the distillation loss of Yoon et al. (2021b) that adopts l2 loss function for
transferring the latent alignment.

2.4 EM-NETWORK FOR AED

Standard CE Objective. Different from the CTC, the AED model does not explicitly define the
latent alignment z and the many-to-one mapping B. The CE loss for AED can be formulated as

Lorg−ce(θ) = − logP (y|x; θ). (5)
Since simply taking the target y as the AED model’s input may cause an obvious but trivial solution
where the model converges with the conditional probability P (y|x, y; θ) = δ(y), it is difficult to
learn a meaningful representation of the target input y.

4



Under review as a conference paper at ICLR 2023

Modeling Conditional Probability with Target Input. To address this issue, we employ a mask-
ing strategy in the MLM task. The masked version of the target ỹ is applied as the additional
input instead of directly using the target y. Given the target sequence y, we use a masking func-
tion M, which randomly masks the tokens of y with the probability of λ. Then, the masked target
M(y, λ) = ỹ is fed to the EM-Network as the auxiliary input. The training objective function with
the masked target ỹ can be calculated as follows:

Lem−ce(ϕ) = − logP (y|x, ỹ;ϕ) where ỹ = M(y, λ). (6)

Distillation Loss. In the case of the CE objective function, we utilize the conventional distillation
loss, where the KL divergence is computed using softmax outputs between the student and the
teacher. The distillation loss for AED-based EM-Network is given by

Lkd−ce(ϕ, θ) = DKL(ŷem∥ŷorg) (7)

where ŷem, ŷorg denote the softmax outputs of the EM-Network and the sequence model. DKL

represents the KL-divergence.

3 CONNECTION TO EM ALGORITHM

In this section, we explore the connection with the EM algorithm. The detailed derivations are
provided in Appendix B.

Standard EM Algorithm. The traditional EM algorithm finds maximum likelihood parameters of
the model that depends on unobserved latent variables z. It iteratively performs an expectation (E)
step and a Maximization step (M step). The E step defines a Q-function Q(θ|θ(t)) as the expected
value of the log-likelihood of θ, which can be formulated as follows:

Q(θ|θ(t)) = Ez|x,θ(t) [logP (x, z; θ)].

Then, the M step computes the parameters that maximize the Q-function found on the E step.

EM-like Perspective for CTC-based EM-Network The proposed framework is motivated by the
EM algorithm. In the case of the EM-Network for CTC, the Q-function is calculated as follows:

Q(θ|θ(t), ρ(t)) = Ez|x,y,θ(t),ρ(t) [logP (y, z|x; θ)]

= −DKL(P (z|x, y; θ(t), ρ(t))∥P (z|x; θ)) (8)

≈ −Lkd−ctc(ϕ
(t), θ) (9)

where P (z|x, y; θ(t), ρ(t)) represents the conditional probability of the CTC-based EM-Network in
Eq. (3), and logP (z|x; θ) denotes the CTC-based sequence model in Eq. (2). Here, we ignore
the constant factor −H(P (z|x, y; θ(t), ρ(t))) in the fourth equality and the first approximation. As
shown in Eq. (8), a negative value of KL-divergence between the EM-Network and the sequence
model serves as the Q-function of the EM-Network. However, as aforementioned in Section 2.3,
CTC model often fails to converge with the distillation loss using the KL-divergence due to its
alignment-free property (Senior et al., 2015; Takashima et al., 2018; 2019; Yoon et al., 2021b). To
sidestep this convergence problem, we use l2 loss instead of the KL-divergence, corresponding to
the distillation loss Lkd−ctc. Eq. (9) shows that Lkd−ctc can be considered as the approximation of
the EM-Network’s Q-function. Note that B(z) = y and ϕ = θ + ρ in the CTC-based EM-Network.

Based on the above perspective, we can actually show our proposed training objective in Eq. (4) is
a lower bound for the log-likelihood of the original sequence model. Our goal is to maximize the
log-likelihood below,

logP (y|x; θ) ≥
∑

y=B(z)

P (z|x, y; θ(t), ρ(t)) log P (z|x; θ)
P (z|x, y; θ(t), ρ(t))

= −DKL(P (z|x, y; θ(t), ρ(t))∥P (z|x; θ))
≈ −Lkd−ctc(ϕ

(t), θ) (10)

5



Under review as a conference paper at ICLR 2023

where the first inequality follows from Jensen’s inequality. From Eq. (10), we can confirm that a
negative value of Lkd−ctc serves as the lower bound for the log-likelihood of the original CTC-based
sequence model logP (y|x; θ). Therefore, both Eq. (9) and Eq. (10) indicate that maximizing the
EM-Network’s Q-function is equivalent to maximizing the lower bound of the sequence model’s
likelihood. The tight lower bound will be additionally discussed in Appendix E.

Maximizing the lower bound (minimizing Lkd−ctc) is also closely related to the upper bound for the
sequence model’s log-likelihood. The conventional KD generally assumes that the teacher’s perfor-
mance determines the upper bound of the student (Zhang et al., 2020; Mishra & Marr, 2018; Clark
et al., 2019). Under the assumption, the log-likelihood of the EM-Network (teacher mode) can be
regarded as the upper bound for the log-likelihood of the sequence model. Considering that the EM-
Network uses the ground truth as the additional input to perform the learning task, this assumption
seems more reasonable. Different from the previous offline KD methods where the teacher model is
generally fixed, we update the EM-Network and sequence model simultaneously. The training loss
curves are given in Figure 4. The proposed distillation loss Lkd−ctc regularizes the EM-Network
(teacher mode) to learn the knowledge of the sequence model (student mode), providing the tight
upper bound for the sequence model. For the counterpart, minimizing Lkd−ctc also corresponds
to making the sequence model mimic the behavior of the EM-Network, indicating that the log-
likelihood of the sequence model is close to its upper bound. Therefore, we can derive the tight
upper bound by maximizing the lower bound. On top of that, the upper bound can be maximized
by minimizing the loss Lem−ctc in Eq. (3), indicating that the proposed objective function partially
maximizes the likelihood of the sequence model.

EM-like Perspective for AED-based EM-Network When considering the AED, the Q-function
can be computed with a similar perspective in Eq. (8), which is given by

Q(θ|θ(t), ρ(t)) = Ey|x,ỹ,θ(t),ρ(t) [logP (ỹ, y|x; θ)]

= −DKL(P (y|x, ỹ; θ(t), ρ(t))∥P (y|x; θ))
= −Lkd−ce(ϕ

(t), θ). (11)

Then, we start from the log-likelihood of the AED model, which is formulated in Eq. (5):

logP (y|x; θ) ≥
∑

ỹ=M(y,λ)

P (y|x, ỹ; θ(t), ρ(t)) log P (y|x; θ)
P (y|x, ỹ; θ(t), ρ(t))

= −DKL(P (y|x, ỹ; θ(t), ρ(t))∥P (y|x; θ))
= −Lkd−ce(ϕ

(t), θ) (12)

Eq. (12) indicates that the KL-divergence between the EM-Network (P (y|x, ỹ; θ, phi)) and the AED
model (P (y|x; θ))) accords with the distillation loss in Eq. (7). By Eq. (11), we know that a negative
value of the KL-divergence between the EM-Network and the sequence model serves as the Q-
function of the EM-Network. Therefore, maximizing the AED-based EM-Network’s Q-function is
equivalent to maximizing the lower bound of the sequence model’s likelihood. As mentioned above,
the log-likelihood of the EM-Network serves as the tight upper bound for the sequence model.

4 EXPERIMENTAL SETUP

Speech Recognition. Our experiments were conducted using the fairseq (Ott et al., 2019) toolkit.
We utilized a widely used LibriSpeech (Panayotov et al., 2015) dataset. In the proposed framework,
we first pre-trained the sequence model (θ) on the full 960 hours of LibriSpeech (LS-960) by using
the objective of the data2vec since it is the current SOTA model in the SSL literature. Then, the
whole EM-Network (ϕ) was fine-tuned with LS-960, where the dev-other subset was used as the
validation. The architecture of the sequence model followed the Base setup of the conventional
SSL-based model, consisting of 12 transformer blocks. The tunable parameter α was experimentally
set to 2. When applying the language model (LM), we used the official 4-gram KenLM (Heafield,
2011). The detailed implementation is additionally presented in Appendix C.

Machine Translation. We evaluated the EM-Network on IWSLT’14 and WMT’14 datasets for
English-to-German (En-De) and German-to-English (De-En) translation tasks. The implementation
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Table 1: (Speech recognition) Word error rate (%) on LibriSpeech test set. Bold represents supe-
rior results. The results of ILS-SSL and HuBERT were implemented using the public fairseq (Ott
et al., 2019) toolkit. For data2vec and wav2vec 2.0 models, we evaluated the performance using the
checkpoints provided by the fairseq.

Method No LM w/ 4-gram LM
clean other clean other

HuBERT Base 3.79 9.04 2.68 6.21
wav2vec 2.0 Base 3.40 8.42 2.59 6.19
ILS-SSL Base 3.44 7.79 2.65 5.84
data2vec Base 2.78 7.02 2.43 5.56
Ours, EM-Network 2.66 6.72 2.37 5.43

Table 2: (Machine translation) Comparison of our EM-Network and most recent existing methods
on IWSLT’14 and WMT’14 datasets. Bold represents superior results. We reimplemented the results
of BiBERT using the public code (Xu et al., 2021), which are shown inside the parentheses.

(a) BLEU score on IWSLT’14 test set.

Method En-De De-En
Adversarial MLE - 35.18
DynamicConv - 35.20
Macaron Net - 35.40
BERT-Fuse 30.45 36.11
MAT - 36.22
Mixed Representations 29.93 36.41
UniDrop 29.99 36.88

BiBERT 30.45 38.61
(30.48) (38.66)

Ours, EM-Network 31.80 39.49

(b) BLEU score on WMT’14 newstest2014 test set.

Method En-De De-En
Large Batch Training 29.3 -
Evolved Transformer 29.8 -
BERT Init. (12 layers) 30.6 33.6
BERT-Fuse 30.75 -

BIBERT 31.26 34.94
(30.80) (34.53)

Ours, EM-Network 31.30 35.40

of the EM-Network was based on the official source code provided by the previous work (Xu et al.,
2021). Firstly, we pre-trained the sequence model with SSL, and then the whole EM-Network was
fine-tuned on the MT task. In the case of the pre-training, the sequence model was trained on the
same English and German texts as BiBERT (Xu et al., 2021), derived from the OSCAR (Suárez et al.,
2020) corpus. The architecture sequence model was based on the BiBERT, a recent SOTA method
on the MT task, and we followed its pre-training scheme. During the fine-tuning, the parameter α
and the masking ratio λ were set to 2 and 50 %, respectively.

5 MAIN EMPIRICAL RESULTS

Since the current SOTA models were typically based on the SSL, we used the pre-trained SSL
model in our experiments. Due to the space limit, the experimental results with the fully super-
vised learning-based models were described in Appendix D. From the results, we observed that the
proposed method achieved considerable performance improvement for fully supervised learning.

Speech Recognition. We compared the EM-Network with previous SOTA works from the liter-
ature, including wav2vec 2.0 (Baevski et al., 2020), HuBERT (Hsu et al., 2021), ILS-SSL (Wang
et al., 2022), and data2vec (Baevski et al., 2022). As shown in Table 1, EM-Network outperformed
the recent approaches on the LibriSpeech. It is important to note that our approach followed the pre-
training scheme of the data2vec, and we applied the proposed scheme to the data2vec’s fine-tuning
stage. On the LibriSpeech, we improved upon the best data2vec by 0.12 %/0.3 % on the clean/other
test datasets with greedy decoding, yielding a relative error rate reduction (RERR) of 4.32 %/4.27
% compared to the data2vec baseline. Also, the proposed approach consistently achieved supe-
rior WER results when applying beam-search decoding with the LM. Specifically, compared to the
beam-search decoding case, the performance improvement of the EM-Network was much more sig-
nificant with the greedy decoding. Since the EM-Network considered linguistic (text) information
by using the additional target input, the sequence model could produce strong performance even
without the LM.
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Figure 3: Total frame-wise softmax output examples in test-other dataset, where the target reference
is “NOT A SOUL ON BOARD THE JOHN WAS HURT”. The x-axis refers to acoustic frames, and
the y-axis refers to the character labels. The first label index denotes the “blank” label.

Machine Translation. Table 2a shows a comparison of the proposed method with the recent ap-
proaches on IWSLT’14 En-De and De-En translations. We chose the eight best-performed MT
algorithms to date: 1) Adversarial MLE (Wang et al., 2019), 2) DynamicConv (Wu et al., 2019) 3)
Macaron Net (Lu et al., 2020), 4) BERT-Fuse (Zhu et al., 2020), 5) multi-branch encoders (MAT)
(Fan et al., 2020), 6) mixed representations from different tokenizers (Mixed Representation) (Wu
et al., 2020), 7) uniting different dropout techniques (UniDrop) (Wu et al., 2021), and 8) BiBERT
(Xu et al., 2021). From the results, it is verified that EM-Network outperformed all of them and
yielded around 1.4 (En-De) and 0.9 (De-En) BLEU point gains over the previous SOTA results.
Recall that EM-Network used the same settings as BiBERT — the main difference was applying the
auxiliary network with the additional input ỹ and the proposed self-distillation framework during
the fine-tuning stage — yet the EM-Network yielded a significant improvement over BiBERT.

For the high-resource scenario, we conducted experiments on WMT’14 En-De and De-En transla-
tions and compared the EM-Network with prior existing works that achieved high BLEU scores on
WMT’14 dataset, including large batch training (Ott et al., 2018), Evolved Transformer (So et al.,
2019), initializing the BERT by leveraging pre-trained checkpoints (Rothe et al., 2020), BERT-Fuse
(Zhu et al., 2020), and BiBERT (Xu et al., 2021). From Table 2b, we verified that our model also
gave the best BLEU scores on the high-resource WMT’14 En-De and De-En translations.

6 ANALYSIS

CTC Alignment. As visualized in Figure 3, we contrasted the total frame-wise softmax outputs of
the best baseline data2vec and our sequence model θ in the EM-Network. The argmax value of the
frame-wise label probability corresponds to the predicted CTC alignment. In Figure 3, the conven-
tional data2vec converted a given speech into “NOT ON SO ON BOARD THE JOHN WAS HART”
and made erroneous predictions with “ON SO” and “HART”. When considering only the acoustic
feature (speech voice), it is challenging to distinguish “ON SO”/“A SOUL” and “HART”/“HURT”.
However, the proposed sequence model provided a more accurate prediction than the data2vec.
Different from the previous seq2seq approaches, the EM-Network performed a fusion of the acous-
tic (speech source input) and linguistic (text target input) representations. Since the EM-Network
could consider not only the acoustic information but also the linguistic one, the sequence model
learned better alignment and obtained satisfactory performance. Even though there was a single
erroneous word “HART”, we can discover the probability regarding ”U” (green circle in Figure 3)
in the prediction of the sequence model. Also, unlike the data2vec that included many irrelevant
label probabilities (red boxes in Figure 3), our sequence model had relatively fewer redundant ones,
implying that the use of the target input effectively reduced the candidates of the latent CTC align-
ment z. From the results, it is verified that the proposed framework could learn the promising CTC
alignment by using the target input and the self-distillation setup.

Translation Consistency. The token repetition ratio represents the degree of the inconsistency
problem in MT (Song et al., 2021; Ghazvininejad et al., 2020). We computed the token repetition
ratio by dividing all consecutively repeating tokens by the total number of tokens. The teacher
forcing and the greedy decoding were applied to fairly compare the predictions. From the results
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Table 3: Token repetition ratio on IWSLT’14 test dataset.

Model En-De De-En
Reference Test Set 0.23 0.18
BiBERT 4.76 5.62
Sequence Model (θ) in EM-Network 4.57 4.88
EM-Network (ϕ) w/ Target Input 4.42 4.70

in Table 3, we can confirm that the EM-Network effectively addressed the token repetition issue
compared to the prior SOTA approach. In the case of the conventional BiBERT, it only considered
the past target information during the training via the teacher forcing technique. However, the EM-
Network leveraged a more global target context by using the target input ỹ. Since our approach
used both past and future target information in generating the prediction, it alleviated translation
inconsistency and produced better quality. In other words, the sequence model in the proposed
framework could benefit from a more optimal and consistent representation of the EM-Network.

Figure 4: Training loss curves of EM-
Network for ASR task.

Training Loss Curves. Figure 4 shows the training
loss curves of the EM-Network for the ASR task. We
observed that the loss Lem of the whole EM-Network
(ϕ) consistently decreased, implying that soft labels
from the EM-Network were updated in each iteration.
In this way, unlike the conventional distillation that the
knowledge is generally fixed, the EM-Network trans-
ferred the knowledge more adaptively. Compared to
the previous self-distillation methods (Pei et al., 2021;
Kong et al., 2022; Baevski et al., 2022), the proposed
distillation framework did not require the additional
update strategy, such as a moving-average of param-
eters. It could be implemented by simply applying the additional losses Lem and Lkd. Also, since
Lem was lower than Lorg during the training, the prediction of the EM-Network (teacher mode)
was more accurate than that of the inner sequence model (student mode). Thus, the sequence model
could effectively benefit from the soft labels of the EM-Network.

7 RELATED WORKS

Training with Target Input. There are many techniques in the seq2seq learning literature that
exploit the target-related information. Autoregressive approaches (Vaswani et al., 2017; Chorowski
et al., 2015; Graves, 2012) have adopted a teacher forcing technique that supplies a ground truth
value as conditional input during the training. The teacher forcing allows the model to predict the
current target by utilizing the context representation of the source input and the history of labels.
To make good global planning, Feng et al. (2021) proposed the additional seer decoder into the
encoder-decoder framework, which embodies future ground truth to guide the behaviors of the con-
ventional decoder. In the case of the non-autoregressive framework, some studies (Higuchi et al.,
2020; Chan et al., 2020) attempted to improve the CTC model’s prediction by conditioning on pre-
viously generated tokens. Also, Yoon et al. (2021a) introduced the Oracle Teacher, which uses the
target information to improve the teacher model’s performance in the offline distillation setup.

8 CONCLUSIONS

In this paper, we introduced EM-Network that can effectively yield a promising latent variable from
both source and target inputs. Instead of merely considering the ground truth as the sole target
in training, the target was utilized as the model’s additional training input. The proposed self-
distillation framework enabled the sequence model to benefit from the EM-Network’s latent variable
in a one-stage manner. We theoretically showed that our training objective, which was motivated
by the EM-like algorithm, could be a lower bound for the log-likelihood of the sequence model.
Empirically, EM-Network significantly advanced the current state-of-the-art approaches on ASR
and MT tasks. We hope our study will draw more attention from the community toward a richer
view of the latent variable for seq2seq learning.
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A SOURCE CODE

Source code can be found at https://github.com/em-net/em-network-anonymous.
git.

B THEORETICAL ANALYSIS

Derivation of Eq. (8)

Q(θ|θ(t), ρ(t)) = Ez|x,y,θ(t),ρ(t) [logP (y, z|x; θ)]
= Ez|x,y,θ(t),ρ(t) [log[δ(y − B(z))P (z|x; θ)]]

=
∑

y=B(z)

P (z|x, y; θ(t), ρ(t)) logP (z|x; θ)

= −DKL(P (z|x, y; θ(t), ρ(t))∥P (z|x; θ))
≈ −Lkd−ctc(ϕ

(t), θ)

Derivation of Eq. (10)

logP (y|x; θ) = log
∑
z

P (y, z|x; θ)

= log
∑
z

P (y, z|x; θ)P (z|x, y; θ(t), ρ(t))
P (z|x, y; θ(t), ρ(t))

= log
∑
z

δ(y − B(z))P (z|x; θ)P (z|x, y; θ(t), ρ(t))
P (z|x, y; θ(t), ρ(t))

= log
∑

y=B(z)

P (z|x; θ)P (z|x, y; θ(t), ρ(t))
P (z|x, y;ϕ)

= log
∑

y=B(z)

P (z|x, y; θ(t), ρ(t)) P (z|x; θ)
P (z|x, y; θ(t), ρ(t))

≥
∑

y=B(z)

P (z|x, y; θ(t), ρ(t)) log P (z|x; θ)
P (z|x, y; θ(t), ρ(t))

= −DKL(P (z|x, y; θ(t), ρ(t)), P (z|x; θ))
≈ −Lkd−ctc(ϕ

(t), θ)
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Derivation of Eq. (12)

logP (y|x; θ) = log
∑
ỹ

P (y, ỹ|x; θ)

= log
∑
ỹ

P (y, ỹ|x; θ)P (y|x, ỹ; θ(t), ρ(t))
P (y|x, ỹ; θ(t), ρ(t))

= log
∑
ỹ

δ(ỹ −M(y, λ))P (y|x; θ)P (y|x, ỹ; θ(t), ρ(t))
P (y|x, ỹ; θ(t), ρ(t))

= log
∑

ỹ=M(y,λ)

P (y|x; θ)P (y|x, ỹ; θ(t), ρ(t))
P (y|x, ỹ; θ(t), ρ(t))

= log
∑

ỹ=M(y,λ)

P (y|x, ỹ; θ(t), ρ(t)) P (y|x; θ)
P (y|x, ỹ; θ(t), ρ(t))

≥
∑

ỹ=M(y,λ)

P (y|x, ỹ; θ(t), ρ(t)) log P (y|x; θ)
P (y|x, ỹ; θ(t), ρ(t))

= −DKL(P (y|x, ỹ; θ(t), ρ(t))∥P (y|x; θ))
= −Lkd−ce(ϕ

(t), θ)

C IMPLEMENTATION DETAILS

Table 4: The number of parameters for each model.

Task Method # of Param.

ASR data2vec Base 93 M
EM-Network 103 M (θ: 93 M, ρ: 10 M)

MT (IWSLT’14) BiBERT 206 M
EM-Network 225 M (θ: 206 M, ρ: 19 M)

MT (WMT’14) BiBERT 324 M
EM-Network 374 M (θ: 324 M, ρ: 50 M)

Speech Recognition. For the pre-training stage, we followed the pre-training regime of data2vec
(Baevski et al., 2022). After the pre-training, pre-trained models were fine-tuned for the ASR task
by applying a linear projection layer. We fine-tuned the model with Adam (Kingma & Ba, 2015)
optimizer with an initial learning rate of 1e-4. For the LibriSpeech, the character set had a total of
29 labels plus a word boundary token. The BASE setup contained 12 transformer blocks with model
dimension 768 and 8 attention heads. Also, BASE models utilized a batch size of 3.2m samples
per GPU and were fine-tuned on eight Quadro RTX 8000 GPUs (each with 48GB of memory),
where training updates were set to 320k. Following the recommendation of the language model
settings (Baevski et al., 2020), test performance was measured with beam 1,500 for the 4-gram LM.
In the case of EM-Network, the architecture of the auxiliary network was based on the self and
cross-attention modules, and we additionally employed the feed-forward layers, layer normalization
layers, and residual connections for the attention layer.

Machine Translation. For the IWSLT’14 dataset, we used four Titan V GPUs (each with 12GB
of memory) with 2048 tokens per GPU and accumulated the gradient 4 times. The optimizer was
Adam (Kingma & Ba, 2015), with a learning rate of 0.0004. We followed the same byte-pair en-
coding (BPE) settings of the previous study (Xu et al., 2021). At inference time, we applied beam
search with width 4 and a length penalty of 0.6. In the case of the WMT’14 dataset, newstest2012
and newstest2013 were combined as the validation set, and we used newstest2014 as the test set.
Followed by the BiBERT(Xu et al., 2021), we used a unified 52K vocabulary for the decoder. We
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utilized four Quadro RTX 8000 GPUs (each with 48GB of memory) with a batch size of 4096 tokens
per GPU. The gradient was accumulated 32 times. The initial learning rate was set to 0.001.

Number of Parameter. Table 4 compares the number of parameters between the best seq2seq
baseline and the EM-Network. We used the best baseline as the inner sequence model of the EM-
Network, and thus the parameter for θ corresponded to that of the best baseline, such as data2vec
and BiBERT. The size of the auxiliary network ρ was mainly determined by the vocabulary size.
Since the EM-Network for WMT’14 dataset used about 52K vocabulary for the decoder, it required
the relatively large parameters for ρ. However, during the inference, only the sequence model was
used to generate the prediction. Since the auxiliary network was removed during the inference, the
additional computational load of ρ was only required for the training procedure. Considering the
performance improvements of the proposed approach, this computational load for training seems
reasonable.

D FURTHER EXTENSION: EXPERIMENTAL RESULTS WITH FULLY
SUPERVISED LEARNING-BASED MODEL

D.1 SETUP

For the fully supervised learning-based models, ASR models were implemented in the NeMo
(Kuchaiev et al., 2019) toolkit. We trained the EM-Network with LS-960, and the sequence model
(θ) was based on a conformer-CTC architecture consisting of 16 conformer (Gulati et al., 2020)
blocks with 176 dimensions. We used four Quadro RTX 8000 GPUs (each with 48GB of memory),
and 100 epochs were spent for training the models. AdamW algorithm (Loshchilov & Hutter, 2019)
was employed as an optimizer with an initial learning rate of 5.0. In the case of Conformer-CTC
large, the current SOTA ASR model, we used the pre-trained checkpoint provided by the NeMo
(Kuchaiev et al., 2019) toolkit. For MT task, we evalutated the models with IWSLT’14 datasets
for En-De and De-En translations. The sequence model (θ) was based on Transformer (Vaswani
et al., 2017). We used four Titan V GPUs (each with 12GB of memory), and 75 epochs were spent
for training. BiBERT (Xu et al., 2021), which is the current SOTA MT model, was adopted as the
teacher model for conducting the conventional distillation.

D.2 ASR RESULTS

Baseline Model # of Params. clean other
Conformer-CTC Large 122 M 2.78 6.18
Conformer-CTC Small 13 M 4.87 12.05

Method Additional # of
Params. for Teacher Student KD clean other

Baseline None
Conformer-CTC

Small

None 4.87 12.05
Guided CTC training 122 M Offline 4.63 11.56
SKD 122 M Offline 4.53 11.33
Ours, EM-Network 1 M Self 4.29 10.81

Table 5: Comparison of word error rate (%) on LibriSpeech test dataset.

In addition to the previous experiments, we checked whether the EM-Network could improve the
performance of the sequence models with fully supervised learning. Table 5 shows the results on the
LibriSpeech test set. We applied Guided CTC training (Kurata & Audhkhasi, 2019) and SKD (Yoon
et al., 2021b) as the competing KD methods for ASR. The Conformer-CTC Large was adopted as
the teacher for Guided CTC training and SKD. The Guided CTC training is the effective KD method
for CTC-based ASR model. The student can be guided to align with the frame-level alignment of
the teacher by using the guided mask. The SKD is the recent KD method in the ASR task, and
we used its distillation loss for transferring the soft labels of the EM-Network (Eq. (4)). The main
difference between the SKD and the EM-Network was that the EM-Network was trained with the
self-distillation setup with the additional target input, while the conventional SKD was based on
offline knowledge distillation. Even though the teacher’s knowledge in Guided CTC training and
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SKD was fixed during the student model training, the soft label of the EM-Network was updated
in each iteration so that our approach could transfer the knowledge more adaptively. As shown
in Table 5, both Guided CTC training and SKD required the additional teacher model (122 M pa-
rameters) to perform the distillation. However, only 1 M parameters, which corresponded to the
auxiliary network in the EM-Network, were required to distill the knowledge in the proposed frame-
work. From the results, it is verified that the EM-Network performed well with the fully-supervised
learning-based model. Compared to the conventional KD methods using the SOTA ASR model as
the teacher, EM-Network achieved better performance on the LibriSpeech test dataset. We con-
firmed that the proposed method can significantly improve the performance of the sequence model
with the fully supervised learning-based model, yielding 4.29 % (RERR: 11.91 %) and 10.81 %
(RERR: 10.29 %) on test-clean and test-other, respectively.

D.3 MT RESULTS

Baseline Model # of Params. En-De De-En
BiBERT 206 M 30.48 38.66
Transformer 120 M 27.87 34.18

Method Additional # of
Params. for Teacher Student KD En-De De-En

Baseline None

Transformer

None 27.87 34.18
Sequence-level KD 206 M Offline 29.33 35.97
R-Drop 0 M Self 29.43 35.99
Ours, EM-Network 19 M Self 29.84 36.47

Table 6: Comparison of BLEU score on IWSLT’14 test set.

For MT task, we compared the EM-Network with other previous methods, including sequence-level
KD (Kim & Rush, 2016) and R-Drop (Liang et al., 2021), as shown in Table 6. The sequence-
level KD is a widely-used KD method in sequence generation tasks, and the R-Drop is a recent and
effective regularization method built upon dropout. As the teacher model for the sequence-level KD,
we adopted BiBERT Xu et al. (2021), which is a SOTA approach for MT task. The results in Table
6 report that the proposed EM-Network yielded the best BLEU performance on IWSLT’14 dataset,
yielding 29.84 and 36.47 on En-De and De-En translation tasks, respectively.

The main difference from the R-Drop was the training loss Lem of the EM-Network. While the
R-Drop only consumed the source input, the proposed method utilized the target input when train-
ing the EM-Network so that the prediction of the EM-Network (teacher mode) was more accurate
than that of the inner sequence model (student mode). From the results, we can verify that the tar-
get input was effectively used as guidance to provide the target-side information while producing a
considerable performance gain. Compared to the R-Drop that did not require the additional param-
eters, 19 M parameters were used as the auxiliary network ρ to train the EM-Network. However,
since the auxiliary network was removed during the inference, the additional computational load of
ρ was only required for the training procedure. Considering the performance improvements, this
additional load during the training seemed reasonable. Also, when we reduced the vocabulary size,
the additional parameters would be much smaller.

E ADDITIONAL VISUALIZATION

We additionally compared the total frame-wise softmax outputs of the best baseline data2vec, our
sequence model θ (student mode) in the EM-Network, and the EM-Network ϕ (teacher mode), as
visualized in Figure 5. The argmax value of the frame-wise label probability corresponds to the pre-
dicted CTC alignment. The conventional data2vec made erroneous predictions with “ON SO” and
“HART”. When considering only the acoustic feature (speech voice), it is challenging to distinguish
“ON SO”/“A SOUL” and “HART”/“HURT”. However, the EM-Network gave the correct predic-
tion result with few irrelevant alignments, indicating that the proposed method effectively leveraged
the target information to find the optimal CTC alignment. By benefiting from the knowledge of the
EM-Network, the proposed sequence model provided a more accurate prediction than the data2vec
while it gave ”A SOUL” instead of ”ON SO”.
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Figure 5: Frame-wise label probability examples for utterance 2609-169640-0020 in LibriSpeech
test-other dataset, where the target reference is “NOT A SOUL ON BOARD THE JOHN WAS
HURT”. Note that its argmax value corresponds to the predicted CTC alignment. The x-axis refers
to acoustic frames, and the y-axis refers to the character labels. The first label index represents the
“blank” label in the CTC framework.

By Eq. 10, we confirmed that minimizing Eq. 4 maximizes a lower bound of the CTC model’s log-
likelihood. The lower bound is tight when achieving a low distillation loss between EM-Network
and the sequence model, meaning a relatively large overlap between the predictions. Due to the
alignment-free property of the CTC framework, the conventional CTC models trained with the same
settings, such as model architecture, training data, etc., can have different frame-level alignments,
and this difference often leads to the convergence issue of the distillation (Yoon et al., 2021b).
However, as shown in Figure 5, both EM-Network (teacher mode) and the sequence model (stu-
dent mode) could produce similar frame-wise predictions (green boxes in Figure 5), indicating that
the proposed method was indeed able to perform the frame-wise distillation effectively and give a
considerable alignment overlap, making a tight lower bound.

F EFFECT OF α AND λ

When training the CE-based EM-Network, we considered two tunable parameters α in Eq. (1) and
λ in Eq. (6). The parameter α was used to balance the distillation loss Lkd, and λ was applied as the
masking probability in the masking function M. We explored the effect of α and λ on EM-Network
performance, as shown in Figure 6. Firstly, we evaluated the EM-Network on IWSLT’14 En-De
translation while varying α. α was selected from {0, 1, 2, 3, 4}, and λ was set to 50 %. We observed
that on IWSLT’14 En-De, the performance was stably better than the prior SOTA approach, and the
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Figure 6: IWSLT’14 En-De performance with varying α and λ.

best performance was obtained at α = 2. Interestingly, the EM-Network with α = 0 was slightly
better than the performance of the BiBERT, but the difference was negligible. Secondly, we showed
the effect of λ on EM-Network performance. In this case, α was set to 2, and we selected λ from
{10%, 30%, 50%, 70%}. From the results, it is verified that performance on IWLST’14 En-De
achieved the best result when λ = 50%.
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