
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WHO MATTERS MATTERS: AGENT-SPECIFIC CONSER-
VATIVE OFFLINE MARL

Anonymous authors
Paper under double-blind review

ABSTRACT

Offline Multi-Agent Reinforcement Learning (MARL) enables policy learning
from static datasets in multi-agent systems, eliminating the need for risky or costly
environment interactions during training. A central challenge in offline MARL lies
in achieving effective collaboration among heterogeneous agents under the con-
straints of fixed datasets, where conservatism is introduced to restrict behaviors to
data-supported distributions. Agents with distinct roles and capabilities require indi-
vidualized conservatism - yet must maintain cohesive team performance. However,
existing approaches often apply uniform conservatism across all agents, leading
to over-constraining critical agents and under-constraining others, which hampers
effective collaboration. To address this issue, a novel framework, OMCDA, is
proposed, where the degree of conservatism is dynamically adjusted for individual
agents based on their impact on overall system performance. The framework is
characterized by two key innovations: (1) A decomposed Q-function architecture
is introduced to disentangle return computation from policy deviation assessment,
allowing precise evaluations of each agent’s contribution; and (2) An adaptive
conservatism mechanism is developed to scale constraint strength according to
both behavior policy divergence and the estimated importance of agents to the
system. Experiments on MuJoCo and SMAC show OMCDA outperforms exist-
ing offline MARL methods, effectively balancing the flexibility and conservatism
across agents while ensuring fair credit assignment and better collaboration.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) has gained significant traction in domains such as
autonomous driving (Cao et al., 2012), collaborative robotics (Orr & Dutta, 2023), and multi-player
games (Berner et al., 2019), where agents must learn to coordinate or compete to accomplish
complex objectives. Despite its successes, most MARL approaches assume agents can interact freely
with the environment during training. In practice, however, this assumption often breaks down
due to high interaction costs, safety concerns, or operational constraints (Wang et al., 2024). To
address these limitations, Offline Reinforcement Learning (Offline RL) has emerged as a compelling
alternative (Fujimoto & Gu, 2021; Kostrikov et al., 2021b; Kumar et al., 2020; Levine et al., 2020; Wu
et al., 2019). Instead of relying on real-time interactions, Offline RL learns from pre-collected datasets,
making it more practical for safety-critical or data-scarce environments. In the single-agent setting,
Offline RL has achieved notable progress by addressing challenges such as Q-value overestimation
for out-of-distribution (OOD) actions, which often lead to poor generalization. A key development
in this direction is the use of conservative methods (Wu et al., 2019), which penalize unlikely or
unsupported actions to ensure that learned policies remain close to the behavior policy. This form of
conservatism is defined as the tendency to favor actions supported by the training data while avoiding
uncertain or OOD behaviors which improves stability and robustness during offline learning (Kumar
et al., 2020).

When Offline RL is extended to multi-agent settings (Offline MARL), the situation becomes even
more complex. The interplay among agents introduces increased non-stationarity, and the offline
dataset can exhibit more severe distributional shifts. Moreover, credit assignment—how each agent’s
actions contribute to overall joint performance—presents a substantial challenge (Wang & Zhan,
2023; Yang et al., 2021). Recent efforts has explored Offline MARL under the “Centralized Training

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

and Decentralized Execution” (CTDE) framework (Lowe et al., 2017), leveraging multi-agent value
decomposition combined with offline conservatism to stabilize learning.

Nevertheless, existing studies seldom consider the heterogeneity of agents in real world applications.
Due to their distinct roles and interaction patterns, different agents can wield unequal influence on
overall system performance (Wang et al., 2020b; Foerster et al., 2018). For instance, in a football team,
strikers are often encouraged to take creative, high-risk actions to maximize scoring opportunities,
while defenders must adhere to disciplined, risk-averse strategies to ensure team stability. Imposing
equal conservatism on both roles would limit the striker’s effectiveness and increase the defender’s
exposure to costly errors. This illustrates that the appropriate level of conservatism should depend on
the agent’s role, uncertainty, and potential impact. Consequently, a central challenge in heterogeneous
Offline MARL is how to adaptively assign conservatism across agents based on their individual
characteristics—striking a balance between safety and exploration that enhances both performance
and reliability so as to promote their collaboration.

In this study, we introduce a novel offline MARL approach, Offline MARL with Conservative
Degree Allocation (OMCDA), which addresses the challenge of distributing conservatism among
agents based on their deviations from behavior policies and their impact on system performance
for heterogeneous agents in offline MARL. OMCDA decomposes the Q-function in offline MARL
with regularization into two components: one for computing the return and the other for capturing
policy deviations. This decomposition isolates the impact of deviations, enabling a clearer and more
accurate learning process. The conservative degree of each agent is dynamically adjusted based
on the effect of their deviations on the overall return, promoting a balanced influence on system
performance. This dynamic allocation is integrated into the OMCDA framework, ensuring a balance
between conservatism and flexibility, and consistent credit assignment to enhance teamwork.

The key contributions of this paper are as follows: (1) A comprehensive analysis of conservative
degree allocation in heterogeneous offline MARL, exploring how varying conservative degrees affect
individual agent returns and overall system performance. (2) The introduction of OMCDA, a novel
offline MARL algorithm that dynamically adjusts each agent’s conservative degree based on its
impact on system performance, balancing conservatism and flexibility while ensuring consistent
credit assignment and promoting collaboration. (3) Extensive experiments on diverse datasets,
including multi-agent MuJoCo (de Witt et al., 2020) and the StarCraft Multi-Agent Challenge
(SMAC) (Samvelyan et al., 2019), showing that OMCDA consistently outperforms existing methods
across different environments and datasets.

2 PRELIMINARIES

We consider a MARL problem following (Wang et al., 2024) where the environment is modeled as a
multi-agent Partially Observable Markov Decision Process (Boutilier, 1996), defined by the tuple:
G = ⟨S,A, P, r,Z,O, n, γ⟩. s ∈ S is the true state of the environment. A denotes the action set
for each of the n agents. At every time step, each agent i ∈ {1, 2, . . . , n} chooses an action ai ∈ A,
forming a joint action a = (a1, a2, . . . , an) ∈ An. It causes a transition to the next state s′ in the
environment according to the transition dynamics P (s′|s,a) : S × An × S → [0, 1]. All agents
share the same global reward function r(s,a) : S × An → R. γ ∈ [0, 1) is a discount factor. In
the partially observable environment, each agent draws an observation oi ∈ O at each step from the
observation function Z(s, i) : S ×N → O. The objective of the team is to learn a set of policies
π = (π1, π2, . . . , πn) that collectively maximize the expected discounted cumulative reward of the
entire system. In the offline setting, agents do not interact with the environment directly but instead
learn policies from a static dataset D containing state-action-reward tuples. The challenge lies in
learning effective policies without additional environment interactions.

CTDE Framework The Centralized Training with Decentralized Execution (CTDE) framework is
widely used in cooperative multi-agent reinforcement learning (MARL) (Oliehoek et al., 2008). In
CTDE, agents are trained centrally with global information, enabling coordinated policy learning
(Lowe et al., 2017). During execution, they act based on decentralized local observations, ensur-
ing scalability in real-world settings. A key approach in this framework is value decomposition
(Rashid et al., 2020; Sunehag et al., 2017; Wang et al., 2020a), where the global value function is
factorized into local components for each agent. Algorithms such as QMIX (Rashid et al., 2020)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

and VDN (Sunehag et al., 2017) employ monotonic value decomposition for scalable multi-agent
learning. This framework has been adopted in offline MARL (Pan et al., 2022; Yang et al., 2021),
with the global-local Q-value relationship:

Qtot(o,a) =
∑
i

wi(o)Qi(oi, ai) + b(o), wi ≥ 0, ∀i = 1 · · ·n. (1)

where wi(o), b(o) are local function weights/bias and ai, oi are agent actions/observations.

Offline MARL with Policy regularization Policy regularization constrains policy learning to
remain close to the behavior policy (Xu et al., 2023), preventing out-of-distribution actions that
could degrade performance. Several offline RL algorithms (Wu et al., 2019; Xu et al., 2023) use this
approach to mitigate distributional shift. For example, BRAC (Wu et al., 2019) regularizes the actor’s
policy to stay close to the behavior policy while optimizing the critic with the standard value function
update. In offline MARL settings, this regularized method can be extended, with the objective written
as:

maxπ E [
∑∞

t=0 γ
trt] , s.t. Ea∼π [f (π (at | ot) , πb (at | ot))] ≤ ϵ. (2)

Here π = (π1, . . . , πN), f is a divergence term that quantifies how far the policy deviates from
the behavior policy πb, at and ot are the action and state at timestep t, while ϵ is the constraint of
f . We then convert the constrained optimization problem above into an unconstrained one using a
Lagrangian relaxation by introducing a penalty hyperparameter α:

max
π

E

[∞∑
t=0

γt (rt − α · f (π (at | ot) , πb (at | ot)))

]
. (3)

In this paper, we use Kullback-Leibler (KL) divergence(Pérez-Cruz, 2008) expressed as DKL to
constrain the learning policy and behaviour policy, while the Q-function can be formulated as:

Q (o, a) = E

[∞∑
t=0

γt (rt − α ·DKL(πt ∥ πb))

]
, (4)

where πt and rt are the policy and reward at timestep t. To address the issue of conservative degree
allocation, we provide different levels of conservatism to agents in offline MARL by assigning each
agent i an individual conservative degree di, which defines the permissible range of deviation from
its behavior policy. The problem is then reformulated as the following:

maxπ E [
∑∞

t=0 γ
trt] , s.t. Ea∼π

[
log

πi
t(a

i
t|o

i
t)

πb(ai
t|oit)

]
≤ di,

∑
i di = dtot, ∀i = 1 · · ·n. (5)

Where di is the local conservative degree, and dtot is the global conservative degree which is a fixed
value. A deeper analysis of Eq. (5), which reveals the origin of the deviation term in Eq. (12), is
provided in Appendix E.5. Then similar to the process of transitioning from Eq. (2) to Eq. (3), we
can convert Eq. (5) and assign a conservatism level to each agent i, denoted as αi, while the current
Q-function can be formulated as:

Q (o, a) = E

[∞∑
t=0

γt

(
rt −

∑
i

αi ·DKL(π
i
t ∥ πb)

)]
. (6)

In the next section, OMCDA is introduced, built upon the decomposition of the Q-function and
dynamic conservative degree allocation. We will demonstrate how this framework addresses the
challenges of conservative degree allocation and emphasize it’s advantages in offline MARL systems.

3 OMCDA

In this section, we present OMCDA for dynamic conservative degree allocation in offline MARL.
First, we motivate the problem through a simple example, then decompose the Q-function to quantify
individual agent contributions. We develop an adaptive mechanism that adjusts each agent’s conser-
vatism according to its impact on system rewards. OMCDA ensures conservatism levels align with
agents’ influence on returns, enhancing performance while preserving consistent credit assignment.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Agent 1

Agent N

Influence CalculatorAgent 2

Influence Term

Total
conservative

 degree

Conservative Degree

Constraint

Dataset
Update

Figure 1: Overview of dynamic conservative degree allocation framework in OMCDA. 1) The
influence calculator takes the policy from each agent, along with the return-based state-value function
V r and the behavior policy πb derived from the data in dataset, as input to generate the influence term
for each agent on the system. 2) Each agent’s conservative degree is then allocated from the total
conservative degree based on the influence term. 3) Finally, the conservative degree is integrated as a
network update constraint, enabling dynamic allocation while ensuring consistent credit assignment.

Conservative Degree Allocation in Offline MARL In offline MARL, agents’ influences on the
system are not uniform. To fully leverage these influences and improve system performance, dynamic
conservative degree allocation is necessary. This approach allows high-impact agents to make larger
deviations, enhancing their contribution to the overall performance. To better illustrate this issue, we
present a 2-player toy example in Table 1.

In this game, we employ a mixed strategy. As a cooperative team, individual players cannot access
their personal rewards directly; instead, they observe the team’s expected reward rteam which is :∑

a1∈{A,B}

∑
a2∈{A,B}

π1(a1)π2(a2)r(a1, a2). (7)

The game features two possible actions (A and B) for each player. Consider both play-
ers following a uniform behavior policy πb = (0.5, 0.5). The offline dataset D is col-
lected under πb, containing policy pairs with their corresponding team reward rteam: D =
{(π1 = (0.5, 0.5), π2 = (0.5, 0.5), rteam)} . Clearly, Player 1 achieves higher rewards and greater
influence on team performance than Player 2, justifying greater allowance for policy deviation.

Table 1: Payoff matrix for the 2-player example.

Player 1/2 A B

A 3, 1 3, 1

B 2, 1 2, 1

We quantify deviation of agent i’s policy from
behavior policy through Manhattan distance
(Chiu et al., 2016) ∆i =

∑
a∈{A,B} |πi(a) −

πbehavior(a)|.
To align with traditional offline methods, the
total conservative degree ∆total for the entire
system is set to 0.4. Under uniform conservative
allocation, both players share the total deviation
equally: ∆1 = ∆2 = 0.2. After training, the
optimal strategies for both players are (0.6, 0.4), increasing team’s expected reward by 0.1. Under
dynamic allocation, Player 1 receives a larger deviation: ∆1 = 0.3, reflecting its higher impact, while
∆2 = 0.1. Consequently, Player 1 learns a more aggressive strategy (0.65, 0.35), while Player 2
remains near the behavior policy (0.55, 0.45). The dynamic allocation improves team’s expected
reward more by 0.15, demonstrating its effectiveness in coordinating heterogeneous agents.

Decomposition Framework We now present the decomposition framework for value functions,
aiming to assign different conservative degrees to each agent, as described in Eq. (5). To achieve
this, it’s crucial to understand how an agent’s deviation from the behavior policy affects the overall
return. In offline RL with regularization, both the Q-function and value function contain entangled
return and constraint components (Eq. 4), complicating the measurement of an agent’s influence on

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

the return. Inspired by BOPAH (Lee et al., 2020), our framework disentangles these components by
decomposing the Q-function and value function into two parts: one that computes the return and
another that accounts for the deviation constraint. In our framework, the original Q-function in offline
RL with regularization in Eq.(4) can be written as:

Q (o, a) = Qr (o, a)+α·Qc (o, a) , Qr := E

[∞∑
t=0

γtrt

]
, Qc := E

[
−

∞∑
t=1

γtDKL(πt ∥ πb)

]
. (8)

In this definition, Qr (o, a) calculates the return, and Qc (o, a) captures the deviation from the
behavior policy. Similar to these two Q-functions, the decomposition of V-function can also be
obtained as:

V (o, a) = V r (o, a) + α · V c (o, a) . (9)

Then with the current Q-function and V-function, the corresponding Bellman backup operators is
formulated as:(

T π
f

)
Qr(o, a) := r(o, a) + γEo′|o,a [V

r (o′)] ,
(
T π
f

)
Qc(o, a) := γEo′|o,a [V

c (o′)] , (10)

where V-functions is written similar to SAC (Haarnoja et al., 2018) as:

V r(o) = Ea∼π [Q
r(o, a)] , V c(o) = Ea∼π

[
Qc(o, a)− log

(
π(a | o)
πb(a | o)

)]
. (11)

By decoupling the Q-function into separate return and deviation components, we isolate return
calculation from conservatism enforcement. This enables precise assessment of each agent’s influ-
ence on cumulative returns, free from conservatism constraint interference. This approach proves
particularly crucial in offline MARL, where individual actions affect the joint return. When extending
to multi-agent case, according to Eq. (6) and the definitions in Eq. (8), the global Q-function (a
detailed analysis of the relationship between Eq. (5) and the deviation term in Eq. (12) is provided in
Appendix E.5) can be derived within the QMIX framework (Rashid et al., 2020) as follows:

Qtot (o, a) = Qr
tot (o, a) +

N∑
i=1

αi ·Qc,i (o, a) , (12)

where
Qr

tot(o,a) =
∑
i

wr
i (o)Q

r
i (oi, ai) + br(o), (13)

Qc,i(o,a) =
∑
j

wc,i
j (o)Qc

j (oj , aj) + bc,i(o). (14)

In Eq. (13), Qr
tot represents the global return information, which is distributed to individual agents

through value decomposition, with wr and br as the weight and bias parameters for each agent’s local
return function Qr

i . Eq. (14) defines agent i’s conservatism value function Qc,i(o,a), computed as a
weighted sum over all agents’ conservatism values Qc

j(oj , aj). Here, wc,i
j (o) denotes the observation-

dependent weight for agent j’s contribution to agent i’s conservatism, while bc,i(o) serves as an
adaptive bias term. The decomposition of the V -function is derived in the same manner as the
Q-function. The decomposed forms of V r

tot and V c,i are expressed as follows:

V r
tot(o) =

∑
i

wr
i (o)V

r
i (oi) + br(o), (15)

V c,i(o) =
∑
j

wc,i
j (o)V c

j (oj) + bc,i(o). (16)

With the decomposition framework, each agent can balance both individual and global constraints
effectively, while also more accurately assessing both its own and the overall system’s return.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Dynamic Conservative Degree Allocation for Agents in Offline MARL Setting After we get our
decomposition framework, since the goal to maximum the return is equal to maximum global return-
based state-value function V r

tot. The maximum term in Eq.(5) can be changed into maxπ E [V r
tot(o)] .

Next, we illustrate the approach to develop a dynamic adaptation method (shown in Figure. 1) that
adjusts the conservative degrees for agents dynamically. Let us take another look at the constraint
term in Eq.(5) where we want to adaptively assign a conservative degree di to each agent. Given
the total degree dtot, an efficient strategy is to allocate it based on the influence of the agents on the
system. Hence, we propose an influence term mi for each agent i, and di can be obtained as:

di = mi · dtot. (17)

As shown in Table 1, in offline MARL settings, an agent’s influence on the system determines the
sensitivity of the system to its behavioral policy deviations. Thus, we quantify each agent’s influence
as the impact of its policy deviation on the collective return V r

tot. Taking the expression of V r
tot

in Eq.(11) into account, the influence can be derived by computing the partial derivative of the
return-based value function V r

tot with respect to the KL divergence between the agent’s current policy
πi and its own behavior policy πi

b following:

mi =
∂V r

tot(o)

∂DKL(πi ∥ πi
b)
. (18)

In practice, to facilitate computation, the chain rule is applied to break down complex dependencies
between V r

tot(o) and the KL divergence DKL(π
i ∥ πi

b), enabling efficient influence computation
(further details are in Appendix E.2):

mi =
∂V r

tot(o)

∂πi

(
∂DKL(πi ∥ πi

b)

∂πi

)−1

. (19)

The first term in Eq.(19) captures the strategy change’s system impact, while the second term acts
as a constraint, measuring the agent’s deviation from its behavior policy. Since V r

tot isolates the
conservatism term from Vtot, it directly quantifies how policy deviations affect system returns.
This reveals the relationship between an agent’s policy deviation and its return impact. Eq.(18)
dynamically determines each agent’s conservatism constraint, measuring system return sensitivity
to policy deviations. A larger derivative indicates greater positive return impact, permitting more
flexible di; smaller derivatives warrant stricter constraints to mitigate risk. Due to

∑
i di = dtot

in Eq.(5), to determine the appropriate conservative degree di for each agent, we adopt a softmax
function to normalize the weights across all agents:

m = [m1, · · · ,mN] = Softmax

[
E
[

∂V r
tot(o)

∂DKL(π1 ∥ π1
b)

]
, · · · ,E

[
∂V r

tot(o)

∂DKL(πN ∥ πN
b)

]]
. (20)

After obtaining mi, each di can be derived using Eq.(17). The conservatism level αi introduced in
Eq.(12) can be updated according to following objective:

min
αi

(
αi · di − αi ·DKL

(
πi ∥ πi

b

))
. (21)

With the conservatism levels αi obtained for each agent, we apply these dynamic adjustments to the
offline MARL environment. We begin by deriving the optimal global policy in the offline MARL
setting in Proposition 3.1.

Proposition 3.1. In an offline MARL setting, the optimal global policy π∗
tot(a | o) is given by Eq. (4)

and is formally expressed as follows:

π∗
tot(a | o) = πb(a | o) · exp

(
1

α
(Q∗(o, a)− V ∗(o))

)
, (22)

where Q∗(o, a) is optimal action-value function, V ∗(o) is optimal value function, and a global
conservatism level α is assumed that controls the overall deviation from the behavior policy.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

The proof is based on the principles of soft Q-learning(Haarnoja et al., 2018) and we extend it to
offline MARL context. Then, we aim to derive the local optimal policy from the global optimal policy
in Eq.(22) by applying the individual conservatism level αi for each agent in Proposition 3.2, and
demonstrate its validity in Theorem 3.3.
Proposition 3.2. Joint policy πtot is decomposed into product of individual agent policies πi as:

πtot(a | o) =
N∏
i=1

πi(ai | oi).

Based on decomposition in Eq.(12) - (16), the optimal policy π∗
i (ai | oi) for each agent is given by:

π∗
i (ai | oi) =πb(ai | oi) · exp

(
wr

i (o)

αi

(
Qr∗

i (oi, ai)− V r∗

i (oi)
)
+
(
Qc,i∗(o, a)− V c,i∗(o)

))
,

(23)

where αi controls the conservatism level of the agent’s policy, and π∗
i denotes the optimal policy that

satisfies Eq.(5).
Theorem 3.3. Given Eq.(23), the optimal policy for each agent is derived, and consistency between
the local optimal policies π∗

i and the global optimal policy π∗
tot is guaranteed. This consistency holds

for individual αi assignments across agents.

The optimal π∗
i is then used to update each agent’s conservatism-based value function V c

i . It should
be noted that each local policy needs to satisfy

∑
ai∼πi

π∗
i (ai | oi) = 1. Therefore, according to

Eq.(23), the following formula can be obtained:

Eai∼πb

[
exp

(
wr

i (o)

αi

(
Qr∗

i (oi, ai)− V r∗

i (oi)
)
+
(
Qc,i∗(o, a)− V c,i∗(o)

))]
= 1. (24)

Proposition 3.4. From Eq.(24), each agent’s conservatism-based value function V c
i is updated

through the following optimization:

min
V c
i

E(oi,ai)∼D

[
exp

(
wr

i (o)

αi
(Qr

i (oi, ai)− V r
i (oi))

+
(
Qc,i (o, a)− V c,i (o)

))
+

wr
i (o)V

r
i (oi) + αiV

c,i (o)

αi

]
.

(25)

The proofs of Proposition 3.1, Proposition 3.4 and Theorem 3.3 are provided in Appendix C.

Dynamic conservatism has now been incorporated into MARL frameworks, enabling agents to
optimize their behavior in offline settings through adaptive balancing between conservatism and
policy deviation—with each agent’s contribution weighted by its measured impact on collective
system performance. The algorithm and additional explanation of OMCDA is in Appendix E.1.

Comparison with prior works Prior works including FOP (Zhang et al., 2021), ADER (Kim
& Sung, 2023), and CFCQL (Shao et al., 2024) have investigated adaptive approaches in MARL.
While FOP and ADER are online methods that employ dynamic entropy regularization similar to
OMCDA, their adaptive mechanisms are confined to policy updates, applying either global uniform
constraints or no constraints to Q/V function updates-an approach that fails to address per-agent
constraint allocation for heterogeneous agents, which is crucial for mitigating OOD issues in offline
MARL. In contrast, OMCDA uniquely enables dynamic conservatism allocation for both policies
and value functions, ensuring optimal updates in offline settings. Offline method CFCQL determines
conservatism by behavior policy deviation, while OMCDA considers each agent’s impact on system
performance. This allows OMCDA to balance conservatism and flexibility, optimizing performance.

4 EXPERIMENT

In this section, we conduct experiments to: (1) evaluate OMCDA’s performance, (2) demonstrate its
effectiveness in dynamic conservative degree allocation, and (3) analyze key components and choices
of total conservative degrees. Further ablation details are in Appendix F.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

-3292

-1103

1084

3272

5460

Multi-Agent MuJoCo

1214
1442

1733

1047

2057

1376
1143 1988

4964

3884

2993

4484

H
opper

E
xpertH

opper

M
edium

Hopper

Medium-Replay

Hopper
Medium-Expert

Ant

Expert

An
t

M
ed

iu
m

A
nt

M
ed

iu
m

-R
ep

la
y

AntM
edium

-Expert

HalfCheetah
Expert

HalfCheetah
Medium

HalfC
heetah

Medium-Replay

H
al

fC
he

et
ah

M
ed

iu
m

-E
xp

er
t

0

4

9

14

19

SMAC

10.47

10.19

9.57

14.72

13.06

6.54
14.14

13.65

10.83

5m
_vs_6m

G
ood

5m_vs_6m

M
edium

5m_vs_6m
Poor

corridor

Good

co
rr

id
or

M
ed

iu
m

corridor

Poor

6h_vs_8z
Good

6h_vs_8z
Medium

6h
_v

s_
8z

Poo
r

BCQ-MA CQL-MA ICQ OMAR CFCQL OMIGA ComaDICE OMCDA

Figure 2: The average returns for the offline Multi-Agent MuJoCo and SMAC

Offline Multi-Agent Datasets We select Multi-Agent MuJoCo(de Witt et al., 2020) and the
StarCraft Multi-Agent Challenge (SMAC)(Samvelyan et al., 2019) as our experiment environments.
Multi-Agent MuJoCo, a benchmark for continuous multi-agent robotic control, is built on the MuJoCo
environment. The Multi-Agent MuJoCo dataset we use was collected using the HAPPO(Kuba et al.,
2021) algorithm by (Wang et al., 2024) which contains four quality levels: expert, medium, medium-
replay and medium-expert. The second environment, SMAC, is a widely-used benchmark for
evaluating cooperative MARL methods. The offline SMAC dataset is collected by (Meng et al.,
2021), using online-trained MAPPO(Kuba et al., 2021) agents. This is the largest publicly available
dataset for SMAC and includes three quality levels: good, medium, and poor. We focus on three
representative battle maps in our experiments: one hard map (5m_vs_6m) and two super hard maps
(6h_vs_8z and corridor). We initialize the behavior policy πb through behavior cloning (Michie
et al., 1990) using the offline dataset. Further details on these datasets are provided in Appendix D.

Baselines and Comparative Evaluation We compare our approach with seven offline MARL
algorithms: The multi-agent versions of BCQ(Fujimoto et al., 2019) and CQL(Kostrikov et al.,
2021b) (referred to as BCQ-MA and CQL-MA), ICQ(Yang et al., 2021), OMAR(Pan et al., 2022),
CFCQL(Shao et al., 2024), OMIGA(Wang et al., 2024), and ComaDICE(Bui et al., 2024). Both
BCQ-MA and CQL-MA utilize a linear weighted value decomposition for the multi-agent setting,
similar to Eq. (1). Hyperparameters used in our experiments are provided in Appendix E.4. Figure 2
presents returns for the offline Multi-Agent MuJoCo and SMAC tasks with 5 random seeds. Detailed
analysis of the results and the mean and standard deviation of returns are in Appendix E.3.

2

4

6

8

10

12

14

16

Va
lu

e

Values for agent 1
Values for agent 2
Influence for agent 1
Influence for agent 2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Timesteps(Million)

0.0

0.2

0.4

0.6

0.8

In
flu

en
ce

0

1

2

3

4

5

6

7

Va
lu

e

Values for agent 1
Values for agent 2
Values for agent 3
Influence for agent 1
Influence for agent 2
Influence for agent 3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Timesteps(Million)

0.0

0.1

0.2

0.3

0.4

0.5

In
flu

en
ce

Figure 3: Analysis on the influence term on Ant(left) and Hopper(right)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Analysis on the Influence Term In OMCDA, the influence of each agent on the system is the
core metric for allocating conservatism levels. We conduct experiments to analyze the relationship
between the computed influence of each agent and its corresponding return. The results in Figure. 3
demonstrate that agents with higher V r

i , representing higher individual returns, tend to be allocated
more influence, enabling them to have a stronger impact on system performance. This proportional
allocation allows high-return agents to further contribute to global objectives and optimize overall
behaviour. By adjusting conservatism levels properly, OMCDA enhances individual performance and
maximizes collective return, promoting balanced and efficient learning across agents.

Analysis on the Components of OMCDA To analyze conservative degree allocation and the im-
pact of Q-function decomposition in OMCDA, we conduct three ablation studies: OMCDA-w/o-CDA,
OMCDA-w/o-dq, and OMCDA-rd. In OMCDA-w/o-CDA, all agents share the same conservative
degree di without allocation. In OMCDA-w/o-dq, dynamic allocation remains but Q-function decom-
position is removed, entangling return optimization with deviation handling. OMCDA-rd assigns each
agent a random di, used to evaluate the role of strategic assignment. Experiments on HalfCheetah and
6h_vs_8z in the Multi-agent MuJoCo and SMAC environments show that OMCDA consistently out-
performs all ablated versions (Figure. 4a-b). Lacking dynamic allocation, OMCDA-w/o-CDA causes
imbalance and degraded performance. OMCDA-w/o-dq weakens learning as objectives become
entangled, while OMCDA-rd performs worse since random di ignores agents’ distinct impact. These
results confirm that dynamic allocation and Q-function decomposition are essential for collaboration
and efficiency in offline multi-agent environments, while strategic assignment of conservatism is
crucial for optimal system performance.

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps(million)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

A
ve

ra
ge

 r
et

ur
n

OMCDA
OMCDA-w/o-CDA
OMCDA-w/o-dq
OMCDA-w/o-rd

(a)

10 20 30 40 50 60 70 80 90 100
Episodes(thousand)

8

9

10

11

12

13

14

15

A
ve

ra
ge

 r
et

ur
n

OMCDA
OMCDA-w/o-CDA
OMCDA-w/o-dq
OMCDA-w/o-rd

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps(million)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

A
ve

ra
ge

 r
et

ur
n

d_tot=0.3
d_tot=1.2
d_tot=3

(c)

10 20 30 40 50 60 70 80 90 100
Episodes(thousand)

8

9

10

11

12

13

14

15

A
ve

ra
ge

 r
et

ur
n

d_tot=0.6
d_tot=1.8
d_tot=3

(d)

Figure 4: Analyses and ablations of OMCDA. We analyze the effect of model components (a-b) and
total conservative degree (c-d) across HalfCheetah from MA-MuJoCo and 6h_vs_8z from SMAC.

Analysis on the Total Conservative Degree The total conservative degree dtot controls how much
the system may deviate from the behavior policy. It sets the permissible deviation for the entire system,
ensuring agents do not diverge excessively. In experiments on HalfCheetah and 6h_vs_8z, based on
high-quality datasets, a smaller dtot outperforms other settings. This is because in such environments
it is essential for policies to stay closer to the behavior policy for stable performance. Meanwhile,
dynamic allocation of di allows agents with significant impact on returns some flexibility to deviate,
while requiring others to remain conservative and adhere closely to the behavior policy. The results
in Figure. 4(c-d) show that adjusting dtot improves overall performance, allowing influential agents
beneficial deviations while maintaining system stability.

5 CONCLUSION

In conclusion, a novel offline MARL framework OMCDA is introduced to tackle the challenge
of conservative degree allocation. OMCDA decomposes the Q-function in offline MARL with
regularization into two components: one for computing the return and another for capturing deviations
from the behavior policy. It dynamically adjusts each agent’s conservative degree based on their
influence on the overall system’s performance, ensuring coherent credit assignment and robust
performance throughout the learning process. Meanwhile, extensive experiments demonstrate that
OMCDA consistently outperforms existing offline MARL methods across various environments. Our
future works aim to enhance OMCDA by developing adaptive mechanisms that reduce sensitivity to
total conservative degree selection, and lower the computational complexity.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhihong Deng, Animesh Garg, Peng Liu, and Zhaoran
Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning. arXiv
preprint arXiv:2202.11566, 2022.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale
deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Craig Boutilier. Planning, learning and coordination in multiagent decision processes. In TARK,
volume 96, pp. 195–210. Citeseer, 1996.

David Brandfonbrener, Will Whitney, Rajesh Ranganath, and Joan Bruna. Offline rl without off-policy
evaluation. Advances in neural information processing systems, 34:4933–4946, 2021.

The Viet Bui, Thanh Hong Nguyen, and Tien Mai. Comadice: Offline cooperative multi-agent
reinforcement learning with stationary distribution shift regularization, 2024. URL https:
//arxiv.org/abs/2410.01954.

Yongcan Cao, Wenwu Yu, Wei Ren, and Guanrong Chen. An overview of recent progress in the
study of distributed multi-agent coordination. IEEE Transactions on Industrial informatics, 9(1):
427–438, 2012.

Peng Cheng, Xianyuan Zhan, Wenjia Zhang, Youfang Lin, Han Wang, Li Jiang, et al. Look beneath
the surface: Exploiting fundamental symmetry for sample-efficient offline rl. Advances in Neural
Information Processing Systems, 36, 2024.

Wei-Yu Chiu, Gary G Yen, and Teng-Kuei Juan. Minimum manhattan distance approach to mul-
tiple criteria decision making in multiobjective optimization problems. IEEE Transactions on
Evolutionary Computation, 20(6):972–985, 2016.

Christian Schroeder de Witt, Bei Peng, Pierre-Alexandre Kamienny, Philip Torr, Wendelin Böhmer,
and Shimon Whiteson. Deep multi-agent reinforcement learning for decentralized continuous
cooperative control. arXiv preprint arXiv:2003.06709, 19, 2020.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052–2062. PMLR, 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. PMLR, 2018.

Pablo Hernandez-Leal, Bilal Kartal, and Matthew E Taylor. A survey and critique of multiagent deep
reinforcement learning. Autonomous Agents and Multi-Agent Systems, 33(6):750–797, 2019.

Jiechuan Jiang and Zongqing Lu. Offline decentralized multi-agent reinforcement learning. In ECAI,
pp. 1148–1155, 2023.

Woojun Kim and Youngchul Sung. An adaptive entropy-regularization framework for multi-agent
reinforcement learning. In International Conference on Machine Learning, pp. 16829–16852.
PMLR, 2023.

Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. In International Conference on Machine Learning, pp.
5774–5783. PMLR, 2021a.

10

https://arxiv.org/abs/2410.01954
https://arxiv.org/abs/2410.01954

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. arXiv preprint arXiv:2110.06169, 2021b.

Landon Kraemer and Bikramjit Banerjee. Multi-agent reinforcement learning as a rehearsal for
decentralized planning. Neurocomputing, 190:82–94, 2016.

Jakub Grudzien Kuba, Ruiqing Chen, Muning Wen, Ying Wen, Fanglei Sun, Jun Wang, and Yaodong
Yang. Trust region policy optimisation in multi-agent reinforcement learning. arXiv preprint
arXiv:2109.11251, 2021.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. Advances in neural information processing systems,
32, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

Byungjun Lee, Jongmin Lee, Peter Vrancx, Dongho Kim, and Kee-Eung Kim. Batch reinforcement
learning with hyperparameter gradients. In International Conference on Machine Learning, pp.
5725–5735. PMLR, 2020.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Zongkai Liu, Qian Lin, Chao Yu, Xiawei Wu, Yile Liang, Donghui Li, and Xuetao Ding. Offline
multi-agent reinforcement learning via in-sample sequential policy optimization, 2024. URL
https://arxiv.org/abs/2412.07639.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. Advances in neural information
processing systems, 30, 2017.

Daiki E. Matsunaga, Jongmin Lee, Jaeseok Yoon, Stefanos Leonardos, Pieter Abbeel, and Kee-Eung
Kim. Alberdice: Addressing out-of-distribution joint actions in offline multi-agent rl via alternating
stationary distribution correction estimation, 2023. URL https://arxiv.org/abs/2311.
02194.

Linghui Meng, Muning Wen, Yaodong Yang, Chenyang Le, Xiyun Li, Weinan Zhang, Ying Wen,
Haifeng Zhang, Jun Wang, and Bo Xu. Offline pre-trained multi-agent decision transformer: One
big sequence model tackles all smac tasks. arXiv preprint arXiv:2112.02845, 2021.

Donald Michie, Michael Bain, and J Hayes-Miches. Cognitive models from subcognitive skills. IEE
control engineering series,IEE control engineering series, Jan 1990.

Frans A Oliehoek, Matthijs TJ Spaan, and Nikos Vlassis. Optimal and approximate q-value functions
for decentralized pomdps. Journal of Artificial Intelligence Research, 32:289–353, 2008.

James Orr and Ayan Dutta. Multi-agent deep reinforcement learning for multi-robot applications: A
survey. Sensors, 23(7):3625, 2023.

Ling Pan, Longbo Huang, Tengyu Ma, and Huazhe Xu. Plan better amid conservatism: Offline
multi-agent reinforcement learning with actor rectification. In International conference on machine
learning, pp. 17221–17237. PMLR, 2022.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Fernando Pérez-Cruz. Kullback-leibler divergence estimation of continuous distributions. In 2008
IEEE international symposium on information theory, pp. 1666–1670. IEEE, 2008.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. Journal of Machine Learning Research, 21(178):1–51, 2020.

11

https://arxiv.org/abs/2412.07639
https://arxiv.org/abs/2311.02194
https://arxiv.org/abs/2311.02194

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas Nardelli,
Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The
starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

Jianzhun Shao, Yun Qu, Chen Chen, Hongchang Zhang, and Xiangyang Ji. Counterfactual conserva-
tive q learning for offline multi-agent reinforcement learning. Advances in Neural Information
Processing Systems, 36, 2024.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296, 2017.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. arXiv preprint arXiv:2008.01062, 2020a.

Tonghan Wang, Heng Dong, Victor Lesser, and Chongjie Zhang. Roma: Multi-agent reinforcement
learning with emergent roles. arXiv preprint arXiv:2003.08039, 2020b.

Xiangsen Wang and Xianyuan Zhan. Offline multi-agent reinforcement learning with coupled value
factorization. arXiv preprint arXiv:2306.08900, 2023.

Xiangsen Wang, Haoran Xu, Yinan Zheng, and Xianyuan Zhan. Offline multi-agent reinforcement
learning with implicit global-to-local value regularization. Advances in Neural Information
Processing Systems, 36, 2024.

Ziyan Wang, Yali Du, Yudi Zhang, Meng Fang, and Biwei Huang. Macca: Offline multi-agent
reinforcement learning with causal credit assignment. arXiv preprint arXiv:2312.03644, 2023.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Yue Wu, Shuangfei Zhai, Nitish Srivastava, Joshua Susskind, Jian Zhang, Ruslan Salakhutdinov, and
Hanlin Goh. Uncertainty weighted actor-critic for offline reinforcement learning. arXiv preprint
arXiv:2105.08140, 2021.

Haoran Xu, Xianyuan Zhan, Jianxiong Li, and Honglei Yin. Offline reinforcement learning with soft
behavior regularization. arXiv preprint arXiv:2110.07395, 2021.

Haoran Xu, Li Jiang, Jianxiong Li, Zhuoran Yang, Zhaoran Wang, Victor Wai Kin Chan, and
Xianyuan Zhan. Offline rl with no ood actions: In-sample learning via implicit value regularization.
arXiv preprint arXiv:2303.15810, 2023.

Yiqin Yang, Xiaoteng Ma, Chenghao Li, Zewu Zheng, Qiyuan Zhang, Gao Huang, Jun Yang, and
Qianchuan Zhao. Believe what you see: Implicit constraint approach for offline multi-agent
reinforcement learning. Advances in Neural Information Processing Systems, 34:10299–10312,
2021.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129–14142, 2020.

Xianyuan Zhan, Xiangyu Zhu, and Haoran Xu. Model-based offline planning with trajectory pruning.
arXiv preprint arXiv:2105.07351, 2021.

Tianhao Zhang, Yueheng Li, Chen Wang, Guangming Xie, and Zongqing Lu. Fop: Factorizing
optimal joint policy of maximum-entropy multi-agent reinforcement learning. In International
conference on machine learning, pp. 12491–12500. PMLR, 2021.

Zhengbang Zhu, Minghuan Liu, Liyuan Mao, Bingyi Kang, Minkai Xu, Yong Yu, Stefano Ermon,
and Weinan Zhang. Madiff: Offline multi-agent learning with diffusion models, 2025. URL
https://arxiv.org/abs/2305.17330.

12

https://arxiv.org/abs/2305.17330

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A USE OF LARGE LANGUAGE MODELS (LLMS)

We employed the large language model as an auxiliary tool during manuscript preparation. Specif-
ically, it was used to refine language for grammar and clarity, and to generate illustrative (non-
experimental) figures based on prompts we provided. All research ideas, methods, experiments,
analyses, and conclusions were developed by the authors.

B RELATED WORK

B.1 OFFLINE REINFORCEMENT LEARNING

Offline reinforcement learning must address distributional shift (Kumar et al., 2019), which occurs
when policies encounter out-of-distribution (OOD) states or actions (Fujimoto et al., 2019), leading
to exploitation errors and poor performance due to inaccurate value estimates on OOD actions.

To mitigate this, policy constraint methods (Cheng et al., 2024; Fujimoto et al., 2019; Xu et al., 2021)
aim to keep the learned policy close to the behavior policy, reducing deviations from the training
data. Value regularization techniques (Kostrikov et al., 2021a) (Kumar et al., 2020) penalize OOD
value estimates, while uncertainty-based (Bai et al., 2022; Wu et al., 2021) and model-based (Yu
et al., 2020; Zhan et al., 2021) approaches focus on penalizing actions in uncertain or sparse regions.
Recently, in-sample learning methods (Brandfonbrener et al., 2021; Kostrikov et al., 2021b; Peng
et al., 2019; Xu et al., 2023) have focused on learning within the support of the offline data, avoiding
OOD evaluation and improving stability. Our approach integrates multi-agent value decomposition
into this paradigm, ensuring more stable and coordinated policy learning in multi-agent settings.

B.2 MULTI-AGENT REINFORCEMENT LEARNING

A key challenge in MARL is the joint action space (Hernandez-Leal et al., 2019), which grows
exponentially with the number of agents, making it difficult to find optimal policies. The Centralized
Training with Decentralized Execution (CTDE) framework (Kraemer & Banerjee, 2016; Oliehoek
et al., 2008; Sunehag et al., 2017) addresses this by training agents centrally with global information,
while they execute based on decentralized policies using only local observations.

Recent offline MARL approaches (Jiang & Lu, 2023; Pan et al., 2022; Shao et al., 2024; Wang
et al., 2024; 2023; Yang et al., 2021; Zhu et al., 2025; Liu et al., 2024; Bui et al., 2024), extend
online MARL methods with regularization to avoid OOD actions. For instance, ICQ (Yang et al.,
2021) uses importance sampling for local policy constraints, while OMAR (Pan et al., 2022) adapts
conservative Q-learning. In contrast to value decomposition methods, which adhere to the IGM
principle, AlberDice (Matsunaga et al., 2023) and ComaDice (Bui et al., 2024) employ stationary
distribution shift regularization to combat the distribution shift issue. MADiff (Zhu et al., 2025) uses
an attention-based diffusion model to effectively model agent collaboration. InSPO (Liu et al., 2024)
sequentially optimizes agent policies in an in-sample manner. MACCA (Wang et al., 2023) and
OMIGA (Wang et al., 2024) introduce global-to-local value regularization. However, these methods
apply a fixed conservatism level for each agent, which can be inefficient. Although CFCQL (Shao
et al., 2024) incorporates conservative value estimation, it fails to account for the heterogeneous
impact of individual agents on overall system performance. Our algorithm addresses the above
problems by dynamically adjusting conservative degree based on each agent’s impact on the system.

C PROOFS

Proposition.3.1 In an offline MARL setting, the optimal global policy π∗
tot(a | o) is given by Eq. (4)

and is formally expressed as follows:

π∗
tot(a | o) = πb(a | o) · exp

(
1

α
(Q∗(o, a)− V ∗(o))

)
, (26)

where Q∗(o, a) is optimal action-value function, V ∗(o) is the optimal value function, and we assume
there is a global conservatism level α that controls the overall deviation from the behavior policy.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Proof. The proof follows (Yang et al., 2021) and is the extension of SAC(Haarnoja et al., 2018) into
offline multi-agent setting.

Let us return to the definition of offline MARL with regularization, we start with the original form:

maxπtot Ea∼πtot [Qtot(o, a)] ,

s.t. DKL(πtot ∥ πb) ≤ ϵ,
∑

a πtot(a | o) = 1.
(27)

We find that the objective is a linear function of the decision variables πtot and all constraints are
convex functions. Thus Eq. (27) is a convex optimization problem. The Lagrangian equation is:

L(πtot, α, λ) =Ea∼πtot [Qtot(o, a)] + α (ϵ−DKL(πtot ∥ πb))

+ λ

(
1−

∑
a

πtot(a | o)

)
,

(28)

where α denotes the Lagrangian coefficient which is a global conservatism level that controls the
overall deviation from the behavior policy. Then we can get the following formula:

∂L
∂πtot

= Qtot(o, a)− α

(
1 + log

(
πtot(a | o)
πb(a | o)

))
− λ. (29)

Setting ∂L
∂πtot

to zero, then:

Qtot(o, a)− α

(
1 + log

(
πtot(a | o)
πb(a | o)

))
− λ = 0, (30)

Qtot(o, a) = α

(
1 + log

(
πtot(a | o)
πb(a | o)

))
+ λ, (31)

Qtot(o, a)

α
− λ

α
− 1 = log

(
πtot(a | o)
πb(a | o)

)
, (32)

πtot(a | o) = πb(a | o) exp
(
Qtot(o, a)

α
− 1− λ

α

)
. (33)

The optimal policy is expressed similar to Eq.(33) while adding optimal symbol to all functions,
which is π to π∗. Integrating Eq.(33) with optimal symbol into the expression of optimal V-function
in offline MARL with regularization, we can get:

V ∗
tot(o) =

∑
a

π∗
tot(a | o)

(
Q∗

tot(o, a)− α log

(
π∗
tot(a | o)
πb(a | o)

))
=
∑
a

π∗
tot(a|o) (λ∗ + α)

= λ∗ + α.

(34)

Through Eq.(33) with optimal symbol and Eq.(34), we can finally obtain the optimal global policy
π∗
tot(a | o) :

π∗
tot(a | o) = πb(a | o) · exp

(
1

α
(Q∗(o, a)− V ∗(o))

)
. (35)

Theorem.3.3 Given Eq. (23), the optimal policy for each agent is derived, and consistency between
the local optimal policies π∗

i and the global optimal policy π∗
tot is guaranteed. This consistency holds

for individual αi assignments across agents.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Proof. To provide the proof, we initially return to the decomposition framework of the Q-function in
MARL setting, which is:

Q (o, a) = Qr
tot (o, a) +

N∑
i=1

αi ·Qc,i (o, a) . (36)

In this decomposition framework, the global Q is divided into two parts: Qr
tot represents the

computation of the return, and Qc,i serves as the global mapping of each agent’s conservatism level.

Consider a global perspective that a global αtot controls the whole conservatism level:

Q (o, a) = Qr
tot (o, a) + αtot ·Qc

tot (o, a) . (37)

Compare Eq.(36) with Eq.(37), the computation of the return is the same, while the deviation part
varies due to the conservatism level. These two equations implicitly indicate that:

αtot ·Qc
tot (o, a) =

N∑
i=1

αi ·Qc,i (o, a) . (38)

Back to the definition of Qc,i and Qc
tot, According to Eq.(38), we have:

αtot · log
(
π∗
tot(a | o)
πb(a | o)

)
=
∑
i

αi · log
(
π∗
i (ai | oi)

πb(ai | oi)

)
. (39)

Then we separate the parts involving Q-function and V-function from the parts involving π in Eq.(26):

π∗
tot(a | o)
πb(a | o)

= exp

(
1

αtot
(Q∗(o, a)− V ∗(o))

)
, (40)

log

(
π∗
tot(a | o)
πb(a | o)

)
=

1

αtot
(Q∗(o, a)− V ∗(o)) , (41)

αtot · log
(
π∗
tot(a | o)
πb(a | o)

)
= Q∗(o, a)− V ∗(o). (42)

Similarly, the local parts in Eq.(23) can be written as :

αi · log
(
π∗
i (ai | oi)

πb(ai | oi)

)
=wr

i (o)
(
Qr∗

i (oi, ai)− V r∗

i (oi)
)

+ αi ·
(
Qc,i∗(o, a)− V c,i∗(o)

)
.

(43)

With Eq.(13) - (16), we can sum both sides of Eq.(43) with respect to i:

∑
i

αi · log
(
π∗
i (ai | oi)

πb(ai | oi)

)
=
∑
i

wr
i (o)

(
Qr∗

i (oi, ai)− V r∗

i (oi)
)

+
∑
i

αi ·
(
Qc,i∗(o, a)− V c,i∗(o)

)
,

(44)

αtot · log
(
π∗
tot(a | o)
πb(a | o)

)
=
∑
i

wr
i (o)

(
Qr∗

i (oi, ai)− V r∗

i (oi)
)

+
∑
i

αi ·
(
Qc,i∗(o, a)− V c,i∗(o)

)
,

(45)

αtot · log
(
π∗
tot(a | o)
πb(a | o)

)
= Q∗(o, a)− V ∗(o). (46)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The transformation from Eq.(44) to Eq.(46) implies that with Eq.(23):

π∗
tot(a | o) =

N∏
i=1

π∗
i (ai | oi),

which means Eq.(23) not only allows for the derivation of the optimal policy for each agent, but also
ensures consistency between the local optimal policies π∗

i and the global optimal policy π∗
tot, even

when each agent has a distinct αi.

Proposition.3.4 From Eq. (24), each agent’s conservatism-based value function V c
i is updated

through the following optimization:

min
V c
i

E(oi,ai)∼D

[
exp

(
wr

i (o)

αi
(Qr

i (oi, ai)− V r
i (oi))

+
(
Qc,i (o, a)− V c,i (o)

))
+

wr
i (o)V

r
i (oi) + αiV

c,i (o)

αi

]
.

(47)

Proof. The proof (similar to (Wang et al., 2024)) follows by showing that the first-order optimal
condition of the above optimization objective, where the derivative with respect to V c,i equals zero,
is exactly the Eq.(24):

∂

∂V c,i(o)

[
exp

(
wr

i (o)

αi
(Qr

i (oi, ai)− V r
i (oi))

+
(
Qc,i (o, a)− V c,i (o)

))
+

wr
i (o)V

r
i (oi) + αiV

c,i (o)

αi

]
= 0

(48)

=⇒

Eai∼πb

[
− exp

(
wr

i (o)

αi
(Qr

i (oi, ai)− V r
i (oi))

+
(
Qc,i(o, a)− V c,i(o)

))
+ 1

]
= 0.

(49)

From the perspective of seeking the optimal function, we can have:

Eai∼πb

[
exp

(
wr

i (o)

αi

(
Qr∗

i (oi, ai)− V r∗

i (oi)
)

+
(
Qc,i∗(o, a)− V c,i∗(o)

))]
= 1.

(50)

This result implies that the optimal form of V c
i can be obtained by solving the convex optimization

problem in Eq.(47).

D EXPERIMENT SETTINGS

We select Multi-Agent MuJoCo(de Witt et al., 2020) and the StarCraft Multi-Agent Challenge
(SMAC)(Samvelyan et al., 2019) as our experimental environments.

Multi-Agent MuJoCo, a benchmark for continuous multi-agent robotic control, is built on the MuJoCo
environment. The Multi-Agent MuJoCo dataset we use was collected using the HAPPO(Kuba et al.,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

2021) algorithm by (Wang et al., 2024) which contains four quality levels: expert, medium, medium-
replay and medium-expert. The expert dataset is generated by employing the converged HAPPO
algorithm, which involves training the algorithm until it reaches a state of convergence, where the
agents have learned optimal policies. The medium dataset is generated by first training a policy online
using HAPPO, early-stopping the training, and collecting samples from this partially-trained policy.
The medium-replay dataset consists of recording all samples in the replay buffer observed during
training until the policy reaches the medium level of performance. The medium-expert dataset is
constructed by mixing equal amounts of expert demonstrations and suboptimal data. For all datasets,
the hyperparameter env_args.agent_obsk is set to 1. The average returns of the datasets are listed in
Table 2.

Table 2: The multi-agent MuJoCo datasets.

Scenario Quality Average Return
2-Agent Ant expert 2055.07
2-Agent Ant medium 1418.70
2-Agent Ant medium-expert 1736.88
2-Agent Ant medium-replay 1029.51

3-Agent Hopper expert 2452.02
3-Agent Hopper medium 723.57
3-Agent Hopper medium-expert 1190.61
3-Agent Hopper medium-replay 746.42

6-Agent HalfCheetah expert 2785.10
6-Agent HalfCheetah medium 1425.66
6-Agent HalfCheetah medium-expert 2105.38
6-Agent HalfCheetah medium-replay 655.76

The second environment, SMAC, is a widely-used benchmark for evaluating cooperative MARL
methods. SMAC consists of a set of StarCraft II micro scenarios, and all scenarios are confrontations
between two groups of units. Agents based on the MARL algorithm control the first group’s units,
while a built-in heuristic game AI bot with different difficulties controls the second group’s units.
Scenarios vary in terms of the initial location, number and type of units, and elevated or impassable
terrain. The available actions for each agent include no operation, move[direction], attack [enemy id],
and stop. The reward that each agent receives is the same. The hit-point damage dealt and received
determines the agents’ share of the reward. The offline SMAC dataset is collected by (Meng et al.,
2021), using online-trained MAPPO(Kuba et al., 2021) agents. This is the largest publicly available
dataset for SMAC and includes three quality levels: good, medium, and poor. We focus on three
representative battle maps in our experiments: one hard map (5m_vs_6m) and two super hard maps
(6h_vs_8z and corridor). The task types of the maps are listed in the Table 3. For each dataset in a
map, we randomly sample 1000 episodes as our dataset. The average returns of SMAC datasets are
listed in Table 4.

Table 3: SMAC maps for experiments.

Map Name Type
5m_vs_6m homogeneous & asymmetric
6h_vs_8z micro-trick: focus fire
corridor micro-trick: wall off

E IMPLEMENTATION DETAILS

E.1 ALGORITHM SUMMARY

In this section, we will give an explanation of the pseudocode for OMCDA. The psedudocode is
shown in Algorithm. 1 We initialize the behavior policy πb through behavior cloning (Michie et al.,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 4: The SMAC datasets.

Map Name Quality Average Return
5m_vs_6m good 20.00
5m_vs_6m medium 11.03
5m_vs_6m poor 8.50
6h_vs_8z good 17.84
6h_vs_8z medium 11.96
6h_vs_8z poor 9.12
corridor good 19.88
corridor medium 13.07
corridor poor 4.93

Algorithm 1 Pseudocode of OMCDA
Input: Offline dataset D, dtot
Initialize return-based state-value network V r

i , constraint-based state-value network V c
i , return-

based action-value network Qr
i , constraint-based action-value network Qc

i , conservatism level αi,
and policy network πi for agent i = 1, 2, . . . , n.
for t = 1 to max-step do

Sample batch transitions (o, a, r, o′) from D.
Update return-based state-value function V r

i (o) for each agent i, via Eq. (51).
Update constraint-based state-value function V c

i (o) for each agent i, via Eq. (25).
Compute V r

tot(o
′) and Qr

tot(o, a), via Eq. (15) and Eq. (13).
Update return-based action-value network Qr

i (o, a), via Eq. (53).
Update constraint-based action-value network Qc

i (o, a), via Eq. (52).
Update local policy network πi for each agent i, via Eq. (54).
Calculate mi with Eq.(19) and update each agent’s conservative degree di, via Eq. (17).
Update each agent’s conservatism level αi, via Eq. (55).

end for

1990) using the offline dataset. The procedure begins by initializing all necessary networks and
parameters for each agent. At each iteration, the algorithm samples transitions from the dataset D
and performs sequential updates of both local and global networks.

1. State-Value Updates: The state-value functions V r
i and V c

i are updated first. Inspired by
IQL(Kostrikov et al., 2021b) , we can implicitly update V r

i by leveraging the expectile loss, thus
avoiding the use of out-of-distribution data. V r

i and V c
i are updated as following:

Update V r
i : The return-based state-value function V r

i (o) for each agent is updated by minimizing
the following objective:

min
V r
i

E(oi,ai)∼D [Lτ
2 (Q

r
i (oi, ai)− V r

i (oi))] , (51)

where Lτ
2 denotes the expectile loss with parameter τ , balancing the updates based on the agent’s

value estimation errors.

Update V c
i : The constraint-based state-value function V c

i (o) is updated using Eq.(25).

2. Global Value Computation: In this step, we compute the global term for return-based function.
Here V r

tot(o
′) and Qr

tot(o, a) are calculated in Eq.(15) and Eq.(13).

3. Action-Value Updates: Each agent’s action-value networks Qr
i and Qc

i are then updated. This
step ensures that the agents maintain the correct mapping between their actions and the expected
return as well as conservatism constraints.

Update Qc
i : The constraint-based action-value function Qc

i , along with the weight wc,i and bias bc,i,
is updated by minimizing the following objective, while Qc,i and V c,i are from Eq.(14) and Eq.(16):

min
Qc

i ,w
c,i,bc,i

i=1,··· ,n

E(o,a,o′)∼D

[(
Qc,i(o,a)− γV c,i (o′)

)2]
. (52)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Update Qr
i : The return-based action-value function Qr

i , weight wr
i , and bias br are updated according

to the following minimization objective:

min
Qr

i ,w
r
i ,b

r

i=1,··· ,n

E(o,a,o′)∼D

[
(r(o,a) + γV r

tot (o
′)−Qr

tot(o,a))
2
]
. (53)

4. Policy Updates: The agent’s policy network is updated based on optimizing the following function.

Update πi: The policy πi for each agent is updated by enforcing the KKT condition on Eq.(5)
leveraging Eq.(22) :

max
πi

E(oi,ai)∼D

[
exp

(
wr

i (o)

αi
(Qr

i (oi, ai)− V r
i (oi))

+
(
Qc,i(o, a)− V c,i(o)

))
· log πi (ai | oi)

]
.

(54)

5. Conservatism Updates: Finally, each agent’s conservative degree di is updated to ensure the
balance between the risk and flexibility for each agent. After calculate mi with Eq.(19), we can
update di following Eq.(17). While the conservatism level αi is adjusted to control the balance
between deviation and conservatism.

Update αi: The conservatism level αi is updated according to Eq.(55).

min
αi

E(oi,ai)∼D

[
αi · di − αi ·DKL

(
πi ∥ πi

b

)]
. (55)

If the deviation from the behavior policy is less than di, αi will decrease, allowing more flexibility
for exploration. Conversely, if the deviation exceeds di, αi will increase, pushing the policy to stay
closer to the behavior policy.

E.2 DETAILS OF OMCDA

The return-computation and constraint modules in the Q-function and V-function, and policy networks
of OMCDA are represented by 3-layer ReLU activated MLPs with 256 units for each hidden layer.
For the both weight networks of the two modules, we use 2-layer ReLU-activated MLPs with 64
units for each hidden layer. All the networks are optimized by Adam optimizer.

For the computation of the influence term, in practice, directly computing the derivatives can indeed
lead to numerical instability. Therefore, we employ several techniques to stabilize the differentiation
process: For continuous action spaces such as MuJoCo, we adopt a reparameterization method
and use single-sample average for obtaining expectations for algorithm stability, simplifying the
original differentiation process into a relationship between Qr and the log variance of policy network,
which is then directly computed using deep learning libraries in PyTorch. For discrete action space
environments like SMAC, due to the finite action set, we approximate the target derivative by applying
small parameter perturbations to π and using finite difference approximation trick.

In this paper, all experiments are implemented with Pytorch and executed on NVIDIA A100 GPUs.

E.3 DETAILS OF BASELINES AND COMPARATIVE EVALUATION

We compare our approach with seven recent offline MARL algorithms: The multi-agent versions of
BCQ(Fujimoto et al., 2019) and CQL(Kostrikov et al., 2021b) (referred to as BCQ-MA and CQL-
MA), ICQ(Yang et al., 2021) , OMAR(Pan et al., 2022), CFCQL (Shao et al., 2024), OMIGA(Wang
et al., 2024), and ComaDICE (Bui et al., 2024). Both BCQ-MA and CQL-MA utilize a linear
weighted value decomposition structure for the multi-agent setting, similar to Eq. (1).

Table 6 and Table 7 presents the mean and standard deviation of average returns for the offline
Multi-Agent MuJoCo and SMAC tasks with 5 random seeds. In these multi-agent scenarios, the
complexity of the environment makes it challenging to assign conservative degree to individual agents,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

as different agents’ deviations from their behavior policies have varying impacts on the environment,
which in turn influences the learning process. The dynamic conservative degree allocation mechanism
in OMCDA assigns different conservatism levels to each agent based on their varying impacts on
the system, which leads to better overall system performance. Moreover, by separating the return
optimization from policy deviation management, OMCDA provides a more refined learning process,
resulting in improved stability and effectiveness, enabling better collaboration and more efficient
policy learning compared to other offline MARL methods.

Table 5: Hyper-parameter of OMCDA.

Hyperparameter Value
OMCDA

Value network for return learning rate 2e-4
Value network for constraint learning rate 4e-5

Alpha learning rate 1e-5
Policy network learning rate 2e-4

Optimizer Adam
Target update rate 0.005

Batch size 128
Discount factor 0.99

Hidden dimension 256
Expectile parameter τ 0.7

Initial conservative degree di 0.05 or 0.1 or 0.2

E.4 HYPERPARAMETERS

For multi-agent MuJoCo and SMAC, the hyperparameters of OMCDA are listed in Table 5. Since we
aim to quickly learn the return while maintaining stability in deviation, we use different learning rates
for the value network: one for return and another for the constraint, set to 2× 10−4 and 4× 10−5,
respectively. In OMCDA, the conservative degree d is an important parameter. When the value of
d is large, the algorithm’s overall conservative degree increases, providing the system with greater
flexibility in policy exploration. Conversely, when the conservative degree is smaller, the policy
tends to align more closely with the behavior policy. In the multi-agent MuJoCo environment, for
the expert dataset, we set the initial di = 0.05 for each agent to guarantee effective regularization,
while for other datasets, we set the initial di = 0.2 to maintain moderate deviation. In the SMAC
environment, for the good dataset, we set the initial di = 0.1 for each agent, and di = 0.2 for the
other datasets.

E.5 DETAILS OF EQ. (5)

Consider a common case where there’s only a global constraint:

maxπ E [
∑∞

t=0 γ
trt] , s.t. Ea∼π

[
log πt(at|ot)

πb(at|ot)

]
≤ dtot. (56)

Then according to the Lagrangian relaxation, the global conservatism level αtot can be assigned and
the Q-function is formulated as:

Q (o, a) = E

[∞∑
t=0

γt (rt − αtot ·DKL(πt ∥ πb))

]
. (57)

When considering Eq. (56) under the constraints specified in Eq. (5) and Proposition 3.2, the global
constraint can be transformed step by step:

Ea∼π

[
log

πt(at | ot)
πb(at | ot)

]
≤ dtot, (58)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 6: Offline Multi-agent MuJoCo Tasks

Multi-agent MuJoCo
Task Dataset BCQ-MA CQL-MA ICQ OMAR CFCQL OMIGA ComaDICE OMCDA
Hopper expert 77.85±58.04 159.14±313.83 754.74±806.28 2.36±1.46 802.33±544.89 859.63±709.47 2827.7±62.9 1214.25±830.72
Hopper medium 44.58±20.62 401.27±199.88 501.79±14.03 21.34±24.90 389.75±105.67 1189.26±544.30 822.6±66.2 1441.53±488.91
Hopper m-replay 26.53±24.04 31.37±15.16 195.39±103.61 3.30±3.22 567.54±453.65 774.18±494.27 906.3±242.1 1733.27±379.71
Hopper m-expert 54.31±23.66 64.82±123.31 355.44±373.86 1.44±0.86 721.23±342.56 709.00±595.66 1362.4±522.9 1047.13±523.67
Ant expert 1317.73±286.28 1042.39±2021.65 2050.00±11.86 312.54±297.48 1987.98±34.65 2055.46±1.58 2056.9±5.9 2056.95±6.43
Ant medium 1059.60±91.22 533.90±1766.42 1412.41±10.93 -1710.04±1588.98 1406.56±123.59 1418.44±5.36 1425.0±2.9 1376.03±141.55
Ant m-replay 950.77±48.76 234.62±1618.28 1016.68±53.51 -2014.20±844.68 854.21±128.98 1105.13±88.87 1122.9±61.0 1142.59±75.15
Ant m-expert 1020.89±242.74 800.22±1621.52 1590.18±85.61 -2992.80±6.95 978.87±65.45 1720.33±110.63 1813.9±68.4 1988.09±41.49
HalfCheetah expert 2992.71±629.65 1189.54±1034.49 2955.94±459.19 -206.73±161.12 2399.12±345.65 3383.61±552.67 4082.9±45.7 4963.92±126.69
HalfCheetah medium 2590.47±110.35 1011.35±1016.94 2549.27±96.34 -265.68±146.98 1845.43±76.78 3608.13±237.37 2664.7±54.2 3883.60±93.43
HalfCheetah m-replay -333.64±152.06 1998.67±693.92 1922.42±612.87 -235.42±154.89 1766.45±659.78 2504.70±83.47 2855.0±242.2 2993.03±271.84
HalfCheetah m-expert 3543.70±780.89 1194.23±1081.06 2839.93±924.02 -253.84±63.94 1934.23±867.43 2948.46±518.89 3889.7±81.6 4483.76±268.71

∑
i

Ea∼π

[
log

πi
t(a

i
t | oit)

πb(ait | oit)

]
≤
∑
i

di, (59)

Ea∼π

[
log

πi
t(a

i
t | oit)

πb(ait | oit)

]
≤ di,

∑
i

di = dtot, ∀i = 1 · · ·n. (60)

Therefore, we effectively achieve an equivalent transformation from global to local policy constraints.
By comparing the Q-function under the global constraint in Eq. (57) with that under local constraints
in Eq. (6), and noting that Ea∼π

[
log

πi
t(a

i
t|o

i
t)

πb(ai
t|oit)

]
= Eai∼πi

[
log

πi
t(a

i
t|o

i
t)

πb(ai
t|oit)

]
, the following conclusion

can be derived from this equivalence:

Q (o, a) = E

[∞∑
t=0

γt (rt − αtot ·DKL(πt ∥ πb))

]
= E

[∞∑
t=0

γt

(
rt −

∑
i

αi ·DKL(π
i
t ∥ πb)

)]
,

(61)

αtot · log
(

π(a | o)
πb(a | o)

)
=
∑
i

αi · log
(
πi(ai | oi)
πb(ai | oi)

)
. (62)

Eq. (62) effectively decomposes the global deviation term into local components, thereby establishing
the foundation for both generating Eq. (38) and the deviation term in Eq. (12).

Table 7: Offline SMAC Tasks

SMAC
Task Dataset BCQ-MA CQL-MA ICQ OMAR CFCQL OMIGA ComaDICE OMCDA
5m_vs_6m good 7.76±0.15 8.08±0.21 7.87±0.30 7.40±0.63 8.13±0.32 8.25±0.37 8.7±0.5 10.47±0.24
5m_vs_6m medium 7.58±0.10 7.78±0.10 7.77±0.30 7.08±0.51 7.55±0.36 7.92±0.57 8.7±0.4 10.19±0.15
5m_vs_6m poor 7.61±0.36 7.43±0.10 7.26±0.19 7.27±0.42 7.49±0.12 7.52±0.21 8.1±0.5 9.57±0.18
corridor good 15.24±1.21 5.22±0.81 15.54±1.12 6.74±0.69 14.25±0.78 15.88±0.89 18.0±0.1 14.72±0.60
corridor medium 10.82±0.92 7.04±0.66 11.30±1.57 7.26±0.71 11.44±1.32 11.66±1.30 12.9±0.6 13.06±0.71
corridor poor 4.47±0.94 4.08±0.60 4.47±0.43 4.28±0.49 4.89±0.37 5.61±0.35 6.4±0.5 6.54±0.51
6h_vs_8z good 12.19±0.23 10.44±0.20 11.81±0.12 9.85±0.28 11.87±1.25 12.54±0.21 13.1±0.5 14.14±0.21
6h_vs_8z medium 11.77±0.16 11.29±0.29 11.13±0.33 10.36±0.16 12.25±0.43 12.19±0.22 12.8±0.2 13.65±0.31
6h_vs_8z poor 10.84±0.16 10.81±0.52 10.55±0.10 10.63±0.25 10.89±0.47 11.31±0.19 11.4±0.6 10.83±0.10

F ADDITIONAL RESULTS

F.1 ANALYSIS ON THE COMPONENTS OF OMCDA

To analyze the solution to conservative degree allocation and assess the impact of Q-function decompo-
sition in OMCDA, we conduct three distinct ablation studies: OMCDA-w/o-CDA, OMCDA-w/o-dq,
and OMCDA-rd. In OMCDA-w/o-CDA, all agents are assigned the same conservative degree di,
without the implementation of conservative degree allocation. In contrast, OMCDA-w/o-dq maintains
the dynamic conservative degree allocation but eliminates the Q-function decomposition, preventing
the separation of return optimization from policy deviation handling. OMCDA-rd introduces random
allocation of the conservatism constraint, assigning each agent a random di, in which we hope to
evaluate the importance of strategically assigning conservatism levels based on each agent’s impact.

Experiments are conducted on the HalfCheetah and 6h_vs_8z tasks in the Multi-agent MuJoCo
and SMAC environments, respectively. Figure. 5 shows that OMCDA consistently outperforms all

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps(million)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

A
ve

ra
ge

 r
et

ur
n

OMCDA
OMCDA-w/o-CDA
OMCDA-w/o-dq
OMCDA-w/o-rd

(a) HalfCheetah-expert

10 20 30 40 50 60 70 80 90 100
Episodes(thousand)

8

9

10

11

12

13

14

15

A
ve

ra
ge

 r
et

ur
n

OMCDA
OMCDA-w/o-CDA
OMCDA-w/o-dq
OMCDA-w/o-rd

(b) 6h_vs_8z good

Figure 5: Analysis on the components of OMCDA

ablated versions across both tasks. In OMCDA-w/o-CDA, the absence of dynamic conservative degree
allocation results in imbalanced agent behavior, with some agents being overly conservative and others
overly aggressive, leading to performance degradation. OMCDA-w/o-dq exhibits weaker results due
to the entanglement of return maximization and constraint handling, which complicates learning
and produces suboptimal policies. OMCDA-rd, which applies random conservatism allocation,
demonstrates inferior performance, as randomly assigned di values fail to account for each agent’s
unique influence on system performance.

These results confirm that both the dynamic conservative degree allocation and Q-function decompo-
sition are essential for achieving better collaboration and learning efficiency in offline multi-agent
environments, while the strategic assignment of conservatism is crucial for optimizing system perfor-
mance.

F.2 ANALYSIS ON THE TOTAL CONSERVATIVE DEGREE

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps(million)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

A
ve

ra
ge

 r
et

ur
n

d_tot=0.3
d_tot=1.2
d_tot=3

(a) HalfCheetah-expert

10 20 30 40 50 60 70 80 90 100
Episodes(thousand)

8

9

10

11

12

13

14

15

A
ve

ra
ge

 r
et

ur
n

d_tot=0.6
d_tot=1.8
d_tot=3

(b) 6h_vs_8z good

Figure 6: Analysis on the total conservative degree

The total conservative degree dtot controls how much the system is permitted to deviate from the
behavior policy. It establishes the total permissible deviation for the entire system, ensuring that
agents do not diverge excessively from the behavior policy, helping to avoid the introduction of
suboptimal actions into the system.

In our experiments on the HalfCheetah and 6h_vs_8z environments, which are based on high-quality
datasets, a smaller dtot outperforms the other settings. This is because, in such environments, it is
essential for the policies to stay closer to the behavior policy for stable performance. At the same
time, the dynamic allocation of di allows agents that have a significant impact on the system’s return

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

to have some flexibility to deviate, while requiring other agents to remain more conservative and
adhere closely to the behavior policy. The experimental results in Figure. 6 demonstrate that properly
adjusting dtot improves system performance and allows influential agents to achieve beneficial
deviations while maintaining overall system stability.

0

1

2

3

4

5

6

7

Va
lu

e
Values for agent 1
Values for agent 2
Values for agent 3
Influence for agent 1
Influence for agent 2
Influence for agent 3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Timesteps(Million)

0.0

0.1

0.2

0.3

0.4

0.5

In
flu

en
ce

Figure 7: Analysis on the Influence Term on Hopper-medium-replay

2

4

6

8

10

12

14

16

Va
lu

e

Values for agent 1
Values for agent 2
Influence for agent 1
Influence for agent 2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Timesteps(Million)

0.0

0.2

0.4

0.6

0.8

In
flu

en
ce

Figure 8: Analysis on the Influence Term on Ant-medium-expert

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

F.3 ANALYSIS ON THE INFLUENCE TERM

In OMCDA, the influence of each agent on the system is the core metric for allocating conservatism
levels. To determine whether we have accurately assessed each agent’s influence in the environment,
we conduct experiments to analyze the relationship between the computed influence of each agent
and its corresponding return.

The results in Figure. 7 and Figure. 8 demonstrate that agents with higher V r
i , representing higher

individual returns, tend to be allocated more influence within the system, enabling them to have a
stronger impact on system-wide performance. This proportional allocation allows high-return agents
to further contribute to global objectives and optimize overall system behaviour.

By adjusting conservatism levels properly, OMCDA enhances individual agent performance and
maximizes collective system return, promoting balanced and efficient learning across all agents.

24

	Introduction
	Preliminaries
	OMCDA
	Experiment
	Conclusion
	Use of Large Language Models (LLMs)
	Related Work
	Offline Reinforcement Learning
	Multi-Agent Reinforcement Learning

	Proofs
	Experiment Settings
	Implementation Details
	Algorithm Summary
	Details of OMCDA
	Details of Baselines and Comparative Evaluation
	Hyperparameters
	Details of Eq. (5)

	Additional Results
	Analysis on the Components of OMCDA
	Analysis on the Total Conservative Degree
	Analysis on the Influence Term

