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ABSTRACT

Fully quantized training (FQT) accelerates the training of deep neural networks by
quantizing the activations, weights, and gradients into lower precision. To explore
the ultimate limit of FQT (the lowest achievable precision), we make a first attempt
to 1-bit FQT. We provide a theoretical analysis of FQT based on Adam and SGD,
revealing that the gradient variance influences the convergence of FQT. Building on
these theoretical results, we introduce an Average 1-bit Quantization (AQ) strategy.
The strategy leverages the heterogeneity of gradients to mitigate gradient variance
by pruning less informative gradients and enhancing the numerical precision of
remaining gradients. Additionally, we propose Sample Channel joint Quantization
(SCQ), which utilizes different quantization strategies in the computation of weight
gradients and activation gradients to ensure that the method is friendly to low-
bitwidth hardware. Finally, we present a framework to deploy our algorithm.
For fine-tuning VGGNet-16 and ResNet-18 on multiple datasets, our algorithm
achieves an average accuracy improvement of approximately 6%, compared to
per-sample quantization. Moreover, our training speedup can reach a maximum of
5.13× compared to full precision training.

1 INTRODUCTION

Training neural networks has a high computational cost and memory footprint. Training with low-
precision arithmetic (a.k.a., fully quantized training or FQT) can enhance computational and memory
efficiency. FQT quantizes weights, activations, and gradients into low-bitwidth numerical formats,
enabling a fast implementation of both forward and backward propagation on low-precision hardware.

The speedup potential of FQT depends on the numerical precision. Research aims to reduce the
training numerical precision, without compromising convergence speed or accuracy. The required
precision has been reduced from FP/INT16 (Micikevicius et al., 2017; Das et al., 2018) to FP/INT8
(Wang et al., 2018b; Banner et al., 2018; Zhu et al., 2020; Yang et al., 2020). As of now, some work
(Sun et al., 2020; Chmiel et al., 2021; Xi et al., 2023) have successfully pushed precision down to 4
bits.

As the training numerical precision continues to decrease, a natural question arises:

What is the ultimate limit of FQT (i.e., the minimum achievable bitwidth)?

Answering this question not only advances our understanding of FQT but also provides a crucial
direction for future hardware design strategies. Ideally, if we can push the bitwidth down to 1-bit,
the training can be implemented with binary operations, such as XNOR and bitcounting operations
(Courbariaux et al., 2016), and hardware design might be greatly simplified. Binary computation is
already shown possible for inference acceleration, such as XNOR-Net (Rastegari et al., 2016), but
1-bit training remains unexplored.

Reducing the bitwidth for FQT is challenging because of (1) the lack of theoretical understanding,
especially how gradient quantization affects the convergence; (2) the large quantization error of
gradients, which causes a sharp performance drop or even divergence when reducing gradient bitwidth
lower than 4-bit (Fig. 1). Due to these challenges, the current research frontier is still 4-bit FQT.
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Figure 1: Gradient numerical precision
(“bits”) vs. test accuracy of VGGNet16
on CIFAR-10, trained with Adam and SGD.
(The supplementary results are in Fig. 8)

In this work, we make a first attempt towards achieving
1-bit FQT. Firstly, we provide a theoretical analysis for
FQT based on both Adam (Kingma & Ba, 2014) and
SGD. Our analysis links the convergence with gradient
variance. Specifically, our analysis reveals that Adam
is more suitable for FQT than SGD in the low-bitwidth
regime, due to their different sensitivity to gradient
variance.

Inspired by the above theory, we propose a hardware-
friendly algorithm for 1-bit FQT. Our algorithm, com-
posed of an Activation Gradient Pruning (AGP) and
per-group quantization (Chen et al., 2020; Cho & Yoo,
2020), effectively reduces gradient variance. AGP uti-
lizes gradient heterogeneity by discarding less informa-
tive groups and allocating saved resources to improve the numerical precision of more informative
ones. Additionally, we propose Sample Channel joint Quantization (SCQ), an effective quantization
scheme for accelerated performance. SCQ employs different quantization methods for comput-
ing weight gradients and activation gradients, ensuring both can be effectively implemented on
low-bitwidth computing units.

We examine the potential of 1-bit FQT on transfer learning tasks in both vision and NLP domain.
In this task, 1-bit FQT algorithm is used for on-device finetuning a pretrained 1-bit model to adapt
new data. On all the datasets, our 1-bit FQT algorithm can successfully converge and demonstrate
significantly superior performance compared to directly applying the previous FQT method to the
task. The average accuracy drop on visual classification datasets is approximately 5%, compared
to training the binary model with full-precision gradients. Notably, the average accuracy loss is
negligible (less than 1%) on Flowers (Nilsback & Zisserman, 2008) dataset and Pets (Parkhi et al.,
2012) dataset, indicating that 1-bit FQT might indeed be useful in some cases. We implement our
algorithm on Hygon and Raspberry Pi devices as a PyTorch-based library binop. Accelerated
on-device training can be achieved with simple layer substitution, e.g., replace torch.nn.Conv2d
with binop.Conv2d. In practice, our method can achieve up to 5.13× speedup, compared to FP32
PyTorch. It is important to note that the primary aim of this paper is to explore the ultimate limit of
Fully Quantized Training (FQT) rather than to focus on practical application performance. These
results indicate that, in certain tasks, FQT precision can indeed be pushed to the extreme 1-bit level,
offering valuable insights for future research.

2 RELATED WORKS

Quantization Aware Training. QAT is a method designed to accelerate inference by quantizing the
activations and weights. Various works (Zhou et al., 2017; Choi et al., 2018; Zhang et al., 2018; Jacob
et al., 2018; Dong et al., 2019; Tang et al., 2022; Liu et al., 2023) have been developed to quantize
weights and activations into lower bitwidth. Furthermore, some studies (Rastegari et al., 2016; Bulat
& Tzimiropoulos, 2019; Wang et al., 2020; Bai et al., 2020; Wu et al., 2023; Qin et al., 2023) have
reduced the numerical precision of weights and activation values to 1 bit. However, QAT does not
quantize gradients, and as a result, the backward propagation cannot be accelerated.

Fully Quantized Training. FQT further quantizes the gradients into lower precision, compared with
QAT. Hence, FQT allows for efficient implementation of both forward and backward propagation on
low-bitwidth computational units. FQT, unlike optimizer quantization (Lin et al., 2022a), involves
quantizing weights, activations, and gradients altogether. Optimizer quantization only quantizes
weight update (weight gradients), thus reducing communication costs but not accelerating computation
(Saha et al., 2022). Early works on FQT use FP16 (Gupta et al., 2015; Micikevicius et al., 2017) or
INT16 (Das et al., 2018) values to constrain weights, activations, and gradients. After that, various
8-bit numerical formats (Wang et al., 2018b; Banner et al., 2018; Zhu et al., 2020; Yang et al., 2020;
Xi et al., 2024) have been proposed that further push the bitwidth of data to 8 bits. Subsequently,
Chen et al. (2020) provides theoretical bounds on how the quantization scheme (bitwidth, type of
quantizer) affects the quality of the quantized gradient. Based on that, some works have successfully
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trained several networks with 4-bit activations/weights/gradients (Sun et al., 2020; Chmiel et al.,
2021; Xi et al., 2023). The current research frontier is 4-bit FQT, but it still is not the ultimate limit.

3 FRAMEWORK

To better describe our approach, necessary notations are introduced first. We denote the DNN model
composed of L layers with the learnable parameter Θ as F(.;Θ). In each training iteration, we
sample a minibatch (X,Y) from the dataset and input it into the model. The process is

H(0) = X,H(l) = F(l)
(
H(l−1);Θ(l)

)
,∀l ∈ [L]+, (1)

where H(l) ∈ RN×D(l)

is a feature map (N is the batch size, D(l) is the number of features), and
[L]+ = {1, 2, . . . , L} are sets of integers. F(l) is the l-th layer of the model with parameter Θ(l).
Given the minibatch loss L(H(L),Y), we compute the gradient∇Θ(l)L, and update the parameter.
For simplicity, we use ∇H(l) and ∇Θ(l) represent the activation/parameter gradient. The back-
propagation is ∇H(l−1) ,∇Θ(l) = B(l)(∇H(l) ,H(l−1),Θ(l)), where the function B(l)(·) takes the
gradient of the output ∇H(l) and the information kept in memory (H(l), Θ(l)), and computes the
gradient of the input. For example, consider a linear layer H(l) = H(l−1)Θ(l) and its gradient is

∇H(l−1) = ∇H(l)Θ(l)⊤ , ∇Θ(l) = H(l−1)⊤∇H(l) . (2)

3.1 QUANTIZED TRAINING

Here, we describe Quantization-Aware Training (QAT) and Fully Quantized Training (FQT). QAT is
employed to accelerate inference, while FQT is designed to accelerate both inference and training.

Before embarking on QAT, the initial step involves quantizing the parameters and activations of the
model:

H
(l−1)

= Qf (H
(l−1)),Θ

(l)
= QΘ(Θ(l)),∀l ∈ [L]+,

where Qf (·) and QΘ(·) are quantizers for activations and weights, and H
(l−1)

and Θ
(l)

are quan-
tized activations and weights. The forward propagation Eq. 1 is quantized as ∀l ∈ [L]+,H

(l) =

F(l)(H
(l−1)

;Θ
(l)
), where H

(l−1)
and Θ

(l)
represent low-bit data. Therefore, the inference can be

efficiently implemented on low-bitwidth computing kernels. QAT leverages the straight-through
estimator (Bengio et al., 2013) to train quantized models. The back-propagation Eq. 2 becomes:

∇̃H(l−1) = ∇H(l)Θ
(l)⊤

, ∇̃Θ(l) = H
(l−1)⊤∇H(l) .

Since gradients are not quantized, the backpropagation cannot be accelerated.

The forward propagation of FQT is identical to QAT, FQT further quantizes the gradients at each
layer. We use ∇̂H(l) and ∇̂Θ(l) to represent the FQT gradient. The backpropagation is quantized as

∇̂H(l−1) = Qg(∇̂H(l))Θ
(l)⊤

, ∇̂Θ(l) = H
(l−1)⊤

Qg(∇̂H(l)),

where ∇̂H(L) := ∇H(L) , and Qg(·) is a quantizer for gradients. Now, with all operands quantized,
the backpropagation can be efficiently implemented on low-bitwidth kernels.

3.2 FQT WITH UNBIASED QUANTIZER

In our framework, Qf (·) and QΘ(·) are deterministic quantizers, while Qg(·) is an unbiased quantizer.
This configuration follows Chen et al. (2020). In this framework, the gradients in FQT are unbiased
estimates of QAT, ensuring both converge to the same point in expectation.

Consider Qg as an unbiased stochastic quantizer, i.e., E [Qg(∇H)] = ∇H, for any ∇H, which are
already widely adopted in existing FQT approaches (Banner et al., 2018; Xi et al., 2023), thereby

enabling E[∇̂H(l) ] = ∇H(l) . The activation gradients of FQT is E[∇̂H(l−1) ] = E[∇̂H(l) ]Θ
(l)⊤

=

∇̃H(l−1) , which implies FQT and QAT convergence to a stationary point in expectation. Given an

3
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activation gradient tensor ∇H, we quantize it to b-bit. We first compute the range of the tensor,
and scale each element: ∇Hi,j

= SR(B(∇Hi,j
− Z)/R), where B = 2b − 1 are the number of

quantization bins, R = max {∇H} − min {∇H} is the range, Z = min {∇H} is the zero point,
the stochastic rounding (Courbariaux et al., 2015) operation SR(·) convert input to integers, and
∇Hi,j

is the gradient quantized to b bits. The dequantization is ∇̂Hi,j
= ∇Hi,j

R/B + Z. Due to the
utilization of stochastic rounding, it is clear that E[∇̂Hi,j

] = ∇Hi,j
.

The unbiased quantizer widely adopted in FQT is the per-group quantizer, including per-tensor
quantizer (PTQ) (Banner et al., 2018), per-sample quantizer (PSQ) (Chen et al., 2020), and per-
channel quantizer (PCQ) (Cho & Yoo, 2020). In these strategies, each group computes its own range
and zero point, rather than sharing a common one, which addresses the large variation of dynamic
range across groups.

4 THEORETICAL RESULTS

In this section, we analyze the convergence behavior of FQT under two different optimizers, Adam
and SGD. The proof of theorems follows the framework in Kingma & Ba (2014), which can be found
in Appendix A.

4.1 OPTIMIZER IMPACT ON CONVERGENCE

Quantized training with the Adam optimizer achieved much higher accuracy than those with SGD (Fig.
1). Although some prior studies (Bulat & Tzimiropoulos, 2019; Lin et al., 2022b) have highlighted
this issue, the theoretical understanding of FQT with Adam is still lacking. To fill this gap, we will
provide theoretical bounds on the convergence of FQT based on both Adam and SGD optimizers in
the following part. (The supplementary results are in Appendix B))

We use the framework proposed in Zinkevich (2003) to analyze the convergence. We adopt the
assumption made by Zinkevich (2003) that the loss function L is convex. At each iteration t, we
predict using the parameter Θt and evaluate it on the loss function Lt. We evaluate the convergence
of FQT using the regret: R(T ) =

∑T
t=1 [Lt (Θt)− Lt (Θ

∗)] , where Θ∗ are the best fixed point
parameter. We define ∇Θ1:t,i ∈ Rt as a vector that contains the i-th dimension of the gradients over
all iterations till t,∇Θ1:t,i

= [∇Θ1,i
,∇Θ2,i

, . . . ,∇Θt,i
], ∇̂Θ1:t,i

is the quantized version of ∇Θ1:t,i
.

Assumption 4.1 There exists σ, e > 0, such that ∀Θt,i, Var
[
∇̂Θt,i

]
≤ σ2, −e ≤ E

[
∇̂Θt,i

]
≤ e.

Assumption 4.2 The distance between any Θt is bounded, ∥Θn −Θm∥2 ≤ D, ∥Θn −Θm∥∞ ≤
D∞, for any m,n ∈ {1, . . . , T}.

Given an unbiased gradient, we now establish the convergence of quantized training under SGD. The
iteration form of SGD is Θt+1 ← Θt − αt∇̂Θt .

Theorem 4.3 If Assumption 4.1 and 4.2 holds, let αt = α√
t

and the number of elements in the

gradient is d. SGD achieves the following guarantee, for all T ≥ 1. RSGD(T ) ≤ D2

2α + αTd(σ2+e2)
2 .

The iteration form of Adam is expressed as follows: mt = β1,t ·mt−1 + (1− β1,t) · ∇̂Θt , vt = β2 · vt−1 + (1− β2) ·
(
∇̂Θt

)2
,

m̂t =
mt

1−βt
1
, v̂t =

vt
1−βt

2
,Θt+1 = Θt − α√

v̂+ϵ
· m̂t.

Assumption 4.4 The function Lt has bounded gradients, ∀Θ,
∥∥∥∇̂Θt

∥∥∥
2
≤ G,

∥∥∥∇̂Θt

∥∥∥
∞
≤ G∞.

Theorem 4.5 If Assumption 4.1, 4.2 and 4.4 holds, let β1, β2 ∈ [0, 1) satisfy β2
1√
β2

< 1, αt =
α√
t
, and β1,t = β1λ

t−1, λ ∈ (0, 1). Adam achieves the following guarantee, for all T ≥ 1.

RAdam(T ) ≤ ((1− λ)2D2T +D2
∞)d

2α (1− β1) (1− λ)2

√
σ2 + e2 +

α (1 + β1)G∞
√
Td

(1− β1)
√
1− β2(1− γ)2

√
σ2 + e2.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Based on Theorem 4.3, 4.5, Adam and SGD achieve the following guarantee, for T →∞.

RSGD(T )

T
≤ αd(σ2 + e2)/2,

RAdam(T )

T
≤ D2d

2α (1− β1)

√
σ2 + e2.

From the inquation, it is straightforward to conclude that RSGD(T )
T = O(σ2) +O(1), RAdam(T )

T =
O(σ) +O(1). This implies that the convergence of FQT based on both Adam and SGD is influenced
by the gradient variance, with SGD being more sensitive to variations in gradient variance.

4.2 QUANTIZER IMPACT ON GRADIENT VARIANCE

Based on our theory, gradient variance plays a crucial role in convergence. Gradient variance is
primarily composed of two components: the variance of QAT gradients and the variance introduced
by the gradient quantizers. Chen et al. (2020) reduced the complicated problem of gradient variance
into the simple problem of quantizer variance. Thus, we need to minimize the quantizer variance.

The fundamental form of an unbiased quantizer Qg is given by Sec. 3.2, and its variance is

Var[Qg(∇̂H(l)) | ∇̂H(l) ] =
R2

B2
Var[SR(·) | ∇̂H(l) ] ≤

ND(l)

4B2
R2, where the maximum variance of

stochastic rounding SR(·) is 1/4. The expression reveals that as the bitwidth b decreases, the variance
significantly increases. Furthermore, due to the sensitivity of SGD to gradient variance, SGD performs
less effectively than Adam in low precision scenarios (large gradient variance) (Fig. 1). Therefore,
in scenarios with larger gradient variances, such as in quantized training, the Adam optimizer is
recommended. Additionally, the variance is highly sensitive to the gradient range R, with outliers in
the gradient expanding the range and consequently increasing the quantizer’s variance.

5 1-BIT FQT ALGORITHM

In this section, we propose our 1-bit FQT algorithm, including the quantization of weights, activation,
and gradients.

5.1 FORWARD PROPAGATION

In the forward propagation, both Qf and QΘ are deterministic quantizers, taking the form:
sign(x) = −1 if x ≤ 0 otherwise 1. For a fully connected layer, the forward propagation is
H(l) = (sign(H(l−1)) sign(Θ(l))) ⊙ Γ, where Γ ∈ RD(l)

represents the shared scaling factor for
both weights and activations, and it is learnable parameters. The form follows Bulat & Tzimiropoulos
(2019).

5.2 BACKWARD PROPAGATION

The form of backpropagation is

∇̂H(l−1) = Qg(∇̂H(l)) sign(Θ(l)⊤), ∇̂Θ(l) = sign(H(l−1)⊤)Qg(∇̂H(l)). (3)

Based on our theory, reducing quantizer variance is crucial to ensure the convergence of the model.
However, outliers in the gradients can widen the range of gradients, thereby increasing variance.

To mitigate the impact of outliers on variance, per-group quantization is widely employed. Per-group
quantization reduces variance by assigning a separate range to each group instead of sharing a large
range among all. For example, we perform per-sample quantization on ∇̂H(l) ∈ RN×D(l)

and its
form is Qg(∇̂H(l)) = S(l)(SR((S(l))−1(∇̂H(l) − Z))) + Z, where S(l) = diag{R1/B, ..., RN/B},
Ri,Zi represent the range and zero point of activation gradients for the i-th sample. Its variance is

Var[Qg(∇̂H(l)) | ∇̂H(l) ] ≤
D(l)

4B2

N∑
i=1

R2
i . (4)

However, the variance of PSQ is still too large for 1-bit FQT.

5
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Figure 2: Heterogeneity in a ResNet18’s gradients.
(a) Heatmap of the per-group range at the conv2.1.2
layer; (b) Histogram of the gradient in a certain group.

To address this, we propose Average 1-bit
Quantization (AQ), which consists of Activa-
tion Gradient Pruning (AGP) and Per-group
Quantization, to reduce quantizer variance by
utilizing the heterogeneity in gradient distri-
butions (Xi et al., 2023). Gradients exhibit
varying ranges across samples, with some
having large ranges and others much smaller,
a pattern that also holds across the channel
dimension, as illustrated in Fig. 2. Groups
(samples or channels) with smaller gradient
ranges tend to have values close to zero, indi-
cating that less information stored in these groups. By pruning these less informative groups, we can
reallocate the saved computational resources to groups with larger ranges (increased bitwidth). As
shown by Eq. 4, variance primarily originates from groups with larger ranges (R), and it is highly
sensitive to numerical precision. Therefore, by using higher numerical precision (i.e., increased
bitwidth) for these groups, we can effectively reduce the overall variance.

Achieving AQ based on the above idea requires ensuring three conditions: (1) if the bitwidth of
retained groups is b, only 1/b of the groups can be preserved, thereby maintaining an average bitwidth
of 1; (2) adopting random pruning to ensure the unbiased nature of quantization; (3) groups with
larger ranges are more likely to be retained. Based on that, we first assign each group a probability
pi ∈ [0, 1], i = 1, · · · , N . To retain N

b groups and ensure the retained groups have a large range, pi
needs to satisfy

∑N
i=1 pi =

N
b and pi ∝ Ri, i.e., pi = NRi

bRtotal
, Rtotal =

∑N
i=1 Ri. Then we define

random masks mi ∼ Bern (pi) to prune unimportant groups, and perform per-group quantization on
the remaining ones. Its form is: Qg(∇̂H(l)) = Qb

PSQ(M∇̂H(l)), where M = diag(m1

p1
, . . . , mN

pN
),

Qb
PSQ is b-bit PSQ. Qg is an unbiased quantizer since E[Qb

PSQ(M∇̂H(l))] = E[M]∇̂H(l) = I∇̂H(l) .
The variance is

Var
[
Qg

(
∇̂H(l)

)
| ∇̂H(l)

]
≤ D(l)

4B2

N
b∑

i=1

R2
i . (5)

From Eq. 5, it can be observed that the variance of AQ is significantly smaller than that of 1-bit PSQ
(D

(l)

4B2

∑N
i=1 R

2
i ). The proof is given in Appendix C.

Despite reducing the average precision of the gradient to 1 bit, the binarized operations are limited
because the retained groups remain non-binarized (b-bit). We perform a splitting operation to
transform the gradient into a format suitable for binarized operations. For example, a value of 2
(binary: 10) in a 2-bit tensor∇H(l) is split into 1 in∇↑

H(l) and 0 in∇↓
H(l) ,∇H(l) = ∇↑

H(l)×2+∇↓
H(l) .

The Eq. 3 can be rewritten as:

∇̂H(l−1) = (S(l)(∇↑
H(l)×2+∇

↓
H(l))+Z)(Θ

(l)⊤

), ∇̂Θ(l) = (H
(l−1)⊤

)(S(l)(∇↑
H(l)×2+∇

↓
H(l))+Z),

(6)

where Θ
(l)⊤

and H
(l−1)⊤

represent binary weight and activation. Due to the removal of some groups,
the shape of the result differs from the original, and we fill the gaps with zeros. The format conversion
operation from {0,1} to {-1,1} is omitted here. The entire process is illustrated in Fig. 3.

5.3 PRACTICAL ACCELERATION

To ensure the compatibility of binary matrix multiplication (BMM) with low-bit hardware, we require
that all tensors involved in matrix multiplication are binarized. From Eq. 6, it is evident that the

computation of activation gradients ∇̂H(l−1) can be accelerated, as ∇↑
H(l)(Θ

(l)⊤

) and ∇↓
H(l)(Θ

(l)⊤

)

can be efficiently implemented in hardware, whereas weight gradients ∇̂Θ(l) cannot be accelerated

due to the presence of floating-point tensors S(l) in H
(l−1)⊤

(S(l))∇↑
H(l) and H

(l−1)⊤

(S(l))∇↓
H(l) ,

making hardware implementation infeasible.

To address this issue, we propose Sample Channel joint Quantization (SCQ), wherein PCQ is
employed during the computation of weight gradients, while PSQ is utilized for the computation of

6
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Figure 3: The process of AQ and binary matrix multiplication. Here, we removed half of the groups,
thus the bitwidth of the remaining groups is 2.

activation gradients. Building upon this quantization strategy, the computation of weight gradients
can be rewritten as:

∇̂Θ(l) = (H
(l−1)⊤

)((∇↑
H

(l)
PCQ

× 2 +∇↓
H

(l)
PCQ

)S
(l)
PCQ + ZPCQ),

where Sl
PCQ = diag

{
Rc

1

B , . . . ,
Rc

D(l)/2

B

}
, Rc

i represents the range of i-th channel. PCQ apply

different scale and zero point per each channle of the gradient. This strategy facilitates the acceleration
of both weight and activation gradient computations. The final formulation is:

∇̂H(l−1) = Qb
PSQ

(
M∇̂H(l)

)
(Θ

(l)⊤

), ∇̂Θ(l) = (H
(l−1)⊤

)Qb
PCQ

(
∇̂H(l)MPCQ

)
.

Since PCQ treats a channel as a group, pruning operations also need to be performed along the
channel dimension. Due to space constraints, implementation details are provided in Appendix D.

6 EXPERIMENTS

We evaluate our approach on transfer learning tasks. Although our approach is constrained to transfer
learning, it still holds practical value in on-device training (Lin et al., 2022b). Due to challenges such
as environmental constraints and limited memory, it is impractical to perform training from scratch
on edge devices (Ren et al., 2021). The experiment details and results from training from scratch are
in Appendix E.

6.1 MAIN RESULTS

We employed two DNN architectures, ResNet18 (He et al., 2016) and VGGNet16 (Simonyan
& Zisserman, 2014). We pre-trained them on ImageNet (Deng et al., 2009) and subsequently
conducted QAT. The quantized models are fine-tuned on downstream datasets to evaluate our approach.
Following Lin et al. (2022b), we utilize various datasets, including Cars (Krause et al., 2013), CIFAR-
10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), CUB (Welinder et al., 2010),
Flowers (Nilsback & Zisserman, 2008) and Pets (Parkhi et al., 2012).
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Table 1: Experimental results on multiple downstream datasets. “(W, A, G)” denote the bitwidth of
weight, activations, and gradients, respectively. b represents the bitwidth of the remaining groups.

Method Precision Accuracy(%)
(W, A, G) CIFAR-10 CIFAR-100 Flowers Cars Pets CUB Average

ResNet-18
QAT 1, 1, 32 87.31±.25 65.82±.43 78.85±.80 50.81±.38 71.68±.21 42.13±.43 66.10
PSQ 1, 1, 1 71.04±.61 47.71±.98 78.91±.10 23.14±.91 68.93±.39 34.29±.62 54.01
Ours (b = 2) 1, 1, 1 74.10±.21 52.19±.62 79.93±.20 26.51±.76 70.47±.52 36.59±.31 56.63
Ours (b = 4) 1, 1, 1 78.52±.56 56.83±.61 79.28±.50 37.88±.36 71.17±.16 39.47±.25 60.53
Ours (b = 8) 1, 1, 1 73.73±.99 52.64±.36 78.10±.65 29.78±.89 69.98±.32 37.01±.53 56.87

VGGNet-16
QAT 1, 1, 32 89.80±.36 71.70±.17 86.86±.35 67.65±.03 79.49±.44 53.39±.57 74.82
PSQ 1, 1, 1 80.60±.20 59.81±.20 84.65±.05 40.01±.88 77.20±.38 43.17±.44 64.24
Ours (b = 2) 1, 1, 1 82.66±.44 62.04±.01 85.75±.29 44.40±.92 77.77±.35 46.33±.53 66.49
Ours (b = 4) 1, 1, 1 84.38±.12 63.65±.19 87.12±.20 57.06±.60 78.48±.21 49.10±.17 69.97
Ours (b = 8) 1, 1, 1 78.14±.86 60.20±.08 86.24±.15 46.95±.21 77.39±.26 47.48±.20 66.07

Table 2: Experimental results under different nu-
merical precisions.

Method Precision Accuracy(%)
(W, A, G) CIFAR-10 CIFAR-100 Flowers Cars Pets CUB Average

QAT 1, 1, 32 87.31 65.82 78.85 50.81 71.68 42.13 66.10
PSQ 1, 1, 2 74.55 53.30 79.39 30.02 70.92 36.94 57.52
Ours 85.52 62.77 79.43 46.91 72.01 41.46 64.52
PSQ 1, 1, 4 86.86 65.35 79.21 49.65 71.85 42.06 65.83
Ours 86.90 65.45 79.24 50.64 72.20 43.11 66.26

Table 3: Experimental results of the advanced
binary model (Adabin (Tu et al., 2022)).

Method Accuracy(%)
CIFAR-10 CIFAR-100 Flowers Cars Pets CUB Average

QAT 92.17 71.81 92.35 74.54 83.02 57.35 78.54
PSQ 83.94 64.19 90.98 47.61 80.81 48.72 69.38
Ours 90.50 71.13 91.87 69.20 82.37 54.45 76.59

Converged model accuracy. To evaluate the performance of our method, we report the accuracy of
two model architectures, VGG16 and ResNet18, across various datasets in Table 1. We report the
mean and stddev of 3 runs. The compared approaches include QAT (Bulat & Tzimiropoulos, 2019)
and PSQ. Since QAT employs training with full precision gradients, it can be considered as an upper
bound for the accuracy of 1-bit FQT. Existing work has not tried 1-bit FQT, so we did not compare
more methods. On VGGNet16, our method achieves < 10% average accuracy degradation across
all configurations, as compared to the baseline QAT with 32-bit gradients. Moreover, in the optimal
configuration (b=4), our method exhibits only approximately 5% average accuracy drop. On the more
challenging ResNet18, the worst configuration (b=2) and the optimal configuration (b=4) achieves
9.47% and 5.57% average accuracy degradation, respectively, compared to QAT. Furthermore, on
some datasets such as Flowers and Pets, our method exhibits minimal accuracy loss, indicating its
suitability for these datasets. In summary, while our approach exhibits a notable decrease in accuracy
compared to QAT, the incurred gap remains acceptable considering the benefits gained from reducing
the numerical precision of gradients to 1 bit. Additionally, we compared our method with 1-bit PSQ.
Across both frameworks, our approach consistently outperformed it in terms of average accuracy
across all configurations. Moreover, except for individual outcomes in the worst configuration, our
method also exhibited superior accuracy across all datasets.

The value of b. We investigate the impact of hyperparameter b on performance and determine the
optimal choice for b. From Eq. 5, as b increases, the variance of the quantizer gradually decreases,
suggesting an improvement in training convergence. However, the increase in b also implies more
discarded groups, leading to larger losses. Therefore, the choice of b becomes a trade-off issue.
In Table 1, we report the accuracy of our method across various datasets under three different
configurations (b = 2, b = 4, and b = 8). On VGGNet16 and ResNet18, the configuration with b = 4
consistently outperforms the others (b = 2 and b = 8) in terms of average accuracy. Moreover, this
observation extends to the majority of datasets, where, even on a few datasets, the results for the
configuration with b = 4 may not be optimal, the performance difference remains marginal compared
to the optimal results. In conclusion, the optimal configuration is b = 4.

Generalizability. To evaluate the generalization ability of our method, we conducted a series of
experiments under various conditions. Table 2 presents the results under various precision settings (W,
A, G). As observed from Table 2, the performance of both our method and PSQ improves significantly
with increased numerical precision. Notably, our method surpasses PSQ in several datasets at higher
precision settings. In addition, when the precision is set to 4 bits, the fully quantized training methods
(PSQ and Ours) achieve similar performance to QAT. Therefore, 4-bit FQT can meet the requirements
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Table 4: Training speedup of 1-bit FQT across different input resolutions. “Non-Full vs. Full”
represents the speedup between non-full optimized (matrix partitioning only) 1-bit FQT and fully
optimized FP32 training (PyTorch32). “Unoptimized vs. Unoptimized” shows the speedup between
unoptimized 1-bit FQT and unoptimized FP32 training.

Optimization Level Model Hygon Raspberry Pi 5
32 64 128 224 average 32 64 average

Non-Full vs. Full VGGNet-16 5.13× 3.71× 3.38× 2.73× 3.74× 3.72× 1.25× 2.49×
ResNet-18 2.93× 2.88× 2.62× 2.15× 2.65× 1.42× 0.97× 1.20×

Unoptimized vs. Unoptimized VGGNet-16 109.0× 108.3× 106.3× 93.0× 104.2× 69.4× 58.5× 64.0×
ResNet-18 89.7× 85.9× 77.0× 65.0× 79.4× 66.5× 57.5× 62.0×
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Figure 4: Our method (a) vs. PSQ (b): Testing accuracy comparison on VGGNet16 for CIFAR-10.
(The supplementary results are shown in Fig. 9.)

of performance-critical applications, where both computational efficiency and model accuracy are
essential. Table 3 shows the results of binary training based on a more advanced binary model (Adabin
(Tu et al., 2022)). As seen from Table 3, our method consistently outperforms PSQ across multiple
datasets in the context of binary training with this more advanced model. Furthermore, compared to
training with XNOR-Net, the performance gap between our method and QAT is significantly reduced,
indicating that ours maintains strong generalization even when training advanced binarized models.

Effect of the optimizer. To validate our theory that the SGD optimizer is more sensitive to the
variance of gradients compared to the Adam optimizer, we conduct a performance comparison of
different optimizers on the CIFAR-10 dataset. We present the test accuracy curves of our method and
PSQ across different optimizers in Fig. 4. For both methods, model performance degrades when using
the SGD compared to the Adam. This is primarily attributed to the sensitivity of SGD to gradient
variance. In addition, we observed that our method with SGD experienced only a modest accuracy
drop, whereas the PSQ method with SGD failed to converge entirely. We attribute this observation to
the larger variance introduced by PSQ compared to our quantizer, resulting in divergence.

CIFAR10 CIFAR100 Flowers Pets Cars CUB
Dataset

0.0

0.5

1.0

1.5

2.0

Va
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Figure 5: Quantizer variances
across different datasets.

Variance. To demonstrate the advantages of our quantizer in re-
ducing variance, we present the quantizer variance of ResNet18
in Fig. 5. In general, the quantizer variance of our method is
lower than that of PSQ across all datasets. Additionally, the
variance on the Flowers and Pets is lowest, explaining why the
impact of quantization on accuracy is minor for them.

Training from scratch. In this experiment, we applied more
aggressive settings to explore the feasibility of 1-bit FQT in
challenging scenarios, such as training from scratch and on
large-scale datasets like ImageNet. We trained two binary mod-
els from scratch in Table 9, XNOR-Net++ and Adabin. The
results show that while our method consistently outperforms
PSQ across multiple datasets, there remains a significant perfor-
mance gap between QAT and our 1-bit FQT method. Therefore, 1-bit FQT is only feasible for transfer
learning and still faces significant challenges in training from scratch. We analyzed the reasons for the
gap between training from scratch and fine-tuning, and found that in the former scenario, the gradient
range is significantly larger, leading to increased variance and greater difficulty in convergence, as
shown in Fig. 7.
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Table 5: Object detection on PASCAL VOC, clas-
sification on CIFAR-100 and NLP tasks on GLUE.

Task Model Method Bits mAP/Acc./Avg.

Det. Faster R-CNN QAT 32 52.34
Faster R-CNN Ours 1 50.68

Cls. MLP-Mixer QAT 32 52.17
MLP-Mixer Ours 1 48.65

NLP BERT QAT 32 63.20
BERT Ours 1 54.81

Table 6: Average 1-bit vs. 1-bit. The running
time of matrix multiplication involving various
sizes.

Setting

Time(ms) across various sizes
512 512 1024 1024 2048 2048
512 512 512 512 512 512
512 1024 512 1024 512 1024

Average 1-bit 8.40 15.92 16.61 31.03 32.22 61.33
1-bit 8.01 14.54 15.91 29.79 29.92 59.94

Other results. We report results for other architectures and tasks in Table 5. The details can be found
in Appendix E. On Faster R-CNN (Ren et al., 2015), our approach with 1-bit gradients achieves
1.66% mAP degradation, as compared to the baseline QAT with 32-bit gradients. In addition, for
Mixer-MLP (Tolstikhin et al., 2021), an all-MLP architecture, our approach shows a decrease of
3.52% in classification accuracy compared to the baseline. For BERT, our approach achieves 8.39%
average performance degradation. These results indicate the potential of our approach to transfer to
other architectures and tasks. We did not extend the 1-bit FQT to large models primarily because
existing binarized networks (Huang et al., 2024) only quantize weights to 1 bit, while activations
remain at higher precision, hindering hardware acceleration during training.

6.2 COMPUTATIONAL EFFICIENCY

We discuss the computational overhead of our method. Our implementation is not fully optimized, as
the comprehensive hardware-algorithm co-design is beyond the scope of this paper. Our experiments
are conducted on a single-core Hygon CPU and edge device (Raspberry Pi 5).

Training speedup. We compare the training time of the FP32 PyTorch and our 1-bit FQT for
VGGNet16 and ResNet18. We vary the resolution of the input and summarize the speedup of our
method in Table 4. For VGGNet16, our algorithm achieves an average speedup of 3.74× and 2.49×
on the Hygon and edge device, respectively. For ResNet18, our algorithm achieves 2.65× and 1.20×
average speedup. Additionally, to assess the acceleration potential of 1-bit FQT, we compare their
speedup at the same optimization level (unoptimized). The results indicate that across multiple cases,
the speedup is above a hundredfold. On edge devices, our method achieves a speedup of over 50×.
This gap indicates significant acceleration potential for 1-bit FQT. Finally, we analyzed why the
speedup of ResNet18 is lower than that of VGG16, concluding from Fig. 10 in Appendix E that our
implementation is more favorable for layers with more filters, which leads to a higher speedup for
VGG16, as it has a higher average number of filters per layer.

Average 1-bit vs. 1-bit. We compared the runtime of average 1-bit matrix multiplication and 1-bit
matrix multiplication across different matrix sizes in Table 6. The results demonstrate that the
difference in runtime between these two methods is minimal, indicating similarity in the runtime
of our average 1-bit FQT and 1-bit FQT. The computational complexity analysis is provided in the
Appendix D.

7 CONCLUSION

We propose a hardware-friendly 1-bit FQT method in this work, which pushes the limit of FQT.
Through convergence analysis, we propose AGP to reduce the variance of the quantizer, thereby
enhancing the convergence of quantized training. Subsequently, to address the issue of unacceleratable
weight gradient computation, we present a SCQ strategy. Finally, we propose a framework that
practically accelerates training, achieving a speedup of up to 5.13× compared to full precision training.
While our approach focuses solely on convolutional neural networks in this study, experiments indicate
its potential applicability to other architectures.

Limitations: The primary limitation of this work lies in its ability to achieve 1-bit FQT in transfer
learning tasks but not in training from scratch. To the best of our knowledge, even the 3-bit FQT from
scratch is still an open problem.
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REPRODUCIBILITY STATEMENT

All code used in our experiments is included in the supplementary materials to facilitate reproducibility.
The theoretical results, along with detailed proofs and the analysis of assumptions used throughout
the paper, are provided in Appendix A. Further implementation details, including hyperparameters
and experimental configurations, can be found in Appendix E. By providing these resources, we aim
to ensure that our findings can be easily reproduced and built upon by the research community.
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A PROOF OF THEOREMS

Lemma A.1 If a function L : Rd → R is convex, then for all x, y ∈ Rd,

L(y) ≥ L(x) +∇L(x)T (y − x).

Lemma A.2 Let ∇̂Θt
= ∇̂Lt (Θt) and ∇̂Θ1:t

be defined as above and bounded,
∥∥∥∇̂Θt

∥∥∥
2
≤

G,
∥∥∥∇̂Θt

∥∥∥
∞
≤ G∞. Then,

T∑
t=1

√
∇̂Θ2

t,i

t
≤ 2G∞

∥∥∥∇̂Θ1:T,i

∥∥∥
2
.

Lemma A.3 Let γ ≜ β2
1√
β2

. For β1, β2 ∈ [0, 1) that satisfy β2
1√
β2

< 1 and bounded ∇̂Θt ,
∥∥∥∇̂Θt

∥∥∥
2
≤

G,
∥∥∥∇̂Θt

∥∥∥
∞
≤ G∞, the following inequality holds

T∑
t=1

m̂2
t,i√
tv̂t,i

≤ 2

1− γ

1√
1− β2

∥∥∥∇̂Θ1:T,i

∥∥∥
2
.

The above lemma has been previously proven in Kingma & Ba (2014), and we omit its reproof here
for brevity.

Lemma A.4 For a random matrix X, the following inequality holds

E[∥X∥2] ≤
√

E[∥X∥22]

Proof. According to the formula E[x2] = Var[x] + E2[x], we can derive:√
E[∥X∥22] =

√
E2[∥X∥2] + Var[∥X∥2]

≥
√
E2[∥X∥2]

= E[∥X∥2].

A.1 ASSUMPTIONS AVAILABILITY

Bounded Parameters and Gradients. It is reasonable to assume that parameters and gradients are
bounded. This assumption is supported by Figure 2, which demonstrates the bounded nature of the
gradients.

Assumption on Bounded Gradients. With bounded gradients, it follows that gradient variances and
expectations are bounded (Assumption 4.1) and the gradient norms are also bounded (Assumption
4.4).

Assumption on Bounded Parameters. Given bounded parameters, the distance between parameters
is naturally bounded (Assumption 4.2).
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A.2 THEOREM 4.3: CONVERGENCE OF SGD

Proof. The iteration form of SGD is

Θt+1 ← Θt − αt∇̂Θt .

Subtract the scalar Θ∗ and square both sides of the above update, we have,

∥Θt+1 −Θ∗∥2 − ∥Θt −Θ∗∥2 = −2αt∇̂Θt(Θt −Θ∗) + α2
t ∇̂Θ2

t
.

Taking exception on both sides and use Assumption4.1, 4.2 and Lemma A.1, we have

∥Θt+1 −Θ∗∥2 − ∥Θt −Θ∗∥2 = −2αt∇Θt(Θt −Θ∗) + α2
tE[∇̂Θ2

t
]

≤ −2αt [Lt (Θt)− Lt (Θ
∗)] + α2

t

d∑
i=1

(E[∇̂Θ2
t,i
])

≤ −2αt [Lt (Θt)− Lt (Θ
∗)] + α2

td(σ
2 + e2).

Using α ≥ αt, we have

∥Θt+1 −Θ∗∥2 − ∥Θt −Θ∗∥2 ≤ −2α [Lt (Θt)− Lt (Θ
∗)] + α2d(σ2 + e2)

Sum up for t = 1, . . . , T ,

∥ΘT+1 −Θ∗∥2 − ∥Θ1 −Θ∗∥2 ≤ −2αRSGD(T ) + α2Td(σ2 + e2).

We can rearrange the above equation and ∥Θn −Θm∥2 ≤ D,

RSGD(T ) ≤ ∥Θ1 −Θ∗∥2 − ∥ΘT+1 −Θ∗∥2

2α
+

αTd(σ2 + e2)

2

≤ D2

2α
+

αTd(σ2 + e2)

2

A.3 THEOREM 4.5: CONVERGENCE OF ADAM

Proof. The iteration of Adam is
mt = β1,t ·mt−1 + (1− β1,t) · ∇̂Θt ,

vt = β2 · vt−1 + (1− β2) ·
(
∇̂Θt

)2
,

m̂t =
mt

1−βt
1
, v̂t =

vt
1−βt

2

Θt+1 = Θt − α√
v̂+ϵ
· m̂t.

Using Lemma A.1, we have,

Lt (Θt)− Lt (Θ
∗) ≤ ∇T

Θt
(θt − θ∗) =

d∑
i=1

∇Θt,i

(
Θt,i −Θ∗

,i

)
.

From the above update rules presented, we have

Θt+1 = Θt − αtm̂t/
√
v̂t

= Θt −
αt

1− βt
1

(
β1,t√
v̂t
mt−1 +

(1− β1,t)√
v̂t

∇̂Θt

)
.

For the ith dimension of the parameter, we subtract the scalar Θ∗
,i and square both sides of the above

update rule, we have,

(
Θt+1,i −Θ∗

,i

)2
=
(
Θt,i −Θ∗

,i

)2 − 2αt

1− βt
1

(
β1,t√
v̂t,i

mt−1,i +
(1− β1,t)√

v̂t,i
∇̂Θt,i

)(
Θt,i −Θ∗

,i

)
+ α2

t

(
m̂t,i√
v̂t,i

)2

.
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We can rearrange the above equation and use Young’s inequality, ab ≤ a2/2 + b2/2. Also, it can be
shown that √

v̂t,i =

√√√√ t∑
j=1

(1− β2)β
t−j
2 ∇̂Θ2

j,i
/
√
1− βt

2 ≤
∥∥∥∇̂Θ1:t,i

∥∥∥
2
, (7)

and β1,t ≤ β1. Then

∇̂Θt,i

(
Θt,i −Θ∗

,i

)
=
(1− βt

1)
√
v̂t,i

2αt (1− β1,t)

((
Θt,i −Θ∗

,i

)2 − (Θt+1,i −Θ∗
,i

)2)
+

β1,t

(1− β1,t)

v̂
1
4
t−1,i√
αt−1

(
Θ∗

,i −Θt,i

)√
αt−1

mt−1,i

v̂
1
4
t−1,i

+
αt (1− βt

1)
√
v̂t,i

2 (1− β1,t)

(
m̂t,i√
v̂t,i

)2

≤ 1

2αt (1− β1)

((
Θt,i −Θ∗

,i

)2 − (Θt+1,i −Θ∗
,i

)2)√
v̂t,i

+
β1,t

2αt−1 (1− β1,t)

(
Θ∗

,i −Θt,i

)2√
v̂t−1,i

+
β1αt−1

2 (1− β1)

m2
t−1,i√
v̂t−1,i

+
αt

2 (1− β1)

m̂2
t,i√
v̂t,i

.

We apply Lemma A.3 to the above inequality and sum across all the dimensions for i ∈ 1, . . . , d and
the iterations for t ∈ 1, . . . , T :

d∑
i=1

T∑
t=1

∇̂Θt,i

(
Θt,i −Θ∗

,i

)
≤

d∑
i=1

1

2α (1− β1)

(
Θ1,i −Θ∗

,i

)2√
v̂1,i

+

d∑
i=1

T∑
t=2

1

2 (1− β1)

(
Θt,i −Θ∗

,i

)2(√v̂t,i

αt
−
√

v̂t−1,i

αt−1

)

+
α(1 + β1)G∞

(1− β1)
√
1− β2(1− γ)2

d∑
i=1

∥∥∥∇̂Θ1:T,i

∥∥∥
2

+

d∑
i=1

T∑
t=1

β1,t

2αt (1− β1,t)

(
Θ∗

,i −Θt,i

)2√
v̂t,i

From the assumption, ∥Θt −Θ∗∥2 ≤ D, ∥Θm −Θn∥∞ ≤ D∞, we have

d∑
i=1

T∑
t=1

∇̂Θt,i

(
Θt,i −Θ∗

,i

)
≤ D2

2α (1− β1)

d∑
i=1

√
T v̂T,i +

D2
∞

2α

d∑
i=1

T∑
t=1

β1,t

(1− β1,t)

√
tv̂t,i

+
α (1 + β1)G∞

(1− β1)
√
1− β2(1− γ)2

.

d∑
i=1

∥∥∥∇̂Θ1:T,i

∥∥∥
2

We apply Eq. 7 to the above inequality, we have

d∑
i=1

T∑
t=1

∇̂Θt,i

(
Θt,i −Θ∗

,i

)
≤ D2

√
T

2α (1− β1)

d∑
i=1

∥∇̂Θ1:T,i
∥2 +

D2
∞

2α

d∑
i=1

T∑
t=1

β1,t

√
t

(1− β1,t)
∥∇̂Θ1:t,i∥2

+
α (1 + β1)G∞

(1− β1)
√
1− β2(1− γ)2

d∑
i=1

∥∥∥∇̂Θ1:T,i

∥∥∥
2
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Take expectation on both sides of the above inequality and apply Lemma A.4, Assumption 4.1,

d∑
i=1

T∑
t=1

∇Θt,i

(
Θt,i −Θ∗

,i

)
≤ D2

√
T

2α (1− β1)

d∑
i=1

E[∥∇̂Θ1:T,i
∥2]

+
α (1 + β1)G∞

(1− β1)
√
1− β2(1− γ)2

d∑
i=1

E[|∇̂Θ1:T,i
∥2]

+
D2

∞
2α

d∑
i=1

T∑
t=1

β1,t

√
t

(1− β1,t)
E[∥∇̂Θ1:t,i

∥2]

≤ D2
√
T

2α (1− β1)

d∑
i=1

√
E[∥∇̂Θ1:T,i

∥22]

+
α (1 + β1)G∞

(1− β1)
√
1− β2(1− γ)2

d∑
i=1

√
E[|∇̂Θ1:T,i

∥22]

+
D2

∞
2α

d∑
i=1

T∑
t=1

β1,t

√
t

(1− β1,t)

√
E[∥∇̂Θ1:t,i

∥22]

≤ D2T

2α (1− β1)

d∑
i=1

√
σ2 + e2 +

α (1 + β1)G∞
√
T

(1− β1)
√
1− β2(1− γ)2

d∑
i=1

√
σ2 + e2

+
D2

∞
2α

d∑
i=1

T∑
t=1

β1,tt

(1− β1,t)

√
σ2 + e2.

We can use arithmetic geometric series upper bound for the last term:

T∑
t=1

β1,t

(1− β1,t)
t ≤

T∑
t=1

1

(1− β1)
λt−1t ≤ 1

(1− β1) (1− λ)2

Therefore, we have the following regret bound:

R(T ) ≤
d∑

i=1

T∑
t=1

∇Θt,i

(
Θt,i −Θ∗

,i

)
≤ ((1− λ)2D2T +D2

∞)d

2α (1− β1) (1− λ)2

√
σ2 + e2 +

α (1 + β1)G∞
√
Td

(1− β1)
√
1− β2(1− γ)2

√
σ2 + e2

B SUPPLEMENTARY PROOF OF THE THEORY

This section will demonstrate the convergence of Fully Quantized Training (FQT) in non-convex
scenarios. The convergence of FQT can be expressed as:

E ∥∇Θ∥2

B.1 ASSUMPTIONS

We assume:

Assumption B.1 The loss L(Θ) is continuously differentiable and ∇Θ is βL-Lipschitz continuous.

Assumption B.2 L(Θ) is bounded below by Linf

Assumption B.3 The variance of the gradient is bounded,i.e., Var
[
∇̂Θt,i

]
≤ σ2
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B.2 CONVERGENCE OF SGD

Proof. According to Assumption B.1, we have:∥∥∇Θt+1
−∇Θt

∥∥
2
≤ βL ∥Θt+1 −Θt∥2

According to Bottou et al. (2018), we have

L (Θt+1)− L (Θt) ≤ ∇⊤
Θt

(Θt+1 −Θt) +
1

2
βL ∥Θt+1 −Θt∥2 (8)

Plugging the SGD iteration, we have

L (Θt+1)− L (Θt) ≤ −α∇⊤
Θt
∇̂Θt

+
1

2
α2βL

∥∥∥∇̂Θt

∥∥∥2
Taking expectations on both sides and applying AssumptionB.3,

E [L (Θt+1)]− E [L (Θt)] ≤ −α ∥∇Θt
∥2 + 1

2
α2βL

(
Var

[
∇̂Θt

]
+
∥∥∥E [∇̂Θt

]∥∥∥2)
≤ −α

(
1− 1

2
αβL

)
∥∇Θt

∥2 + 1

2
α2βσ2

≤ −1

2
α ∥∇Θt

∥2 + 1

2
α2βLσ

2

Summing the above equation up across iterations {1,...,T}, and utilize Assumption B.2, we have

Linf − L (Θ1) ≤ E [L (ΘT+1)]− E [L (Θ1)] ≤ −
1

2
α

T∑
t=1

E ∥∇Θt
∥2 + 1

2
Tα2βLσ

2

Rearrange the terms, we have:

E ∥∇Θt
∥2 ≤ 2 (L (Θ1)− Linf )

αT
+ αβLσ

2.

For T →∞, E ∥∇Θt
∥2 = O(σ2).

B.3 CONVERGENCE OF ADAM

proof. Substitute Adam’s update rule into Eq. 8:

L (Θt+1)− L (Θt) ≤ −α∇T
Θt

m̂t√
v̂t + ϵ

+
βL

2
α2

∥∥∥∥ m̂t√
v̂t + ϵ

∥∥∥∥2
Take the expectation of the first term, we have:

E
[
−α∇T

Θt

m̂t√
v̂t + ϵ

]
Since m̂t is an unbiased estimate, we have

E
[
−α∇T

Θt

m̂t√
v̂t + ϵ

]
= −αE

[
|∇Θt |2√
v̂t + ϵ

]
we have

E
[
−α∇T

Θt

m̂t√
v̂t + ϵ

]
≤ −αE

[
|∇Θt |2√

σ2 + E[∇Θt
]2

]
.

Take the expectation of the second term, we have:

E

[
β

2
α2

∣∣∣∣ m̂t√
v̂t + ϵ

∣∣∣∣2
]
≤ E

[
βL

2
α2 |m̂t|2√

v̂t + ϵ

]
= E

[
βL

2
α2 |∇Θt |2√

v̂t + ϵ

]
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Combining one and two, and substitute the definition of
√
v̂t into:√

v̂t ≤
√
σ2 + E [∇Θt ]

2

we have:

E[L (Θt+1)− L (Θt)] ≤ −α
(
1− βL

2
α

)
E

[
|∇Θt

|2√
σ2 + E[∇Θt

]2

]
Summing the above equation up across iterations {1,...,T}, and utilize Assumption B.2, we have

L (Θ1)− Linf ≥ α

(
1− βL

2
α

) T∑
t=1

E

[
|∇Θt

|2√
σ2 + E[∇Θt

]2

]
Rearrange the terms, we have

1

T

T∑
t=1

E
[
|∇Θt |2

]
≤ L (Θ1)− Linf

αT
(
1− βL

2 α
) ·√σ2 + E[∇Θt

]2.

For T →∞, E ∥∇Θt∥
2
= O(σ).

B.4 CONVERGENCE OF SGD-M

The iteration of SGD-M is
vt+1 = βvt + (1− β)∇̂Θt

Θt+1 = Θt − αvt+1

proof. Substitute SGD-M’s update rule into Eq. 8:

L (Θt+1)− L (Θt) ≤ −α∇T
Θt

vt+1 +
βL

2
α2 ∥vt+1∥2

Take the expectation of the first term, we have:

E
[
−α∇T

Θt
vt+1

]
= −αE

[
|∇Θt

|2
]

Take the expectation of the second term, we have

βL

2
α2E[|vt+1|2] ≤

βL

2
α2

(
E[|∇Θt |2]
1− β2

+
σ2

1− β2

)
.

Combining one and two, we have

L (Θt+1)− L (Θt) ≤ −α(1−
βLα

2(1− β2)
)E[|∇Θt

|2] + βLα
2σ2

2(1− β2)

Summing the above equation up across iterations {1,...,T}, and utilize Assumption B.2, we have

L (Θ1)− Linf ≥
T∑

t=1

[α(1− βLα

2(1− β2)
)E[|∇Θt

|2]]− T
βLα

2σ2

2(1− β2)

Rearrange the terms, we have

1

T

T∑
t=1

E
[
|∇Θt |2

]
≤ L (Θ1)− Linf

Tα(1− βLα
2(1−β2) )

+
βLασ

2

2(1− β2)(1− βLα
2(1−β2) )

.

For T →∞, E ∥∇Θt∥
2
= O(σ2).

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C VARIANCE OF SPECIFIC QUANTIZERS

Proposition C.1 (Variance of stochastic rounding) For any number X ∈ R, Var[SR(X)] ≤ 1
4 .

Proof. For any real number X , let p := X − ⌊X⌋ ∈ [0, 1), then

Var[SR(X)] = E[SR(X)−X]2 = p(⌈X⌉ −X)2 + (1− p)(⌊X⌋ −X)2

=p(1− p)2 + p2(1− p) = p(1− p)(1− p+ p) = p(1− p) ≤ 1

4
.

C.1 PER-SAMPLE QUANTIZER

Given an activation gradient ∇̂H(l) , its per-sample quantization is:

Qg(∇̂H
(l)
i,j
) = SR(B(∇̂

H
(l)
i,j
− Zi)/Ri)Ri/B + Zi,

where apply different ranges Ri and zero points Zi for each sample of the gradient. When S =
diag

{
R1

B , . . . , RN

B

}
, we have

Var
[
Qg

(
∇̂H(l)

)]
= Var

[
SSR

(
(S−1

(
∇̂H(l) − 1Z

))
/+ 1Z

]
≤

N∑
i=1

D(l)∑
j=1

Var[
Ri

B
SR(

B

Ri
(∇̂

H
(l)
i,j
− Zi)) + Zi)]

=

N∑
i=1

D(l)∑
j=1

R2
i

B2
Var[SR(

B

Ri
(∇̂

H
(l)
i,j
− Zi))]

≤ D(l)

4B2

N∑
i=1

R2
i .

C.2 PER-SAMPLE QUANTIZER WITH AGP

Place the groups with the largest range in the first N/b rows, and let the range of these groups be
denoted by R1, . . . , RN/b, groups in the remaining rows are denoted by rN/b+1, . . . , rN . We assume
that r/R ≈ 0.

Qg(∇̂H(l)) = (MS) SR
(
(MS)−1

(
M∇̂H(l) −MZ

))
+MZ,

where M = diag
(

m1

p1
, . . . , mN

pN

)
, pi = NRi

bRtotal
, Rtotal =

∑N
i=1 Ri and mi ∼ Bern (pi). To

simplify the problem, we assume that R1 ≈ R2 · · · ≈ RN/b. And we use r/R ≈ 0, then p ≈
{1, . . . , 0}. In other words, for the first N

b rows, m = 1, and 0 otherwise. We substitute it into the
above equation and prune the groups with smaller ranges,

Qg(∇̂H(l)) = S
1:Nb ,1:Nb

SR

(
(S

1:Nb ,1:Nb
)−1

(
∇̂

H
(l)

1:N
b

− 1Z
1:Nb

))
+ 1Z

1:Nb
.

Then we have,

Var
[
Qg

(
∇̂H(l)

)]
≤

N/b∑
i=1

D(l)∑
j=1

Var[
Ri

B
SR(

B

Ri
(∇̂

H
(l)
i,j
− Zi)) + Zi)]

=

N/b∑
i=1

D(l)∑
j=1

R2
i

B2
Var[SR(

B

Ri
(∇̂

H
(l)
i,j
− Zi))]

≤ D(l)

4B2

N/b∑
i=1

R2
i .
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For 1-bit quantizers, the variance of PSQ is D(l)

4 (
∑N/b

i=1 R2
i +

∑N
i=N/b+1 r

2
i ). It is clear that

D(l)

4B2

N/b∑
i=1

R2
i ≤

D(l)

4
(

N/b∑
i=1

R2
i +

N∑
i=N/b+1

r2i ).

D IMPLEMENTATION DETAILS

We implemented our method as a lightweight library in PyTorch. For binary matrix multiplication
and some auxiliary operations, we implemented them using C++. In Alg. 1, we illustrate the
process of forward and backward propagation for quantized fully connected layers. For simplicity,
certain details, such as bias terms, quantization zero points, and the splitting operations on gradient
tensors, are omitted here. The entire process primarily consists of five components: quantization (9),
encoding(4-5, 10), low-bit multiplication (6, 11), pruning (8), and dequantization (12).

Algorithm 1 Linear Layer Forward and Backward Propagation

1: Input: Input H(l−1), Weight Θ(l), Gradient of Loss∇H(l)

2: Output: Output H(l), Gradient of Weight∇Θ(l) , Gradient of Input∇H(l−1)

3: // Forward Propagation
4: Encode Weight: H

(l−1)
= row encoder(H(l−1))

5: Encode Input: Θ
(l)

= column encoder(Θ(l))

6: Compute Output: H(l) = H
(l−1)

Θ
(l)

7: // Backward Propagation
8: Pruning: ∇

H
(l)
PSQ

,∇
H

(l)
PCQ

= pruner(∇H(l))

9: Quantization: ∇
H

(l)
PSQ

,S
(l)
PSQ = PSQ(∇

H
(l−1)
PSQ

),

∇
H

(l)
PCQ

,S
(l)
PCQ = PCQ(∇

H
(l−1)
PCQ

)

10: Encode Gradient: ∇
H

(l)
PSQ

= row encoder(∇
H

(l)
PSQ

),

∇
H

(l)
PCQ

= column encoder(∇
H

(l)
PCQ

)

11: Compute Gradient: ∇Θ(l) = H
(l−1)⊤∇

H
(l)
PCQ

,

∇H(l−1) = ∇
H

(l)
PSQ

Θ
(l)⊤

12: Dequantization: ∇̂Θ(l) = ∇Θ(l)S
(l)
PCQ, ∇̂H(l−1) = S

(l)
PSQ∇H(l−1)

13: // Update Parameters
14: Update Weight: W←W − α∇̂Θ(l)

Encoder is a functional component that encodes multiple integers with values of 1 or -1 into a smaller
set of elements, facilitating subsequent XNOR operations. Taking Row Encoder as an example, its
primary form is illustrated in Alg. 2, the case where the number of columns is not divisible by b has
been overlooked.

Binary multiplication is the crucial operation. In our approach, both forward and backward
propagation are implemented through binary multiplication. For example, For two vectors, X1 and
X2, each of length 32, encode them into two unsigned 32-bit integers, x1 and x2. The multiplication
of the two is implemented as follows:

SUM(X1 ⊙X2) = bitcount(XNOR(x1, x2)) << 1− 32

where the dot product of two vectors, each of length 32, is efficiently replaced by a single bitcount and
XNOR operation, effectively reducing energy consumption and time overhead. However, it is worth
noting that an unbiased quantizer maps data to 0 or 1, rather than -1 or 1. Therefore, some conversion
is required. For X1 ∈ {1,−1}n, X2 = ReLU(X1), it is clear that (S/2)X1+Z+(S/2) = SX2+Z.
Therefore, some adjustments are needed: a straightforward modification of the scaling factor S and
zero point Z is sufficient to achieve the transformation. This transformation requires only one
multiplication and one addition for the scaling factor and zero point, thus incurring minimal overhead.
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Algorithm 2 Row Encoder
1: Input: Input H ∈ RN×D, Bits b
2: Output: Output He ∈ RN×⌊(1+(D−1)/b)⌋

3: for i← 1 to N do
4: for j ← 1 to ⌊(1 + (D − 1)/b)⌋ do
5: Hi,j = 0
6: for k ← 1 to b do
7: s = (H > 0)
8: Hi,j = (Hi,j << 1)∥s
9: end for

10: end for
11: end for

Table 7: Comparison of computational operations for multiplying matrices of size N × D and
D ×D(l−1) in 1-bit matrix multiplication (MM).

Setting XNOR BitCount Shift FP Addition INT Addition FP Multiplication AND

1-bit MM ND(l−1)D (N + 1)D(l−1)D - ND(l−1) - 2ND(l−1) -
Average 1-bit MM ND(l−1)D (N + 1)D(l−1)D N( 3

4
D + 3

2
D(l−1)) N

4
D(l−1) 3

4
ND(l−1) 1

2
ND(l−1) ND

For convolutional layers, direct matrix multiplication is not feasible. To facilitate subsequent op-
erations, an unfolder is performed on the convolutional layer before matrix multiplication. After
computation, the standard form is restored through folder operations. For example, We perform a
convolution operation between the input X ∈ RN×C×H×W and parameters Θ ∈ RD×C×K×K to
obtain the output Y ∈ RN×D×H×W .

1-bit Matrix Multiplication vs. Average 1-bit Matrix Multiplication. The main difference between
standard 1-bit MM and average 1-bit MM is that the latter introduces Shift, INT Addition, and AND
operations due to matrix splitting and summing four submatrices. Specifically, average 1-bit MM
incurs N( 34D + 3

2D
(l−1)) Shift operations, 3

4ND(l−1) INT Addition operations, and ND AND
operations. However, these operations are relatively few and lightweight, so they do not significantly
increase the time cost.

Unfolder treats each element involved in element-wise multiplication within the kernel as a row, and
the number of times the window slides as columns, the unfolded input and parameters transform into
Xu ∈ RNHW×CK2

, Θu ∈ RD×CK2

. Finally, we need to restore the output Yu ∈ RNHW×D to its
standard state.

Folder is the inverse operation of Unfolder, designed to restore the gradients of both the input and
parameters∇Xu ∈ RNHW×CK2

,∇Θu ∈ RD×CK2

to their standard states.

E EXPERIMENTAL DETAILS

E.1 GRADIENT DISTRIBUTION

From Fig. 6, it can be observed that the gradient of the activation exhibits a pattern across different
epochs: the ranges of groups (both samples and dimensions) are highly uneven. Some groups have
large ranges, while others have small ranges. Although we have presented results for a single batch,
the same pattern persists across the remaining batches.

E.2 EXPERIMENTAL SETTINGS

Classification task: The training process is divided into two stages: initially undergoing quantization-
aware training on ImageNet and subsequently undergoing FQT on various downstream datasets. The
first stage: the initial learning rate was set to 10−3 and the weight decay to 10−5, following Bulat &
Tzimiropoulos (2019), the optimizer is Adam and use a consine learning rate schedule. We train for
90 epochs. The second stage: for all datasets, the initial learning rate for fully connected layers is set
to 10−3. For portions of the network that have been previously trained, the learning rate is set to 10−5,
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Figure 6: Heterogeneity in a ResNet18’s gradients. (a-e) Heatmap of the per-group range at the
conv2.1.2 layer under different epochs; (f-j) Histogram of the gradient groups (samples) at the same
layer.

Table 8: Validation loss of fine-tuning GPT2-xl on the Shakespeare dataset.
Method iter0 iter5 iter10 iter15 iter20

Full Precision Training 3.76 2.82 2.81 2.88 2.85
Ours 3.76 3.37 3.32 3.38 3.24
PSQ 3.76 nan nan nan nan

except for car dataset (Krause et al., 2013) where it is set to 10−4. The optimizer settings are the
same as the first stage. We train for 60 epochs. The batch size was assigned to be 128. We measured
training latency on CPUs, but to expedite the acquisition of accuracy statistics, we simulated the
training results on 4 NVIDIA RTX A4000 GPUs. Due to limited resources on terminal devices,
we utilized a smaller batch size of 64. We followed the configuration of Bulat & Tzimiropoulos
(2019) by excluding quantization for sensitive layers, such as the first and last layers, as well as skip
connections in residual networks, in addition to batch normalization (BN) and ReLU layers.

Detection task: We evaluate our method on a simple transfer learning task to assess its effectiveness
on object detection models, specifically transferring from high-resolution object detection to low-
resolution object detection. The training process is divided into two stages: initially undergoing
quantization-aware training on the PASCAL VOC 2007 and VOC 2012 trainval sets with a resolution
of (600*600) pixels, followed by FQT training on the same dataset with a resolution of (300*300)
pixels. The first stage: We followed all the settings of BiDet (Wang et al., 2020), including the
quantization methods for both weights and activation values and training configurations. The batch
size was assigned to 32, and the Adam optimizer was applied. The learning rate started from 10−3

and dropped during training every 6 epochs by a factor of 10. We train for 20 epochs. The second
stage: the initial learning rate is 10−5, the training epoch is 5 and the others are the same.

NLP tasks: We conduct experiments to validate the effectiveness of our proposed 1-bit FQT on
BERTBASE(12 hidden layers) and the GLUE benchmark (Wang et al., 2018a) which consists of nine
basic language tasks. We use the standard metrics for each GLUE task to evaluate our method. We
use Spearman Correlation for STS-B, Mathews Correlation Coefficient for CoLA, and classification
accuracy for the rest tasks. As for the MNLI task, we report the accuracy on both in-domain evaluation
MNLI-match (MNLI-m) and cross-domain evaluation MNLI-mismatch (MNLI-mm). We exclude the
WNLI task as Qin et al. (2022). We utilized BiBERT(Qin et al., 2022) as our binarized model, which
is derived by directly binarizing a full-precision one. Subsequently, we fine-tune this binarized model
using both full-precision gradients (QAT) and 1-bit gradients (Ours). We follow Qin et al. (2022) by
excluding quantization for the classifier, position embedding layer, and token type embedding layer.
We use Adam as our optimizer. The training settings are also the same as Qin et al. (2022).
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Table 9: Experimental results of training from scratch.

Method Precision XNOR-Net++ Adabin
(W, A, G) CIFAR-10 CIFAR-100 ImageNet CIFAR-10 CIFAR-100 ImageNet

QAT 1, 1, 32 84.31 62.14 57.10 91.91 66.68 62.50
PSQ 1, 1, 1 24.27 6.14 0.10 41.59 16.09 0.10
Ours 1, 1, 1 42.57 26.96 21.63 78.80 58.14 39.12
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Figure 7: Gradient range analysis in ResNet18’s conv2.1.2 layer under fine-tuning (FT) and training
from scratch (TFS). (a) The result from CIFAR-10. (b) The result from CIFAR-100.

E.3 FQT FROM SCRATCH

We compared the performance of our method in two scenarios: fine-tuning and training from scratch.
We presented the classification results under the optimal configuration (b=4) in Table 9. From the
table, it is evident that when training from scratch, the model exhibits very low classification accuracy
across all datasets, and in certain datasets, it even lacks classification capability entirely. We attempted
to analyze the differences between the two scenarios based on the distinct gradient distributions.
From Fig. 7, we observe that the gradient range is larger in training from scratch, leading to increased
gradient variance (Eq. 5) and reduced model convergence. Therefore, 1-bit FQT from scratch remains
an open problem. Additionally, we compared our method with PSQ in the training scenario from
scratch, and the results indicate that our approach still significantly outperforms PSQ in accuracy.

E.4 TIME EXPENDITURE STRUCTURE

We present the speedup across layers of VGGNet16 and the time consumption for each operation in
Fig. 10, providing guidance for future optimization directions. It is important to note that the first
and last layers were not quantized and, therefore, were not included in the analysis. From the figure,
it is evident that matrix multiplication constitutes the majority of the training time, while the time
overhead of other operations such as gradient pruning and quantization can be considered negligible.
Therefore, the focus of future optimization efforts will remain on matrix multiplication. Furthermore,
it can be observed that our implemented method is particularly friendly for layers with a large number
of convolutional kernels and smaller input resolution.
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Figure 8: Gradient numerical precision(“bits”) vs. test accuracy of VGGNet16 on (a) Flowers and (b)
ImageNet.
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Figure 9: Testing accuracy comparison on VGGNet16.

Table 10: Experimental results on multiple downstream datasets. “(W, A, G)” denote the bitwidth of
weight, activations, and gradients, respectively. b represents the bitwidth of the remaining groups.

Method Precision Accuracy(%)
(W, A, G) CIFAR-10 CIFAR-100 Flowers Cars Pets CUB Average

ResNet-50
QAT 1, 1, 32 90.12 70.3 85.69 58.62 78.30 48.03 71.84
PSQ 1, 1, 1 77.85 54.39 84.61 34.52 76.75 42.34 61.74
Ours (b = 4) 1, 1, 1 82.84 60.19 85.49 47.08 77.86 45.20 66.44
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Figure 10: (a) The speedup of ours compared with FP32 PyTorch. (b) The compositional structure of
time consumption.
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