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ABSTRACT

Sequential dense retrieval models utilize advanced sequence learning techniques
to compute item and user representations, which are then used to rank relevant
items for a user through inner product computation between the user and all item
representations. However, this approach requires storing a unique representation
for each item, resulting in significant memory requirements as the number of items
grow. In contrast, the recently proposed generative retrieval paradigm offers a
promising alternative by directly predicting item indices using a generative model
trained on semantic IDs that encapsulate items’ semantic information. Despite
its potential for large-scale applications, a comprehensive comparison between
generative retrieval and sequential dense retrieval under fair conditions is still
lacking, leaving open questions regarding performance, storage, and computa-
tion trade-offs. To address this gap, we conduct a thorough comparison of both
approaches under identical conditions and propose LIGER (Leveraglng dense re-
trieval for GEnerative Retrieval), a hybrid model that combines the strengths of
these two widely used paradigms. Our proposed model seamlessly integrates se-
quential dense into generative retrieval, effectively addressing performance dispar-
ities and improving cold-start item recommendation. This approach demonstrates
significant improvements in both efficiency and effectiveness for recommendation
systems.

1 INTRODUCTION

Sequential recommendation methods (Kang & McAuley, 2018b; Zhou et all 2020), have pre-
dominantly relied on advanced sequential modeling techniques (Hochreiter & Schmidhuber, 1997
Vaswani et al., [2017; |Radford et al.,|2019) to learn dense embeddings for each item and user. These
methods, often referred to as dense retrieval, involve computing the maximal inner product between
user and item embeddings to identify the most relevant items for a user. However, this approach re-
quires comparing every item in the dataset during the retrieval stage, which can be computationally
expensive as the number of items grows. Furthermore, each item must be represented by a unique
embedding, which needs to be learned and stored, adding to the complexity.

In contrast, generative retrieval (Rajput et al.l 2024)) is a new approach, which deviates from the
traditional embedding-centric paradigm. Instead of generating embeddings, this approach utilizes a
generative model to directly predict the item index. To better capture the sequential patterns within
item interactions, items are indexed by “semantic IDs” (Lee et al., |2022a)), which encapsulate their
semantic characteristics. During the recommendation process, the model employs beam search
decoding to predict the semantic ID (SID) of the next item based on the user’s previous interactions.
This method not only reduces the need for storing individual item embeddings but also enhances the
ability to capture deeper semantic relationships within the data.

The generative retrieval paradigm is well-positioned for future scaling in industrial recommendation
systems (Singh et al., [2023), offering significant savings in storage and inference time. However,
while recent works continue to advance the dense retrieval paradigm (Hou et al.l |2022c), genera-
tive retrieval methods are increasingly being integrated with pretrained models such as LLMs (Cao
et al.| [2024b)) to improve item recommendation. Despite these advancements, there is a notable lack
of direct comparisons under equivalent conditions, raising questions about which paradigm excels
in performance when considering storage and computation trade-offs. In this study, we compare se-
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Figure 1: Normalized Performance Gap Between Generative and Dense Retrieval Across Datasets, and How
Our Method Bridges the Gap as the Number of Retrieved Candidates Increases. The left panel illustrates the
normalized performance gap between generative and dense retrieval models across several datasets (Beauty,
Sports, Toys, Steam) for the Recall@10 metric. In this normalization, 0% represents the performance of the
generative retrieval model, while 100% corresponds to the performance of the dense retrieval model, which
is designed to utilizes the same amount of information as the generative approach. The figure highlights how
our hybrid method progressively recovers the performance gap as the number of candidates retrieved by the
generative model increases. Dense retrieval calculates the inner product between predicted item representations
and the entire item set, scaling with O(N) and requiring storage of O (V) embeddings. In contrast, generative
retrieval stores only O(t) learnable embeddings and predicts the next item using beam search, scaling with
O(tK), where K is the beam search size and ¢ is the number of Semantic IDs. Our hybrid method combines the
strengths of generative retrieval for candidate generation with dense retrieval for ranking, reducing both storage
and computational complexity compared to pure dense retrieval. This hybrid approach significantly improves
the performance of generative retrieval, narrowing the performance gap with dense retrieval, as demonstrated
by the saturating curve in the figure.

quential generative and dense retrieval models under identical conditions, revealing a performance
gap between these two approaches. Furthermore, we identify a limitation in the generative retrieval
methods’ ability to handle cold-start items, indicating an area for improvement.

To address these challenges, we propose a novel hybrid model called LIGER that synergistically
combines the strengths of generative and dense retrieval methods. Our SID-based hybrid model
leverages the computational and storage efficiencies of generative retrieval, while enhancing its ca-
pabilities in generating cold-start items and improving ranking performance through the integration
of dense retrieval techniques. By selectively applying dense retrieval to a limited set of candidates
generated by an SID-based generative module, we maintain the minimal storage requirements of the
learnable embedding in generative retrieval while significantly enhancing its performance.

In Figure [T} we present a key result comparing our method with dense and generative retrieval ap-
proaches: the generative retrieval approach we compare to adheres to the setup described in (Rajput
et al., [2024), and the sequential dense retrieval method we use for this comparison has been de-
signed to utilize the same amount of information as the generative retrieval method. For clarity of
comparison, we compute the performance gap between generative and dense retrieval methods, nor-
malizing it across different datasets to a scale of 0 to 100%. The figure illustrates the extent to which
our hybrid approach closes this gap (see Section [3] for detailed discussions). To this end, we pro-
vide a comprehensive comparison between the sequential dense and generative retrieval paradigms.
Specifically, our key contributions are as follows:

* We identify and analyze two primary limitations of the generative retrieval method: (1)
Generative retrieval exhibits a performance gap compared to dense retrieval, given the same
amount of information, and (2) it tends to overfit to items encountered during training,
resulting in a lower probability of generating cold-start items.

* We propose LIGER (Leveraglng dense retrieval for GEnerative Retrieval), a novel method
that synergistically combines the strengths of dense and generative retrieval to signifi-
cantly enhance the performance of sequential recommender systems. By integrating these
methodologies, LIGER effectively reduces the performance gap between dense and gener-
ative retrieval while improving the generation of cold-start items.
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* We conduct extensive experiments to validate the effectiveness of LIGER. Our results
demonstrate that LIGER not only outperforms existing sequential dense and generative
retrieval models on standard benchmark datasets but also shows better performance in sce-
narios involving cold-start items. Additionally, we analyze the computational efficiency
and scalability of LIGER, suggesting its potential for large-scale applications.

2 RELATED WORK

Generative Retrieval. The concept of generative retrieval was first proposed by Tay et al.,| (2022)
within the domain of document retrieval. This paradigm shifts from traditional search and retrieval
methods by encoding document information directly into the weights of a Transformer model. Sub-
sequent studies (De Cao et al.,[2020; Bevilacqua et al., | 2022; |[Feng et al.,|2022) have expanded on this
foundation, enhancing document retrieval through improvements in indexing (Lee et al., [2022bjc}
Wang et al., 2022), and the efficient continual database updates (Mehta et al.l 2022} Kishore et al.,
20235 (Chen et al., 2023)).

In the realm of sequential recommendation systems, Rajput et al.|(2024) is the first work to leverage
the generative retrieval techniques. The target item is directly generated given a user’s interaction
history, rather than selecting top items by ranking all relevant user-item pairs. A key challenge in
generative retrieval is striking a balance between memorization and generalization when encoding
items. To address this, semantic IDs have been proposed by leveraging RQ-VAE models (Lee et al.,
2022a;|Van Den Oord et al.,2017). These models encode content-based embeddings into a compact,
discrete semantic indexer that captures the hierarchical structure of concepts within an item’s con-
tent, proving to be scalable in industrial applications (Singh et al.,|2023). Recent developments (Hou
et al., 2022a) have expanded semantic-ID-based generative retrieval to include contrastive learn-
ing (Jin et al., [2024), multimodal integration (Liu et al.| [2024), tokenization techniques (Sun et al.,
2024]), and learning-to-rank methods (L1 et al., |[2024).

Sequential Dense Recommendation. Traditional sequential dense recommender models follow
the paradigm of learning representations of users, items, and their interactions with multimodal
data. Early work (Hidasi et al., |2015) proposed architectures based on traditional Recurrent Neu-
ral Networks (RNNs), while later studies (Kang & McAuley, 2018aj [Sun et al.| 2019} |de Souza
Pereira Moreira et al.,|[2021) have shifted towards the Transformer architecture to enhance perfor-
mance. Besides capturing the user-item interaction history pattern with the sequential modeling,
extra features such as item attributes (Zhang et al.l 2019} Zhou et al.,2020) has been utilized to fur-
ther improve the performance. With the recent advancements in Large Language Models (LLMs),
several works have explored using these models as the backbone for recommender systems, align-
ing item representations with LLMs to improve recommendation performance (Li et al., [2023bj
Hou et al.| |2022c} |Cao et al., 20244} |Zheng et al.| [2024). In this work, we aim to merge the sequen-
tial dense recommendation approach with generative retrieval techniques, assessing performance
gaps and computational costs, and proposing a hybrid method that combines the strengths of both
paradigms.

Cold-start Problem. Traditional challenges such as long-tail and cold-start items continue to hinder
recommendation systems. The long-tail items issue arises from skewed distributions where a few
popular items dominate user interactions (Zhang et al., 2022; 2020), while the cold-start problem
arises when new items are introduced without any historical interaction data. Recent studies (Hou
et al., [2022c} |Li et al.| [2023b)) have shown that textual embeddings can provide a robust prior for
tackling the cold-start issue, and further improvements have been achieved by integrating pretrained
LLMs (Huang et al.| 2024} Sanner et al., 2023) and knowledge graphs (Frej et al.l |2024). In this
work, we explore the cold-start problem within the context of generative retrieval and propose a
hybrid method that combines dense retrieval with textual embeddings to effectively mitigate this
issue.

3 ANALYSIS OF GENERATIVE AND DENSE RETRIEVAL PARADIGMS

In this section, we delve into the methodology of the generative retrieval approach (Rajput et al.,
2024) (see Section[3.T)), as well as the sequential dense retrieval methods such as (Hou et al.,[2022b)
(see Section[3.2)). In Section we examine the performance gap between generative retrieval and
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Figure 2: Overview of Sequential Dense Retrieval, Generative Retrieval, and Our Hybrid Retrieval Method,
LIGER. Dense Retrieval (upper left) uses an encoder model to map item IDs and text representations into
dense embeddings, which are used to predict the next item in the sequence based on similarity. Generative
Retrieval (lower left) employs an encoder-decoder Transformer to generate the next item’s semantic ID from
the given semantic ID trajectory. These semantic IDs are derived from item features such as title, brand, price,
and category (upper right). Our proposed Hybrid Retrieval, LIGER (lower right) combines both semantic
ID input and item text representations, integrating dense and generative retrieval techniques. By taking item
positions, text representations, and semantic IDs as input, and outputs both the predicted item embedding and
the next item’s representation.

traditional sequential dense retrieval methods, and then discuss the challenges generative retrieval
faces in handling item cold-start scenarios in Section [3.4}

3.1 GENERATIVE RETRIEVAL METHODOLOGY

The generative retrieval approach such as TIGER (Rajput et al.} 2024])) typically follows a two-stage
training process. The first stage involves collecting textual descriptions for each item based on their
attributes. These descriptions serve as inputs to a content model (e.g., a language encoder) that
produces item embeddings, subsequently quantized by an RQ-VAE (Lee et al.| 2022a) to attribute a
semantic ID for each item.

In the second stage of training, the item embeddings and the trained RQ-VAE model are discarded,
retaining only the semantic IDs. These IDs replace the original item indices in the item interaction
trajectory. The Transformer is then trained on these trajectories to predict the semantic IDs of
subsequent items. During inference, a set of candidate items is retrieved using beam search and
the trained Transformer, based on their semantic IDs. A visual representation of the generative
retrieval method is provided in Figure[2](Lower Left). Notably, although the textual item embeddings
are excluded from the second stage of training, they continue to play a crucial role in generating
semantic IDs.

3.2 TEXTUAL-INFORMED SEQUENTIAL DENSE RETRIEVAL METHOD

Sequential dense retrieval methods typically consist of the following components: (1) learning of
item embeddings through sequence modeling, and (2) dot-product search for retrieval. To enhance
the learning of item representation, several dense retrieval methods such as|Hou et al.| (2022b) inte-
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grate textual information with sequential interactions to facilitate transferable representation learn-
ing.

Building on these insights, we design the dense retrieval to incorporate both textual information and
sequential interaction data as follows: The item index is input into the embedding layer, and its
representation is enriched by adding the item’s textual embedding to each corresponding item index.
The sequential model is then trained to output a predicted embedding. For retrieval, we employ an
inner product search against the item embedding set, where each item’s representation consists of
both learnable item embeddings and the added textual embeddings. During training, the predicted
item embedding is compared to all other item embeddings, and a cross-entropy loss is applied to
optimize the model’s accuracy in predicting the correct items. Figure [2[ (Upper Left) provides a
detailed illustration of this dense retrieval model design.

3.3 THE IDENTIFIED PERFORMANCE GAP

As discussed in Section [3.1] and Section [3.2] both the generative retrieval model and our designed
sequential dense retrieval methods utilize item textual embeddings and sequential interaction infor-
mation. To ensure a fair comparison between the generative retrieval and dense retrieval methods,
we maintain consistency in model architecture, data preprocessing, and information utilization. The
specific details of our experiment setup are described in Section

The result is shown in Figure[I](Left), where a notable performance gap exists between the generative
and dense retrieval methods. In this section, we investigate whether the cause for this discrepency
steps from the relative inefficiency of semantic ID embedding representation compared to item ID
embedding representation. To dissect this effect, we have conducted ablation studies on the Amazon
Beauty dataset using the dense retrieval paradigm, specifically examining this factor. The studies
are structured as follows. Recall that a full-fledged dense retrieval method takes both item ID and
projected text representation as input, and outputs an embedding that matches the item ID embedding
with projected text embedding. We modify this setup in two ways:

* Input: Item ID and learnable text representation; Output: learnable text representation;

* Input: Semantic ID and learnable text representation; Output: learnable text representation.

The results, depicted in Figure[3] show that using semantic IDs as input and predicting the item text
representation as the target allows the dense retrieval method to recover approximately 75% of the
performance gap between the generative and dense retrieval methods with item ID representation.

This indicates that the primary contributor to the performance gap is the inefficiency of the next-
token prediction loss in generating retrieved items, rather than the semantic ID representation itself.

Beauty: Recall@10

100% 0.093 Figure 3: Comparison of Recall@ 10 on Amazon Beauty across

N ) different ablation methods. The left y-axis shows the normalized
-3 o performance gap between generative and dense retrieval, and the
3¢ - right y-axis shows the actual Recall@10. The ablation studies
EE5*T }/I‘}H 10077 (ID+text and SID+text) recover approximately 75% of the perfor-
Se ® LIGER (Ours) mance gap, highlighting the inherent gap between dense and gen-
2 @ ID+text erative retrieval. Our proposed hybrid method, LIGER, partially

o ® SID+text 0.06 bridges this gap. As the number of retrieved candidates increases

(x-axis), our method consistently improves generative retrieval,

10 50 100 .. N
# Candidates Retrieved by Gen. Ret. further closing the gap with dense retrieval.

3.4 CHALLENGES IN COLD-START ITEM PREDICTION WITH GENERATIVE RETRIEVAL
MODELS

In addition to the performance gap previously identified, our investigation extends to the cold-start
item generation problem, a critical issue in the dynamic environment of real-world recommenda-
tion systems. As new items are continuously introduced, they often lack sufficient user interactions,
which impedes their predictability until a significant amount of interaction data is gathered. For
dense retrieval, the inclusion of item textual embeddings provide some prior information, thus par-
tially retaining the ability to retrieve cold-start items.
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Figure 4: Generative Retrieval Model Fails to Generate Cold-Start Items. On the left, an example shows the
generative retrieval model failing to predict the cold-start item with ID 64, instead predicting a previously seen
item (ID 1042). On the right, we plot the probability of generating cold-start items on the Amazon Beauty
dataset, compared to the minimal probability achievable by beam search when retrieving the top 10 items.
Beam search predictions exhibit significantly higher probabilities than the ground-truth cold-start items.

Hence, a natural research question arises: Can generative retrieval models, which also leverage item
textual embeddings in their process to generate semantic indices, predict cold-start items? To ex-
plore this, we monitored the cold-start item generation probability for the trained generative model
and present the results in Figure ] (Right). The results reveal that the model’s learned conditional
probability tends to overfit to items encountered during training, resulting in a significantly dimin-
ished ability to generate cold-start items. In fact, the generation probability often falls below the
minimal probability achievable by the beam search. This limitation underscores the generative re-
trieval model’s challenges in generalizing to unseen item sets, highlighting a crucial area for further
improvement and research.

It is worth noting that Rajput et al.[(2024), propose an alternative solution to mitigate the issue of
cold-start item generation. Their approach involves setting a predefined threshold ¢ for cold-start
item within the retrieved candidate set of K items, effectively generating K - € cold-start items.
However, this method relies on prior knowledge of the ratio between recommended cold-start and
non-cold-start items, which may not always be available. Moreover, the cold-start item with the
minimal generation probability may no longer retain its relevance or intended impact. Therefore,
we argue that the challenges in cold-start item generation persist for generative retrieval models,
indicating a need for more robust solutions that do not depend heavily on predefined parameters or
assumptions.

4 METHODOLOGY

The notion that “there is no free lunch” holds true in the context of retrieval methods. As concluded
from the previous section, a performance gap exists between generative retrieval and traditional
dense retrieval, and generative retrieval struggles to generate cold-start items. The advanced per-
formance of dense retrieval comes at the expense of increased storage, learning, and inference cost.
Conversely, generative retrieval excels in efficiency but lags behind in performance.

The trade-offs between approaches are summarized in Table[I] where N represents the total number
of items, ¢ denotes the total number of semantic IDs, and K is the number of candidates to be
retrieved during inference.

Table 1: Comparison of Dense Retrieval, Generative Retrieval, and Our Hybrid Retrieval Methods Across
Different Costs. Here N represents the total number of items, ¢ denotes the total number of semantic IDs used
by generative retrieval method, and K indicates the number of candidates retrieved during inference.

Dense Retrieval Generative Retrieval LIGER (Ours)

Learnable Embedding O(N) O(t) O(t)
(Fixed) Item Embedding Stored During Training O(N) 0(1) O(N)
Inference Cost O(N) O(tK) O(tK)
Cold-Start Item Generation Yes No Yes
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In this section, we propose a hybrid method, called LIGER, that combines the strengths of both
approaches. Our goal is to utilize efficient learnable embeddings and reduce inference costs while
enabling the generative retrieval model to generate cold-start items and bridge the gap with dense
retrieval. To achieve this, we integrate textual item embeddings into the sequential model training
phase of the generative retrieval method. Although this increases the storage cost for item embed-
dings during training, it significantly improves the performance of generative retrieval and enables
cold-start item generation. The associated costs of LIGER are detailed in the last column of Table[T]

LIGER builds upon the semantic-ID-based input format and the beam search decoding used in gen-
erative retrieval. Following the design choice in dense retrieval, we augment the input of the genera-
tive retrieval model with the textual item embeddings. Additionally, we modify the model to output
predicted embeddings for each item, enriching the information processed during retrieval. Figure
(Lower Right) provides a detailed illustration of LIGER, showcasing the integration and workflow
of the enhanced model. During inference, the semantic ID prediction head retrieves K items, which
are then supplemented with natural cold-start items and ranked using the output embedding head.

The efficacy of LIGER is demonstrated in Figure [I] (left), where it consistently improves upon
the generative retrieval method across datasets, significantly narrowing the performance gap with
dense retrieval. Furthermore, as shown in Figure [3| on the Beauty dataset, our method approaches
the performance upper bound set by the dense retrieval method with semantic ID as input. We
hypothesize that the remaining performance gap may be attributed to the weight sharing mechanism
for multi-objective optimization in our model (Lakkapragada et al., 2023} |Yu et al.| |2020; Javaloy
& Valeral 2021)). In the next section, we will demonstrate the effectiveness of our method across
various datasets and baseline methods.

5 EXPERIMENTAL SETUP AND RESULTS

In this section, we present the experimental results across various datasets and baseline methods,
showcasing the performance on both in-set and cold-start items. Specifically, we assess the cold-
start performance by testing on items that are naturally unseen during training, which is determined
by the dataset statistics.

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate LIGER on the following 4 datasets. We preprocess the datasets using the
standard 5-core filtering method (Zhang et al., |2019; |Zhou et al., 2020) which removes items with
fewer than 5 users and users with fewer than 5 interactions. We also truncate sequences to a maxi-
mum length of 20. The resulting dataset statistics are detailed in Table [2]

* Amazon Beauty, Sports, and Toys (He & McAuley, 2016): We use the Amazon Review dataset
(2014), focusing on three categories: Beauty, Sports and Outdoors, and Toys and Games. For
each item, we construct embeddings by incorporating four key attributes: title, price, category, and
description.

» Steam (Kang & McAuley, [2018b): The dataset comprises online reviews of video games, from
which we extract relevant attributes to construct item embeddings. Specifically, we utilize the fol-
lowing attributes: title, genre, specs, tags, price, and publisher. To reduce the dataset size and make
it more manageable, we apply subsampling by selecting every 7th sequence, thereby retaining a
representative subset of the data.

When generating the item textual embedding, the item attributes are processed using the sentence-T5
model N1 et al.| (2021)).

Semantic ID Generation. Utilizing the textual embeddings generated from the sentence-TS model,
we employ a 3-layer MLP for both the encoder and decoder in the RQ-VAE [Lee et al.| (2022a).
The RQ-VAE features three levels of learnable codebooks, each with a dimension of 128 and a
cardinality of 256. We use the AdamW optimizer to train the RQ-VAE, setting the learning rate at
0.001 and the weight decay at 0.1. To prevent collisions (i.e., the same semantic ID representing
different items), following |Rajput et al.| (2024)) we append an extra token at the end of the ordered
semantic codes to ensure uniqueness.
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Table 2: Dataset statistics after applying 5-core filtering to both users and items. The first three
datasets (Beauty, Sports, and Toys) are subsets of the Amazon review dataset.

Dataset #users #items #actions # cold-start items
Beauty 22,363 12,101 198,502 43

Toys and Games 19412 11,924 167,597 56

Sports and Outdoors 35,598 18,357 296,337 81

Steam 47,761 12,012 599,620 400

Sequential Modeling Architecture. For the generative model, we utilize the T5 (Raffel et al.,[2020)
encoder-decoder model, configuring both the encoder and decoder with 6 layers, an embedding di-
mension of 128, 6 heads, and a feed-forward network hidden dimension of 1024. The dense retrieval
model designed in Section employs only the T5-encoder with 6 layers, while maintaining the
same hyper-parameters. We use the AdamW optimizer with a learning rate of 0.0003, a weight
decay parameter of 0.035, and a cosine learning rate scheduler.

Evaluation Metrics. We assess the model’s performance using Normalized Discounted Cumulative
Gain (NDCG)@10 and Recall@10. For dataset splitting, we adopt the leave-one-out strategy fol-
lowing (Kang & McAuley, 2018b; Zhou et al.| 2020} |[Rajput et al., [2024), designating the last item
as the test label, the preceding item for validation, and the remainder for training. During training,
early stopping is applied based on the in-set NDCG@ 10 validation metric. For our method, we as-
sess the validation performance of the two components: (A) the semantic ID prediction head and (B)
the output embedding head. To ensure a balanced evaluation, we implement early stopping based
on the sum of in-set NDCG@ 10 for component (A) and in-set Recall@10 for component (B). To
ensure fair evaluation of cold-start items, we exclude them from semantic ID generation to prevent
data contamination.

Baselines. We compare our methods with five state-of-the-art Item-ID-based dense retrieval meth-
ods, including:

1. SASRec (Kang & McAuley, 2018b)). A self-attention based sequential recommendation
model that learns to predict the next item ID based on the user’s interaction history.

2. FDSA (Zhang et al.| 2019) [feature-informed]. This method extends SASRec by incorpo-
rating item features into the self-attention model, allowing it to leverage prior information
about cold-start items through their attributes.

3. S3Rec (Zhou et al., 2020) [feature-informed]. A self-attention based model that utilizes
data correlation to create self-supervision signals, improving sequential recommendation
through pre-training.

4. UnisRec (Hou et al., 2022b) [modality-based]. A model that learns universal item repre-
sentations by utilizing associated description text and a lightweight encoding architecture
that incorporates parametric whitening and a mixture-of-experts adaptor. We fine-tune the
released pretrained model in the transductive setting.

5. Recformer (Li et al., 2023a) [modality-based]. A bidirectional Transformer-based model
that encodes item information using key-value attributes described by text. We fine-tune
the pre-trained model on the downstream datasets.

We also compare LIGER against TIGER (Rajput et al., 2024), a semantic ID-based generative
retrieval method. Although subsequent works have built upon this paradigm using large language
models (LLMs) (Zheng et al.l 2023} |Cao et al., |2024b), they rely on pre-trained LLMs, which are
outside the scope of our comparisons.

Experimental Results. The results from the benchmark dataset are presented in Table 3| where
the mean and standard deviation are calculated across three random seed runs. Traditional item-ID-
based methods, such as SASRec exhibit poor in-set performance compared to semantic-ID-based
models. However, when attribute information is included, models like FDSA and S3-Rec show
improved in-set performance. Nevertheless, their performance on cold-start items remains subpar
due to the static nature of item embeddings. In contrast, models that utilize text representations
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Table 3: Performance Comparison Across Baseline Methods on Amazon Beauty, Sports, Toys, and Steam
Datasets. The best performance is highlighted in bold, and the second-best performance is underlined. Our
method consistently achieves either the best or second-best performance across all datasets, closely followed
by modality-based baselines (UniSRec or RecFormer). We report LIGER’s results where generative retrieval
is used to retrieve 20 items, followed by the sequential dense retrieval.

NDCG@101 Recall@101
Methods Inference Cost
In-set Cold In-set Cold

SASRec O(N) 0.02179 + 0.00023 0.0 £0.0 0.05109 + 0.00042 0.0£0.0
FDSA O(N) 0.02244 + 0.00135 0.0 £ 0.0 0.04530 + 0.00357 0.0 £0.0

g‘ S3-Rec O(N) 0.02279 + 0.00058 0.0 £0.0 0.05226 + 0.00229 0.0£0.0

3 UniSRec O(N) 0.03346 4+ 0.00057 0.01422 4+ 0.00128 0.06937 £ 0.00110  0.03704 + 0.00000

A RecFormer O(N) 0.02880 + 0.00085 0.01955 4 0.00433  0.06265 £ 0.00196  0.04733 + 0.00943
TIGER O(tK) 0.03216 + 0.00084 0.0 £0.0 0.06009 + 0.00204 0.0£0.0
LIGER (Ours) O(tK) 0.03879 + 0.00070  0.02483 + 0.00131  0.07500 £ 0.00137  0.07407 + 0.00617
SASRec O(N) 0.01160 + 0.00038 0.0 £ 0.0 0.02696 + 0.00102 0.0 £0.0
FDSA O(N) 0.01391 + 0.00162 0.0 £0.0 0.02699 + 0.00312 0.0£0.0

g S3-Rec O(N) 0.01097 + 0.00033 0.0 £ 0.0 0.02557 + 0.00034 0.0 £0.0

2., UniSRec O(N) 0.01814 +0.00041  0.00676 £ 0.00244  0.03753 £ 0.00106  0.01559 + 0.00447

“ RecFormer O(N) 0.01318 4+ 0.00053  0.01797 £ 0.00000 0.02921 £ 0.00167  0.03801 + 0.00000
TIGER O(tK) 0.01989 + 0.00085 0.00064 £ 0.00056 0.03822 + 0.00109 0.00195 + 0.00169
LIGER (Ours) O(tK) 0.02437 + 0.00070  0.01254 4 0.00256  0.04642 + 0.00127 0.03314 + 0.00338
SASRec O(N) 0.02756 + 0.00079 0.0 £ 0.0 0.06314 + 0.00178 0.0 £0.0
FDSA O(N) 0.02375 + 0.00277 0.0 £ 0.0 0.04684 + 0.00483 0.0 £0.0

2 S%-Rec O(N) 0.02942 + 0.00071 0.0 £ 0.0 0.06659 + 0.00135 0.0 £0.0

2 UniSRec O(N) 0.03622 4+ 0.00056  0.01090 £ 0.00084 0.07472 £ 0.00058 0.02477 + 0.00195
RecFormer O(N) 0.03697 + 0.00052  0.04432 £ 0.00094 0.07971 £ 0.00170  0.10023 + 0.00516
TIGER O(tK) 0.02949 + 0.00049 0.0 £ 0.0 0.05782 + 0.00163 0.0 £ 0.0
LIGER (Ours) O(tK) 0.03864 + 0.00042 0.03527 4 0.00518 0.07591 £ 0.00132  0.09347 + 0.01086
SASRec O(N) 0.14763 £+ 0.00051 0.0 £0.0 0.18259 + 0.00055 0.0£0.0
FDSA O(N) 0.08236 + 0.00152 0.0 £ 0.0 0.14773 4+ 0.00234 0.0 £0.0

g S%-Rec O(N) 0.14437 £ 0.00127 0.0 £0.0 0.18025 = 0.00222 0.0 £ 0.0

8 UniSRec O(N) - - - -

“* RecFormer O(N) - - - -
TIGER O(tK) 0.15034 + 0.00064 0.0 £0.0 0.18980 + 0.00135 0.0£0.0
LIGER (Ours) O(tK) 0.14876 4+ 0.00077  0.00377 £ 0.00100 0.19281 + 0.00149  0.01083 + 0.00292

and pre-training, such as UniSRec and RecFormer, demonstrate enhanced capabilities in handling
cold-start item scenarios. The inclusion of text embeddings pre-training enables these models to
better handle unseen items. TIGER, which is a semantic-ID-based generative retrieval model, out-
performs item-ID-based methods in terms of in-set performance but still struggles with cold-start
item generation.

Our model, LIGER, builds upon TIGER by using semantic-ID-based inputs and combining dense
retrieval with semantic ID generation as outputs. This approach significantly improves upon the
TIGER method and enables effective generation of cold-start items. Across all datasets, our method
consistently achieves either the best or second-best performance, closely followed by modality-
based baselines such as UniSRec and RecFormer. We adopt a hybrid approach for our reporting,
where we use generative retrieval to retrieve 20 items and then rank them using dense retrieval,
including cold-start items. Comprehensive result including performance of LIGER with different
number of retrieved items from generative retrieval is presented in Table

6 DISCUSSION

Addressing Cold-Start Items with Hybrid Retrieval Models. The generative retrieval method’s
struggle with cold-start items primarily stems from overfitting to familiar semantic IDs during train-
ing, as discussed in Section[3.4] To mitigate this issue, LIGER efficiently combines dense retrieval
with generative retrieval. Specifically, LIGER first generates a small set of K candidates (where
K < N) using generative retrieval, and then supplements these candidates with a set of cold-start
items, similar to the approach used in dense retrieval methods. This significantly reduces the can-
didate set for LIGER, thanks to its generative retrieval module. By integrating dense retrieval, we
ensure that even if the generative retrieval retrieves fewer than N items, the model still achieves a
baseline level of performance for cold-start scenarios, comparable to considering all item sets. As
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shown in Table [4] the dense retrieval component guarantees a minimum level of cold-start perfor-
mance by leveraging item text embeddings as prior information.

Comparative Performance with Current Dense Retrieval Methods. While LIGER outperforms
existing baselines, its primary objective is to strike a balance between the two frameworks under
discussion. As highlighted in previous sections, there are notable performance discrepancies be-
tween generative and dense retrieval methods, despite using the same input information and model
architecture. Our primary goal is to bridge the gap between these two distinct recommendation
paradigms, enhancing a deeper understanding of their respective strengths, weaknesses, and associ-
ated costs. The results presented should illuminate potential future directions for integrating these
paradigms more effectively. By exploring the synergy between generative and dense retrieval, we
hope to inspire future directions for integrating these paradigms more effectively, leading to devel-
opment of more robust recommendation systems.

7 CONCLUSION

In this work, we conducted a comprehensive comparison between traditional dense retrieval meth-
ods and the emerging generative retrieval approach. Our analysis revealed the limitations of dense
retrieval, including high computational and storage requirements, while highlighting the advantages
of generative retrieval, which uses semantic IDs and generative models to enhance efficiency and se-
mantic understanding. Furthermore, we have identified the challenges faced by generative retrieval,
particularly in handling cold-start items and matching the performance of dense retrieval. To ad-
dress these challenges, we introduced a novel hybrid model, LIGER, that combines the strengths
of both approaches. Our findings demonstrate that our hybrid model surpasses existing models in
handling cold-start scenarios and achieves advanced overall performance on benchmark datasets.
Furthermore, it offers scalability and computational efficiency, making it suitable for large-scale
applications.

Looking ahead, the fusion of dense and generative retrieval methods holds tremendous potential
for advancing recommendation systems. Our research provides a foundation for further exploration
into hybrid models that capitalize on the strengths of both retrieval types. As these models con-
tinue to evolve, they will become increasingly practical for real-world applications, enabling more
personalized and responsive user experiences.
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A APPENDIX

In Table @ we present the full results on the benchmark, where our method with different number
of retrieved candidates from generative retrieval are shown.
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Table 4: Performance Table for Amazon Beauty, Sports, Toys, and Steam Datasets Across Various Baseline
Methods. In this table, we present our method with different number of retrieved candidates from generative
retrieval.

NDCG @101 Recall@101
Datasets Methods Inference Cost
In-set Cold In-set Cold

SASRec O(N) 0.02179 + 0.00023 0.0£0.0 0.05109 + 0.00042 0.0 £ 0.0
FDSA O(N) 0.02244 + 0.00135 0.0 £0.0 0.04530 + 0.00357 0.0 £0.0
S3-Rec O(N) 0.02279 + 0.00058 0.0 £0.0 0.05226 + 0.00229 0.0 £ 0.0
UniSRec O(N) 0.03346 + 0.00057  0.01422 4+ 0.00128  0.06937 £ 0.00110  0.03704 + 0.00000
RecFormer O(N) 0.02880 + 0.00085  0.01955 4 0.00433  0.06265 £ 0.00196  0.04733 + 0.00943
TIGER O(tK) 0.03216 + 0.00084 0.0£0.0 0.06009 =+ 0.00204 0.0£0.0
Ours (K = 20) O(tK) 0.03879 + 0.00070  0.02483 4+ 0.00131  0.07500 £ 0.00137  0.07407 + 0.00617
Ours (K = 40) O(tK) 0.03938 + 0.00093  0.01730 £ 0.00295 0.07647 £+ 0.00196 0.05144 + 0.01285
Ours (K = 60) O(tK) 0.03945 + 0.00099  0.01689 £ 0.00320 0.07686 £ 0.00210  0.05144 + 0.01285
Ours (K = 80) O(tK) 0.03958 + 0.00105  0.01619 £ 0.00249  0.07717 £ 0.00225 0.04938 + 0.01069
Ours (K = 100) O(tK) 0.03960 &+ 0.00098  0.01551 +0.00345 0.07726 £ 0.00222  0.04733 £ 0.01426
Ours (K = N) O(N) 0.04003 + 0.00057 0.01165 4 0.00277 0.07854 £+ 0.00100  0.03498 + 0.01285
SASRec O(N) 0.01160 + 0.00038 0.0+ 0.0 0.02696 + 0.00102 0.0+ 0.0
FDSA O(N) 0.01391 + 0.00162 0.0 £ 0.0 0.02699 + 0.00312 0.0 £0.0
S3-Rec O(N) 0.01097 + 0.00033 0.0+ 0.0 0.02557 + 0.00034 0.0+ 0.0
UniSRec O(N) 0.01814 + 0.00041  0.00676 4 0.00244  0.03753 £+ 0.00106  0.01559 + 0.00447
RecFormer O(N) 0.01318 +0.00053  0.01797 £ 0.00000 0.02921 £ 0.00167  0.03801 + 0.00000
TIGER O(tK) 0.01989 + 0.00085  0.00064 £ 0.00056 0.03822 £ 0.00109  0.00195 + 0.00169
Ours (K = 20) O(tK) 0.02437 £ 0.00070  0.01254 £ 0.00256  0.04642 £ 0.00127  0.03314 + 0.00338
Ours (K = 40) O(tK) 0.02485 + 0.00081  0.00719 £ 0.00314  0.04791 £ 0.00155 0.01852 + 0.00675
Ours (K = 60) O(tK) 0.02488 + 0.00080  0.00580 + 0.00235 0.04809 £ 0.00141  0.01462 + 0.00506
Ours (K = 80) O(tK) 0.02496 + 0.00087  0.00564 £ 0.00210 0.04818 £ 0.00177  0.01462 + 0.00506
Ours (K = 100) O(tK) 0.02498 + 0.00094  0.00515 £ 0.00217  0.04828 £ 0.00193  0.01365 + 0.00609
Ours (K = N) O(N) 0.02529 + 0.00107  0.00350 4 0.00183  0.04929 + 0.00224  0.00975 + 0.00447
SASRec O(N) 0.02756 + 0.00079 0.0£0.0 0.06314 + 0.00178 0.0£0.0
FDSA O(N) 0.02375 + 0.00277 0.0+ 0.0 0.04684 + 0.00483 0.0+ 0.0
S%-Rec O(N) 0.02942 + 0.00071 0.0£0.0 0.06659 + 0.00135 0.0£0.0
UniSRec O(N) 0.03622 + 0.00056  0.01090 £ 0.00084 0.07472 + 0.00058  0.02477 + 0.00195
RecFormer O(N) 0.03697 + 0.00052  0.04432 4+ 0.00094 0.07971 £ 0.00170  0.10023 + 0.00516
TIGER O(tK) 0.02949 + 0.00049 0.0 £0.0 0.05782 + 0.00163 0.0 £ 0.0
Ours (K = 20) O(tK) 0.03864 + 0.00042  0.03527 £+ 0.00518  0.07591 £ 0.00132  0.09347 £ 0.01086
Ours (K = 40) O(tK) 0.03967 + 0.00041  0.02778 4+ 0.00628 0.07894 + 0.00058  0.07207 + 0.01407
Ours (K = 60) O(tK) 0.03978 + 0.00057  0.02463 4+ 0.00381 0.07944 + 0.00066 0.06419 + 0.01014
Ours (K = 80) O(tK) 0.03998 + 0.00060 0.02369 + 0.00454 0.08026 £ 0.00063  0.06194 + 0.01365
Ours (K = 100) O(tK) 0.04010 = 0.00068  0.02323 £ 0.00403  0.08061 £ 0.00081 0.06081 + 0.01218
Ours (K = N) O(tK) 0.04089 + 0.00136  0.01972 £ 0.00352  0.08300 £ 0.00260  0.05180 =+ 0.00975
SASRec O(N) 0.14763 + 0.00051 0.0£0.0 0.18259 + 0.00055 0.0 £0.0
FDSA O(N) 0.08236 + 0.00152 0.0+ 0.0 0.14773 + 0.00234 0.0+ 0.0
S%-Rec O(N) 0.14437 + 0.00127 0.0£0.0 0.18025 + 0.00222 0.0£0.0
UniSRec O(N) - - - -
RecFormer O(N) - - - -

TIGER O(tK) 0.15034 + 0.00064 0.0 £0.0 0.18980 + 0.00135 0.0 £0.0
Ours (K = 20) O(tK) 0.14876 + 0.00077  0.00377 4+ 0.00100  0.19281 £ 0.00149  0.01083 + 0.00292
Ours (K = 40) O(tK) 0.14865 + 0.00063  0.00227 £ 0.00053  0.19236 £ 0.00100  0.00637 + 0.00110
Ours (K = 60) O(tK) 0.14865 + 0.00066  0.00177 4+ 0.00101  0.19237 £+ 0.00102  0.00510 + 0.00292
Ours (K = 80) O(tK) 0.14864 + 0.00072  0.00156 4 0.00080 0.19225 £ 0.00107  0.00446 + 0.00221
Ours (K = 100) O(tK) 0.14863 + 0.00069  0.00156 4 0.00080 0.19218 £ 0.00100  0.00446 + 0.00221
Ours (K = N) O(tK) 0.14870 = 0.00070  0.00089 £ 0.00077  0.19239 £ 0.00111  0.00255 =+ 0.00221
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