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Abstract

Fast Fourier Transforms (FFT) are widely used to reduce memory and compu-
tational costs in deep learning. However, existing implementations, including
standard FFT and real FFT (rFFT), cannot achieve true in-place computation. In
particular, rFFT maps an input of size n to a complex output of size n/2 + 1,
causing dimensional mismatch and requiring additional memory allocation. We
propose the first real-domain, fully in-place FFT framework (rdFFT) that preserves
input-output memory space consistency. By leveraging butterfly operation sym-
metry and conjugate properties in the frequency domain, we design an implicit
complex encoding scheme that eliminates intermediate cache usage entirely. Exper-
iments on multiple natural language understanding tasks demonstrate the method
effectiveness in reducing training memory cost, offering a promising direction for
frequency-domain lightweight adaptation.

1 Introduction

Large-scale neural models have achieved remarkable success across a wide range of applications,
such as natural language processing [1][2] and computer vision [3]. As model sizes increase, memory
consumption has emerged as a significant challenge. Notably, model training memory cost is larger
than the deployment cost, primarily due to the backpropagation process [4]. Thus, reducing memory
usage has become a critical research study, especially for the training stage.

Numerous methods have been proposed to reduce memory usage during model training and deploy-
ment. Commonly used approaches such as model distillation [5], quantization [6], and pruning [7]
mainly aim to reduce memory consumption by decreasing the number or precision of model param-
eters. In contrast, this work takes a novel approach at the arithmetic operator level, implementing
in-place Fast Fourier Transform (FFT) operations for model training through the use of circulant-
structured parameter matrices [8–10]. The FFT operator has been widely employed in various
neural network architectures due to its efficiency in capturing global patterns and enabling structured
transformations. For instance, Fourier-based fine-tuning methods such as FourierFT [11] and Block
Circulant Adapter (BCA) [10] rely heavily on FFT to perform efficient parameter transformations in
the frequency domain.

It should be noted that FFT-based operators typically involve both FFT and IFFT computations, which
generate intermediate tensors that consume memory and use different data type since the result of
FFT is complex number. Numerous studies have explored memory optimization strategies for FFT
operators, particularly in high-performance programming libraries such as FFTW [12] and cuFFT
[13]. These libraries support in-place computation, where input and output share memory space.
However, they suffer from the inability to maintain the original (input) memory space and lack of
support for bfloat16 data type that is widely used for modern neural models.
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To overcome the limitations of existing FFT libraries, we introduce rdFFT—a real-domain, fully
in-place Fourier transform that produces the same output as rFFT, but operates entirely within
the original n real-valued input memory space. We notice that the first and middle point of FFT
results have zeros in their imaginary part. Thus, they can be squeezed together so the final output
only requires n real-valued input memory space. Besides, our method exploits the symmetry of
butterfly operations and the conjugate structure of real-valued spectra to implicitly encode complex
information within real-valued tensors. This design enables in-place computation without the need
for auxiliary buffers or dimension mismatches, facilitating seamless integration into modern deep
learning workflows. Crucially, our in-place design supports consistent forward and backward passes
entirely within the real domain. In summary, our main contributions are as follows:

• We propose rdFFT, a novel real-valued, fully in-place Fourier transform operator that
eliminates memory space mismatches, offering improved practicality and usability for
neural network applications compared to existing libraries.

• We introduce a new memory layout design, develop a novel butterfly execution scheme for
IFFT computation, and provide support for the bfloat16 data type, which is widely used in
modern neural networks.

• We integrate our rdFFT into neural network models via circulant-structured parameter matrix
and validate on real-world models, achieving zero-memory allocation for intermediate tensor
computations.

2 Related Works

Current automatic differentiation frameworks often discourage in-place operations due to their
challenges in gradient computation during training. The key benefit of in-place computation lies in
its ability to save memory by eliminating the need for storing intermediate tensors. For instance,
combining batch normalization and activation into a single in-place operation has been shown to
reduce memory usage by up to half [14]. In neural network based hardware placement tasks [15],
in-place operations are found beneficial due to their inherent memory efficiency. Similarly, in-place
operations are integrated into convolutional neural networks for anomaly detection [16], achieving
notable memory savings. The in-place operation can also be extended to broader contexts. For
example, in in-place distillation [17], a student model is distilled directly from the teacher model
without additional memory allocation.

The FFT operator can be found across various neural network models, particularly in tasks involving
the Fourier domain, which is common in computer vision. Some convolutional neural networks run
entirely in the Fourier domain [18]. In beampattern synthesis [19], an IFFT operator is applied to the
hidden representations generated by the neural network. Additionally, 2D FFT has proven beneficial
for fine-tuning large language models [11]. Circulant-structured matrix-vector products can also
be efficiently computed using 1D FFT and IFFT, facilitating neural network training [10]. Beyond
these applications, FFT also plays a key role in spectral convolution [20] and in approximating global
attention mechanisms [21].

From the perspective of automatic differentiation, each operator can be seen as a neural network
layer, with or without trainable parameters. For example, the low-rank fine-tuning method for
large language models [22] represents a full weight matrix using two low-rank matrices, which is
equivalent to introducing two linear layers, thereby requiring storage for intermediate activations.
Similarly, circulant-structured weight matrices [10] leverage FFT and IFFT to transform inputs and
parameters. Although FFT operators themselves does not contain trainable parameters, they still
require the preservation of intermediate results to support automatic differentiation and to handle
complex-valued data types that is different from the real-valued inputs. Moreover, libraries such as
FFTW [12] and cuFFT [13] demand pre-allocated memory buffers of size N + 2 real numbers. This
memory pre-allocation should be handled during the neural model loading phase, which complicates
integration and limits the practicality of using these libraries in real-world neural network applications.
Besides, they also does not support bfloat16 data type which is common in modern neural networks.
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3 Preliminary

3.1 Standard FFT and rFFT

Fast Fourier Transform (FFT) is a computationally efficient algorithm for computing the Discrete
Fourier Transform and its inverse. Given a sequence of N real or complex values x(n), n =
0, 1, . . . , N − 1, the FFT and inverse FFT are defined as follows:

yk =

N−1∑
n=0

xn · e−i 2π
N kn, xn =

1

N

N−1∑
k=0

yk · ei 2π
N kn. (1)

This formulation, referred to as the standard FFT, transforms N input elements into N complex
outputs. However, when the input is real, the FFT exhibits Hermitian symmetry, i.e., yN−k = yk.
Real-valued input based FFT (rFFT) exploits this property by computing only the first N/2 + 1
complex values.

The rFFT significantly reduces the memory requirement compared to the complex-valued FFT,
decreasing the output size from 2N real numbers (i.e., N complex numbers) to N + 2 real numbers.
This improvement is based on the following fundamental property of the FFT:

Theorem 1 (Conjugate Symmetry of Real FFT [23]). Let x ∈ RN be a real-valued sequence, and
let yk denote its Fast Fourier Transform (FFT). Then the FFT output satisfies the conjugate symmetry
property:

yN−k = yk, for all k = 1, 2, . . . ,

⌊
N

2

⌋
. (2)

This property implies that the FFT of a real-valued signal is redundant—the full frequency-
domain spectrum can be uniquely reconstructed from only the first

⌊
N
2

⌋
+ 1 complex coefficients:

y0, y1, . . . , y⌊N
2 ⌋. Leveraging this redundancy, rFFT implementations store only the non-redundant

half of the spectrum, thereby reducing both computation and memory footprint.

However, this comes at the cost of mismatched memory sizes between the input and output: in the
FFT, N real-valued inputs are transformed into outputs that take the memory space of N + 2 real
values; in the IFFT, the complex inputs taking the space of N + 2 real values are mapped back to N
real outputs. In both directions, the input and output cost different amount of memory.

This memory misalignment is difficult for neural network training, where tensors are generally
allocated with fixed shapes. The requirement to expand an N -element real tensor to N + 2 elements
necessitates either pre-allocation or runtime reallocation, which causes integration difficulty, pre-
vents true in-place computation and potentially incur significant overhead in memory-constrained
environments.

3.2 In-place Transform via Butterfly Operation

The FFT can be efficiently computed using the Cooley–Tukey algorithm [24], which recursively
decomposes given FFT into smaller FFTs. As illustrated in the Butterfly Operation Diagram section
of Fig.1, a 16-point FFT is first recursively decomposed into smaller FFTs—two 8-point FFTs, then
four 4-point FFTs, and finally eight 2-point FFTs. Following this hierarchical decomposition, the
FFT is computed through a series of butterfly operations applied at each level of the recursion. At the
core of the algorithm lies the butterfly operation, a fundamental computation that transforms a pair of
complex values into two outputs using addition, subtraction, and multiplication by a twiddle factor.

As illustrated in the blue-shaded region of Fig.1, the “Complex-to-Complex FFT” section provides
two butterfly operations, both originating from FFT16, which are highlighted in red. The butterfly
operation for an r-point FFT is defined as:

yk = xk + xk+ r
2
·Wm

N ,

yk+ r
2
= xk − xk+ r

2
·Wm

N ,
(3)
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Figure 1: Overview of our method and its differences from standard FFT and rFFT implementations.
The green section depicts the Butterfly Operation Diagram using a 16-point FFT (16-FFT) as an
example. The orange section illustrates the storage formats of different FFT implementations,
shown on an 8-point FFT (8-FFT). Two representative butterfly computation paths in the 16-FFT
are highlighted in red, and expanded into: (i) the blue section showing Complex-to-Complex FFT
and IFFT operations, and (ii) the red section showing Float-to-Float FFT and IFFT operations—both
derived from the red paths in the 16-FFT diagram. This figure summarizes the key computational
flows and memory layouts addressed by our in-place real-domain FFT design.

where Wm
N is the twiddle factor, N is the total size of the FFT, and r is the size of the current

sub-FFT. The exponent m is given by m = 1 + log2 (N/r). For each r-point FFT, there are r
2

such butterfly pairs, with k = 0, 1, . . . , r/2 − 1. The same butterfly operations are used in the
“Complex-to-Complex IFFT” section, differing only in the choice of twiddle factors. The overall
structure of the Cooley–Tukey FFT and its inverse (IFFT) is almost the same, except that the IFFT
applies a final normalization factor of 1/N .

It can be noticed that butterfly operations are inherently in-place, allowing outputs to overwrite
inputs without the need for extra memory. This makes FFT especially suitable for memory-efficient
implementations. However, since most neural network computations involve real-valued tensors,
converting these to complex-valued representations usually requires additional memory allocation.
With real-valued input and in-place constraint, given the aforementioned memory mismatch, the
butterfly process is not directly applicable.

3.3 FFT based Model Training via Circulant Matrix

The circulant matrix based neural network training can be converted to FFT and IFFT operations for
acceleration [8]. Given a real-valued circulant weight matrix C ∈ RN×N defined by its first column
c ∈ RN , the linear transformation y = Cx can be equivalently computed in the frequency domain as
follows:

y = IFFT (FFT(c)⊙ FFT(x)) , (4)

where ⊙ denotes elementwise multiplication.

This structure not only accelerates computation but also simplifies the gradient computation during
training. By leveraging the linearity and conjugate of the FFT results [10], gradients with respect to
both input x and parameter c can be computed by:

∂L
∂x

= IFFT
(
FFT(c)⊙ FFT

(
∂L
∂y

))
,

∂L
∂c

= IFFT
(
FFT(x)⊙ FFT

(
∂L
∂y

))
, (5)

where FFT(·) means taking the conjugate of the FFT results. There is also block circulant matrix
based training that aims to fit non-square matrix [9], where the matrix is divided into blocks by
partition size p.
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4 Method

4.1 In-place FFT with Real-valued Input

While the Cooley–Tukey algorithm enables efficient in-place computation of the Fast Fourier Trans-
form (FFT), it operates inherently in the complex domain. However, in modern neural networks, the
vast majority of model parameters are real-valued. Transitioning between real and complex represen-
tations introduces unnecessary memory overhead, especially in memory-constrained training settings.
To address this issue, we propose new strategies to reduce the memory footprint of Fourier-based
transformations at the layer level.

Conjugate Symmetry in Cooley–Tukey Sub-FFTs. The Cooley–Tukey algorithm recursively
decomposes a length-N FFT into smaller FFTs. If the original input sequence x ∈ RN is real-valued,
then each recursively computed sub-FFT also receives a real-valued input (or a linear combination
of real values). Since the FFT is a linear operation and conjugate symmetry is preserved under
linear combinations, each sub-FFT applied to real-valued data also satisfies the conjugate symmetry
property:

yr−k = yk, for all k = 1, . . . ,
⌊r
2

⌋
, (6)

where y denotes the output of a size-r FFT block. Thus, conjugate symmetry is preserved at every
level of the Cooley–Tukey decomposition. This property enables memory-efficient computation in
real-input FFTs throughout the recursive stages.

Squeeze N + 2 into N . Although the rFFT reduces memory usage of complex-valued FFT by
exploiting conjugate symmetry, it stores N/2 + 1 complex numbers in the memory space of N + 2
real numbers, which is different from the the original real-valued input of length N . This result does
not allow for true in-place computation within the original real-valued buffer. We further analyze the
structure of the sub-FFTs in the Cooley–Tukey decomposition. For any r-point FFT of real-valued
input, the output satisfies:

y0, yr/2 ∈ R, and yk = yr−k, for k = 1, . . . , r/2− 1.

This implies that only the real parts of y0 and yr/2 need to be stored. For remaining r − 2 complex
values, we only store the real and imaginary parts of y1, . . . , yr/2−1 , and the rest can be reconstructed
via conjugation. As a result, we successfully reduce the memory space of N + 2 real values to the
size of N real values.

Memory Layout Design. Based on aforementioned observation, we propose a data layout design
where each complex coefficient yk (1 ≤ k < r/2) stores its real part at index k and stores its
imaginary part at the conjugate-symmetric index r − k. In this way, the entire frequency-domain
representation fits into a real-valued buffer of size r, without requiring any complex-valued memory.
The special cases y0 and yr/2, which are always real, each occupy a single real-valued slot. The
“Storage Format of Different FFTs” in Fig.1 illustrates our layout design in comparison to standard
FFT and rFFT formats.

Proposition 1. In the Cooley–Tukey FFT algorithm on real-valued input, at each stage of the recursive
decomposition, every conjugate-symmetric pair and its butterfly counterparts form a symmetric four-
element group. This structural symmetry ensures that the butterfly operations preserve conjugate
symmetry and can be performed entirely in-place.

Proof. Consider two conjugate-symmetric outputs x(a1) and x(b1) from an m-point FFT stage,
where their indices are given by

a1 = 2km+ m
2 − i, b1 = 2km+ m

2 + i

for some integers k and i. In the next 2m-point FFT stage, these values participate in butterfly
operations with their counterparts at

a2 = (2k + 1)m+ m
2 − i, b2 = (2k + 1)m+ m

2 + i.

5



Define the center of the 2m-point FFT block as c = (2k+1)m. Then, the offsets from the center are:
c− a1 = m

2 + i, c− b1 = m
2 − i,

c− a2 = −m
2 + i, c− b2 = −m

2 − i.

This confirms that the set {a1, b1, a2, b2} is symmetric with respect to the center index c, and
forms two conjugate-symmetric pairs placed at symmetric offsets.Since the FFT butterfly operations
preserve conjugate symmetry when applied to conjugate inputs, the output values at this stage also
maintain the same symmetry.

Therefore, all computations involving these four values can be performed in-place, and the symmetric
layout remains valid in the next FFT stage.

This symmetry ensures that at every level of the decomposition, each butterfly involving a conjugate
pair produces another conjugate pair. As a result, conjugate symmetry is recursively preserved across
all stages of the Cooley–Tukey FFT algorithm.

As a concrete example, consider the case shown in Fig. 1 (Float-to-Float FFT), where an 8-point FFT
stage has a conjugate pair located at indices a = 2 and b = 6. In the following 16-point FFT stage,
these values participate in butterfly operations with elements at indices 10 and 14. The resulting
index pairs (2, 14) and (6, 10) are symmetric with respect to the center of the 16-point block and thus
also form conjugate pairs.

Consequently, the interleaved memory layout—where the real part of yk is stored at index k and
the imaginary part at index r − k—remains consistent throughout the entire FFT computation. This
enables the algorithm to be executed entirely in-place within a real-valued buffer, eliminating the
need to explicitly store redundant conjugate components.

Based on the recursive structure and symmetry, we summarize our in-place real-domain FFT algo-
rithm:

1. Store real and imaginary parts of conjugate pairs in an interleaved layout within the input
real-valued memory space;

2. Perform all butterfly operations entirely in-place without auxiliary buffers;
3. Reconstructs the complex frequency spectrum from a real input of length N .

Overall, our design enables fully in-place FFT computation for real-valued input, with zero memory
overhead and compatible with the Cooley–Tukey algorithm.

4.2 In-place IFFT with Symmetric Complex-valued Input

While the FFT benefits from conjugate symmetry in real-valued inputs, the inverse transform receives
conjugate-symmetric complex values as input. However, unlike FFT computation, the outputs of
sub-IFFTs in the Cooley–Tukey recursion are not guaranteed to be real-valued or conjugate-structured.
This makes it difficult to directly apply the aforementioned in-place memory sharing mechanism.

To overcome the input difference in IFFT, we exploit the linearity of the FFT. Since each butterfly
operation is a linear combination of its inputs, we can reverse the forward FFT computation structure
to recover the original real-valued signal. Specifically, we compute the inverse using the same
butterfly graph but reverse the direction of data flow and scale the results appropriately.

As illustrated in Fig.1 (Float-to-Float IFFT section), we compute intermediate outputs from the
complex input Y as follows:

x2 =
y2 + y10

2
, x6 =

y6 + y14
2

,

x10 =
y2 − y10
2W 2

N

, x14 =
y6 − y14
2W 6

N

,
(7)

where W k
N = exp (−2πik/N) denotes the k-th twiddle factor.

In this formulation, we split each conjugate pair into symmetric and anti-symmetric components,
enabling recovery of the original signal through only real-domain operations. By carefully reusing
buffer locations during this process, we implement the in-place IFFT computation without auxiliary
memory for intermediate complex arrays.
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Table 1: Peak GPU memory usage (in MB) measured during single layer training (up to the end of
the backward pass) for different methods under varying input shapes. For inputs of shape D = 4096,
LoRA uses rank 64; for D = 1024, the rank is 32. Entries marked as “N/A” indicate that the specified
block size (e.g., 4096) is incompatible with the given input shape (e.g., 1024). Values in parentheses
denote how many times memory is reduced compared to full fine-tuning.

GPU Mem. D = 4096 D = 1024
(MB) B=1 B=16 B=256 B=1 B=16 B=256

full-finetune 144.33 145.50 164.25 24.27 24.56 29.25

lora 20.31(×7.11) 21.25(×6.85) 39.38(×4.17) 16.77(×1.45) 17.00(×1.44) 21.69(×1.35)

fftp=128 3.65(×39.55) 35.88(×4.06) 551.50(×0.30) 0.25(×95.22) 2.66(×9.22) 41.22(×0.71)
rfftp=128 3.14(×45.93) 35.14(×4.14) 547.13(×0.30) 0.22(×111.20) 2.53(×9.72) 40.30(×0.73)
oursp=128 1.06(×135.78) 2.00(×72.73) 20.50(×8.01) 0.08(×308.73) 0.34(×71.35) 5.03(×5.81)
fftp=256 1.89(×76.24) 19.03(×7.65) 293.25(×0.56) 0.15(×166.80) 1.61(×15.24) 25.08(×1.17)
rfftp=256 1.62(×89.17) 18.35(×7.93) 286.06(×0.57) 0.12(×194.92) 1.48(×16.63) 24.02(×1.22)
oursp=256 0.56(×256.36) 1.50(×96.97) 20.25(×8.11) 0.05(×512.42) 0.33(×74.74) 5.02 (×5.83)
fftp=512 1.02(×141.97) 10.63(×13.68) 164.50(×1.00) 0.09(×267.23) 1.09(×22.60) 17.03(×1.72)
rfftp=512 0.86(×167.28) 10.03(×14.51) 156.66(×1.05) 0.08(×312.61) 0.96(×25.68) 15.05(×1.94)
oursp=512 0.31(×461.14) 1.38(×105.78) 20.13 (×8.16) 0.03 (×764.69) 0.32 (×76.56) 5.01(×5.84)
fftp=1024 0.58(×249.23) 6.44(×22.59) 100.22(×1.64) 0.06(×382.35) 0.83(×29.76) 13.01(×2.25)
rfftp=1024 0.49(×295.88) 5.88(×24.73) 92.24(×1.78) 0.05(×447.79) 0.70(×35.15) 11.02(×2.65)
oursp=1024 0.19(×767.76) 1.31(×110.82) 20.06 (×8.19) 0.02 (×1, 014.39) 0.32 (×77.50) 5.00(×5.84)
fftp=4096 0.25(×575.07) 3.30(×44.12) 52.05(×3.16) N/A N/A N/A
rfftp=4096 0.21(×698.79) 2.78(×52.25) 44.04(×3.73) N/A N/A N/A
oursp=4096 0.09(×1, 531.54) 1.27(×114.92) 20.02(×8.21) N/A N/A N/A

Symmetry in Circulant Matrix based Training. According to Eq. 4, even though the FFT results
are naturally symmetric for real-valued inputs, there is elementwise multiplication between two FFT
results. Given that A ·B = A · B, it follows that the elementwise multiplication result maintains
the symmetry property as in FFT results of input and circulant weight vector. Therefore, the IFFT
operation input in Eq. 4 and Eq. 5 are with symmetric complex-valued input.

5 Experiments

All our experiments compare three different FFT implementations: (1) fft: standard complex-
valued FFT using torch.fft.fft/ifft from PyTorch [25]; (2) rfft: real-input FFT using
torch.fft.rfft/irfft, exploiting Hermitian symmetry; (3) ours: custom CUDA-based real-
domain FFT with in-place forward/backward implementation, reusing the input real-valued memory
for intermediate result storage.

We also include two common baselines: (1) FF: updating all trainable parameters; (2) lora[22]:
low-rank adaptation with parameter-efficient updates. For fair comparison, all runs use the same
training configuration (batch size, optimizer, precision).

5.1 Memory Efficiency

To evaluate the memory efficiency of our proposed in-place training, we conduct experiments in
two settings: (1) single-layer analysis: we perform training on a singular linear layer with different
training methods, where circulant matrix based training [10] are accomplished with different FFT
implementations; (2) full-model training: we apply the circulant fine-tuning approach [10] to
RoBERTa-large and LLaMA2-7B and monitor memory usage throughout training. All circulant
variants share the same number of trainable parameters, differing only in FFT backend.

Peak memory is recorded using PyTorch memory profiler. To better understand the memory distribu-
tion, we also visualize the breakdown of memory usage (model weights, trainable params, gradients,
others) in both the single-layer and full-model training.
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Figure 2: Memory breakdown during single-layer fine-tuning with hidden dimension D = 4096,
under two batch sizes: (a) B = 1 and (b) B = 256. Intermediate tensors are allocated during the
forward pass, while gradients appear in the backward pass. This illustrates how batch size impacts
memory allocation for activations and gradients.

5.1.1 Single Layer Training

Setups. To isolate the memory overhead introduced by different FFT implementations, we conduct
controlled experiments on a single fine-tuned layer using an NVIDIA A100 GPU. We vary the input
dimension x ∈ RB×D, with D ∈ {1024, 4096} and batch size B ∈ {1, 16, 256}. For circulant-based
methods, we further vary the block size to evaluate its influence on memory usage. Peak memory
is recorded during both forward and backward passes, and the results are reported in Tab.1. Fig.2
shows the memory breakdown for the large setup (D = 4096) under batch sizes B = 1 and B = 256,
highlighting the memory footprint of intermediate tensors created during forward computation and
gradients allocated during backpropagation. This breakdown reveals the impact of in-place FFT on
reducing transient memory usage.

Results. Tab.1 and Fig.2 clearly demonstrate the effectiveness of our in-place method. When the
batch size is small, all circulant variants show memory advantages over full fine-tuning and LoRA.
However, as the block size decreases and the batch size increases, standard FFT-based circulant layers
incur increasing overhead from intermediate tensors, especially during the forward pass. In contrast,
our method performs the entire forward computation in-place, introducing no intermediate tensors.
As shown in Fig.2, this leads to significant memory savings in the single-layer setup. Moreover,
by overwriting the grad_output in-place at the final stage of the backward pass, our method also
reduces memory usage during gradient computation.

5.1.2 Full Model Training

Setups. We conduct full-model experiments on both LLaMA2-7B and RoBERTa-large
using an NVIDIA A100 GPU. For LLaMA2-7B, we use the GSM8K dataset with
per_device_train_batch_size set to 2 and gradient_accumulation_steps set to 4. For
RoBERTa-large, we use the MRPC dataset with a batch size of 32. These configurations follow the
standard precision training setups for each task [10], and we retain them to reflect real-world GPU
memory cost. We use stochastic gradient descent (SGD) as the optimizer in all experiments.

Results. From Tab.2, we observe that all methods have the same base model memory, and the
memory for trainable_params is negligible compared to the total model size. It can be noticed that
others take up the second largest memory consumption, which is managed by PyTorch framework for
storing activations, dynamic memory allocation and release, etc. In LLaMA2-7B, gradient memory is
approximately twice that of trainable_params because the forward pass uses bf16 to reduce memory
usage, but gradients must be stored in float32 as backward computations do not support bf16. In
contrast, RoBERTa-large uses full-precision training, so the gradient memory matches the parameter
memory size.
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Table 2: Peak GPU memory usage across different training stages during one epoch on LLaMA2-7B
and RoBERTa-large. model indicates memory used to load the base model; trainable refers to memory
allocated for trainable parameters; gradient denotes the analytically estimated memory for gradients
of trainable parameters; others represents the remaining memory, computed as the difference between
the peak usage and the sum of the above three, accounting for buffers, activations, and miscellaneous
overhead.

Method
LLaMA2-7b

Method
RoBERTa-Large

model trainable gradient others total model trainable gradient others total
(GB) (MB) (MB) (GB) (GB) (GB) (MB) (MB) (GB) (GB)

FF 12.61 0.00 6144.00 8.28 26.90 FF 1.33 0.00 192.00 4.63 6.15

lorar=32 12.61 48.00 96.00 6.20 18.96 lorar=8 1.33 3.00 3.00 4.90 6.24
lorar=64 12.61 96.00 192.00 6.26 19.15 lorar=16 1.33 6.00 6.00 4.92 6.26

fftp=512 12.61 6.00 12.00 8.17 20.81 fftp=256 1.33 0.75 0.75 5.39 6.72
rfftp=512 12.61 6.00 12.00 6.65 19.28 rfftp=256 1.33 0.75 0.75 4.80 6.13
oursp=512 12.61 6.00 12.00 5.30 17.93 oursp=256 1.33 0.75 0.75 4.44 5.77
fftp=1024 12.61 3.00 6.00 6.58 19.20 fftp=512 1.33 0.38 0.38 5.41 6.74
rfftp=1024 12.61 3.00 6.00 6.55 19.17 rfftp=512 1.33 0.38 0.38 4.76 6.08
oursp=1024 12.61 3.00 6.00 5.30 17.92 oursp=512 1.33 0.38 0.38 4.44 5.77
fftp=4096 12.61 0.75 1.50 8.09 20.71 fftp=1024 1.33 0.19 0.19 5.39 6.72
rfftp=4096 12.61 0.75 1.50 6.55 19.16 rfftp=1024 1.33 0.19 0.19 4.76 6.09
oursp=4096 12.61 0.75 1.50 5.29 17.91 oursp=1024 1.33 0.19 0.19 4.44 5.77

It is also worth noting that fft and rfft implementations do not support bf16 arithmetic, limiting their
memory optimization potential during the forward pass. While full fine-tuning does not incur extra
memory for trainable_params (as the base model is updated directly), it still requires large gradient
storage due to the number of trained parameters.

Our method, in contrast, outperforms all FFT and inverse FFT operations in-place with native
support for real-valued bf16 input. Besides, our method also outperforms LoRA adapters which has
been widely adopted due to its small parameter amount and memory consumption. As a result, it
consistently achieves the lowest peak memory usage across training steps, showing superior memory
efficiency in practical fine-tuning setups.

5.2 Runtime Efficiency and Numerical Accuracy

To comprehensively evaluate the proposed rdfft operator, we analyze both its low-level computational
efficiency and numerical accuracy (operator-level), as well as its end-to-end performance when
integrated into large-scale fine-tuning tasks (model-level). This dual perspective allows us to capture
both micro-level operator behavior and macro-level training characteristics.

5.2.1 Operator-Level Evaluation

At the operator level, Tab.3 presents both runtime and numerical accuracy. At small to medium sizes
(512 and 1024), ours achieves competitive runtime with rfft, suggesting that in-place execution can be
efficient when synchronization cost is limited. At larger sizes (4096), however, the runtime overhead
increases due to CUDA thread-block limitations, where synchronization is required both within and
across blocks. Moreover, the inverse transform (ours) is faster than the forward one, since it reuses
the butterfly structure in reverse order, thereby reducing dependencies.

In terms of accuracy, since rdfft only reformulates the memory layout to support true in-place
execution, it introduces no information loss and preserves the mathematical equivalence of the Fourier
transform. Tab.3 shows that both absolute and relative errors remain at the level of floating-point
numerical noise, confirming that rdfft faithfully reproduces the FFT spectrum.

5.2.2 Model-Level Evaluation

At the model level, Tab. 4 reports both training throughput and downstream task accuracy. While our
method exhibit lower throughput compared to fft and rfft, they eliminate all intermediate buffer allo-
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Table 3: Standalone operator runtime and numerical accuracy of FFT variants. Runtime (RT, in ms) is
measured on an A800 GPU with FP32 precision, averaged over 1000 runs. Each operator is evaluated
for both forward and inverse transforms, as shown in the table. Operator-level numerical accuracy of
rfft and ours is evaluated against the torch.fft.fft baseline, with errors reported as absolute and
relative values. Entries marked as “N/A” indicate that the baseline fft is used for reference, and thus
its self-comparison is unnecessary.

p=512 p=1024 p=4096
Method fft rfft ours fft rfft ours fft rfft ours

RT forward 0.0246 0.0195 0.0279 0.0249 0.0197 0.0319 0.0252 0.0199 0.0687
inverse 0.0325 0.0450 0.0233 0.0322 0.0421 0.0272 0.0327 0.0470 0.0503

Acc. absolute N/A 1.88e-07 5.99e-07 N/A 1.92e-07 5.75e-07 N/A 2.55e-07 5.84e-07
relative N/A 0.0001 0.0008 N/A 0.0001 0.0005 N/A 0.0012 0.0018

Table 4: Runtime throughput and MRPC accuracy of different fine-tuning methods. Token-level
throughput (Thr., in k tokens/sec) is measured on LLaMA-2-7B using the GSM8K dataset with
one A800 GPU, while MRPC classification accuracy (Acc., %) is evaluated on RoBERTa-large.
Accuracy results are reported from the Block-Circulant Adapter (BCA) work [10], where only limited
configurations were provided, leading to some “N/A” entries. All lora experiments use rank r = 32.
For circulant-based methods, p denotes the block size.

Method FF lora p=512 p=1024 p=4096
fft rfft ours fft rfft ours fft rfft ours

Thr. (k) 3.29 3.36 1.45 1.77 0.92 1.45 1.77 0.93 1.45 1.77 0.93
Acc. (%) 90.9 90.2 N/A 90.7 90.0 N/A 89.7 90.3 N/A N/A N/A

cations during both forward and backward passes, resulting in substantial GPU memory savings—a
key advantage for large-scale fine-tuning under limited hardware.

In downstream evaluation on the MRPC benchmark, all experiments were repeated with multiple
random seeds for consistency. Our method achieves task-level accuracy on par with rfft and full
fine-tuning, indicating no degradation in learning quality. Together with the operator-level evidence,
these results verify that rdfft is a reliable drop-in replacement for real-input FFT computations,
offering strong memory efficiency while maintaining runtime competitiveness and numerical fidelity.

6 Conclusion

In this work, we present rdFFT, a novel real-domain, fully in-place Fourier transform framework
designed for memory-efficient neural computation. Our method enables seamless integration into
modern deep learning pipelines and supports consistent forward and backward passes entirely in
the real domain. Extensive experiments on NLU benchmarks demonstrate that rdFFT significantly
reduces memory consumption. Our results highlight the potential of operator-level memory opti-
mization as a complementary and lossless strategy to existing model compression methods. In future
work, we plan to extend rdFFT to support broader classes of structured transformations and explore
its integration with hardware-aware training frameworks for edge deployment.

Limitations. While our method enables real-valued inputs to undergo Fourier transformation
and remain in real-valued storage with a corresponding inverse transform, it inherently encodes
frequency-domain information in an implicit form. This design is well-suited for use cases that do
not require direct manipulation of the complex spectrum. However, for scenarios where explicit
access to the complex-valued frequency representation is needed—such as spectral filtering or custom
frequency-domain operations—additional logic is required to decode the real-valued encoding into a
usable complex form. Once this conversion is performed, it typically involves casting the data to a
complex type, which breaks the in-place memory symmetry and incurs additional memory overhead.
As such, our framework is most effective in applications where complex-domain access is not strictly
required.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state that our method enables a fully
in-place Fourier transform in the real domain, effectively reducing memory usage compared
to standard FFT and RFFT implementations. These claims are well-supported by the
theoretical analysis and experimental results presented in the paper, accurately reflecting the
scope and contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper explicitly discusses limitations in Sec.6, particularly the constraint
that the method encodes frequency information implicitly, which may require additional
decoding for tasks needing complex-domain access. It also notes that the method is naturally
suited for input sizes that are powers of two, though this can be mitigated via zero-padding.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper includes theoretical derivations related to the in-place real-valued
Fourier transform. All assumptions are clearly stated, and the derivations are presented in
detail within the main text to ensure completeness and correctness.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All experiments in the paper are described with detailed settings, including
model architecture, training hyperparameters, datasets, and evaluation metrics, ensuring that
the results can be independently reproduced.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will release anonymized code and scripts in the supplementary material
to reproduce the main experimental results. The provided package includes our in-place
FFT implementation, baseline methods, model loading procedures (e.g., for LLaMA-7B
and RoBERTa-Large), memory profiling scripts, and all commands needed to reproduce
the bar charts and analyses reported in the paper. Instructions on environment setup and
dependencies are also included for reproducibility.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specifies all relevant training and testing details, including dataset
splits, optimizer choices, learning rates, batch sizes, and other hyperparameters. These
details are presented in the main text.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [NA]
Justification: The experiments measure GPU memory usage, which is deterministic under
fixed settings and does not involve sources of randomness such as weight initialization
or data sampling. Therefore, statistical significance measures such as error bars are not
applicable.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The experiments were conducted on a single NVIDIA A100 GPU with 80
GB memory. Each experimental run (e.g., memory measurement for one model variant)
typically required less than 5 minutes. The total compute used across all experiments was
under 5 GPU-hours. All experiments were performed on a local server. No additional
large-scale pretraining or fine-tuning was performed beyond the reported experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Justification: The research complies with the NeurIPS Code of Ethics. It does
not involve human subjects, sensitive data, dual-use concerns, or other ethically sensitive
areas. The work focuses solely on algorithmic and system-level improvements for efficient
model training.
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Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper focuses on foundational research in memory-efficient training tech-
niques for large-scale machine learning models. It does not directly involve any deployment
scenarios or applications that would raise societal concerns. While such techniques can be
broadly useful for improving the accessibility and efficiency of ML, the work itself does not
have immediate positive or negative societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release any models or datasets that pose a high risk of
misuse. The contribution is methodological in nature, focusing on improving memory
efficiency during training, and does not involve any data or model release that would require
safeguards.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All third-party assets used in the paper, including models such as LLaMA2-7B
and RoBERTa-Large, are properly cited in the paper. We have respected and acknowledged
their original licenses (e.g., Meta’s non-commercial license for LLaMA2 and Apache 2.0
for RoBERTa).
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The paper introduces a new in-place FFT implementation for memory-efficient
training, which is a novel software asset. We provide well-documented source code, in-
cluding usage instructions, environment setup, and descriptions of each component. The
documentation accompanies the submission in anonymized form.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
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Justification: This work does not involve any crowdsourcing experiments or research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve any human subjects or crowdsourcing experiments,
and thus does not require IRB or equivalent ethical approval.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The research does not involve the use of large language models (LLMs) as
important, original, or non-standard components of the core methodology. Any LLM usage
was limited to writing assistance and does not affect the scientific contribution of the work.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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