
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A SIMULATION-FREE DEEP LEARNING APPROACH TO
STOCHASTIC OPTIMAL CONTROL

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a simulation-free algorithm for the solution of generic problems in
stochastic optimal control (SOC). Unlike existing methods, our approach does
not require the solution of an adjoint problem, but rather leverages Girsanov
theorem to directly calculate the gradient of the SOC objective on-policy. This
allows us to speed up the optimization of control policies parameterized by neural
networks since it completely avoids the expensive back-propagation step through
stochastic differential equations (SDEs) used in the Neural SDE framework. In
particular, it enables us to solve SOC problems in high dimension and on long
time horizons. We demonstrate the efficiency of our approach in various domains
of applications, including standard stochastic optimal control problems, sampling
from unnormalized distributions via construction of a Schrödinger-Föllmer process,
and fine-tuning of pre-trained diffusion models. In all cases our method is shown to
outperform the existing methods in both the computing time and memory efficiency.

1 INTRODUCTION

Stochastic Optimal Control (SOC) problems (Mortensen, 1989; Fleming & Rishel, 2012) arise in a
wide variety of applications in sciences and engineering (Pham, 2009; Fleming & Stein, 2004; Zhang
& Chen, 2022; Holdijk et al., 2023; Hartmann et al., 2013; 2017). Their general aim is to add an
adjustable drift (the control) in a reference stochastic differential equation (SDE) so that the solutions
of the controlled SDE minimize some cost.

In low dimensions, SOC problems can be tackled by standard numerical methods for partial differ-
ential equations since the optimal control can be obtained from the solution of a Hamilton-Jacobi-
Bellman equation. In high dimensions, these methods are not applicable, and there has been a lot
of recent effort to solve SOC problems via deep learning (DL), see e.g. (Han & E, 2016; Han et al.,
2018; Huré et al., 2020; Domingo-Enrich et al., 2023; Germain et al., 2021; Hu & Lauriere, 2024).

The most direct way to leverage DL in the context of SOC is to parameterize the control by a deep
neural network, view the SOC objective as a loss for the network parameters, evaluate this loss
empirically using solutions of the controlled SDE, and use stochastic gradient descent to evolve the
parameters until convergence. This fits into the framework of Neural SDE (Tzen & Raginsky, 2019;
Li et al., 2020). While straightforward in principle, this approach faces a practical difficulty: since
the SOC objective involves expectation over the solutions of an SDE that depend on the control,
calculating the gradient of this objective requires differentiating through these solutions. This makes
the training costly both in terms of computing time and memory requirement, and has prevented
scaling up deep learning calculations of SOC policies.

A way to avoid this difficulty is to use Girsanov theorem to compute the SOC objective via an
expectation over a reference process with a control that is independent from the control being
optimized. Unfortunately, this requires to introduce an exponential weighing factor under the
expectation to remove the bias incurred, and the variance of this factor is typically large if the control
in the reference process is far from the actual control. This again limits the scalability of the approach.

In this paper, we propose a different procedure based on the observation that the gradient of the SOC
objective over parameters in the control can be expressed exactly in terms of an expectation over the
controlled process (which is referred to as on-policy evaluation) without differentiating through the
solution of this process. We refer to this approach as simulation-free. This result, first derived in Yang
& Kushner (1991), is obtained using Girsanov theorem, but it gives an expression for the gradient

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

that does not involve any exponential weighing factor. We also show that it is possible to calculate
this gradient via automatic differentiation of an alternative objective, provided that we detach some
of its parameters via stopgrad.

Specifically, our work makes the following main contributions:

• We propose a simulation-free, on-policy algorithm for solving generic SOC problems by deep
learning and scaling up these calculations to situations where methods based on the Neural SDE
framework is too costly to be applied.

• We discuss how to apply the method to construct Föllmer processes between a point mass and an
unnormalized target distribution. Our approach can be used to sample this target and compute its
normalization constant.

• We also discuss how to apply the method to fine-tune generative models based on diffusions: that
is, assuming that we have at our disposal an SDE that samples a given distribution, we show how
to find, via solution of a SOC problem, a new SDE that samples the distribution obtained by tilting
the first one by a given reward function.

• We illustrate these results with numerical experiments showing that our method is much less
expensive in terms of computing time and memory requirement than vanilla methods requiring
differentiation through the solution of the SDE (such as in the Neural SDE framework).

1.1 RELATED WORK

Besides the traditional applications of SOC, such as finance and economics (Pham, 2009; Fleming
& Stein, 2004; Aghion & Howitt, 1992), and robotics (Theodorou et al., 2011; Pavlov et al., 2018),
this framework has recently has also found a variety of new applications, for example, sampling of
complex non-log-concave probability distributions or simulation rare events (Zhang & Chen, 2022;
Holdijk et al., 2023; Hartmann et al., 2013; 2017; Ribera Borrell et al., 2024). Our approach is aimed
at solving problems of this sort by deep learning.

Deep learning for SOC has attracted a growing interest in the recent years. Notably, Han & E (2016)
have proposed a deep learning method for high-dimensional SOC problems by learning the feedback
control function. This method then inspired other algorithms to solve backward stochastic differential
equations and partial differential equations (Han et al., 2018). Further developments can be found e.g.
in (Ji et al., 2020), which studied three different algorithms. Another line of research proposed to
use dynamic programming instead of learning the optimal control by simulating whole trajectories:
see (Huré et al., 2021) for applications to SOC problems, and (Huré et al., 2020) for an extension to
solving PDEs. Another recent approach is stochastic optimal control matching (Domingo-Enrich
et al., 2023), based on iterative diffusion optimization (IDO) (Nüsken & Richter, 2023). Compared to
the approach we propose, these methods either avoid differentiating through the SDE solution by
using a independent reference process (off-policy learning), but this typically leads to estimators
with high variance; or they use on-policy objectives, but it then requires to differentiate through the
solution of the SDE. Our approach is on-policy but avoids this costly differentiation step.

A variant of formula for the gradient of the SOC objective that we used first appeared in (Yang &
Kushner, 1991) in the context of sensitivity analysis with applications to finance and economics (Pham,
2009; Fleming & Stein, 2004; Aghion & Howitt, 1992). This formula is also discussed in Gobet &
Munos (2005), who generalized it to problems in which the volatility also depends on the control. It is
also mentioned in several works interested in solving SOC problem with DL (Mohamed et al., 2020;
Li et al., 2020; Lie, 2021; Domingo-Enrich et al., 2023; Ribera Borrell et al., 2024; Domingo-Enrich,
2024), but to the best of our knowledge it has not been exploited systematically to develop the type of
algorithm we propose here.

SOC also has deep connections with Reinforcement Learning (RL), see e.g. Quer & Borrell (2024);
Domingo-Enrich et al. (2024); Domingo-Enrich (2024) for a discussion. The algorithm we propose
can be viewed as a continuous-time variant of the well-known REINFORCE method (Williams, 1992;
1988; Sutton et al., 1999).

One application of SOC is the construction of a Föllmer process (Föllmer, 1986), i.e. a Schrödinger
bridge between a Dirac delta distribution and a target distribution with unknown normalization
coefficient. The Path Integral Sampler (PIS) proposed in Zhang & Chen (2022) is a way to solve this

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

problem via DL. PIS offers an alternative to other deep learning methods that have been introduced
to calculate Schrödinger-Föllmer process (Huang et al., 2021; Jiao et al., 2021; Vargas et al., 2023) .
PIS performs the minimization the SOC objective on-policy, and requires to differentiate through
the solution of the controlled process. In contrast, our simulation-free approach performs on-policy
minimization of the same objective, but it avoids this differentiation step which, as we will show
below, results in significant gains in terms of memory requirement and computing time.

Another context in which SOC problems have found applications is the fine-tuning of generative
models (Fan et al., 2024; Clark et al., 2024; Uehara et al., 2024). The aim here is to start from a
diffusion model trained to sample a given data distribution and adjust the drift in this model so that it
samples the probability distribution obtained by tilting the first by a reward function. Assuming that
this reward function is differentiable, a method termed Adjoint Matching was recently proposed in
Domingo-Enrich et al. (2024) to perform this fine-tuning: this method uses a specific scheduling of
the noise in the diffusion and uses an adjoint method to compute the gradient of a tailored-built SOC
objective. This second step avoids explicit differentiation through the solution of the controlled SDE
by solving instead an ODE for an adjoint variable backward in time. Our simulation-free approach is
an alternative to Adjoint Matching which uses the original SOC objective and avoid solving the ODE
for the adjoint. It also works for any noise schedule, but requires that the base distribution used in the
generative model be a point mass distribution.

2 METHODS

2.1 PROBLEM SETUP

We consider the following stochastic optimal control (SOC) problem:
min
u∈U

J(u), (1)

where the objective function is

J(u) = EXu

[∫ T

0

(
1
2 |ut(X

u
t)|2 + ft(X

u
t)
)
dt+ g(Xu

T)

]
, (2)

with (Xu
t)t∈[0,T] solution to the stochastic differential equation (SDE)

dXu
t = (bt(X

u
t) + σtut(X

u
t)) dt+ σtdWt, Xu

0 ∼ µ0. (3)
In these equations, Xu

t ∈ Rd is the system state, EXu denotes expectation over the law of (Xu
t)t∈[0,T],

u : [0, T]× Rd → Rd is a closed-loop Markovian control that belongs to some set U of admissible
controls to be specified later, f : [0, T] × Rd → Rd is the state cost, g : Rd → Rd is the terminal
cost, b : [0, T]× Rd → Rd is the base drift, σ : [0, T] → Rd × Rd is the volatility matrix, which we
assume invertible and independent of the state Xu

t , (Wt)t∈[0,T] is a Wiener process taking values
in Rd, and µ0 is some probability distribution for the initial state.

We are interested in solving (1) in situations where the set of admissible controls U is a rich parametric
class, for example made of deep neural networks (DNN). We denote functions in the class by uθ,
where θ ∈ Θ collectively denotes the parameters to be adjusted, e.g. the weights if we use a DNN.

2.2 REFORMULATION WITH GIRSANOV THEOREM

The main difficulty we face when solving the SOC problem (1) is that the process Xu
t depends on

the control u since this control enters the SDE (3). In particular, vanilla calculation of the gradient
of the objective requires to differentiate Xu

t : for example, if we parameterize u = uθ, we need to
back-propagate the gradient through the solution of the SDE (3), which can be very costly. Our aim
is to avoid this step and design a simulation-free method to compute the gradient of (2).

To this end, our starting point wil be to use Girsanov theorem to rephrase the problem in a way that
render the control u explicit in the objective:
Lemma 1. Given a reference control v ∈ U , the objective (2) can be expressed as

J(u) = EXv

([∫ T

0

(
1
2 |ut(X

v
t)|2 + ft(X

v
t)
)
dt+ g(Xv

T)

]
M(u, v)

)
, (4)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where (Xv
t)t∈[0,T] solves the SDE (3) with u replaced by v, M(u, v) is the Girsanov factor

M(u, v) = exp

(
−
∫ T

0

(vt(X
v
t)− ut(X

v
t)) · dWt −

1

2

∫ T

0

|vt(Xv
t)− ut(X

v
t)|

2
dt

)
, (5)

and the expectation EXv in (4) is taken over the law of (Xv
t)t∈[0,T].

Proof. The result is a direct consequence of Girsanov change of measure formula between the law of
the SDE (3) and of its variant with u replaced by v.

The main advantage of expression (4) for the objective J(u) is that it is explicit in u since (Xv)t∈[0,T]

is independent of this control (which is referred to as an off-policy objective). As a result, the
evaluation of the gradient of (4) with respect to u no longer requires differentiation through the
trajectory of the state process. Of course, if we evaluate empirically J(u) and its gradient via (4) by
replacing the expectation EXv by an empirical expectation over a finite set of independent solution
of the SDE for Xv

t , the variance of the resulting estimator will depend crucially on the reference
control v that we use. This suggests to keep this reference control v close to the actual control u.
Next, we show that we can actually use (4) to evaluate the gradient of J(u) using the actual process.

2.3 GRADIENT COMPUTATION

The method proposed in this paper is the following formula for the gradient of J(u) when we
parameterize u = uθ. A similar formula first appeared in Yang & Kushner (1991) and it is also given
in Ribera Borrell et al. (2024):
Proposition 1. Let uθ with θ ∈ Θ be a parametric realization of a control in U and denote
L(θ) ≡ J(uθ) the objective (2) viewed as a function of θ. Then

∂θL(θ) = EXθ

[∫ T

0

uθ
t (X

θ
t) · ∂θuθ

t (X
θ
t)dt

]

+ EXθ

[(∫ T

0

(
1
2 |u

θ
t (X

θ
t)|2 + ft(X

θ
t)
)
dt+ g(Xθ

T)

)∫ T

0

∂θu
θ
t (X

θ
t) · dWt

] (6)

where ∂θu
θ
t (X

θ
t) denotes ∂θuθ

t (x) evaluated at x = Xθ
t and (Xθ

t)t∈[0,T] ≡ (Xuθ

t)t∈[0,T] solves the
SDE

dXθ
t =

(
bt(X

θ
t) + σtu

θ
t (X

θ
t)
)
dt+ σtdWt, Xθ

0 ∼ µ0, (7)

and the expectation EXθ in (6) is taken over the law of (Xθ
t)t∈[0,T].

We stress that the gradient expression (6) avoids completely the need of differentiating through the
trajectory of the state process (Xθ

t)t∈[0,T]. (6) requires that the volatility σt be invertible (so that (3)
is elliptic) and independent of the control: it can however be generalized to controlled-dependent
volatilities via Malliavin calculus (Gobet & Munos, 2005).

Proof. Equation (6) follows from (4) by a direct calculation in which we first evaluate the gradient of
the objective L(θ) = J(uθ) with the fixed reference control v, which gives:

∂θL(θ) = EXv

([∫ T

0

uθ
t (X

v
t) · ∂θuθ

t (X
v
t)dt

]
M(uθ, v)

)

+ EXv

[(∫ T

0

(
1
2 |u

θ
t (X

θ
t)|2 + ft(X

θ
t)
)
dt+ g(Xv

T)

)

×

(∫ T

0

∂θu
θ
t (X

v
t) · dWt +

∫ T

0

(vt(X
v
t)− uθ(Xv

t)) · ∂θuθ
t (X

v
t) · dWt

)
M(uθ, v)

]
.

(8)

Because (8) holds for any v, we can now evaluate it at v = uθ. Since M(uθ, uθ) = 1, this
gives (6).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Simulation-Free On-Policy Training
1: Initialize: n walkers, K time steps, model parameters θ for uθ, gradient descent optimizer
2: repeat
3: Set θ̄ = stopgrad(θ)
4: Randomize time grid: t1, . . . , tK ∼ Uniform(0, T)
5: Add t0 = 0, tK = T , and sort such that 0 = t0 < t1 < · · · < tK−1 < tK = T
6: Set ∆tk = tk+1 − tk
7: for each walker i = 1, . . . , n do
8: Set xi

0 ∼ µ0, Ai
0 = 0, Āi

0 = 0, B̄i
0 = 0, Ci

0 = 0
9: for k = 0, . . . ,K − 1 do

10: ∆W i
k =

√
∆tk ζ

i
k, where ζik ∼ N(0, Id)

11: xi
tk+1

= xi
tk

+ uθ̄
tk
(xi

tk
)∆tk + σtk∆W i

k

12: Atik+1
= Ai

tk
+ 1

2 |u
θ
tk
(xi

tk
)|2∆tk

13: Āi
tk+1

= Āi
tk

+ 1
2 |u

θ̄
tk
(xi

tk
)|2∆tk

14: B̄i
tk+1

= B̄i
tk

+ ftk(x
i
tk
)∆tk

15: Ci
tk+1

= Ci
tk

+ uθ
tk
(xi

tk
) ·∆W i

k

16: end for
17: end for
18: Compute L̂n(θ, θ̄) = n−1

∑n
i=1

[
Ai

tK +
(
Āi

tK + B̄i
tK + g(xi

tK)
)
Ci

tK

]
.

19: Compute ∂θL̂(θ, θ̄)
∣∣
θ̄=θ

and take a step of gradient descent to update θ.
20: until converged

2.4 ALTERNATIVE OBJECTIVE FOR IMPLEMENTATION

Equation (6) can be implemented to directly estimate the gradient of the objective L(θ) = J(uθ)
by replacing the expectation EXθ by an empirical expectation over an ensemble of independent
realizations of the SDE 7. Alternatively, we can use automatic differentiation of an alternative
objective (Ribera Borrell et al., 2024; Domingo-Enrich, 2024):
Proposition 2. We have

∂θL(θ) = ∂θL̂(θ, θ̄)
∣∣
θ̄=θ

, (9)
where we defined

L̂(θ, θ̄) = EX θ̄

[∫ T

0

1
2 |u

θ
t (X

θ̄
t)|2dt

]

+ EX θ̄

[(∫ T

0

(
1
2 |u

θ̄
t (X

θ̄
t)|2 + ft(X

θ̄
t)
)
dt+ g(X θ̄

T)

)∫ T

0

uθ
t (X

θ̄
t) · dWt

] (10)

in which (X θ̄
t)t∈[0,T] ≡ (Xuθ̄

t)t∈[0,T] solves (7) with uθ replaced by uθ̄ and the expectation EXθ

in (6) is taken over the law of this process.

The proof of this proposition is immediate by direct calculation so we omit it for the sake of brevity.
Note that can express the objective (10) as

L̂(θ, θ̄) = EX̄

[
Aθ

T +
(
ĀT + B̄T + g(X̄T)

)
C̄θ

T

]
(11)

by defining
dX̄t = bt(X̄t)dt+ σtu

θ̄
t (X̄t)dt+ σtdWt, X̄0 ∼ µ0

dAθ
t = 1

2 |u
θ
t (X̄t)|2dt, Aθ

0 = 0

dĀt =
1
2 |u

θ̄
t (X̄t)|2dt, Ā0 = 0

dB̄t = ft(X̄t)dt, B̄0 = 0

dCθ
t = uθ

t (X̄t) · dWt, Cθ
0 = 0

(12)

where X̄t ≡ X θ̄
t , we use the bar to denote quantities that depend only on θ̄ and are therefore detached

from differentiation over θ. The Wiener process Wt used in the equations for X̄t and Cθ
t is the same.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

In practice, the calculation of ∂θL̂(θ, θ̄)
∣∣
θ̄=θ

can be implemented using automatic differentiation by
setting θ̄ = stopgrad(θ). This avoids again differentiation of X̄t ≡ X θ̄

t despite working with an
on-policy objective. In practice we can again replace the expectation EXθ by an empirical expectation
over an ensemble of independent realizations of the equations in (12). This leads to the training
method summarized in Algorithm 1, which involves one forward pass to evaluate the loss and avoids
the need of memorizing any trajectory.

2.5 APPLICATION TO SAMPLING VIA CONSTRUCTION OF A FÖLLMER PROCESS

By definition, the Föllmer process that samples a given target probability distribution µ is the process
(Y u

t)t∈[0,1] that uses the optimal control u obtained by solving

min
u∈U

EXu

∫ 1

0

1
2 |ut(Y

u
t)|2dt

where: dY u
t = ut(Y

u
t)dt+ dWt, Y u

0 ∼ δ0, Y u
t=1 ∼ µ.

(13)

This problem is a special case of the Schrödinger bridge problem (Léonard, 2014) when the base
distribution is the Dirac delta distribution δ0, i.e. the point mass at x = 0.

The minimization problem in (15) is not a SOC problem of the type (1) because of the terminal
condition in the SDE that enforce Y u

t=1 ∼ µ. Interestingly, it can however be shown (Léonard, 2014;
Chen et al., 2014) that the Föllmer process can also be constructed by solving a SOC problem, an
observation that was exploited by Zhang & Chen (2022). We recall this result as follows:
Proposition 3. Assume that µ is absolutely continuous with respect of the Lebesgue measure and let
its probability density function be ρ(x) = Z−1e−U(x) where U : Rd → R is a known potential and
Z =

∫
Rd e

−U(x)dx < ∞ is an unknown normalization factor. Consider the SOC problem using the
objective

J(u) = EXu

[∫ 1

0

1
2 |ut(X

u
t)|2dt− 1

2 |X
u
1 |2 + U(Xu

1)]

]
, (14)

where (Xu
t)t∈[0,T] solves the SDE

dXu
t = ut(X

u
t)dt+ dWt, Xu

t=0 ∼ δ0. (15)

Then the process (Xu
t)t∈[0,1] obtained by using the optimal control minimizing (14) in the SDE (15)

is the Föllmer process that satisfies Xu
t=1 ∼ µ.

We omit the proof of this proposition since it is a special case of Proposition 5 established below.

The solution to the SOC problem in Proposition 3 can be achieved with our approach, thereby offering
a simulation-free implementation of the Path Integral Sampler (PIS) proposed by Zhang & Chen
(2022) that avoids the extra cost of the differentiation through the solution of the SDE (15) needed in
the original PIS. The computational advantage this offers will be illustrated via examples in Sec. 3.

Note that since we have dropped the terminal constraint in the SDE (15) and replaced it by a terminal
cost in (14), we are no longer guaranteed that Xu

t=1 ∼ µ if we do not use the optimal u. We can
however compute an unbiased expectation over the target µ with any control via reweighing using
Girsanov theorem, a fact that was also exploited by Zhang & Chen (2022):
Proposition 4. Consider the process (Xu

t)t∈[0,T] obtained by solving the SDE (15) with any (not
necessary optimal) control u. Then, given any suitable test function h : Rd → R, we have∫

Rd

h(x)µ(dx) = Z−1EXu [h(Xu
T)M(u)] , Z =

∫
Rd

e−U(x)dx = EXu [M(u)] , (16)

where we defined

M(u) = (2π)d/2 exp

(
−
∫ 1

0

1
2 |ut(X

u)|2dt−
∫ 1

0

ut(X
u
t) · dWt +

1
2 |X

u
1 |2 − U(Xu

1)

)
. (17)

In addition M(u) = Z iff u is the optimal control minimizing the SOC problem with objective (14).

We also omit the proof of this proposition since it is a special case of Proposition 6 established below.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

2.6 APPLICATION TO FINE-TUNING

We can consider a variant of the problem in Sec. 2.5 aiming at fine-tuning a generative model.
Suppose that we are given a process (Yt)t∈[0,T]

dYt = bt(Yt)dt+ σtdWt, Y0 ∼ δ0, (18)

where the drift b has been tailored in such a way that Yt=T ∼ ν where ν is a given probability
distribution. Learning such a b can for instance be done using the framework of score-based diffusion
models (Song et al., 2021) or stochastic interpolants (Albergo & Vanden-Eijnden, 2022; Albergo
et al., 2023) tailored to building Föllmer processes (Chen et al., 2024). Assume that we would like to
fine-tune this diffusion so that it samples instead the probability distribution

µ(dx) = Z−1er(x)ν(dx), Z =

∫
Rd

er(x)ν(dx) < ∞, (19)

obtained by tilting ν by the reward function r : Rd → R (assuming that this tilted measure is
normalizable, i.e. Z < ∞). Such problems arise in the context of image generation where they have
received a lot of attention lately. Our next result shows that it can be cast into a SOC problem.

Proposition 5. Consider the SOC problem (1) with zero running cost, f = 0, and terminal cost
set to minus the reward function, g = −r, in the objective (13). Assume also that the drift b and
the volatility σ used in the SDE (3) are the same as those used in the SDE (18) that guarantee that
Yt=T ∼ ν. Then the solutions of the SDE (3) solved with the optimal u minimizing this SOC problem
and Xu

t=0 = 0 are such that Xu
t=T ∼ µ.

The proof of this proposition is given in Appendix A. Note that Proposition 3 follows from Proposi-
tion 5 as a special case if we set bt(x) = 0, σt = 1, and T = 1, in which case ν = N(0, Id), and we
can set r(x) = −U(x) + 1

2 |x|
2 to target µ(dx) = Z−1e−U(x)dx.

The SOC problem in Proposition 5 can again be solved in a simulation-free way using our approach,
thereby offering a simple alternative to the Adjoint Matching method proposed in (Domingo-Enrich
et al., 2024). Since in practice the learned control will be imperfect, we will need to reweigh the
samples to get unbiased estimates of expectations over them. It can be done using this result:

Proposition 6. Let Xu
t solves SDE (3) from the initial condition Xu

t=0 = 0 with an arbitrary (not
necesary optimal) u and with the drift b and the volatility σ that guarantee that the solutions the
SDE (3) satisfy Yt=T ∼ ν. Then given any suitable test function h : Rd → R, we have∫

Rd

h(x)µ(dx) = Z−1EXu [h(Xu
T)Mr(u)] , Z =

∫
Rd

er(x)ν(dx) = EXu [Mr(u)] (20)

where we defined

Mr(u) = exp

(
−
∫ T

0

1
2 |ut(X

u)|2dt−
∫ T

0

ut(X
u
t) · dWt + r(Xu

T)

)
(21)

In addition, Mr(u) = Z iff u is the optimal control specified in Proposition 5.

The proof of this proposition is given in Appendix A. Proposition 4 follows from Proposition 6 as a
special case if we set bt(x) = 0, σt = 1, T = 1, and r(x) = −U(x) + 1

2 |x|
2.

3 EXPERIMENTS

3.1 QUADRATIC ORNSTEIN-UHLENBECK EXAMPLE

We also consider a more complicated case where the SOC objective includes a quadratic running cost
with f(x) = xTPx, g(x) = xTQx, bt(x) = Ax, σt = σ0, where P,Q,A ∈ Rd × Rd. This type of
SOC problems are often referred to as linear quadratic regulator (LQR) and they have closed-form
analytical solution (Van Handel, 2007):

u∗
t (x) = −2σ⊤

0 Ftx, (22)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 500 1000 1500 2000 2500 3000
Computation Time (s)

7

8

9

10

11

12

13

14

15

Em
pi

ric
al

 L
os

s F
un

ct
io

ns

Vanilla Method
Our Method

0 500 1000 1500 2000 2500 3000
Computation Time (s)

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Em
pi

ric
al

 L
os

s F
un

ct
io

ns

Vanilla Method
Our Method

Figure 1: Quadratic Ornstein-Uhlenbeck Example (easy setup, no warm-start): L2
2 error (left

panel) and training loss (right panel) for our method and the vanilla method. We plot the 95%
confidence intervals as shaded areas.

0 25 50 75 100 125 150 175 200
Computation Time (s)

10 1

100

L2 e
rro

r

Our Method
Vanilla Method

0 100 200 300 400 500
Computation Time (s)

50

100

150

200

250

300

Em
pi

ric
al

 L
os

s F
un

ct
io

ns

Vanilla Method
Our Method

Figure 2: Quadratic Ornstein-Uhlenbeck Example (hard setup, no warm-start): L2
2 error (left

panel) and training loss (right panel) for our method and the vanilla method.

where Ft solves the Riccati equation

dFt

dt
+A⊤Ft + FtA− 2|σ⊤

0 Ft|2 + P = 0 (23)

with the final condition FT = Q. We consider this example in the two setups investigated by
Domingo-Enrich et al. (2023):

• Easy: d = 20, A = 0.2I , P = 0.2I , Q = 0.1I , σ0 = I , λ = 1, T = 1, X0 ∼ N(0, 1
2 Id).

• Hard: d = 20, A = I , P = I , Q = 0.5I , σ0 = I , λ = 1, T = 1, X0 ∼ N(0, 1
2 I).

However, in contrast to what was done in Domingo-Enrich et al. (2023) in the hard case, we use
no warm-start. We use the same neural network parameterization and initialization for ut(x) as in
Sec. B.1. We quantify the gain in efficiency in terms of the memory cost and computational cost of

Model Memory Cost (GB) Run Time for Back-Prop (s)

Our Method 0.102 ±0.001 0.002 ±0.003

Vanilla Method 0.160 ±0.001 0.112 ±0.0006

Table 1: Quadratic Ornstein-Uhlenbeck Example (hard setup, no warm-start): Comparison
between our model and the vanilla method in terms of the GPU memory usage and runtime for one
back-propagation pass. Here, we use a batch size of 512 and 256 time steps.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Model Bias Memory Cost (GB) Run Time for Back-Prop (s)

Our Method (σ0 = 1.0) −0.005 ±0.000 16.95 0.0032 ±0.000

(σ0 = 3.0) 0.032 ±0.005 16.95 0.0032 ±0.000

Path Integral Sampler (σ0 = 1.0) −0.006 ±0.000 35.20 1.014 ±0.0024

(σ0 = 3.0) 0.029 ±0.007 35.20 1.014 ±0.0024

Table 2: Funnel distribution example: Comparison between our model and the PIS/Neural SDEs in
terms of memory cost and runtime for σ = 1.0, 3.0. Here we use a batch size of 104 and 400 time
steps. For different experimental setups σ0 = 1.0 and σ0 = 3.0, the computational and memory cost
are the same for the same method.

our method over the vanilla method in Table 1. In Figures 1 and 2 we compare both methods in terms
of L2 accuracy and training time for both the easy and the hard setups. As can be see, with the same
time of compute, our method achieves a better accuracy measured by the L2 error than the vanilla
method. Training with our method is also more stable than with vanilla method, as the fluctuations in
the empirical loss functions of our method are much smaller.

3.2 SAMPLING FROM AN UNNORMALIZED DISTRIBUTION

Next, we consider an example of SOC problem relevant to the setup of Sec. 2.5. Specifically we
sample Neal’s funnel distribution in d = 10 dimension, for which x0 ∼ N(0, σ0) and x1:9|x0 ∼
N(0, ex0 Id). This distribution was also used by Zhang & Chen (2022) to test their Path Integral
Sampler (PIS): it becomes exponentially challenging to sample as σ0 increases, as the spread x1:9 is
exponentially small for negative values of x0 and exponentially large for positive values of x0 (hence
the funnel shape of the distribution), and the spread of x0 around 0 increases with σ0. We study this
example with σ0 = 1 and σ0 = 3.

We use the same neural network parameterization as Zhang & Chen (2022), where the control is
parameterized as follows

uθ
t (x) = NNθ

1(t, x) + NNθ
2(t)×∇ log ρ(x). (24)

Here ρ(x) is the probability density function of the funnel distribution and ∇ log ρ(x) is its score.
Note that the score function is the exact control we need if the time horizon T → ∞. As what is
reported in Zhang & Chen (2022), for one pass NNθ

1 and NNθ
2, we lift the scalar t to 128 dimensions

with Fourier positional encoding, followed by two fully connected layers with 64 hidden units
to extract 64-dimensional signal features. We use an independent two-layer MLP to extract 64-
dimensional features for x. Then, we concatenate the features of the two MLPs for x, t and use it
as the input to a three-layer neural network to obtain the output. To make the problem challenging,
we initialize at zero the weights of the last linear layers of NNθ

1 and NNθ
2, so that uθ

t (x) = 0 at
initialization. We use the Adam optimizer (Kingma, 2014) with a learning rate of 5 · 10−3 for all the
experiments on the funnel distribution example.

To measure the quality of the learned samplers, we estimate the log normalization constants logZ of
the funnel distribution with σ0 = 1.0 and σ0 = 3.0 with the unbiased estimator given in (16). We
report the results as well as the computational costs in Table 2: our method reaches the same level
of accuracy as the vanilla PIS but with much smaller memory cost and computing time, which is a
big advantage for problems in high dimensions. The generated samples themselves are shown in
Figure 3.

4 CONCLUSION

We have introduced a simulation-free on-policy approach to SOC problems: we simulate trajectories
using an actual control but detach this control for the computational graph when computing the
gradient of the objective. This leads to a new way of training a deep neural network to learn the
feedback control, which is more efficient and scalable than the vanilla method commonly used thus
far. We have illustrated the efficacy of our method on several examples from the SOC literature
and the sampling literature, with applications to sampling via Föllmer processes and fine-tuning of
diffusion-based generative models .

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

6 4 2 0 2 4 6
6

4

2

0

2

4

6

6 4 2 0 2 4 6
6

4

2

0

2

4

6

6 4 2 0 2 4 6
6

4

2

0

2

4

6

Figure 3: Funnel distribution example (σ = 1): The samples from the funnel distribution (left
panel), Path Integral Samplers (middle panel) and our method (right panel). To plot the samples of the
ten-dimensional funnel distribution in 2D, we use the independence of its coordinates {x1, · · · , x9},
squeeze these nine dimensions into one coordinate, and keep the first dimension x0.

Limitations. While our approach is simpler and more efficient than the vanilla method to minimize
the SOC objective, it eventually performs the same minimization of the SOC objective. As a result,
it is prone to the same issues: slow convergence of the training in absence of good warm-start
and potential lack of convergence to the non-convexity of the SOC objective. Nevertheless the
experiments reported here clearly show the potential of our approach for large-scale experiments on
real-world problems, which we leave for future work.

REPRODUCIBILITY STATEMENT

All experiments done in this work rely on simply feed-forward neural networks, and can be done
locally on a single GPU. Details for the network sizes are given in each experimental subsection.

REFERENCES

Philippe Aghion and Peter Howitt. A model of growth through creative destruction. Econometrica,
60(2):323–351, 1992.

Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants.
arXiv preprint arXiv:2209.15571, 2022.

Michael S. Albergo, Nicholas M. Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions, 2023. URL https://arxiv.org/abs/2303.08797.

Yifan Chen, Mark Goldstein, Mengjian Hua, Michael S. Albergo, Nicholas M. Boffi, and Eric
Vanden-Eijnden. Probabilistic forecasting with stochastic interpolants and föllmer processes, 2024.
URL https://arxiv.org/abs/2403.13724.

Yongxin Chen, Tryphon Georgiou, and Michele Pavon. On the relation between optimal transport
and schrödinger bridges: A stochastic control viewpoint, 2014. URL https://arxiv.org/
abs/1412.4430.

Kevin Clark, Paul Vicol, Kevin Swersky, and David J. Fleet. Directly fine-tuning diffusion models
on differentiable rewards. In The Twelfth International Conference on Learning Representations,
2024.

Carles Domingo-Enrich. A taxonomy of loss functions for stochastic optimal control, 2024. URL
https://arxiv.org/abs/2410.00345.

Carles Domingo-Enrich, Jiequn Han, Brandon Amos, Joan Bruna, and Ricky TQ Chen. Stochastic
optimal control matching. arXiv preprint arXiv:2312.02027, 2023.

Carles Domingo-Enrich, Michal Drozdzal, Brian Karrer, and Ricky T. Q. Chen. Adjoint matching:
Fine-tuning flow and diffusion generative models with memoryless stochastic optimal control,
2024. URL https://arxiv.org/abs/2409.08861.

10

https://arxiv.org/abs/2303.08797
https://arxiv.org/abs/2403.13724
https://arxiv.org/abs/1412.4430
https://arxiv.org/abs/1412.4430
https://arxiv.org/abs/2410.00345
https://arxiv.org/abs/2409.08861

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Reinforcement learning for fine-
tuning text-to-image diffusion models. Advances in Neural Information Processing Systems, 36,
2024.

Wendell H Fleming and Raymond W Rishel. Deterministic and stochastic optimal control, volume 1.
Springer Science & Business Media, 2012.

Wendell H Fleming and Jerome L Stein. Stochastic optimal control, international finance and
debt. Journal of Banking & Finance, 28(5):979–996, 2004. ISSN 0378-4266. doi: https:
//doi.org/10.1016/S0378-4266(03)00138-9. URL https://www.sciencedirect.com/
science/article/pii/S0378426603001389.

H Föllmer. Time reversal on wiener space. Stochastic Processes—Mathematics and Physics, pp.
119–129, 1986.

Maximilien Germain, Huyên Pham, and Xavier Warin. Neural networks-based algorithms for
stochastic control and PDEs in finance. Machine Learning And Data Sciences For Financial
Markets: A Guide To Contemporary Practices, 2021.

Emmanuel Gobet and Rémi Munos. Sensitivity analysis using itô–malliavin calculus and martingales,
and application to stochastic optimal control. SIAM Journal on control and optimization, 43(5):
1676–1713, 2005.

Jiequn Han and Weinan E. Deep learning approximation for stochastic control problems. arXiv
preprint arXiv:1611.07422, 2016.

Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations
using deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510, 2018.

Carsten Hartmann, Ralf Banisch, Marco Sarich, Tomasz Badowski, and Christof Schütte. Characteri-
zation of rare events in molecular dynamics. Entropy, 16(1):350–376, 2013.

Carsten Hartmann, Lorenz Richter, Christof Schütte, and Wei Zhang. Variational characterization
of free energy: Theory and algorithms. Entropy, 19(11), 2017. ISSN 1099-4300. doi: 10.3390/
e19110626. URL https://www.mdpi.com/1099-4300/19/11/626.

Lars Holdijk, Yuanqi Du, Ferry Hooft, Priyank Jaini, Bernd Ensing, and Max Welling. Stochastic
optimal control for collective variable free sampling of molecular transition paths, 2023. URL
https://arxiv.org/abs/2207.02149.

Ruimeng Hu and Mathieu Lauriere. Recent developments in machine learning methods for stochastic
control and games. To appear in Numerical Algebra, Control and Optimization (arXiv preprint
arXiv:2303.10257), 2024.

Jian Huang, Yuling Jiao, Lican Kang, Xu Liao, Jin Liu, and Yanyan Liu. Schrödinger-Föllmer
sampler: sampling without ergodicity. arXiv preprint arXiv:2106.10880, 2021.

Côme Huré, Huyên Pham, and Xavier Warin. Deep backward schemes for high-dimensional nonlinear
pdes. Mathematics of Computation, 89(324):1547–1579, 2020.

Côme Huré, Huyên Pham, Achref Bachouch, and Nicolas Langrené. Deep neural networks algo-
rithms for stochastic control problems on finite horizon: convergence analysis. SIAM Journal on
Numerical Analysis, 59(1):525–557, 2021.

Shaolin Ji, Shige Peng, Ying Peng, and Xichuan Zhang. Three algorithms for solving high-
dimensional fully coupled fbsdes through deep learning. IEEE Intelligent Systems, 35(3):71–84,
2020.

Yuling Jiao, Lican Kang, Yanyan Liu, and Youzhou Zhou. Convergence analysis of Schrödinger-
Föllmer sampler without convexity. arXiv preprint arXiv:2107.04766, 2021.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

11

https://www.sciencedirect.com/science/article/pii/S0378426603001389
https://www.sciencedirect.com/science/article/pii/S0378426603001389
https://www.mdpi.com/1099-4300/19/11/626
https://arxiv.org/abs/2207.02149

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Christian Léonard. A survey of the schrödinger problem and some of its connections with optimal
transport. Discrete & Continuous Dynamical Systems-A, 34(4):1533–1574, 2014.

Xuechen Li, Ting-Kam Leonard Wong, Ricky TQ Chen, and David K Duvenaud. Scalable gradients
and variational inference for stochastic differential equations. In Symposium on Advances in
Approximate Bayesian Inference, pp. 1–28. PMLR, 2020.

Han Cheng Lie. Fréchet derivatives of expected functionals of solutions to stochastic differential
equations, 2021. URL https://arxiv.org/abs/2106.09149.

Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte carlo gradient
estimation in machine learning. Journal of Machine Learning Research, 21(132):1–62, 2020. URL
http://jmlr.org/papers/v21/19-346.html.

Richard E Mortensen. Stochastic optimal control: Theory and application (robert f. stengel), 1989.

Nikolas Nüsken and Lorenz Richter. Solving high-dimensional hamilton-jacobi-bellman pdes using
neural networks: perspectives from the theory of controlled diffusions and measures on path space,
2023. URL https://arxiv.org/abs/2005.05409.

NG Pavlov, S Koptyaev, GV Lihachev, AS Voloshin, AS Gorodnitskiy, MV Ryabko, SV Polonsky,
and ML Gorodetsky. Narrow-linewidth lasing and soliton kerr microcombs with ordinary laser
diodes. Nature Photonics, 12(11):694–698, 2018.

Huyên Pham. Continuous-time stochastic control and optimization with financial applications,
volume 61. Springer Science & Business Media, 2009.

Jannes Quer and Enric Ribera Borrell. Connecting stochastic optimal control and reinforcement
learning, 2024. URL https://arxiv.org/abs/2211.02474.

Enric Ribera Borrell, Jannes Quer, Lorenz Richter, and Christof Schütte. Improving control based
importance sampling strategies for metastable diffusions via adapted metadynamics. SIAM Journal
on Scientific Computing, 46(2):S298–S323, 2024. doi: 10.1137/22M1503464.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations, 2021. URL
https://arxiv.org/abs/2011.13456.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradi-
ent methods for reinforcement learning with function approximation. In S. Solla, T. Leen,
and K. Müller (eds.), Advances in Neural Information Processing Systems, volume 12.
MIT Press, 1999. URL https://proceedings.neurips.cc/paper_files/paper/
1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf.

Evangelos Theodorou, Freek Stulp, Jonas Buchli, and Stefan Schaal. An iterative path integral
stochastic optimal control approach for learning robotic tasks. IFAC Proceedings Volumes, 44(1):
11594–11601, 2011.

Belinda Tzen and Maxim Raginsky. Neural stochastic differential equations: Deep latent gaussian
models in the diffusion limit. arXiv preprint arXiv:1905.09883, 2019.

Masatoshi Uehara, Yulai Zhao, Kevin Black, Ehsan Hajiramezanali, Gabriele Scalia, Nathaniel Lee
Diamant, Alex M Tseng, Tommaso Biancalani, and Sergey Levine. Fine-tuning of continuous-time
diffusion models as entropy-regularized control, 2024.

Ramon Van Handel. Stochastic calculus, filtering, and stochastic control. Course notes., URL
http://www. princeton. edu/rvan/acm217/ACM217. pdf, 14, 2007.

Francisco Vargas, Andrius Ovsianas, David Fernandes, Mark Girolami, Neil D Lawrence, and Nikolas
Nüsken. Bayesian learning via neural schrödinger–föllmer flows, 2023.

Ronald J. Williams. Toward a theory of reinforcement-learning connectionist systems. Technical
Report NU-CCS-88-3, Northeastern University, College of Computer Science, 1988.

12

https://arxiv.org/abs/2106.09149
http://jmlr.org/papers/v21/19-346.html
https://arxiv.org/abs/2005.05409
https://arxiv.org/abs/2211.02474
https://arxiv.org/abs/2011.13456
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Jichuan Yang and Harold J. Kushner. A monte carlo method for sensitivity analysis and parametric
optimization of nonlinear stochastic systems. SIAM Journal on Control and Optimization, 29(5):
1216–1249, 1991. doi: 10.1137/0329064.

Qinsheng Zhang and Yongxin Chen. Path integral sampler: A stochastic control approach for
sampling. In International Conference on Learning Representations, 2022.

A PROOFS OF PROPOSITIONS 5 AND 6

Proof of Proposition 5. It is well-known (Léonard, 2014; Chen et al., 2014) that the SOC problem
specified in the proposition can be cast into solving the pair of partial differential equations

∂tµt = −∇ · (btµt)−∇ · (Dt∇ϕtµt) +
1
2∇ · (Dt∇µt), µ0 = δ0 (25)

∂tϕt = −bt · ∇ϕt − 1
2∇ϕt ·Dt∇ϕt − 1

2∇ · (Dt∇ϕt), ϕT = r (26)

where Dt = DT
t = σtσ

T
t , µt is the distribution of Xu

t , and the potential ϕt gives the optimal control
via ut = σT

t ∇ϕt. We also know that the distribution νt of Yt solves the Fokker-Planck equation

∂tνt = −∇ · (btνt) + 1
2∇ · (Dt∇νt), ν0 = δ0 (27)

We will prove that Xu
T ∼ µ by establishing that µt(dx) = Z−1eϕt(x)νt(dx) since this will imply

that µT = µ since νT = ν by definition and ϕT = r by construction, so that µT = Z−1eϕT νT =
Z−1erν = µ. If µ̂t(dx) = Z−1eϕt(x)νt(dx), then we have

∂tµ̂t = Z−1
(
∂tϕte

ϕtνt + eϕt∂tνt
)
,

−∇ · (btµ̂t) = Z−1
(
−eϕt∇ · (btνt)− bt · ∇ϕte

ϕtνt
)
,

−∇ · (Dt∇ϕtµ̂t) = Z−1
(
−eϕt∇ · (Dt∇ϕtνt)− eϕt∇ϕt ·Dt∇ϕtνt

)
= Z−1

(
−eϕt∇ · (Dt∇ϕt)νt − eϕt∇ϕt ·Dt∇νt − eϕt∇ϕt ·Dt∇ϕtνt,

)
1
2∇ · (Dt∇µ̂t) = Z−1

(
1
2e

ϕt∇ · (Dt∇νt) + eϕt∇ϕt ·Dt∇νt

+ 1
2e

ϕt∇ϕt ·Dt∇ϕtνt +
1
2e

ϕt∇ · (Dt∇ϕt)νt
)
.

(28)

Inserting these expressions in (25) and using (27), several terms cancel we are left with

∂tϕte
ϕtνt = −bt · ∇ϕte

ϕtνt − 1
2∇ϕt ·Dt∇ϕte

ϕtνt − 1
2e

ϕt∇ · (Dt∇ϕt)νt. (29)

If we divide both sides of this equation by eϕtνt, we recover (26). This shows that µ̂t(dx) =
Z−1eϕt(x)νt(dx) is indeed a solution to (25). To show that it is the solution, it remains to establish
that it satisfies the initial condition in (25). To this end, notice first that, since ν0 = δ0, we have

µ̂0(dx) = Z−1eϕ0(x)ν0(dx) = Z−1eϕ0(0)δ0(dx) (30)

Second, since µ̂t satisfies (25), we must have
∫
Rd µt(dx) = 1 for all t ∈ [0, 1]. As a result, we

conclude that eϕ0(0) = Z, which means that µ̂0 = δ0 = µ0. Since the solution pair (µt, ϕt) to (25)-
(26) is unique, we must have µt = µ̂t = Z−1eϕtνt and hence µT = Z−1eϕT νT = Z−1erν.

Note that it is key that µ0 = ν0 = δ0 (more generally δx0
for some x0 ∈ Rd). If the base distribution

used to generate initial data in the SDEs (3) and (18) are not atomic at x = 0, the statement of
Proposition 5 does not hold anymore, because the second equality in (30) fails. That is, our framework
only allows to fine-tune generative models that use a Dirac delta distribution as base distribution.

Proof of Proposition 6. By direct application of Girsanov theorem, we have

EXu [h(Xu
T)Mr(u)] = EY

[
h(YT)e

r(YT)
]
=

∫
Rd

h(x)er(x)ν(dx), (31)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Model Memory Cost (GB) Run Time for Back-Prop (s)

Our Method 1.962 ±0.001 0.003 ±0.000

Vanilla Method 2.590 ±0.001 0.177 ±0.0006

Table 3: Linear Ornstein-Uhlenbeck Example: Comparison between our method and the vanilla
method in terms of the GPU memory usage and runtime for one back-propagation pass. Here, we use
a batch size of 5k and 256 time steps.

where Yt solves (18) and we used YT ∼ ν to get the second equality. Multiplying both sides of (31)
by Z−1 we deduce

Z−1EXu [h(Xu
T)Mr(u)] = Z−1

∫
Rd

h(x)er(x)ν(dx) =

∫
Rd

h(x)µ(dx), (32)

which gives the first equation in (20). Setting h = 1 in (31) we deduce that

EXu [Mr(u)] =

∫
Rd

er(x)ν(dx) = Z (33)

which gives the second equation in eq. (20). To establish that Mr(u) = Z iff u is the optimal control
minimizing the SOC problem specified in Proposition 5, notice that Xu

T ∼ µ iff u is this optimal
control. Assuming tat this is the case, the first equation in eq. (20) implies that

EXu [h(Xu
T)] = Z−1EXu [h(Xu

T)Mr(u)] (34)

for all suitable test function h. This can only hold if Mr(u) = Z.

B ADDITIONAL NUMERICAL RESULTS

B.1 LINEAR ORNSTEIN-UHLENBECK EXAMPLE

We consider the SOC problem in (1) with f = 0, g(x) = γ ·x, σt = σ = cst, λ = 1 and bt(x) = Ax,
where γ ∈ Rd and σ,A ∈ Rd ×Rd. This example was proposed by Nüsken & Richter (2023) and its
optimal control can be calculated analytically:

u∗
t (x) = −σ⊤

0 exp(A⊤(T − t))γ. (35)

We take d = 20 and initialize the samples at X0 ∼ N (0, 1
2 Id). We use our simulation-free method to

estimate the control ut(x) after parameterizing it by a fully connected MLP with 4 layers and 128
hidden dimensions in each layer. The parameters of this MLP network are initialized with the default
random initializations of PyTorch. For comparison, we also minimize the SOC objective with the
vanilla method that requires differentiation though the solution of the SDE, using the same exact
setup. To make fair comparisons, we use the Adam optimizer (Kingma, 2014) with the same learning
rate of 3 · 10−4 and the same cosine annealing learning rate scheduler for both methods.

The numerical results are shown in Figure 4 and the squared L2 error in each figure is computed by
approximating the following quantity with Monte-Carlo estimations over 256 sample trajectories

E =

∫ T

0

EX∗
t

[
|ut(X

∗
t)− u∗

t (X
∗
t)|

2
]
dt (36)

where X∗
t is the process generated with the optimal control u∗ and X∗

0 ∼ N (0, 1
2 Id).

As compared to the vanilla method, our method is both more computationally efficient and more
accurate (see Table 3 for a detailed comparison in terms of memory cost and computational time).

B.2 HIGH-DIMENSIONAL QUADRAIC OU EXPERIMENTS

We perform the quadratic OU control experiments done in Section 3.1 for dimension D = 50 and
time horizon T = 4.0 with the hard setup and no warm-start. The results are plotted in Figure where
our method outperforms the vanilla method in terms of both accuracy and time efficiency.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300 350
Computation Time (s)

10 4

10 3

10 2

10 1

L2 e
rro

r

Our method
Vanilla method

0 50 100 150 200 250 300 350
Computation Time (s)

4

3

2

1

0

Lo
ss

 o
bj

ec
tiv

e

Our method
Vanilla method

Figure 4: Linear Ornstein-Uhlenbeck Example: Our method outperforms the vanilla method in
terms of accuracy measured by the squared L2 error (left panel) and computational efficiency (right
panel).

0 2000 4000 6000 8000 10000 12000 14000 16000
Computation Time (s)

102

103

104

Em
pi

ric
al

 L
os

s F
un

ct
io

ns

Vanilla Method
Our Method

0 2000 4000 6000 8000 10000 12000 14000 16000
Computation Time

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

L2 e
rro

r

Vanilla Method
Our Method

Figure 5: Quadratic Ornstein-Uhlenbeck Example (hard setup, no warm-start): L2
2 error (left

panel) and training loss (right panel) for our method and the vanilla method. Here we extend the
dimension to D = 50 and time horizon to T = 4.0.

15

	1 Introduction
	1.1 Related Work

	2 Methods
	2.1 Problem setup
	2.2 Reformulation with Girsanov theorem
	2.3 Gradient computation
	2.4 Alternative objective for implementation
	2.5 Application to sampling via construction of a Föllmer process
	2.6 Application to fine-tuning

	3 Experiments
	3.1 Quadratic Ornstein-Uhlenbeck Example
	3.2 Sampling from an unnormalized distribution

	4 Conclusion
	A Proofs of Propositions 5 and 6
	B Additional Numerical Results
	B.1 Linear Ornstein-Uhlenbeck Example
	B.2 High-dimensional Quadraic OU Experiments

