
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

1-BIT FQT: PUSHING THE LIMIT OF FULLY QUANTIZED
TRAINING TO 1-BIT

Anonymous authors
Paper under double-blind review

ABSTRACT

Fully quantized training (FQT) accelerates the training of deep neural networks by
quantizing the activations, weights, and gradients into lower precision. To explore
the ultimate limit of FQT (the lowest achievable precision), we make a first attempt
to 1-bit FQT. We provide a theoretical analysis of FQT based on Adam and SGD,
revealing that the gradient variance influences the convergence of FQT. Building on
these theoretical results, we introduce an Average 1-bit Quantization (AQ) strategy.
The strategy leverages the heterogeneity of gradients to mitigate gradient variance
by pruning less informative gradients and enhancing the numerical precision of
remaining gradients. Additionally, we propose Sample Channel joint Quantization
(SCQ), which utilizes different quantization strategies in the computation of weight
gradients and activation gradients to ensure that the method is friendly to low-
bitwidth hardware. Finally, we present a framework to deploy our algorithm.
For fine-tuning VGGNet-16 and ResNet-18 on multiple datasets, our algorithm
achieves an average accuracy improvement of approximately 6%, compared to
per-sample quantization. Moreover, our training speedup can reach a maximum of
5.13× compared to full precision training.

1 INTRODUCTION

Training neural networks has a high computational cost and memory footprint. Training with low-
precision arithmetic (a.k.a., fully quantized training or FQT) can enhance computational and memory
efficiency. FQT quantizes weights, activations, and gradients into low-bitwidth numerical formats,
enabling a fast implementation of both forward and backward propagation on low-precision hardware.

The speedup potential of FQT depends on the numerical precision. Research aims to reduce the
training numerical precision, without compromising convergence speed or accuracy. The required
precision has been reduced from FP/INT16 (Micikevicius et al., 2017; Das et al., 2018) to FP/INT8
(Wang et al., 2018b; Banner et al., 2018; Zhu et al., 2020; Yang et al., 2020). As of now, some work
(Sun et al., 2020; Chmiel et al., 2021; Xi et al., 2023) have successfully pushed precision down to 4
bits.

As the training numerical precision continues to decrease, a natural question arises:

What is the ultimate limit of FQT (i.e., the minimum achievable bitwidth)?

Answering this question not only advances our understanding of FQT but also provides a crucial
direction for future hardware design strategies. Ideally, if we can push the bitwidth down to 1-bit,
the training can be implemented with binary operations, such as XNOR and bitcounting operations
(Courbariaux et al., 2016), and hardware design might be greatly simplified. Binary computation is
already shown possible for inference acceleration, such as XNOR-Net (Rastegari et al., 2016), but
1-bit training remains unexplored.

Reducing the bitwidth for FQT is challenging because of (1) the lack of theoretical understanding,
especially how gradient quantization affects the convergence; (2) the large quantization error of
gradients, which causes a sharp performance drop or even divergence when reducing gradient bitwidth
lower than 4-bit (Fig. 1). Due to these challenges, the current research frontier is still 4-bit FQT.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

32 8 4 2 1

Bits

Adam
SGD

60

40Te
st

 A
cc

.

20

80

Sharp Drop
~77.9%

Sharp
Drop

~68.8%

Diverge

Sharp
Drop

~37.2%

Figure 1: Gradient numerical precision
(“bits”) vs. test accuracy of VGGNet16
on CIFAR-10, trained with Adam and SGD.
(The supplementary results are in Fig. 8)

In this work, we make a first attempt towards achieving
1-bit FQT. Firstly, we provide a theoretical analysis for
FQT based on both Adam (Kingma & Ba, 2014) and
SGD. Our analysis links the convergence with gradient
variance. Specifically, our analysis reveals that Adam
is more suitable for FQT than SGD in the low-bitwidth
regime, due to their different sensitivity to gradient
variance.

Inspired by the above theory, we propose a hardware-
friendly algorithm for 1-bit FQT. Our algorithm, com-
posed of an Activation Gradient Pruning (AGP) and
per-group quantization (Chen et al., 2020; Cho & Yoo,
2020), effectively reduces gradient variance. AGP uti-
lizes gradient heterogeneity by discarding less informa-
tive groups and allocating saved resources to improve the numerical precision of more informative
ones. Additionally, we propose Sample Channel joint Quantization (SCQ), an effective quantization
scheme for accelerated performance. SCQ employs different quantization methods for comput-
ing weight gradients and activation gradients, ensuring both can be effectively implemented on
low-bitwidth computing units.

We examine the potential of 1-bit FQT on transfer learning tasks in both vision and NLP domain.
In this task, 1-bit FQT algorithm is used for on-device finetuning a pretrained 1-bit model to adapt
new data. On all the datasets, our 1-bit FQT algorithm can successfully converge and demonstrate
significantly superior performance compared to directly applying the previous FQT method to the
task. The average accuracy drop on visual classification datasets is approximately 5%, compared
to training the binary model with full-precision gradients. Notably, the average accuracy loss is
negligible (less than 1%) on Flowers (Nilsback & Zisserman, 2008) dataset and Pets (Parkhi et al.,
2012) dataset, indicating that 1-bit FQT might indeed be useful in some cases. We implement our
algorithm on Hygon and Raspberry Pi devices as a PyTorch-based library binop. Accelerated
on-device training can be achieved with simple layer substitution, e.g., replace torch.nn.Conv2d
with binop.Conv2d. In practice, our method can achieve up to 5.13× speedup, compared to FP32
PyTorch. It is important to note that the primary aim of this paper is to explore the ultimate limit of
Fully Quantized Training (FQT) rather than to focus on practical application performance. These
results indicate that, in certain tasks, FQT precision can indeed be pushed to the extreme 1-bit level,
offering valuable insights for future research.

2 RELATED WORKS

Quantization Aware Training. QAT is a method designed to accelerate inference by quantizing the
activations and weights. Various works (Zhou et al., 2017; Choi et al., 2018; Zhang et al., 2018; Jacob
et al., 2018; Dong et al., 2019; Tang et al., 2022; Liu et al., 2023) have been developed to quantize
weights and activations into lower bitwidth. Furthermore, some studies (Rastegari et al., 2016; Bulat
& Tzimiropoulos, 2019; Wang et al., 2020; Bai et al., 2020; Wu et al., 2023; Qin et al., 2023) have
reduced the numerical precision of weights and activation values to 1 bit. However, QAT does not
quantize gradients, and as a result, the backward propagation cannot be accelerated.

Fully Quantized Training. FQT further quantizes the gradients into lower precision, compared with
QAT. Hence, FQT allows for efficient implementation of both forward and backward propagation on
low-bitwidth computational units. FQT, unlike optimizer quantization (Lin et al., 2022a), involves
quantizing weights, activations, and gradients altogether. Optimizer quantization only quantizes
weight update (weight gradients), thus reducing communication costs but not accelerating computation
(Saha et al., 2022). Early works on FQT use FP16 (Gupta et al., 2015; Micikevicius et al., 2017) or
INT16 (Das et al., 2018) values to constrain weights, activations, and gradients. After that, various
8-bit numerical formats (Wang et al., 2018b; Banner et al., 2018; Zhu et al., 2020; Yang et al., 2020;
Xi et al., 2024) have been proposed that further push the bitwidth of data to 8 bits. Subsequently,
Chen et al. (2020) provides theoretical bounds on how the quantization scheme (bitwidth, type of
quantizer) affects the quality of the quantized gradient. Based on that, some works have successfully

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

trained several networks with 4-bit activations/weights/gradients (Sun et al., 2020; Chmiel et al.,
2021; Xi et al., 2023). The current research frontier is 4-bit FQT, but it still is not the ultimate limit.

3 FRAMEWORK

To better describe our approach, necessary notations are introduced first. We denote the DNN model
composed of L layers with the learnable parameter Θ as F(.;Θ). In each training iteration, we
sample a minibatch (X,Y) from the dataset and input it into the model. The process is

H(0) = X,H(l) = F(l)
(
H(l−1);Θ(l)

)
,∀l ∈ [L]+, (1)

where H(l) ∈ RN×D(l)

is a feature map (N is the batch size, D(l) is the number of features), and
[L]+ = {1, 2, . . . , L} are sets of integers. F(l) is the l-th layer of the model with parameter Θ(l).
Given the minibatch loss L(H(L),Y), we compute the gradient∇Θ(l)L, and update the parameter.
For simplicity, we use ∇H(l) and ∇Θ(l) represent the activation/parameter gradient. The back-
propagation is ∇H(l−1) ,∇Θ(l) = B(l)(∇H(l) ,H(l−1),Θ(l)), where the function B(l)(·) takes the
gradient of the output ∇H(l) and the information kept in memory (H(l), Θ(l)), and computes the
gradient of the input. For example, consider a linear layer H(l) = H(l−1)Θ(l) and its gradient is

∇H(l−1) = ∇H(l)Θ(l)⊤ , ∇Θ(l) = H(l−1)⊤∇H(l) . (2)

3.1 QUANTIZED TRAINING

Here, we describe Quantization-Aware Training (QAT) and Fully Quantized Training (FQT). QAT is
employed to accelerate inference, while FQT is designed to accelerate both inference and training.

Before embarking on QAT, the initial step involves quantizing the parameters and activations of the
model:

H
(l−1)

= Qf (H
(l−1)),Θ

(l)
= QΘ(Θ(l)),∀l ∈ [L]+,

where Qf (·) and QΘ(·) are quantizers for activations and weights, and H
(l−1)

and Θ
(l)

are quan-
tized activations and weights. The forward propagation Eq. 1 is quantized as ∀l ∈ [L]+,H

(l) =

F(l)(H
(l−1)

;Θ
(l)
), where H

(l−1)
and Θ

(l)
represent low-bit data. Therefore, the inference can be

efficiently implemented on low-bitwidth computing kernels. QAT leverages the straight-through
estimator (Bengio et al., 2013) to train quantized models. The back-propagation Eq. 2 becomes:

∇̃H(l−1) = ∇H(l)Θ
(l)⊤

, ∇̃Θ(l) = H
(l−1)⊤∇H(l) .

Since gradients are not quantized, the backpropagation cannot be accelerated.

The forward propagation of FQT is identical to QAT, FQT further quantizes the gradients at each
layer. We use ∇̂H(l) and ∇̂Θ(l) to represent the FQT gradient. The backpropagation is quantized as

∇̂H(l−1) = Qg(∇̂H(l))Θ
(l)⊤

, ∇̂Θ(l) = H
(l−1)⊤

Qg(∇̂H(l)),

where ∇̂H(L) := ∇H(L) , and Qg(·) is a quantizer for gradients. Now, with all operands quantized,
the backpropagation can be efficiently implemented on low-bitwidth kernels.

3.2 FQT WITH UNBIASED QUANTIZER

In our framework, Qf (·) and QΘ(·) are deterministic quantizers, while Qg(·) is an unbiased quantizer.
This configuration follows Chen et al. (2020). In this framework, the gradients in FQT are unbiased
estimates of QAT, ensuring both converge to the same point in expectation.

Consider Qg as an unbiased stochastic quantizer, i.e., E [Qg(∇H)] = ∇H, for any ∇H, which are
already widely adopted in existing FQT approaches (Banner et al., 2018; Xi et al., 2023), thereby

enabling E[∇̂H(l)] = ∇H(l) . The activation gradients of FQT is E[∇̂H(l−1)] = E[∇̂H(l)]Θ
(l)⊤

=

∇̃H(l−1) , which implies FQT and QAT convergence to a stationary point in expectation. Given an

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

activation gradient tensor ∇H, we quantize it to b-bit. We first compute the range of the tensor,
and scale each element: ∇Hi,j

= SR(B(∇Hi,j
− Z)/R), where B = 2b − 1 are the number of

quantization bins, R = max {∇H} − min {∇H} is the range, Z = min {∇H} is the zero point,
the stochastic rounding (Courbariaux et al., 2015) operation SR(·) convert input to integers, and
∇Hi,j

is the gradient quantized to b bits. The dequantization is ∇̂Hi,j
= ∇Hi,j

R/B + Z. Due to the
utilization of stochastic rounding, it is clear that E[∇̂Hi,j

] = ∇Hi,j
.

The unbiased quantizer widely adopted in FQT is the per-group quantizer, including per-tensor
quantizer (PTQ) (Banner et al., 2018), per-sample quantizer (PSQ) (Chen et al., 2020), and per-
channel quantizer (PCQ) (Cho & Yoo, 2020). In these strategies, each group computes its own range
and zero point, rather than sharing a common one, which addresses the large variation of dynamic
range across groups.

4 THEORETICAL RESULTS

In this section, we analyze the convergence behavior of FQT under two different optimizers, Adam
and SGD. The proof of theorems follows the framework in Kingma & Ba (2014), which can be found
in Appendix A.

4.1 OPTIMIZER IMPACT ON CONVERGENCE

Quantized training with the Adam optimizer achieved much higher accuracy than those with SGD (Fig.
1). Although some prior studies (Bulat & Tzimiropoulos, 2019; Lin et al., 2022b) have highlighted
this issue, the theoretical understanding of FQT with Adam is still lacking. To fill this gap, we will
provide theoretical bounds on the convergence of FQT based on both Adam and SGD optimizers in
the following part. (The supplementary results are in Appendix B))

We use the framework proposed in Zinkevich (2003) to analyze the convergence. We adopt the
assumption made by Zinkevich (2003) that the loss function L is convex. At each iteration t, we
predict using the parameter Θt and evaluate it on the loss function Lt. We evaluate the convergence
of FQT using the regret: R(T) =

∑T
t=1 [Lt (Θt)− Lt (Θ

∗)] , where Θ∗ are the best fixed point
parameter. We define ∇Θ1:t,i ∈ Rt as a vector that contains the i-th dimension of the gradients over
all iterations till t,∇Θ1:t,i

= [∇Θ1,i
,∇Θ2,i

, . . . ,∇Θt,i
], ∇̂Θ1:t,i

is the quantized version of ∇Θ1:t,i
.

Assumption 4.1 There exists σ, e > 0, such that ∀Θt,i, Var
[
∇̂Θt,i

]
≤ σ2, −e ≤ E

[
∇̂Θt,i

]
≤ e.

Assumption 4.2 The distance between any Θt is bounded, ∥Θn −Θm∥2 ≤ D, ∥Θn −Θm∥∞ ≤
D∞, for any m,n ∈ {1, . . . , T}.

Given an unbiased gradient, we now establish the convergence of quantized training under SGD. The
iteration form of SGD is Θt+1 ← Θt − αt∇̂Θt .

Theorem 4.3 If Assumption 4.1 and 4.2 holds, let αt = α√
t

and the number of elements in the

gradient is d. SGD achieves the following guarantee, for all T ≥ 1. RSGD(T) ≤ D2

2α + αTd(σ2+e2)
2 .

The iteration form of Adam is expressed as follows: mt = β1,t ·mt−1 + (1− β1,t) · ∇̂Θt , vt = β2 · vt−1 + (1− β2) ·
(
∇̂Θt

)2
,

m̂t =
mt

1−βt
1
, v̂t =

vt
1−βt

2
,Θt+1 = Θt − α√

v̂+ϵ
· m̂t.

Assumption 4.4 The function Lt has bounded gradients, ∀Θ,
∥∥∥∇̂Θt

∥∥∥
2
≤ G,

∥∥∥∇̂Θt

∥∥∥
∞
≤ G∞.

Theorem 4.5 If Assumption 4.1, 4.2 and 4.4 holds, let β1, β2 ∈ [0, 1) satisfy β2
1√
β2

< 1, αt =
α√
t
, and β1,t = β1λ

t−1, λ ∈ (0, 1). Adam achieves the following guarantee, for all T ≥ 1.

RAdam(T) ≤ ((1− λ)2D2T +D2
∞)d

2α (1− β1) (1− λ)2

√
σ2 + e2 +

α (1 + β1)G∞
√
Td

(1− β1)
√
1− β2(1− γ)2

√
σ2 + e2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Based on Theorem 4.3, 4.5, Adam and SGD achieve the following guarantee, for T →∞.

RSGD(T)

T
≤ αd(σ2 + e2)/2,

RAdam(T)

T
≤ D2d

2α (1− β1)

√
σ2 + e2.

From the inquation, it is straightforward to conclude that RSGD(T)
T = O(σ2) +O(1), RAdam(T)

T =
O(σ) +O(1). This implies that the convergence of FQT based on both Adam and SGD is influenced
by the gradient variance, with SGD being more sensitive to variations in gradient variance.

4.2 QUANTIZER IMPACT ON GRADIENT VARIANCE

Based on our theory, gradient variance plays a crucial role in convergence. Gradient variance is
primarily composed of two components: the variance of QAT gradients and the variance introduced
by the gradient quantizers. Chen et al. (2020) reduced the complicated problem of gradient variance
into the simple problem of quantizer variance. Thus, we need to minimize the quantizer variance.

The fundamental form of an unbiased quantizer Qg is given by Sec. 3.2, and its variance is

Var[Qg(∇̂H(l)) | ∇̂H(l)] =
R2

B2
Var[SR(·) | ∇̂H(l)] ≤

ND(l)

4B2
R2, where the maximum variance of

stochastic rounding SR(·) is 1/4. The expression reveals that as the bitwidth b decreases, the variance
significantly increases. Furthermore, due to the sensitivity of SGD to gradient variance, SGD performs
less effectively than Adam in low precision scenarios (large gradient variance) (Fig. 1). Therefore,
in scenarios with larger gradient variances, such as in quantized training, the Adam optimizer is
recommended. Additionally, the variance is highly sensitive to the gradient range R, with outliers in
the gradient expanding the range and consequently increasing the quantizer’s variance.

5 1-BIT FQT ALGORITHM

In this section, we propose our 1-bit FQT algorithm, including the quantization of weights, activation,
and gradients.

5.1 FORWARD PROPAGATION

In the forward propagation, both Qf and QΘ are deterministic quantizers, taking the form:
sign(x) = −1 if x ≤ 0 otherwise 1. For a fully connected layer, the forward propagation is
H(l) = (sign(H(l−1)) sign(Θ(l))) ⊙ Γ, where Γ ∈ RD(l)

represents the shared scaling factor for
both weights and activations, and it is learnable parameters. The form follows Bulat & Tzimiropoulos
(2019).

5.2 BACKWARD PROPAGATION

The form of backpropagation is

∇̂H(l−1) = Qg(∇̂H(l)) sign(Θ(l)⊤), ∇̂Θ(l) = sign(H(l−1)⊤)Qg(∇̂H(l)). (3)

Based on our theory, reducing quantizer variance is crucial to ensure the convergence of the model.
However, outliers in the gradients can widen the range of gradients, thereby increasing variance.

To mitigate the impact of outliers on variance, per-group quantization is widely employed. Per-group
quantization reduces variance by assigning a separate range to each group instead of sharing a large
range among all. For example, we perform per-sample quantization on ∇̂H(l) ∈ RN×D(l)

and its
form is Qg(∇̂H(l)) = S(l)(SR((S(l))−1(∇̂H(l) − Z))) + Z, where S(l) = diag{R1/B, ..., RN/B},
Ri,Zi represent the range and zero point of activation gradients for the i-th sample. Its variance is

Var[Qg(∇̂H(l)) | ∇̂H(l)] ≤
D(l)

4B2

N∑
i=1

R2
i . (4)

However, the variance of PSQ is still too large for 1-bit FQT.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0 7 14 21 28 35 42 49 56 63
Channel

0

15

30

45

60

Sa
m

pl
e

0.0

0.2

0.4

0.6

0.8

1.0

1e 5

(a)

1.0 0.5 0.0 0.5 1.0
Value 1e 6

0

100

200

300

400

500

Fr
eq

.

(b)

Figure 2: Heterogeneity in a ResNet18’s gradients.
(a) Heatmap of the per-group range at the conv2.1.2
layer; (b) Histogram of the gradient in a certain group.

To address this, we propose Average 1-bit
Quantization (AQ), which consists of Activa-
tion Gradient Pruning (AGP) and Per-group
Quantization, to reduce quantizer variance by
utilizing the heterogeneity in gradient distri-
butions (Xi et al., 2023). Gradients exhibit
varying ranges across samples, with some
having large ranges and others much smaller,
a pattern that also holds across the channel
dimension, as illustrated in Fig. 2. Groups
(samples or channels) with smaller gradient
ranges tend to have values close to zero, indi-
cating that less information stored in these groups. By pruning these less informative groups, we can
reallocate the saved computational resources to groups with larger ranges (increased bitwidth). As
shown by Eq. 4, variance primarily originates from groups with larger ranges (R), and it is highly
sensitive to numerical precision. Therefore, by using higher numerical precision (i.e., increased
bitwidth) for these groups, we can effectively reduce the overall variance.

Achieving AQ based on the above idea requires ensuring three conditions: (1) if the bitwidth of
retained groups is b, only 1/b of the groups can be preserved, thereby maintaining an average bitwidth
of 1; (2) adopting random pruning to ensure the unbiased nature of quantization; (3) groups with
larger ranges are more likely to be retained. Based on that, we first assign each group a probability
pi ∈ [0, 1], i = 1, · · · , N . To retain N

b groups and ensure the retained groups have a large range, pi
needs to satisfy

∑N
i=1 pi =

N
b and pi ∝ Ri, i.e., pi = NRi

bRtotal
, Rtotal =

∑N
i=1 Ri. Then we define

random masks mi ∼ Bern (pi) to prune unimportant groups, and perform per-group quantization on
the remaining ones. Its form is: Qg(∇̂H(l)) = Qb

PSQ(M∇̂H(l)), where M = diag(m1

p1
, . . . , mN

pN
),

Qb
PSQ is b-bit PSQ. Qg is an unbiased quantizer since E[Qb

PSQ(M∇̂H(l))] = E[M]∇̂H(l) = I∇̂H(l) .
The variance is

Var
[
Qg

(
∇̂H(l)

)
| ∇̂H(l)

]
≤ D(l)

4B2

N
b∑

i=1

R2
i . (5)

From Eq. 5, it can be observed that the variance of AQ is significantly smaller than that of 1-bit PSQ
(D

(l)

4B2

∑N
i=1 R

2
i). The proof is given in Appendix C.

Despite reducing the average precision of the gradient to 1 bit, the binarized operations are limited
because the retained groups remain non-binarized (b-bit). We perform a splitting operation to
transform the gradient into a format suitable for binarized operations. For example, a value of 2
(binary: 10) in a 2-bit tensor∇H(l) is split into 1 in∇↑

H(l) and 0 in∇↓
H(l) ,∇H(l) = ∇↑

H(l)×2+∇↓
H(l) .

The Eq. 3 can be rewritten as:

∇̂H(l−1) = (S(l)(∇↑
H(l)×2+∇

↓
H(l))+Z)(Θ

(l)⊤

), ∇̂Θ(l) = (H
(l−1)⊤

)(S(l)(∇↑
H(l)×2+∇

↓
H(l))+Z),

(6)

where Θ
(l)⊤

and H
(l−1)⊤

represent binary weight and activation. Due to the removal of some groups,
the shape of the result differs from the original, and we fill the gaps with zeros. The format conversion
operation from {0,1} to {-1,1} is omitted here. The entire process is illustrated in Fig. 3.

5.3 PRACTICAL ACCELERATION

To ensure the compatibility of binary matrix multiplication (BMM) with low-bit hardware, we require
that all tensors involved in matrix multiplication are binarized. From Eq. 6, it is evident that the

computation of activation gradients ∇̂H(l−1) can be accelerated, as ∇↑
H(l)(Θ

(l)⊤

) and ∇↓
H(l)(Θ

(l)⊤

)

can be efficiently implemented in hardware, whereas weight gradients ∇̂Θ(l) cannot be accelerated

due to the presence of floating-point tensors S(l) in H
(l−1)⊤

(S(l))∇↑
H(l) and H

(l−1)⊤

(S(l))∇↓
H(l) ,

making hardware implementation infeasible.

To address this issue, we propose Sample Channel joint Quantization (SCQ), wherein PCQ is
employed during the computation of weight gradients, while PSQ is utilized for the computation of

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

-0.1 0.2 0.2 -0.2

1.1 -1 0.3 0.5

-0.2 0.1 0.3 -0.1

1.1 0.2 -0.1 0.3

AGP 1.1 -1 0.3 0.5

1.1 0.2 -0.1 0.3

⊙ +
0 2 23

3 1 0 1

S1

S2

Z1

Z2

⊙
S1

S2

+
Z1

Z2

1 0 1 1

1 0 0 0

1 0 0 0

1 1 0 1

+

×2

★ Step 1: Binarizing Gradient

2

2

S
ZZ

S
S

+=

=

PSQ

★ Step 2: Backward with bit operations

32-bit

2-bit

1-bit1-bit

Binaried Weight Binaried Weight Binaried Weight

splitting

⊙ +

1 -1 1 1

1 -1 -1 -1

1 -1 -1 -1

1 1 -1 1

+

×2

1S

2S

1Z

2Z

⊙ 2

1 -1 1 -1

1 -1 -1 -1

×

-1 1

1 -1

-1 1

1 1

+
1 -1 -1 -1

1 1 -1 1

+

-1 1

1 -1

-1 1

1 1

-1 1

1 -1

-1 1

1 1

1⊙

XNOR-BitCount XNOR-BitCount BitCount

1S

2S

1Z

2Z

Format

conversion

Figure 3: The process of AQ and binary matrix multiplication. Here, we removed half of the groups,
thus the bitwidth of the remaining groups is 2.

activation gradients. Building upon this quantization strategy, the computation of weight gradients
can be rewritten as:

∇̂Θ(l) = (H
(l−1)⊤

)((∇↑
H

(l)
PCQ

× 2 +∇↓
H

(l)
PCQ

)S
(l)
PCQ + ZPCQ),

where Sl
PCQ = diag

{
Rc

1

B , . . . ,
Rc

D(l)/2

B

}
, Rc

i represents the range of i-th channel. PCQ apply

different scale and zero point per each channle of the gradient. This strategy facilitates the acceleration
of both weight and activation gradient computations. The final formulation is:

∇̂H(l−1) = Qb
PSQ

(
M∇̂H(l)

)
(Θ

(l)⊤

), ∇̂Θ(l) = (H
(l−1)⊤

)Qb
PCQ

(
∇̂H(l)MPCQ

)
.

Since PCQ treats a channel as a group, pruning operations also need to be performed along the
channel dimension. Due to space constraints, implementation details are provided in Appendix D.

6 EXPERIMENTS

We evaluate our approach on transfer learning tasks. Although our approach is constrained to transfer
learning, it still holds practical value in on-device training (Lin et al., 2022b). Due to challenges such
as environmental constraints and limited memory, it is impractical to perform training from scratch
on edge devices (Ren et al., 2021). The experiment details and results from training from scratch are
in Appendix E.

6.1 MAIN RESULTS

We employed two DNN architectures, ResNet18 (He et al., 2016) and VGGNet16 (Simonyan
& Zisserman, 2014). We pre-trained them on ImageNet (Deng et al., 2009) and subsequently
conducted QAT. The quantized models are fine-tuned on downstream datasets to evaluate our approach.
Following Lin et al. (2022b), we utilize various datasets, including Cars (Krause et al., 2013), CIFAR-
10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), CUB (Welinder et al., 2010),
Flowers (Nilsback & Zisserman, 2008) and Pets (Parkhi et al., 2012).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Experimental results on multiple downstream datasets. “(W, A, G)” denote the bitwidth of
weight, activations, and gradients, respectively. b represents the bitwidth of the remaining groups.

Method Precision Accuracy(%)
(W, A, G) CIFAR-10 CIFAR-100 Flowers Cars Pets CUB Average

ResNet-18
QAT 1, 1, 32 87.31±.25 65.82±.43 78.85±.80 50.81±.38 71.68±.21 42.13±.43 66.10
PSQ 1, 1, 1 71.04±.61 47.71±.98 78.91±.10 23.14±.91 68.93±.39 34.29±.62 54.01
Ours (b = 2) 1, 1, 1 74.10±.21 52.19±.62 79.93±.20 26.51±.76 70.47±.52 36.59±.31 56.63
Ours (b = 4) 1, 1, 1 78.52±.56 56.83±.61 79.28±.50 37.88±.36 71.17±.16 39.47±.25 60.53
Ours (b = 8) 1, 1, 1 73.73±.99 52.64±.36 78.10±.65 29.78±.89 69.98±.32 37.01±.53 56.87

VGGNet-16
QAT 1, 1, 32 89.80±.36 71.70±.17 86.86±.35 67.65±.03 79.49±.44 53.39±.57 74.82
PSQ 1, 1, 1 80.60±.20 59.81±.20 84.65±.05 40.01±.88 77.20±.38 43.17±.44 64.24
Ours (b = 2) 1, 1, 1 82.66±.44 62.04±.01 85.75±.29 44.40±.92 77.77±.35 46.33±.53 66.49
Ours (b = 4) 1, 1, 1 84.38±.12 63.65±.19 87.12±.20 57.06±.60 78.48±.21 49.10±.17 69.97
Ours (b = 8) 1, 1, 1 78.14±.86 60.20±.08 86.24±.15 46.95±.21 77.39±.26 47.48±.20 66.07

Table 2: Experimental results under different nu-
merical precisions.

Method Precision Accuracy(%)
(W, A, G) CIFAR-10 CIFAR-100 Flowers Cars Pets CUB Average

QAT 1, 1, 32 87.31 65.82 78.85 50.81 71.68 42.13 66.10
PSQ 1, 1, 2 74.55 53.30 79.39 30.02 70.92 36.94 57.52
Ours 85.52 62.77 79.43 46.91 72.01 41.46 64.52
PSQ 1, 1, 4 86.86 65.35 79.21 49.65 71.85 42.06 65.83
Ours 86.90 65.45 79.24 50.64 72.20 43.11 66.26

Table 3: Experimental results of the advanced
binary model (Adabin (Tu et al., 2022)).

Method Accuracy(%)
CIFAR-10 CIFAR-100 Flowers Cars Pets CUB Average

QAT 92.17 71.81 92.35 74.54 83.02 57.35 78.54
PSQ 83.94 64.19 90.98 47.61 80.81 48.72 69.38
Ours 90.50 71.13 91.87 69.20 82.37 54.45 76.59

Converged model accuracy. To evaluate the performance of our method, we report the accuracy of
two model architectures, VGG16 and ResNet18, across various datasets in Table 1. We report the
mean and stddev of 3 runs. The compared approaches include QAT (Bulat & Tzimiropoulos, 2019)
and PSQ. Since QAT employs training with full precision gradients, it can be considered as an upper
bound for the accuracy of 1-bit FQT. Existing work has not tried 1-bit FQT, so we did not compare
more methods. On VGGNet16, our method achieves < 10% average accuracy degradation across
all configurations, as compared to the baseline QAT with 32-bit gradients. Moreover, in the optimal
configuration (b=4), our method exhibits only approximately 5% average accuracy drop. On the more
challenging ResNet18, the worst configuration (b=2) and the optimal configuration (b=4) achieves
9.47% and 5.57% average accuracy degradation, respectively, compared to QAT. Furthermore, on
some datasets such as Flowers and Pets, our method exhibits minimal accuracy loss, indicating its
suitability for these datasets. In summary, while our approach exhibits a notable decrease in accuracy
compared to QAT, the incurred gap remains acceptable considering the benefits gained from reducing
the numerical precision of gradients to 1 bit. Additionally, we compared our method with 1-bit PSQ.
Across both frameworks, our approach consistently outperformed it in terms of average accuracy
across all configurations. Moreover, except for individual outcomes in the worst configuration, our
method also exhibited superior accuracy across all datasets.

The value of b. We investigate the impact of hyperparameter b on performance and determine the
optimal choice for b. From Eq. 5, as b increases, the variance of the quantizer gradually decreases,
suggesting an improvement in training convergence. However, the increase in b also implies more
discarded groups, leading to larger losses. Therefore, the choice of b becomes a trade-off issue.
In Table 1, we report the accuracy of our method across various datasets under three different
configurations (b = 2, b = 4, and b = 8). On VGGNet16 and ResNet18, the configuration with b = 4
consistently outperforms the others (b = 2 and b = 8) in terms of average accuracy. Moreover, this
observation extends to the majority of datasets, where, even on a few datasets, the results for the
configuration with b = 4 may not be optimal, the performance difference remains marginal compared
to the optimal results. In conclusion, the optimal configuration is b = 4.

Generalizability. To evaluate the generalization ability of our method, we conducted a series of
experiments under various conditions. Table 2 presents the results under various precision settings (W,
A, G). As observed from Table 2, the performance of both our method and PSQ improves significantly
with increased numerical precision. Notably, our method surpasses PSQ in several datasets at higher
precision settings. In addition, when the precision is set to 4 bits, the fully quantized training methods
(PSQ and Ours) achieve similar performance to QAT. Therefore, 4-bit FQT can meet the requirements

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Training speedup of 1-bit FQT across different input resolutions. “Non-Full vs. Full”
represents the speedup between non-full optimized (matrix partitioning only) 1-bit FQT and fully
optimized FP32 training (PyTorch32). “Unoptimized vs. Unoptimized” shows the speedup between
unoptimized 1-bit FQT and unoptimized FP32 training.

Optimization Level Model Hygon Raspberry Pi 5
32 64 128 224 average 32 64 average

Non-Full vs. Full VGGNet-16 5.13× 3.71× 3.38× 2.73× 3.74× 3.72× 1.25× 2.49×
ResNet-18 2.93× 2.88× 2.62× 2.15× 2.65× 1.42× 0.97× 1.20×

Unoptimized vs. Unoptimized VGGNet-16 109.0× 108.3× 106.3× 93.0× 104.2× 69.4× 58.5× 64.0×
ResNet-18 89.7× 85.9× 77.0× 65.0× 79.4× 66.5× 57.5× 62.0×

0 10 20 30 40 50 60
Epochs

10
20
30
40
50
60
70
80
90

Te
st

 A
cc

.

Adam
SGD

(a)

0 10 20 30 40 50 60
Epochs

10
20
30
40
50
60
70
80
90

Te
st

 A
cc

.

Adam
SGD

(b)

Figure 4: Our method (a) vs. PSQ (b): Testing accuracy comparison on VGGNet16 for CIFAR-10.
(The supplementary results are shown in Fig. 9.)

of performance-critical applications, where both computational efficiency and model accuracy are
essential. Table 3 shows the results of binary training based on a more advanced binary model (Adabin
(Tu et al., 2022)). As seen from Table 3, our method consistently outperforms PSQ across multiple
datasets in the context of binary training with this more advanced model. Furthermore, compared to
training with XNOR-Net, the performance gap between our method and QAT is significantly reduced,
indicating that ours maintains strong generalization even when training advanced binarized models.

Effect of the optimizer. To validate our theory that the SGD optimizer is more sensitive to the
variance of gradients compared to the Adam optimizer, we conduct a performance comparison of
different optimizers on the CIFAR-10 dataset. We present the test accuracy curves of our method and
PSQ across different optimizers in Fig. 4. For both methods, model performance degrades when using
the SGD compared to the Adam. This is primarily attributed to the sensitivity of SGD to gradient
variance. In addition, we observed that our method with SGD experienced only a modest accuracy
drop, whereas the PSQ method with SGD failed to converge entirely. We attribute this observation to
the larger variance introduced by PSQ compared to our quantizer, resulting in divergence.

CIFAR10 CIFAR100 Flowers Pets Cars CUB
Dataset

0.0

0.5

1.0

1.5

2.0

Va
ria

nc
e

0.13 0.15
0.09 0.09 0.11 0.11

2.0

2.25

1.47
1.58

1.83

1.6

1e-2
Ours
PSQ

Figure 5: Quantizer variances
across different datasets.

Variance. To demonstrate the advantages of our quantizer in re-
ducing variance, we present the quantizer variance of ResNet18
in Fig. 5. In general, the quantizer variance of our method is
lower than that of PSQ across all datasets. Additionally, the
variance on the Flowers and Pets is lowest, explaining why the
impact of quantization on accuracy is minor for them.

Training from scratch. In this experiment, we applied more
aggressive settings to explore the feasibility of 1-bit FQT in
challenging scenarios, such as training from scratch and on
large-scale datasets like ImageNet. We trained two binary mod-
els from scratch in Table 9, XNOR-Net++ and Adabin. The
results show that while our method consistently outperforms
PSQ across multiple datasets, there remains a significant perfor-
mance gap between QAT and our 1-bit FQT method. Therefore, 1-bit FQT is only feasible for transfer
learning and still faces significant challenges in training from scratch. We analyzed the reasons for the
gap between training from scratch and fine-tuning, and found that in the former scenario, the gradient
range is significantly larger, leading to increased variance and greater difficulty in convergence, as
shown in Fig. 7.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: Object detection on PASCAL VOC, clas-
sification on CIFAR-100 and NLP tasks on GLUE.

Task Model Method Bits mAP/Acc./Avg.

Det. Faster R-CNN QAT 32 52.34
Faster R-CNN Ours 1 50.68

Cls. MLP-Mixer QAT 32 52.17
MLP-Mixer Ours 1 48.65

NLP BERT QAT 32 63.20
BERT Ours 1 54.81

Table 6: Average 1-bit vs. 1-bit. The running
time of matrix multiplication involving various
sizes.

Setting

Time(ms) across various sizes
512 512 1024 1024 2048 2048
512 512 512 512 512 512
512 1024 512 1024 512 1024

Average 1-bit 8.40 15.92 16.61 31.03 32.22 61.33
1-bit 8.01 14.54 15.91 29.79 29.92 59.94

Other results. We report results for other architectures and tasks in Table 5. The details can be found
in Appendix E. On Faster R-CNN (Ren et al., 2015), our approach with 1-bit gradients achieves
1.66% mAP degradation, as compared to the baseline QAT with 32-bit gradients. In addition, for
Mixer-MLP (Tolstikhin et al., 2021), an all-MLP architecture, our approach shows a decrease of
3.52% in classification accuracy compared to the baseline. For BERT, our approach achieves 8.39%
average performance degradation. These results indicate the potential of our approach to transfer to
other architectures and tasks. We did not extend the 1-bit FQT to large models primarily because
existing binarized networks (Huang et al., 2024) only quantize weights to 1 bit, while activations
remain at higher precision, hindering hardware acceleration during training.

6.2 COMPUTATIONAL EFFICIENCY

We discuss the computational overhead of our method. Our implementation is not fully optimized, as
the comprehensive hardware-algorithm co-design is beyond the scope of this paper. Our experiments
are conducted on a single-core Hygon CPU and edge device (Raspberry Pi 5).

Training speedup. We compare the training time of the FP32 PyTorch and our 1-bit FQT for
VGGNet16 and ResNet18. We vary the resolution of the input and summarize the speedup of our
method in Table 4. For VGGNet16, our algorithm achieves an average speedup of 3.74× and 2.49×
on the Hygon and edge device, respectively. For ResNet18, our algorithm achieves 2.65× and 1.20×
average speedup. Additionally, to assess the acceleration potential of 1-bit FQT, we compare their
speedup at the same optimization level (unoptimized). The results indicate that across multiple cases,
the speedup is above a hundredfold. On edge devices, our method achieves a speedup of over 50×.
This gap indicates significant acceleration potential for 1-bit FQT. Finally, we analyzed why the
speedup of ResNet18 is lower than that of VGG16, concluding from Fig. 10 in Appendix E that our
implementation is more favorable for layers with more filters, which leads to a higher speedup for
VGG16, as it has a higher average number of filters per layer.

Average 1-bit vs. 1-bit. We compared the runtime of average 1-bit matrix multiplication and 1-bit
matrix multiplication across different matrix sizes in Table 6. The results demonstrate that the
difference in runtime between these two methods is minimal, indicating similarity in the runtime
of our average 1-bit FQT and 1-bit FQT. The computational complexity analysis is provided in the
Appendix D.

7 CONCLUSION

We propose a hardware-friendly 1-bit FQT method in this work, which pushes the limit of FQT.
Through convergence analysis, we propose AGP to reduce the variance of the quantizer, thereby
enhancing the convergence of quantized training. Subsequently, to address the issue of unacceleratable
weight gradient computation, we present a SCQ strategy. Finally, we propose a framework that
practically accelerates training, achieving a speedup of up to 5.13× compared to full precision training.
While our approach focuses solely on convolutional neural networks in this study, experiments indicate
its potential applicability to other architectures.

Limitations: The primary limitation of this work lies in its ability to achieve 1-bit FQT in transfer
learning tasks but not in training from scratch. To the best of our knowledge, even the 3-bit FQT from
scratch is still an open problem.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

All code used in our experiments is included in the supplementary materials to facilitate reproducibility.
The theoretical results, along with detailed proofs and the analysis of assumptions used throughout
the paper, are provided in Appendix A. Further implementation details, including hyperparameters
and experimental configurations, can be found in Appendix E. By providing these resources, we aim
to ensure that our findings can be easily reproduced and built upon by the research community.

REFERENCES

Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jing Jin, Xin Jiang, Qun Liu, Michael Lyu, and Irwin
King. Binarybert: Pushing the limit of bert quantization. arXiv preprint arXiv:2012.15701, 2020.

Ron Banner, Itay Hubara, Elad Hoffer, and Daniel Soudry. Scalable methods for 8-bit training of
neural networks. Advances in neural information processing systems, 31, 2018.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM review, 60(2):223–311, 2018.

Adrian Bulat and Georgios Tzimiropoulos. Xnor-net++: Improved binary neural networks. arXiv
preprint arXiv:1909.13863, 2019.

Jianfei Chen, Yu Gai, Zhewei Yao, Michael W Mahoney, and Joseph E Gonzalez. A statistical
framework for low-bitwidth training of deep neural networks. Advances in neural information
processing systems, 33:883–894, 2020.

Brian Chmiel, Ron Banner, Elad Hoffer, Hilla Ben Yaacov, and Daniel Soudry. Logarithmic unbiased
quantization: Practical 4-bit training in deep learning. 2021.

Seunghwan Cho and Sungjoo Yoo. Per-channel quantization level allocation for quantizing convolu-
tional neural networks. In 2020 IEEE International Conference on Consumer Electronics-Asia
(ICCE-Asia), pp. 1–3. IEEE, 2020.

Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalakshmi Srinivasan,
and Kailash Gopalakrishnan. Pact: Parameterized clipping activation for quantized neural networks.
arXiv preprint arXiv:1805.06085, 2018.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. Advances in neural information processing
systems, 28, 2015.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training deep neural networks with weights and activations constrained to+ 1
or-1. arXiv preprint arXiv:1602.02830, 2016.

Dipankar Das, Naveen Mellempudi, Dheevatsa Mudigere, Dhiraj Kalamkar, Sasikanth Avancha,
Kunal Banerjee, Srinivas Sridharan, Karthik Vaidyanathan, Bharat Kaul, Evangelos Georganas,
et al. Mixed precision training of convolutional neural networks using integer operations. arXiv
preprint arXiv:1802.00930, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Zhen Dong, Zhewei Yao, Amir Gholami, Michael W Mahoney, and Kurt Keutzer. Hawq: Hessian
aware quantization of neural networks with mixed-precision. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 293–302, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with
limited numerical precision. In International conference on machine learning, pp. 1737–1746.
PMLR, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Wei Huang, Yangdong Liu, Haotong Qin, Ying Li, Shiming Zhang, Xianglong Liu, Michele Magno,
and Xiaojuan Qi. Billm: Pushing the limit of post-training quantization for llms. arXiv preprint
arXiv:2402.04291, 2024.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient
integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 2704–2713, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE international conference on computer vision workshops,
pp. 554–561, 2013.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Chung-Yi Lin, Victoria Kostina, and Babak Hassibi. Differentially quantized gradient methods. IEEE
Transactions on Information Theory, 68(9):6078–6097, 2022a.

Ji Lin, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang, Chuang Gan, and Song Han. On-device
training under 256kb memory. Advances in Neural Information Processing Systems, 35:22941–
22954, 2022b.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware
training for large language models. arXiv preprint arXiv:2305.17888, 2023.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
training. arXiv preprint arXiv:1710.03740, 2017.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In 2008 Sixth Indian conference on computer vision, graphics & image processing, pp.
722–729. IEEE, 2008.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In 2012
IEEE conference on computer vision and pattern recognition, pp. 3498–3505. IEEE, 2012.

Haotong Qin, Yifu Ding, Mingyuan Zhang, Qinghua Yan, Aishan Liu, Qingqing Dang, Ziwei Liu,
and Xianglong Liu. Bibert: Accurate fully binarized bert. arXiv preprint arXiv:2203.06390, 2022.

Haotong Qin, Xiangguo Zhang, Ruihao Gong, Yifu Ding, Yi Xu, and Xianglong Liu. Distribution-
sensitive information retention for accurate binary neural network. International Journal of
Computer Vision, 131(1):26–47, 2023.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European conference on computer
vision, pp. 525–542. Springer, 2016.

Haoyu Ren, Darko Anicic, and Thomas A Runkler. Tinyol: Tinyml with online-learning on micro-
controllers. In 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE,
2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. Advances in neural information processing systems, 28,
2015.

Rajarshi Saha, Mert Pilanci, and Andrea J Goldsmith. Efficient randomized subspace embeddings
for distributed optimization under a communication budget. IEEE Journal on Selected Areas in
Information Theory, 3(2):183–196, 2022.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Xiao Sun, Naigang Wang, Chia-Yu Chen, Jiamin Ni, Ankur Agrawal, Xiaodong Cui, Swagath
Venkataramani, Kaoutar El Maghraoui, Vijayalakshmi Viji Srinivasan, and Kailash Gopalakrishnan.
Ultra-low precision 4-bit training of deep neural networks. Advances in Neural Information
Processing Systems, 33:1796–1807, 2020.

Hanlin Tang, Xipeng Zhang, Kai Liu, Jianchen Zhu, and Zhanhui Kang. Mkq-bert: Quantized bert
with 4-bits weights and activations. arXiv preprint arXiv:2203.13483, 2022.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An
all-mlp architecture for vision. Advances in neural information processing systems, 34:24261–
24272, 2021.

Zhijun Tu, Xinghao Chen, Pengju Ren, and Yunhe Wang. Adabin: Improving binary neural networks
with adaptive binary sets. In European conference on computer vision, pp. 379–395. Springer,
2022.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018a.

Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash Gopalakrishnan. Training
deep neural networks with 8-bit floating point numbers. Advances in neural information processing
systems, 31, 2018b.

Ziwei Wang, Ziyi Wu, Jiwen Lu, and Jie Zhou. Bidet: An efficient binarized object detector.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
2049–2058, 2020.

Peter Welinder, Steve Branson, Takeshi Mita, Catherine Wah, Florian Schroff, Serge Belongie, and
Pietro Perona. Caltech-ucsd birds 200. 2010.

Xiao-Ming Wu, Dian Zheng, Zuhao Liu, and Wei-Shi Zheng. Estimator meets equilibrium perspective:
A rectified straight through estimator for binary neural networks training. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 17055–17064, 2023.

Haocheng Xi, Changhao Li, Jianfei Chen, and Jun Zhu. Training transformers with 4-bit integers.
arXiv preprint arXiv:2306.11987, 2023.

Haocheng Xi, Yuxiang Chen, Kang Zhao, Kaijun Zheng, Jianfei Chen, and Jun Zhu. Jetfire: Efficient
and accurate transformer pretraining with int8 data flow and per-block quantization. arXiv preprint
arXiv:2403.12422, 2024.

Yukuan Yang, Lei Deng, Shuang Wu, Tianyi Yan, Yuan Xie, and Guoqi Li. Training high-performance
and large-scale deep neural networks with full 8-bit integers. Neural Networks, 125:70–82, 2020.

Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. Lq-nets: Learned quantization for
highly accurate and compact deep neural networks. In Proceedings of the European conference on
computer vision (ECCV), pp. 365–382, 2018.

Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental network quantization:
Towards lossless cnns with low-precision weights. arXiv preprint arXiv:1702.03044, 2017.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Feng Zhu, Ruihao Gong, Fengwei Yu, Xianglong Liu, Yanfei Wang, Zhelong Li, Xiuqi Yang, and
Junjie Yan. Towards unified int8 training for convolutional neural network. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1969–1979, 2020.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th international conference on machine learning (icml-03), pp. 928–936,
2003.

A PROOF OF THEOREMS

Lemma A.1 If a function L : Rd → R is convex, then for all x, y ∈ Rd,

L(y) ≥ L(x) +∇L(x)T (y − x).

Lemma A.2 Let ∇̂Θt
= ∇̂Lt (Θt) and ∇̂Θ1:t

be defined as above and bounded,
∥∥∥∇̂Θt

∥∥∥
2
≤

G,
∥∥∥∇̂Θt

∥∥∥
∞
≤ G∞. Then,

T∑
t=1

√
∇̂Θ2

t,i

t
≤ 2G∞

∥∥∥∇̂Θ1:T,i

∥∥∥
2
.

Lemma A.3 Let γ ≜ β2
1√
β2

. For β1, β2 ∈ [0, 1) that satisfy β2
1√
β2

< 1 and bounded ∇̂Θt ,
∥∥∥∇̂Θt

∥∥∥
2
≤

G,
∥∥∥∇̂Θt

∥∥∥
∞
≤ G∞, the following inequality holds

T∑
t=1

m̂2
t,i√
tv̂t,i

≤ 2

1− γ

1√
1− β2

∥∥∥∇̂Θ1:T,i

∥∥∥
2
.

The above lemma has been previously proven in Kingma & Ba (2014), and we omit its reproof here
for brevity.

Lemma A.4 For a random matrix X, the following inequality holds

E[∥X∥2] ≤
√

E[∥X∥22]

Proof. According to the formula E[x2] = Var[x] + E2[x], we can derive:√
E[∥X∥22] =

√
E2[∥X∥2] + Var[∥X∥2]

≥
√
E2[∥X∥2]

= E[∥X∥2].

A.1 ASSUMPTIONS AVAILABILITY

Bounded Parameters and Gradients. It is reasonable to assume that parameters and gradients are
bounded. This assumption is supported by Figure 2, which demonstrates the bounded nature of the
gradients.

Assumption on Bounded Gradients. With bounded gradients, it follows that gradient variances and
expectations are bounded (Assumption 4.1) and the gradient norms are also bounded (Assumption
4.4).

Assumption on Bounded Parameters. Given bounded parameters, the distance between parameters
is naturally bounded (Assumption 4.2).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.2 THEOREM 4.3: CONVERGENCE OF SGD

Proof. The iteration form of SGD is

Θt+1 ← Θt − αt∇̂Θt .

Subtract the scalar Θ∗ and square both sides of the above update, we have,

∥Θt+1 −Θ∗∥2 − ∥Θt −Θ∗∥2 = −2αt∇̂Θt(Θt −Θ∗) + α2
t ∇̂Θ2

t
.

Taking exception on both sides and use Assumption4.1, 4.2 and Lemma A.1, we have

∥Θt+1 −Θ∗∥2 − ∥Θt −Θ∗∥2 = −2αt∇Θt(Θt −Θ∗) + α2
tE[∇̂Θ2

t
]

≤ −2αt [Lt (Θt)− Lt (Θ
∗)] + α2

t

d∑
i=1

(E[∇̂Θ2
t,i
])

≤ −2αt [Lt (Θt)− Lt (Θ
∗)] + α2

td(σ
2 + e2).

Using α ≥ αt, we have

∥Θt+1 −Θ∗∥2 − ∥Θt −Θ∗∥2 ≤ −2α [Lt (Θt)− Lt (Θ
∗)] + α2d(σ2 + e2)

Sum up for t = 1, . . . , T ,

∥ΘT+1 −Θ∗∥2 − ∥Θ1 −Θ∗∥2 ≤ −2αRSGD(T) + α2Td(σ2 + e2).

We can rearrange the above equation and ∥Θn −Θm∥2 ≤ D,

RSGD(T) ≤ ∥Θ1 −Θ∗∥2 − ∥ΘT+1 −Θ∗∥2

2α
+

αTd(σ2 + e2)

2

≤ D2

2α
+

αTd(σ2 + e2)

2

A.3 THEOREM 4.5: CONVERGENCE OF ADAM

Proof. The iteration of Adam is
mt = β1,t ·mt−1 + (1− β1,t) · ∇̂Θt ,

vt = β2 · vt−1 + (1− β2) ·
(
∇̂Θt

)2
,

m̂t =
mt

1−βt
1
, v̂t =

vt
1−βt

2

Θt+1 = Θt − α√
v̂+ϵ
· m̂t.

Using Lemma A.1, we have,

Lt (Θt)− Lt (Θ
∗) ≤ ∇T

Θt
(θt − θ∗) =

d∑
i=1

∇Θt,i

(
Θt,i −Θ∗

,i

)
.

From the above update rules presented, we have

Θt+1 = Θt − αtm̂t/
√
v̂t

= Θt −
αt

1− βt
1

(
β1,t√
v̂t
mt−1 +

(1− β1,t)√
v̂t

∇̂Θt

)
.

For the ith dimension of the parameter, we subtract the scalar Θ∗
,i and square both sides of the above

update rule, we have,

(
Θt+1,i −Θ∗

,i

)2
=
(
Θt,i −Θ∗

,i

)2 − 2αt

1− βt
1

(
β1,t√
v̂t,i

mt−1,i +
(1− β1,t)√

v̂t,i
∇̂Θt,i

)(
Θt,i −Θ∗

,i

)
+ α2

t

(
m̂t,i√
v̂t,i

)2

.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

We can rearrange the above equation and use Young’s inequality, ab ≤ a2/2 + b2/2. Also, it can be
shown that √

v̂t,i =

√√√√ t∑
j=1

(1− β2)β
t−j
2 ∇̂Θ2

j,i
/
√
1− βt

2 ≤
∥∥∥∇̂Θ1:t,i

∥∥∥
2
, (7)

and β1,t ≤ β1. Then

∇̂Θt,i

(
Θt,i −Θ∗

,i

)
=
(1− βt

1)
√
v̂t,i

2αt (1− β1,t)

((
Θt,i −Θ∗

,i

)2 − (Θt+1,i −Θ∗
,i

)2)
+

β1,t

(1− β1,t)

v̂
1
4
t−1,i√
αt−1

(
Θ∗

,i −Θt,i

)√
αt−1

mt−1,i

v̂
1
4
t−1,i

+
αt (1− βt

1)
√
v̂t,i

2 (1− β1,t)

(
m̂t,i√
v̂t,i

)2

≤ 1

2αt (1− β1)

((
Θt,i −Θ∗

,i

)2 − (Θt+1,i −Θ∗
,i

)2)√
v̂t,i

+
β1,t

2αt−1 (1− β1,t)

(
Θ∗

,i −Θt,i

)2√
v̂t−1,i

+
β1αt−1

2 (1− β1)

m2
t−1,i√
v̂t−1,i

+
αt

2 (1− β1)

m̂2
t,i√
v̂t,i

.

We apply Lemma A.3 to the above inequality and sum across all the dimensions for i ∈ 1, . . . , d and
the iterations for t ∈ 1, . . . , T :

d∑
i=1

T∑
t=1

∇̂Θt,i

(
Θt,i −Θ∗

,i

)
≤

d∑
i=1

1

2α (1− β1)

(
Θ1,i −Θ∗

,i

)2√
v̂1,i

+

d∑
i=1

T∑
t=2

1

2 (1− β1)

(
Θt,i −Θ∗

,i

)2(√v̂t,i

αt
−
√

v̂t−1,i

αt−1

)

+
α(1 + β1)G∞

(1− β1)
√
1− β2(1− γ)2

d∑
i=1

∥∥∥∇̂Θ1:T,i

∥∥∥
2

+

d∑
i=1

T∑
t=1

β1,t

2αt (1− β1,t)

(
Θ∗

,i −Θt,i

)2√
v̂t,i

From the assumption, ∥Θt −Θ∗∥2 ≤ D, ∥Θm −Θn∥∞ ≤ D∞, we have

d∑
i=1

T∑
t=1

∇̂Θt,i

(
Θt,i −Θ∗

,i

)
≤ D2

2α (1− β1)

d∑
i=1

√
T v̂T,i +

D2
∞

2α

d∑
i=1

T∑
t=1

β1,t

(1− β1,t)

√
tv̂t,i

+
α (1 + β1)G∞

(1− β1)
√
1− β2(1− γ)2

.

d∑
i=1

∥∥∥∇̂Θ1:T,i

∥∥∥
2

We apply Eq. 7 to the above inequality, we have

d∑
i=1

T∑
t=1

∇̂Θt,i

(
Θt,i −Θ∗

,i

)
≤ D2

√
T

2α (1− β1)

d∑
i=1

∥∇̂Θ1:T,i
∥2 +

D2
∞

2α

d∑
i=1

T∑
t=1

β1,t

√
t

(1− β1,t)
∥∇̂Θ1:t,i∥2

+
α (1 + β1)G∞

(1− β1)
√
1− β2(1− γ)2

d∑
i=1

∥∥∥∇̂Θ1:T,i

∥∥∥
2

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Take expectation on both sides of the above inequality and apply Lemma A.4, Assumption 4.1,

d∑
i=1

T∑
t=1

∇Θt,i

(
Θt,i −Θ∗

,i

)
≤ D2

√
T

2α (1− β1)

d∑
i=1

E[∥∇̂Θ1:T,i
∥2]

+
α (1 + β1)G∞

(1− β1)
√
1− β2(1− γ)2

d∑
i=1

E[|∇̂Θ1:T,i
∥2]

+
D2

∞
2α

d∑
i=1

T∑
t=1

β1,t

√
t

(1− β1,t)
E[∥∇̂Θ1:t,i

∥2]

≤ D2
√
T

2α (1− β1)

d∑
i=1

√
E[∥∇̂Θ1:T,i

∥22]

+
α (1 + β1)G∞

(1− β1)
√
1− β2(1− γ)2

d∑
i=1

√
E[|∇̂Θ1:T,i

∥22]

+
D2

∞
2α

d∑
i=1

T∑
t=1

β1,t

√
t

(1− β1,t)

√
E[∥∇̂Θ1:t,i

∥22]

≤ D2T

2α (1− β1)

d∑
i=1

√
σ2 + e2 +

α (1 + β1)G∞
√
T

(1− β1)
√
1− β2(1− γ)2

d∑
i=1

√
σ2 + e2

+
D2

∞
2α

d∑
i=1

T∑
t=1

β1,tt

(1− β1,t)

√
σ2 + e2.

We can use arithmetic geometric series upper bound for the last term:

T∑
t=1

β1,t

(1− β1,t)
t ≤

T∑
t=1

1

(1− β1)
λt−1t ≤ 1

(1− β1) (1− λ)2

Therefore, we have the following regret bound:

R(T) ≤
d∑

i=1

T∑
t=1

∇Θt,i

(
Θt,i −Θ∗

,i

)
≤ ((1− λ)2D2T +D2

∞)d

2α (1− β1) (1− λ)2

√
σ2 + e2 +

α (1 + β1)G∞
√
Td

(1− β1)
√
1− β2(1− γ)2

√
σ2 + e2

B SUPPLEMENTARY PROOF OF THE THEORY

This section will demonstrate the convergence of Fully Quantized Training (FQT) in non-convex
scenarios. The convergence of FQT can be expressed as:

E ∥∇Θ∥2

B.1 ASSUMPTIONS

We assume:

Assumption B.1 The loss L(Θ) is continuously differentiable and ∇Θ is βL-Lipschitz continuous.

Assumption B.2 L(Θ) is bounded below by Linf

Assumption B.3 The variance of the gradient is bounded,i.e., Var
[
∇̂Θt,i

]
≤ σ2

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B.2 CONVERGENCE OF SGD

Proof. According to Assumption B.1, we have:∥∥∇Θt+1
−∇Θt

∥∥
2
≤ βL ∥Θt+1 −Θt∥2

According to Bottou et al. (2018), we have

L (Θt+1)− L (Θt) ≤ ∇⊤
Θt

(Θt+1 −Θt) +
1

2
βL ∥Θt+1 −Θt∥2 (8)

Plugging the SGD iteration, we have

L (Θt+1)− L (Θt) ≤ −α∇⊤
Θt
∇̂Θt

+
1

2
α2βL

∥∥∥∇̂Θt

∥∥∥2
Taking expectations on both sides and applying AssumptionB.3,

E [L (Θt+1)]− E [L (Θt)] ≤ −α ∥∇Θt
∥2 + 1

2
α2βL

(
Var

[
∇̂Θt

]
+
∥∥∥E [∇̂Θt

]∥∥∥2)
≤ −α

(
1− 1

2
αβL

)
∥∇Θt

∥2 + 1

2
α2βσ2

≤ −1

2
α ∥∇Θt

∥2 + 1

2
α2βLσ

2

Summing the above equation up across iterations {1,...,T}, and utilize Assumption B.2, we have

Linf − L (Θ1) ≤ E [L (ΘT+1)]− E [L (Θ1)] ≤ −
1

2
α

T∑
t=1

E ∥∇Θt
∥2 + 1

2
Tα2βLσ

2

Rearrange the terms, we have:

E ∥∇Θt
∥2 ≤ 2 (L (Θ1)− Linf)

αT
+ αβLσ

2.

For T →∞, E ∥∇Θt
∥2 = O(σ2).

B.3 CONVERGENCE OF ADAM

proof. Substitute Adam’s update rule into Eq. 8:

L (Θt+1)− L (Θt) ≤ −α∇T
Θt

m̂t√
v̂t + ϵ

+
βL

2
α2

∥∥∥∥ m̂t√
v̂t + ϵ

∥∥∥∥2
Take the expectation of the first term, we have:

E
[
−α∇T

Θt

m̂t√
v̂t + ϵ

]
Since m̂t is an unbiased estimate, we have

E
[
−α∇T

Θt

m̂t√
v̂t + ϵ

]
= −αE

[
|∇Θt |2√
v̂t + ϵ

]
we have

E
[
−α∇T

Θt

m̂t√
v̂t + ϵ

]
≤ −αE

[
|∇Θt |2√

σ2 + E[∇Θt
]2

]
.

Take the expectation of the second term, we have:

E

[
β

2
α2

∣∣∣∣ m̂t√
v̂t + ϵ

∣∣∣∣2
]
≤ E

[
βL

2
α2 |m̂t|2√

v̂t + ϵ

]
= E

[
βL

2
α2 |∇Θt |2√

v̂t + ϵ

]

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Combining one and two, and substitute the definition of
√
v̂t into:√

v̂t ≤
√
σ2 + E [∇Θt]

2

we have:

E[L (Θt+1)− L (Θt)] ≤ −α
(
1− βL

2
α

)
E

[
|∇Θt

|2√
σ2 + E[∇Θt

]2

]
Summing the above equation up across iterations {1,...,T}, and utilize Assumption B.2, we have

L (Θ1)− Linf ≥ α

(
1− βL

2
α

) T∑
t=1

E

[
|∇Θt

|2√
σ2 + E[∇Θt

]2

]
Rearrange the terms, we have

1

T

T∑
t=1

E
[
|∇Θt |2

]
≤ L (Θ1)− Linf

αT
(
1− βL

2 α
) ·√σ2 + E[∇Θt

]2.

For T →∞, E ∥∇Θt∥
2
= O(σ).

B.4 CONVERGENCE OF SGD-M

The iteration of SGD-M is
vt+1 = βvt + (1− β)∇̂Θt

Θt+1 = Θt − αvt+1

proof. Substitute SGD-M’s update rule into Eq. 8:

L (Θt+1)− L (Θt) ≤ −α∇T
Θt

vt+1 +
βL

2
α2 ∥vt+1∥2

Take the expectation of the first term, we have:

E
[
−α∇T

Θt
vt+1

]
= −αE

[
|∇Θt

|2
]

Take the expectation of the second term, we have

βL

2
α2E[|vt+1|2] ≤

βL

2
α2

(
E[|∇Θt |2]
1− β2

+
σ2

1− β2

)
.

Combining one and two, we have

L (Θt+1)− L (Θt) ≤ −α(1−
βLα

2(1− β2)
)E[|∇Θt

|2] + βLα
2σ2

2(1− β2)

Summing the above equation up across iterations {1,...,T}, and utilize Assumption B.2, we have

L (Θ1)− Linf ≥
T∑

t=1

[α(1− βLα

2(1− β2)
)E[|∇Θt

|2]]− T
βLα

2σ2

2(1− β2)

Rearrange the terms, we have

1

T

T∑
t=1

E
[
|∇Θt |2

]
≤ L (Θ1)− Linf

Tα(1− βLα
2(1−β2))

+
βLασ

2

2(1− β2)(1− βLα
2(1−β2))

.

For T →∞, E ∥∇Θt∥
2
= O(σ2).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C VARIANCE OF SPECIFIC QUANTIZERS

Proposition C.1 (Variance of stochastic rounding) For any number X ∈ R, Var[SR(X)] ≤ 1
4 .

Proof. For any real number X , let p := X − ⌊X⌋ ∈ [0, 1), then

Var[SR(X)] = E[SR(X)−X]2 = p(⌈X⌉ −X)2 + (1− p)(⌊X⌋ −X)2

=p(1− p)2 + p2(1− p) = p(1− p)(1− p+ p) = p(1− p) ≤ 1

4
.

C.1 PER-SAMPLE QUANTIZER

Given an activation gradient ∇̂H(l) , its per-sample quantization is:

Qg(∇̂H
(l)
i,j
) = SR(B(∇̂

H
(l)
i,j
− Zi)/Ri)Ri/B + Zi,

where apply different ranges Ri and zero points Zi for each sample of the gradient. When S =
diag

{
R1

B , . . . , RN

B

}
, we have

Var
[
Qg

(
∇̂H(l)

)]
= Var

[
SSR

(
(S−1

(
∇̂H(l) − 1Z

))
/+ 1Z

]
≤

N∑
i=1

D(l)∑
j=1

Var[
Ri

B
SR(

B

Ri
(∇̂

H
(l)
i,j
− Zi)) + Zi)]

=

N∑
i=1

D(l)∑
j=1

R2
i

B2
Var[SR(

B

Ri
(∇̂

H
(l)
i,j
− Zi))]

≤ D(l)

4B2

N∑
i=1

R2
i .

C.2 PER-SAMPLE QUANTIZER WITH AGP

Place the groups with the largest range in the first N/b rows, and let the range of these groups be
denoted by R1, . . . , RN/b, groups in the remaining rows are denoted by rN/b+1, . . . , rN . We assume
that r/R ≈ 0.

Qg(∇̂H(l)) = (MS) SR
(
(MS)−1

(
M∇̂H(l) −MZ

))
+MZ,

where M = diag
(

m1

p1
, . . . , mN

pN

)
, pi = NRi

bRtotal
, Rtotal =

∑N
i=1 Ri and mi ∼ Bern (pi). To

simplify the problem, we assume that R1 ≈ R2 · · · ≈ RN/b. And we use r/R ≈ 0, then p ≈
{1, . . . , 0}. In other words, for the first N

b rows, m = 1, and 0 otherwise. We substitute it into the
above equation and prune the groups with smaller ranges,

Qg(∇̂H(l)) = S
1:Nb ,1:Nb

SR

(
(S

1:Nb ,1:Nb
)−1

(
∇̂

H
(l)

1:N
b

− 1Z
1:Nb

))
+ 1Z

1:Nb
.

Then we have,

Var
[
Qg

(
∇̂H(l)

)]
≤

N/b∑
i=1

D(l)∑
j=1

Var[
Ri

B
SR(

B

Ri
(∇̂

H
(l)
i,j
− Zi)) + Zi)]

=

N/b∑
i=1

D(l)∑
j=1

R2
i

B2
Var[SR(

B

Ri
(∇̂

H
(l)
i,j
− Zi))]

≤ D(l)

4B2

N/b∑
i=1

R2
i .

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

For 1-bit quantizers, the variance of PSQ is D(l)

4 (
∑N/b

i=1 R2
i +

∑N
i=N/b+1 r

2
i). It is clear that

D(l)

4B2

N/b∑
i=1

R2
i ≤

D(l)

4
(

N/b∑
i=1

R2
i +

N∑
i=N/b+1

r2i).

D IMPLEMENTATION DETAILS

We implemented our method as a lightweight library in PyTorch. For binary matrix multiplication
and some auxiliary operations, we implemented them using C++. In Alg. 1, we illustrate the
process of forward and backward propagation for quantized fully connected layers. For simplicity,
certain details, such as bias terms, quantization zero points, and the splitting operations on gradient
tensors, are omitted here. The entire process primarily consists of five components: quantization (9),
encoding(4-5, 10), low-bit multiplication (6, 11), pruning (8), and dequantization (12).

Algorithm 1 Linear Layer Forward and Backward Propagation

1: Input: Input H(l−1), Weight Θ(l), Gradient of Loss∇H(l)

2: Output: Output H(l), Gradient of Weight∇Θ(l) , Gradient of Input∇H(l−1)

3: // Forward Propagation
4: Encode Weight: H

(l−1)
= row encoder(H(l−1))

5: Encode Input: Θ
(l)

= column encoder(Θ(l))

6: Compute Output: H(l) = H
(l−1)

Θ
(l)

7: // Backward Propagation
8: Pruning: ∇

H
(l)
PSQ

,∇
H

(l)
PCQ

= pruner(∇H(l))

9: Quantization: ∇
H

(l)
PSQ

,S
(l)
PSQ = PSQ(∇

H
(l−1)
PSQ

),

∇
H

(l)
PCQ

,S
(l)
PCQ = PCQ(∇

H
(l−1)
PCQ

)

10: Encode Gradient: ∇
H

(l)
PSQ

= row encoder(∇
H

(l)
PSQ

),

∇
H

(l)
PCQ

= column encoder(∇
H

(l)
PCQ

)

11: Compute Gradient: ∇Θ(l) = H
(l−1)⊤∇

H
(l)
PCQ

,

∇H(l−1) = ∇
H

(l)
PSQ

Θ
(l)⊤

12: Dequantization: ∇̂Θ(l) = ∇Θ(l)S
(l)
PCQ, ∇̂H(l−1) = S

(l)
PSQ∇H(l−1)

13: // Update Parameters
14: Update Weight: W←W − α∇̂Θ(l)

Encoder is a functional component that encodes multiple integers with values of 1 or -1 into a smaller
set of elements, facilitating subsequent XNOR operations. Taking Row Encoder as an example, its
primary form is illustrated in Alg. 2, the case where the number of columns is not divisible by b has
been overlooked.

Binary multiplication is the crucial operation. In our approach, both forward and backward
propagation are implemented through binary multiplication. For example, For two vectors, X1 and
X2, each of length 32, encode them into two unsigned 32-bit integers, x1 and x2. The multiplication
of the two is implemented as follows:

SUM(X1 ⊙X2) = bitcount(XNOR(x1, x2)) << 1− 32

where the dot product of two vectors, each of length 32, is efficiently replaced by a single bitcount and
XNOR operation, effectively reducing energy consumption and time overhead. However, it is worth
noting that an unbiased quantizer maps data to 0 or 1, rather than -1 or 1. Therefore, some conversion
is required. For X1 ∈ {1,−1}n, X2 = ReLU(X1), it is clear that (S/2)X1+Z+(S/2) = SX2+Z.
Therefore, some adjustments are needed: a straightforward modification of the scaling factor S and
zero point Z is sufficient to achieve the transformation. This transformation requires only one
multiplication and one addition for the scaling factor and zero point, thus incurring minimal overhead.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Algorithm 2 Row Encoder
1: Input: Input H ∈ RN×D, Bits b
2: Output: Output He ∈ RN×⌊(1+(D−1)/b)⌋

3: for i← 1 to N do
4: for j ← 1 to ⌊(1 + (D − 1)/b)⌋ do
5: Hi,j = 0
6: for k ← 1 to b do
7: s = (H > 0)
8: Hi,j = (Hi,j << 1)∥s
9: end for

10: end for
11: end for

Table 7: Comparison of computational operations for multiplying matrices of size N × D and
D ×D(l−1) in 1-bit matrix multiplication (MM).

Setting XNOR BitCount Shift FP Addition INT Addition FP Multiplication AND

1-bit MM ND(l−1)D (N + 1)D(l−1)D - ND(l−1) - 2ND(l−1) -
Average 1-bit MM ND(l−1)D (N + 1)D(l−1)D N(3

4
D + 3

2
D(l−1)) N

4
D(l−1) 3

4
ND(l−1) 1

2
ND(l−1) ND

For convolutional layers, direct matrix multiplication is not feasible. To facilitate subsequent op-
erations, an unfolder is performed on the convolutional layer before matrix multiplication. After
computation, the standard form is restored through folder operations. For example, We perform a
convolution operation between the input X ∈ RN×C×H×W and parameters Θ ∈ RD×C×K×K to
obtain the output Y ∈ RN×D×H×W .

1-bit Matrix Multiplication vs. Average 1-bit Matrix Multiplication. The main difference between
standard 1-bit MM and average 1-bit MM is that the latter introduces Shift, INT Addition, and AND
operations due to matrix splitting and summing four submatrices. Specifically, average 1-bit MM
incurs N(34D + 3

2D
(l−1)) Shift operations, 3

4ND(l−1) INT Addition operations, and ND AND
operations. However, these operations are relatively few and lightweight, so they do not significantly
increase the time cost.

Unfolder treats each element involved in element-wise multiplication within the kernel as a row, and
the number of times the window slides as columns, the unfolded input and parameters transform into
Xu ∈ RNHW×CK2

, Θu ∈ RD×CK2

. Finally, we need to restore the output Yu ∈ RNHW×D to its
standard state.

Folder is the inverse operation of Unfolder, designed to restore the gradients of both the input and
parameters∇Xu ∈ RNHW×CK2

,∇Θu ∈ RD×CK2

to their standard states.

E EXPERIMENTAL DETAILS

E.1 GRADIENT DISTRIBUTION

From Fig. 6, it can be observed that the gradient of the activation exhibits a pattern across different
epochs: the ranges of groups (both samples and dimensions) are highly uneven. Some groups have
large ranges, while others have small ranges. Although we have presented results for a single batch,
the same pattern persists across the remaining batches.

E.2 EXPERIMENTAL SETTINGS

Classification task: The training process is divided into two stages: initially undergoing quantization-
aware training on ImageNet and subsequently undergoing FQT on various downstream datasets. The
first stage: the initial learning rate was set to 10−3 and the weight decay to 10−5, following Bulat &
Tzimiropoulos (2019), the optimizer is Adam and use a consine learning rate schedule. We train for
90 epochs. The second stage: for all datasets, the initial learning rate for fully connected layers is set
to 10−3. For portions of the network that have been previously trained, the learning rate is set to 10−5,

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0 7 14 21 28 35 42 49 56 63
Channel

0

15

30

45

60

Sa
m

pl
e

0.0

0.2

0.4

0.6

0.8

1.0

1e 5

(a) 0

0 7 14 21 28 35 42 49 56 63
Channel

0

15

30

45

60

Sa
m

pl
e

0

2

4

6

8
1e 6

(b) 15

0 7 14 21 28 35 42 49 56 63
Channel

0

15

30

45

60

Sa
m

pl
e

0.0

0.5

1.0

1.51e 6

(c) 30

0 7 14 21 28 35 42 49 56 63
Channel

0

15

30

45

60

Sa
m

pl
e

0.0

0.5

1.0

1.5

1e 7

(d) 45

0 7 14 21 28 35 42 49 56 63
Channel

0

15

30

45

60

Sa
m

pl
e

0.0

0.5

1.0

1.5

2.01e 7

(e) 60

1.0 0.5 0.0 0.5 1.0
Value 1e 6

0

100

200

300

400

500

Fr
eq

.

(f)

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Value 1e 6

0

100

200

300

400

500

Fr
eq

.

(g)

4 2 0 2 4
Value 1e 6

0

100

200

300

400

500

Fr
eq

.

(h)

3 2 1 0 1 2 3
Value 1e 6

0

100

200

300

400

500

Fr
eq

.

(i)

4 3 2 1 0 1 2 3 4
Value 1e 6

0

100

200

300

400

500

Fr
eq

.

(j)

Figure 6: Heterogeneity in a ResNet18’s gradients. (a-e) Heatmap of the per-group range at the
conv2.1.2 layer under different epochs; (f-j) Histogram of the gradient groups (samples) at the same
layer.

Table 8: Validation loss of fine-tuning GPT2-xl on the Shakespeare dataset.
Method iter0 iter5 iter10 iter15 iter20

Full Precision Training 3.76 2.82 2.81 2.88 2.85
Ours 3.76 3.37 3.32 3.38 3.24
PSQ 3.76 nan nan nan nan

except for car dataset (Krause et al., 2013) where it is set to 10−4. The optimizer settings are the
same as the first stage. We train for 60 epochs. The batch size was assigned to be 128. We measured
training latency on CPUs, but to expedite the acquisition of accuracy statistics, we simulated the
training results on 4 NVIDIA RTX A4000 GPUs. Due to limited resources on terminal devices,
we utilized a smaller batch size of 64. We followed the configuration of Bulat & Tzimiropoulos
(2019) by excluding quantization for sensitive layers, such as the first and last layers, as well as skip
connections in residual networks, in addition to batch normalization (BN) and ReLU layers.

Detection task: We evaluate our method on a simple transfer learning task to assess its effectiveness
on object detection models, specifically transferring from high-resolution object detection to low-
resolution object detection. The training process is divided into two stages: initially undergoing
quantization-aware training on the PASCAL VOC 2007 and VOC 2012 trainval sets with a resolution
of (600*600) pixels, followed by FQT training on the same dataset with a resolution of (300*300)
pixels. The first stage: We followed all the settings of BiDet (Wang et al., 2020), including the
quantization methods for both weights and activation values and training configurations. The batch
size was assigned to 32, and the Adam optimizer was applied. The learning rate started from 10−3

and dropped during training every 6 epochs by a factor of 10. We train for 20 epochs. The second
stage: the initial learning rate is 10−5, the training epoch is 5 and the others are the same.

NLP tasks: We conduct experiments to validate the effectiveness of our proposed 1-bit FQT on
BERTBASE(12 hidden layers) and the GLUE benchmark (Wang et al., 2018a) which consists of nine
basic language tasks. We use the standard metrics for each GLUE task to evaluate our method. We
use Spearman Correlation for STS-B, Mathews Correlation Coefficient for CoLA, and classification
accuracy for the rest tasks. As for the MNLI task, we report the accuracy on both in-domain evaluation
MNLI-match (MNLI-m) and cross-domain evaluation MNLI-mismatch (MNLI-mm). We exclude the
WNLI task as Qin et al. (2022). We utilized BiBERT(Qin et al., 2022) as our binarized model, which
is derived by directly binarizing a full-precision one. Subsequently, we fine-tune this binarized model
using both full-precision gradients (QAT) and 1-bit gradients (Ours). We follow Qin et al. (2022) by
excluding quantization for the classifier, position embedding layer, and token type embedding layer.
We use Adam as our optimizer. The training settings are also the same as Qin et al. (2022).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 9: Experimental results of training from scratch.

Method Precision XNOR-Net++ Adabin
(W, A, G) CIFAR-10 CIFAR-100 ImageNet CIFAR-10 CIFAR-100 ImageNet

QAT 1, 1, 32 84.31 62.14 57.10 91.91 66.68 62.50
PSQ 1, 1, 1 24.27 6.14 0.10 41.59 16.09 0.10
Ours 1, 1, 1 42.57 26.96 21.63 78.80 58.14 39.12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Channel

0

2

4

6

8

R
an

ge

1e 5

FT
TFS

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Channel

0.000000

0.000025

0.000050

0.000075

0.000100

0.000125

0.000150

R
an

ge

FT
TFS

(b)

Figure 7: Gradient range analysis in ResNet18’s conv2.1.2 layer under fine-tuning (FT) and training
from scratch (TFS). (a) The result from CIFAR-10. (b) The result from CIFAR-100.

E.3 FQT FROM SCRATCH

We compared the performance of our method in two scenarios: fine-tuning and training from scratch.
We presented the classification results under the optimal configuration (b=4) in Table 9. From the
table, it is evident that when training from scratch, the model exhibits very low classification accuracy
across all datasets, and in certain datasets, it even lacks classification capability entirely. We attempted
to analyze the differences between the two scenarios based on the distinct gradient distributions.
From Fig. 7, we observe that the gradient range is larger in training from scratch, leading to increased
gradient variance (Eq. 5) and reduced model convergence. Therefore, 1-bit FQT from scratch remains
an open problem. Additionally, we compared our method with PSQ in the training scenario from
scratch, and the results indicate that our approach still significantly outperforms PSQ in accuracy.

E.4 TIME EXPENDITURE STRUCTURE

We present the speedup across layers of VGGNet16 and the time consumption for each operation in
Fig. 10, providing guidance for future optimization directions. It is important to note that the first
and last layers were not quantized and, therefore, were not included in the analysis. From the figure,
it is evident that matrix multiplication constitutes the majority of the training time, while the time
overhead of other operations such as gradient pruning and quantization can be considered negligible.
Therefore, the focus of future optimization efforts will remain on matrix multiplication. Furthermore,
it can be observed that our implemented method is particularly friendly for layers with a large number
of convolutional kernels and smaller input resolution.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

32 8 4 2 1
Bits

0

20

40

60

80
Te

st
 A

cc
.

Adam
SGD
SGD-M

(a) Flowers

32 8 4 2 1
Bits

0

10

20

30

40

50

60

70

Te
st

 A
cc

.

Adam
SGD

(b) ImageNet

Figure 8: Gradient numerical precision(“bits”) vs. test accuracy of VGGNet16 on (a) Flowers and (b)
ImageNet.

0 10 20 30 40 50 60
Epochs

0
10
20
30
40
50
60
70

Te
st

 A
cc

.

Adam
SGD

(a) CIFAR100-Ours

0 10 20 30 40 50 60
Epochs

0
10
20
30
40
50
60
70

Te
st

 A
cc

.

Adam
SGD

(b) CIFAR100-PSQ

0 10 20 30 40 50 60
Epochs

0
10
20
30
40
50
60
70
80

Te
st

 A
cc

.

Adam
SGD

(c) PET-Ours

0 10 20 30 40 50 60
Epochs

0
10
20
30
40
50
60
70
80

Te
st

 A
cc

.

Adam
SGD

(d) PET-PSQ

Figure 9: Testing accuracy comparison on VGGNet16.

Table 10: Experimental results on multiple downstream datasets. “(W, A, G)” denote the bitwidth of
weight, activations, and gradients, respectively. b represents the bitwidth of the remaining groups.

Method Precision Accuracy(%)
(W, A, G) CIFAR-10 CIFAR-100 Flowers Cars Pets CUB Average

ResNet-50
QAT 1, 1, 32 90.12 70.3 85.69 58.62 78.30 48.03 71.84
PSQ 1, 1, 1 77.85 54.39 84.61 34.52 76.75 42.34 61.74
Ours (b = 4) 1, 1, 1 82.84 60.19 85.49 47.08 77.86 45.20 66.44

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6 7 8 9 10 11 12
Layers

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Sp
ee

dU
p

backward
forward

(a)

1 2 3 4 5 6 7 8 9 10 11 12
Layers

0.0

0.1

0.2

0.3

0.4

0.5

Ti
m

e
(s

)

unfolder
encoder
compute
other
AGP
quan
dequan
fold

(b)

Figure 10: (a) The speedup of ours compared with FP32 PyTorch. (b) The compositional structure of
time consumption.

26

	Introduction
	Related Works
	Framework
	Quantized Training
	FQT with Unbiased Quantizer

	Theoretical Results
	Optimizer Impact on Convergence
	Quantizer Impact on Gradient Variance

	1-bit FQT Algorithm
	Forward Propagation
	Backward Propagation
	Practical Acceleration

	Experiments
	Main Results
	Computational Efficiency

	Conclusion
	Proof of Theorems
	Assumptions availability
	Theorem 4.3: Convergence of SGD
	Theorem 4.5: Convergence of Adam

	Supplementary proof of the theory
	Assumptions
	CONVERGENCE OF SGD
	CONVERGENCE OF ADAM
	CONVERGENCE OF SGD-M

	Variance of Specific Quantizers
	Per-sample Quantizer
	Per-sample Quantizer with AGP

	Implementation details
	Experimental Details
	Gradient distribution
	Experimental settings
	FQT from scratch
	Time expenditure structure

