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Abstract

Detecting 3D keypoints from point clouds is important for shape reconstruction,
while this work investigates the dual question: can shape reconstruction benefit
3D keypoint detection? Existing methods either seek salient features according
to statistics of different orders or learn to predict keypoints that are invariant to
transformation. Nevertheless, the idea of incorporating shape reconstruction into
3D keypoint detection is under-explored. We argue that this is restricted by former
problem formulations. To this end, a novel unsupervised paradigm named SNAKE
is proposed, which is short for shape-aware neural 3D keypoint field. Similar to re-
cent coordinate-based radiance or distance field, our network takes 3D coordinates
as inputs and predicts implicit shape indicators and keypoint saliency simultane-
ously, thus naturally entangling 3D keypoint detection and shape reconstruction. We
achieve superior performance on various public benchmarks, including standalone
object datasets ModelNet40, KeypointNet, SMPL meshes and scene-level datasets
3DMatch and Redwood. Intrinsic shape awareness brings several advantages as
follows. (1) SNAKE generates 3D keypoints consistent with human semantic
annotation, even without such supervision. (2) SNAKE outperforms counterparts
in terms of repeatability, especially when the input point clouds are down-sampled.
(3) the generated keypoints allow accurate geometric registration, notably in a
zero-shot setting. Codes are available at https://github.com/zhongcl-thu/SNAKE.

1 Introduction

2D sparse keypoints play a vital role in reconstruction [32], recognition [22] and pose estimation
[43], with scale invariant feature transform (SIFT) [19] being arguably the most important pre-
Deep Learning (DL) computer vision algorithm. Altough dense alignment using photometric or
featuremetric losses is also successful in various domains [2, 36, 8], sparse keypoints are usually
preferred due to compactness in storage/computation and robustness to illumination/rotation. Just like
their 2D counterparts, 3D keypoints have also drawn a lot of attention from the community in both
pre-DL [13, 35] and DL [15, 1, 38] literature, with various applications in reconstruction [45, 41]
and recognition[26, 34].

However, detecting 3D keypoints from raw point cloud data is very challenging due to sampling
sparsity. No matter how we obtain raw point clouds (e.g., through RGB-D cameras [40], stereo
[4], or LIDAR [10]), they are only a discrete representation of the underlying 3D shape. This fact
drives us to explore the question of whether jointly reconstructing underlying 3D shapes helps 3D
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Figure 1: A comparison between existing 3D keypoint detection formulations and our newly proposed
one. (a) USIP-like methods directly predict keypoint coordinates from input point clouds P . (b)
UKPGAN-like methods predict saliency scores for P . Using chamfer distance, it reconstructs P
coordinates based on the saliency scores and latent features. (c) Our SNAKE formulation predicts
saliency probabilities and shape indicators simultaneously for each continuous query point q instead
of discrete point clouds P . Sub-networks used for keypoint detection and reconstruction are shown
in yellow and red, although they have different formulations. Here, the occupied points are those on
the input surface.

keypoint detection. To our knowledge, former methods have seldom visited this idea. Traditional
3D keypoint detection methods are built upon some forms of first-order (e.g., density in intrinsic
shape signature [44]) or second-order (e.g., curvature in mesh saliency [14]) statistics, including
sophisticated reformulation like heat diffusion [33]. Modern learning-based methods rely upon the
idea of consistency under geometric transformations, which can be imposed on either coordinate like
USIP [15] or saliency value like D3Feat [1]. The most related method that studies joint reconstruction
and 3D keypoint detection is a recent one named UKPGAN [38], yet it reconstructs input point cloud
coordinates using an auxiliary decoder instead of the underlying shape manifold.

Why is this promising idea under-explored in the literature? We argue the reason is that former
problem formulations are not naturally applicable for reconstructing the underlying shape surface.
Existing paradigms are conceptually illustrated in Fig. 1. USIP-like methods directly output keypoint
coordinates while UKPGAN-like methods generate saliency values for input point clouds. In both
cases, the representations are based upon discrete point clouds. By contrast, we reformulate the
problem using coordinate-based networks, as inspired by the recent success of neural radiance fields
[21, 17, 29] and neural distance fields [23, 31]. As shown in Fig. 1-c, our model predicts a keypoint
saliency value for each continuous input query point coordinate q(x, y, z).

A direct advantage of this new paradigm is the possibility of tightly entangling shape reconstruction
and 3D keypoint detection. As shown in Fig. 1-c, besides the keypoint saliency decoder, we attach
a parallel shape indicator decoder that predicts whether the query point q is occupied. The input
to decoders is feature embedding generated by trilinearly sampling representations conditioned on
input point clouds P . Imagine a feature embedding at the wing tip of an airplane, if it can be used to
reconstruct the sharp curvature of the wing tip, it can be naturally detected as a keypoint with high
repeatability. As such, our method is named as shape-aware neural 3D keypoint field, or SNAKE.

Shape awareness, as the core feature of our new formulation, brings several advantages. (1) High
repeatability. Repeatability is the most important metric for keypoint detection, i.e., an algorithm
should detect the same keypoint locations in two-view point clouds. If the feature embedding can
successfully reconstruct the same chair junction from two-view point clouds, they are expected to
generate similar saliency scores. (2) Robustness to down-sampling. When input point clouds are
sparse, UKPGAN-like frameworks can only achieve reconstruction up to the density of inputs. In
contrast, our SNAKE formulation can naturally reconstruct the underlying surface up to any resolution
because it exploits coordinate-based networks. (3) Semantic consistency. SNAKE reconstructs the
shape across instances of the same category, thus naturally encouraging semantic consistency although
no semantic annotation is used. For example, intermediate representations need to be similar for
successfully reconstructing different human bodies because human shapes are intrinsically similar.

To summarize, this study has the following two contributions:
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• We propose a new network for joint surface reconstruction and 3D keypoint detection based
upon implicit neural representations. During training, we develop several self-supervised
losses that exploit the mutual relationship between two decoders. During testing, we design
a gradient-based optimization strategy for maximizing the saliency of keypoints.

• Via extensive quantitative and qualitative evaluations on standalone object datasets Model-
Net40, KeypointNet, SMPL meshes, and scene-level datasets 3DMatch and Redwood, we
demonstrate that our shape-aware formulation achieves state-of-the-art performance under
three settings: (1) semantic consistency; (2) repeatability; (3) geometric registration.

2 Related Work

3D Keypoint Detector As discussed in the introduction, 3D keypoint detection methods can be mainly
categorized into hand-crafted and learning-based. Popular hand-crafted approaches [44, 30, 28]
employ local geometric statistics to generate keypoints. These methods usually fail to detect consistent
keypoints due to the lack of global context, especially under real-world disturbances, such as density
variations and noise. USIP [15] is a pioneering learning-based 3D keypoint detector that outperforms
traditional methods by a large margin. However, the detected keypoints are not semantically salient,
and the number of keypoints is fixed. Fernandez et al. [9] exploit the symmetry prior to generate
semantically consistent keypoints. But this method is category-specific, limiting the generalization to
unseen categories and scenes. Recently, UKPGAN [38] makes use of reconstruction to find semantics-
aware 3D keypoints. Yet, it recovers explicit coordinates instead of implicit shape indicators. As
shown in Fig. 1, different from these explicit keypoint detection methods, we propose a new detection
framework using implicit neural fields, which naturally incorporates shape reconstruction.

Implicit Neural Representation Our method exploits implicit neural representations to parameterize
a continuous 3D keypoint field, which is inspired by recent studies of neural radiance fields [17, 21, 29]
and neural distance fields [23, 31, 16, 42]. Unlike explicit 3D representations such as point clouds,
voxels, or meshes, implicit neural functions can decode shapes continuously and learn complex shape
topologies. To obtain fine geometry, ConvONet [24] proposes to use volumetric embeddings to get
local instead of global features [20] of the input. Recently, similar local geometry preserving networks
show a great success for the grasp pose generation [12] and articulated model estimation [11]. They
utilize the synergies between their main tasks and 3D reconstruction using shared local representations
and implicit functions. Unlike [11, 12] that learn geometry as an auxiliary task, our novel losses
tightly couple surface occupancy and keypoint saliency estimates.

3 Method

This section presents SNAKE, a shape-aware implicit network for 3D keypoint detection. SNAKE
conditions two implicit decoders (for shape and keypoint saliency) on shared volumetric feature
embeddings, which is shown in Fig. 2-framework. To encourage repeatable, uniformly scattered,
and sparse keypoints, we employ several self-supervised loss functions which entangle the predicted
surface occupancy and keypoint saliency, as depicted in the middle panel of Fig. 2. During inference,
query points with high saliency are further refined by gradient-based optimization since the implicit
keypoint field is continuous and differentiable, which is displayed in Fig. 2-inference.

3.1 Network Architecture

Point Cloud Encoder As fine geometry is essential to local keypoint detection, we adopt the
ConvONets [24], which can obtain local details and scale to large scenes, as the point cloud encoder
denoted fθen for SNAKE. Given an input point cloud P ∈ RN×3, our encoder firstly processes it
with the PointNet++ [25] (or alternatives like [46]) to get a feature embedding Z ∈ RN×C1 , where N
and C1 are respectively the number of points and the dimension of the features. Then, these features
are projected and aggregated into structured volume Z ′ ∈ RC1×H×W×D, where H , W and D are
the number of voxels in three orthogonal axes. The volumetric embeddings serve as input to the 3D
UNet [6] to further integrate local and global information, resulting in the output G ∈ RC2×H×W×D,
where C2 is the output feature dimension. More details can be found in the Appendix.

Shape Implicit Decoder As shown in the top panel of Fig. 2, each point q ∈ R3 from a query set Q
is encoded into a Ce-dimensional vector qe via a multi-layer perceptron that is denoted the positional
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Figure 2: Framework: We use an implicit network to decode the surface occupancy and keypoint
saliency probability simultaneously. Green arrows indicate the mutual relationships between the
geometry and saliency field. Through marching cubes and non-maximum suppression (NMS), it could
respectively recover the shape and detect keypoints from the input. Loss functions for keypoint filed:
Three loss functions try to make the generated keypoint repeatable, located on the underlying surface,
and sparse. Inference: We design a gradient-based optimization method to extract keypoints from
the saliency field. Result: The object-scale and scene-scale keypoints after inference are displayed.

encoder fθpos , i.e. qe = fθpos(q). Then, the local feature Gq is retrieved from the feature volume G
according to the coordinate of q via trilinear interpolation. The generated qe and Gq are concatenated
and mapped to the surface occupancy probability Probo(q|P ) ∈ [0, 1] by the occupancy decoder fθo ,
as given in Eq. (1). If q is on the input surface, the Probo(q|P ) would be 1, otherwise be 0. In our
formulation, the points inside the surface are also considered unoccupied.

fθo(qe, Gq) → Probo(q|P ) (1)

Keypoint Implicit Decoder Most of the process here is the same as in shape implicit decoder, except
for the last mapping function. The goal of keypoint implicit decoder fθs is to estimate the saliency
of the query point q conditioned on input points P , which is denoted as Probs(q|P ) ∈ [0, 1] and
formulated by:

fθs(qe, Gq) → Probs(q|P ). (2)

Here, saliency of the query point q is the likelihood that it is a keypoint.

3.2 Implicit Field Training

The implicit field is jointly optimized for surface occupancy and saliency estimation by several self-
supervised losses. In contrast to former arts [12, 11] with a similar architecture that learn multiple
tasks separately, we leverage the geometry knowledge from shape field to enhance the performance
of keypoint field, as shown in the green arrows of Fig. 2. Specifically, the total loss is given by:

L = Lo + Lr + Lm + Ls, (3)

where Lo encourages the model to learn the shape from the sparse input, Lr, Lm and Ls respectively
help the predicted keypoint to be repeatable, located on the underlying surface and sparse.
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Surface Occupancy Loss The binary cross-entropy loss lBCE between the predicted surface occu-
pancy Probo(q|P ) and the ground-truth label Probgto is used for shape recovery. The queries Q are
randomly sampled from the whole volume size H × W × D. The average over all queries is as
follows:

Lo =
1

|Q|
∑
q∈Q

lBCE

(
Probo(q|P ), P robgto (q|P )

)
, (4)

where |Q| is the number of queries Q.

Repeatability Loss Detecting keypoints with high repeatability is essential for downstream tasks like
registration between two-view point clouds. That indicates the positions of keypoint are covariant to
the rigid transformation of the input. To achieve a similar goal, 2D keypoint detection methods [27,
7, 43] enforce the similarity of corresponding local salient patches from multiple views. Inspired by
them, we enforce the similarity of local overlapped saliency fields from two-view point clouds. Since
the implicit field is continuous, we uniformly sample some values from a local field to represent the
local saliency distribution. Specifically, as shown in the top and the middle part of Fig. 2, we build
several local 3D Cartesian grids {Qi}ni=1 with resolution of Hl × Wl × Dl and size of 1/U . We
empirically set the resolution of Qi to be almost the same as the feature volume G. As non-occupied
regions are uninformative, the center of Qi is randomly sampled from the input. Then, we perform
random rigid transformation T on the P and Qi to generate TP and TQi. Similar to [27], the cosine
similarity, denoted as cosim, is exploited for the corresponding saliency grids of Qi and TQi:

Lr = 1− 1

n

∑
i∈n

cosim
(
Probs(Qi|P ), P robs(TQi|TP )

)
. (5)

Surface Constraint Loss As discussed in [15], 3D keypoints are encouraged to close to the input.
They propose a loss to constrain the distance between the keypoint and its nearest neighbor from the
input. Yet, the generated keypoints are inconsistent when given the same input but with a different
density. Thanks to the shape decoder, SNAKE can reconstruct the underlying surface of the input,
which is robust to the resolution change. Hence, we use the surface occupancy probability to represent
the inverse distance between the query and the input. As can be seen in Fig. 2-(surface constraint),
we enforce the saliency of the query that is far from input P close to 0, which is defined as

Lm =
1

|Q|
∑
q∈Q

(
1− Probo(q|P )

)
· Probs(q|P ). (6)

Sparsity Loss Similar to 2D keypoint detection methods [27], we design a sparsity loss to avoid the
trivial solution (Probs(Q|P )=0) in Eq.( 5)( 6). As can be seen in Fig. 2, the goal is to maximize
the local peakiness of the local saliency grids. As the sailency values of non-occupied points are
enforced to 0 by Lm, we only impose the sparsity loss on the points with high surface occupancy
probability. Hence, we derive the sparsity loss with the help of decoded geometry by

Ls = 1− 1

n

∑
i∈n

(
maxProbs(Q

1
i |P )−meanProbs(Q

1
i |P )

)
, (7)

where Q1
i = {q|q ∈ Qi, P robo(q|P ) > 1− thro}, thro ∈ (0, 0.5] is a constant, and n is the number

of grids. It is noted that the spatial frequency of local peakiness is dependent on the grid size 1/U ,
see section 4.4. Since the network is not only required to find sparse keypoints, but also expected to
recover the object shape, it would generate high saliency at the critical parts of the input, like joint
points of a desk and corners of a house, as shown in the Fig. 2-result.

3.3 Explicit Keypoint Extraction

The query point q whose saliency is above a predefined threshold thrs ∈ (0, 1) would be selected as
a keypoint at the inference stage. Although SNAKE can obtain the saliency of any query point, a
higher resolution query set results in a high computational cost. Hence, as shown in Fig. 2-inference,
we build a relatively low-resolution query sets Qinfer which are evenly distributed in the input space
and further refine the coordinates of Qinfer by gradient-based optimization on this energy function:

E(Qinfer, P ) =
1

|Qinfer|
∑

q∈Qinfer

1− Probs(q|P ). (8)

Specifically, details of the explicit keypoint extraction algorithm are summarized in Alg. 1.
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Algorithm 1 Optimization for Explicit Keypoint Extraction

Require: P,Qinfer, fθen , fθpos , fθo , fθs . Hyper-parameters: λ, J , thro, thrs.
Get initial Probo(Qinfer|P ) according to Eq.( 1).
Filter to get new query set Qinfer′ = {q|q ∈ Qinfer, P robo(q|P ) > 1− thro}.
for 1 to J do

Evaluate energy function E(Qinfer′ , P ).
Update coordinates with gradient descent: Qinfer′ = Qinfer′ − λ∇Qinfer′E(Qinfer′ , P ).

end for
Sample final keypoints Qk = {q|q ∈ Qinfer′ , P robs(q|P ) > thrs}.

4 Experiment

In this section, we evaluate SNAKE under three settings. First, we compare keypoint semantic
consistency across different instances of the same category, using both rigid and deformable objects.
Next, keypoint repeatability of the same instance under disturbances such as SE(3) transformation,
noise and downsample is evaluated. Finally, we inspect the point cloud registration task on the
3DMatch benchmark, notably in a zero-shot generalization setting. Besides, an ablation study is done
to verify the effect of each design choice in SNAKE. The implementation details and hyper-parameters
for SNAKE in three settings can be found in the Appendix.

4.1 Semantic Consistency

Datasets The KeypointNet [39] dataset and meshes generated with the SMPL model [18] are utilized.
KeypointNet has numerous human-annotated 3D keypoints for 16 object categories from ShapeNet [3].
The training set covers all categories that contain 5500 instances. Following [38], we evaluate 630
unseen instances from airplanes, chairs, and tables. SMPL is a skinned vertex-based deformable
model that accurately captures body shape variations in natural human poses. We use the same
strategy in [38] to generate both training and testing data.

Metric Mean Intersection over Union (mIoU) is adopted to show whether the keypoints across
intra-class instances have the same semantics or not. For KeypointNet, a predicted keypoint is
considered the same as a human-annotated semantic point if the geodesic distance between them
is under some threshold. Due to the lack of human-labeled keypoints on SMPL, we compare the
keypoint consistency in a pair of human models. A keypoint in the first model is regarded semantically
consistent if the distance between its corresponding point and the nearest keypoint in the second
model is below some threshold.

Ours

Human
Annotation

Figure 3: Comparison with human annotations on
KeypointNet [39] dataset.

Evaluation and Results We compare SNAKE
with random detection, hand-crafted detectors:
ISS [44], Harris-3D [30] and SIFT-3D [28], and
DL-based unsupervised detectors: USIP [15]
and UKPGAN [38]. As USIP has not performed
semantic consistency evaluations, we train the
model with the code they provided. We fol-
low the same protocols in [38] to filter the key-
points via NMS with a Euclidean radius of 0.1.
Quantitative results are provided in Fig. 5-(a,e).
SNAKE obtains higher mIoU than other methods under most thresholds on KeypointNet and SMPL.
Qualitative results in Fig. 3 show our keypoints make good alignment with human annotations.
Fig. 4 provides qualitative comparisons of semantically consistent keypoints on rigid and deformable
objects. Owing to entangling shape reconstruction and keypoint detection, SNAKE can extract
aligned representation for intra-class instances. Thus, our keypoints better outline the object shapes
and are more semantically consistent under large shape variations. As shown in the saliency field
projected slices, we can get symmetrical keypoints, although without any explicit constraint like the
one used in [38]. Here, a projected slice is obtained by taking the maximum value of a given field
along the projection direction.
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UKPGAN OursUSIP Saliency Field 
Projected Slice

ISS UKPGAN OursUSIPISS Saliency Field 
Projected Slice

Figure 4: Semantic consistency of keypoints on rigid and deformable objects. Our keypoints are
more evenly scattered on the underlying surface of objects, more symmetrical, and more semantically
consistent under significant shape variations when compared to other methods. The saliency field
projected slice shows that SNAKE decodes well-aligned saliency values for keypoints in different
instances but with similar semantics, such as the wingtip of the airplane and the leg of the human.
Here, small saliency is shown in bright red and gets darker with a larger value.

(a)

SMPL

ModelNet40

(e)

(b)

KeypointNet

(c) (d)

(g) (h)

Redwood

(f)

Figure 5: Quantitative results on four datasets. Keypoint semantic consistency (a)(e) on KeypointNet
and SMPL. Relative repeatability for two-view point clouds with different distance threshold (b),
downsample rate (c), Gaussian noise N (0, σnoise) (d) on ModelNet40. The results of (f)(g)(h) are
tested on Redwood with the same settings in (b)(c)(d). The specific numerical results can be found in
the Appendix.

4.2 Repeatability

Datasets ModelNet40 [37] is a synthetic object-level dataset that contains 12,311 pre-aligned shapes
from 40 categories, such as plane, guitar, and table. We adopt the official dataset split strategy.
3DMatch [41] and Redwood [5] are RGB-D reconstruction datasets for indoor scenes. Following [15],
we train the model on 3DMatch and test it on Redwood to show the generalization performance. The
training set contains around 19k samples and the test set consists of 207 point clouds.

Metric We adopt the relative repeatability proposed in USIP [15] as the evaluation metric. Given two
point clouds captured from different viewpoints, a keypoint in the first point cloud is repeatable if its
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Ours
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Shape
Recon.

ISS

Original 8x Downsample 0.06 std. Noise Original 8x Downsample 0.06 std. (m) Noise

Figure 6: Visualization of keypoints under some disturbances on object-level [37] and scene-level [5]
datasets compared to hand-crafted [44] and explicit representation based [15] methods. Downsample
rate is 8x and the Gaussian noise scale (σ) is 0.06. The shape reconstruction via marching cubes for
our occupancy field is also given. Visualization of repeatability can be found in the Appendix.

distance to the nearest keypoint in the other point cloud is below a threshold ϵ. Relative repeatability
means the number of repeatable points divided by the total number of detected keypoints.

Evaluation and Results Random detection, traditional methods and USIP are chosen as our baselines.
Since UKPGAN does not provide pre-trained models on these two datasets, we do not report its results
in Fig. 5 but make an additional comparison on KeypointNet, which is illustrated in the next paragraph.
We use NMS to select the local peaky keypoints with a small radius (0.01 normalized distance on
ModelNet40 and 0.04 meters on Redwood) for ours and baselines. We generate 64 keypoints in
each sample and show the performance under different distance thresholds ϵ, downsample rates,
and Gaussian noise scales. We set a fixed ϵ of 0.04 normalized distance and 0.2 meters on the
ModelNet40 and Redwood dataset when testing under the last two cases. As shown in Fig. 5-
(b,f), SNAKE outperforms state-of-the-art at most distance thresholds. We do not surpass USIP on
Redwood in the lower thresholds. Note that it is challenging to get higher repeatability on Redwood
because the paired inputs have very small overlapping regions. Fig. 5-(c,d,g,h) show the repeatability
robustness to different downsample rates (d.r.) and Gaussian noise N(0, σ) levels. SNAKE gets the
highest repeatability in most cases because the shape-aware strategy helps the model reason about the
underlying shapes of the objects/scenes, which makes keypoints robust to the input variations. Fig. 6
provides visualization of object-level and scene-level keypoints of the original and disturbed inputs.
SNAKE can generate more consistent keypoints than other methods under drastic input changes.

We have tried to train UKPGAN (official implementation) on ModelNet40 and 3DMatch datasets
from scratch but observed divergence under default hyper-parameters. As such, we provide a new
experiment to compare their repeatability on the KeypointNet dataset, on which UKPGAN provided
a pre-trained model. We randomly perform SE(3) transformation on the test point clouds to generate
the second view point clouds. Then, we select top-32 salient keypoints with NMS (radius=0.03) in
each sample and report the keypoint repeatability under different distance thresholds ϵ, downsample
rates, and Gaussian noise scales. The results are summarized in Table 1, 2, which show that SNAKE
achieves significant gains over UKPGAN in most cases. More discussions can be found in the
Appendix.

Table 1: Relative repeatability (%) with differ-
ent distance thresholds ϵ on the KeypointNet
dataset.

0.03 0.05 0.07 0.09 0.10

UKPGAN 0.199 0.454 0.661 0.81 0.864
Ours 0.643 0.806 0.892 0.936 0.948

Table 2: Relative repeatability (%) when input
point clouds are disturbed (ϵ=0.03). Here, ori.
means the original input.

ori. d.r.=4 d.r.=8 σ=0.02 σ=0.03

UKPGAN 0.199 0.570 0.427 0.608 0.558
Ours 0.643 0.594 0.525 0.626 0.536
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(c)(a) (b)

U=6 U=8 U=10

Figure 7: (a) SNAKE fails to predict semantically consistent keypoints without the occupancy decoder.
(b) Saliency field slice with a different grid size of (1/U)3. (c) The impact of the optimization step.

4.3 Zero-shot Point Cloud Registration

Datasets We follow the same protocols in [38] to train the model on KeypointNet and then directly
test it on 3DMatch [41] dataset, evaluating how well two-view point clouds can be registered. The
test set consists of 8 scenes which include some partially overlapped point cloud fragments and the
ground truth SE(3) transformation matrices.

Metric To evaluate geometric registration, we need both keypoint detectors and descriptors. Thus,
we combine an off-the-shelf and state-of-the-art descriptor D3Feat [1] with our and other keypoint
detectors. Following [38], we compute three metrics: Feature Matching Recall, Inlier Ratio, and
Registration Recall for a pair of point clouds.

Evaluation and Results As baselines, we choose random detection, ISS, SIFT-3D, UKPGAN,
and D3Feat. Note that D3Feat is a task-specific learning-based detector trained on the 3DMatch
dataset, thus not included in this zero-shot comparison. Ours and UKPGAN are trained on the
synthetic object dataset KeypointNet only. The results are reported under different numbers of
keypoints (i.e., 2500, 1000, 500, 250, 100). The NMS with a radius of 0.05m is used for D3Feat,
UKPGAN, and ours. As shown in Table 3, SNAKE outperforms other methods consistently under
three metrics. For registration recall and inlier ratio, we achieve significant gains over UKPGAN and
other traditional keypoint methods. Notably, when the keypoints are high in numbers, SNAKE even
outperforms D3Feat which has seen the target domain. Local shape primitives like planes, corners, or
curves may be shared between objects and scenes, so our shape-aware formulation allows a superior
generalization from objects to scenes.

Table 3: Registration result on 3DMatch. We combine the off-the-shelf descriptor D3Feat [1] and
different keypoint detectors to perform two-view point cloud registration.

Feature Matching Recall (%) Registration Recall (%) Inlier Ratio (%)
Detector Descriptor 2500 1000 500 250 100 2500 1000 500 250 100 2500 1000 500 250 100
D3Feat D3Feat 95.6 94.5 94.3 93.3 90.6 84.4 84.9 82.5 79.3 67.2 40.6 42.7 44.1 45.0 45.6
Random D3Feat 95.1 94.5 92.8 90.0 81.2 83.0 80.0 77.0 65.5 38.8 38.6 33.6 28.9 23.6 17.3

ISS D3Feat 95.2 94.4 93.4 90.1 81.0 83.5 79.2 76.0 64.3 37.2 38.2 33.5 28.8 23.9 17.4
SIFT D3Feat 94.9 94.0 93.0 91.2 81.3 84.0 79.9 76.1 60.9 38.6 38.4 33.6 28.8 23.3 17.4

UKPGAN D3Feat 94.7 94.2 93.5 92.6 85.9 82.8 81.4 77.1 69.7 47.4 38.8 35.5 34.0 33.1 27.7
Ours D3Feat 95.5 95.0 94.7 92.9 89.5 85.1 83.7 81.2 74.6 50.9 41.3 39.0 37.0 33.5 30.0

4.4 Ablation Study

Loss Function Table 4 reports the performance w.r.t. designs of loss functions. (Row 1) If the surface
occupancy decoder is removed, the surface constraint cannot be performed according to Eq.( 6), so
they are removed simultaneously. Although the model could detect significantly repeatable keypoints
on ModelNet40 [37], it fails to give semantically consistent keypoints on KeypointNet [39]. Fig. 7-a
shows that SNAKE is unable to output symmetric and meaningful keypoints without the shape-aware
technique. That indicates the repeatability could not be the only criterion for keypoint detection if an
implicit formulation is adopted. (Row 2-4) Each loss function for training keypoint field is vital for
keypoint detection. Note that the model gives a trivial solution (0) for the saliency field and cannot
extract distinctive points when removing the sparsity loss.

Grid Size and Volumetric Resolution The grid size 1/U controls the number of keypoints because
Ls enforces the model to predict a single local maxima per grid of size (1/U)

3. Fig. 7-b shows
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Table 4: Ablations for the designs of loss
function. occ. = occupancy, sur. = surface,
rep. = repeatability, spa. = sparsity and rr. =
relative repeatability.

rr. (%) on [37] mIoU (%) on [39]
Threshold ϵ 0.04 0.05 0.06 0.08 0.09 0.1

w/o occ. & sur. 0.92 0.94 0.95 0.22 0.25 0.28
w/o sur. 0.28 0.36 0.42 0.31 0.35 0.39
w/o rep. 0.22 0.28 0.34 0.30 0.35 0.39
w/o spa. 0 0 0 0 0 0

w/ all 0.85 0.89 0.90 0.30 0.37 0.42

Table 5: Impact of different local grid size
used in the Lo and Ls on ModelNet40.

U 4 6 8 10
rr. (%) (ϵ=0.04) 0.79 0.85 0.79 0.77

Table 6: Impact of different global volumetric
resolution on ModelNet40.

H(= W = D) 32 48 64 80
rr. (%) (ϵ=0.04) 0.62 0.79 0.85 0.78

different saliency field slices obtained from the same input with various 1/U . When U is small,
SNAKE outputs fewer salient responses, and more for larger values of U . We also give the relative
repeatability results on ModelNet40 under distance threshold ϵ = 0.04 in Table 5, indicating that
U = 6 gives the best results. From Table 6, we can see that higher resolution improves performance.
However, the performance drops when it reaches the resolution of 80. The potential reason is as such:
the number of queries in a single grid increases when the resolution becomes higher, as mentioned in
3.2. In this case, finer details make the input to cosine similarity too long and contain spurious values.

Optimization Step and Learning Rate Fig. 7-c shows the importance of optimization (see Alg. 1)
for refining keypoint coordinates on the ModelNet40 dataset. It is noted that too many optimization
steps will not bring more gains but increase the computational overhead. In this paper, we set the
number of update steps to 10. The learning rate for optimization is also key to the final result. When
the learning rate is set to 0.1, 0.01, 0.001 and 0.0001, the relative repeatability (%) on ModelNet40
dataset with the same experimental settings as Table 6 are 0.002, 0.622, 0.854 and 0.826, respectively.
In addition, the comparison of computation cost of baselines and ours can be found in the Appendix.

5 Conclusion and Discussion

We propose SNAKE, a method for 3D keypoint detection based on implicit neural representations.
Extensive evaluations show our keypoints are semantically consistent, repeatable, robust to downsam-
ple, and generalizable to unseen scenarios. Limitations. The optimization for keypoint extraction
during inference requires considerable computational cost and time, which may not be applicable for
use in scenarios that require real-time keypoint detection. Negative Social Impact. The industry
may use the method for pose estimation in autonomous robots. Since our method is not perfect, it
may lead to wrong decision making and potential human injury.
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