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ABSTRACT

Recovering true signals from noisy measurements is a central challenge in inverse
problems spanning medical imaging, geophysics, and signal processing. Current
solutions nearly always balance prior assumptions regarding the true signal (reg-
ularization) with agreement to noisy measured data (data-fidelity). Conventional
data-fidelity loss functions, such as mean-squared error (MSE) or negative log-
likelihood, seek pointwise agreement with noisy measurements, often leading to
overfitting to noise. In this work, we instead evaluate data-fidelity collectively
by testing whether the observed measurements are statistically consistent with
the noise distributions implied by the current estimate. We adopt this aggregated
perspective and introduce distributional consistency (DC) loss, a data-fidelity ob-
jective that replaces pointwise matching with distribution-level calibration. DC
loss acts as a direct and practical plug-in replacement for standard data consis-
tency terms: i) it is compatible with modern unsupervised regularizers that oper-
ate without paired measurement—ground-truth data, ii) it is optimized in the same
way as traditional losses, and iii) it avoids overfitting to measurement noise even
without the use of priors. Its scope naturally fits many practical inverse prob-
lems where the measurement-noise distribution is known and where the measured
dataset consists of many independent noisy values. We demonstrate efficacy in
two key example application areas: i) in image denoising with deep image prior,
using DC instead of MSE loss removes the need for early stopping and achieves
higher PSNR; ii) in medical image reconstruction from Poisson-noisy data, DC
loss reduces artifacts in highly-iterated reconstructions and enhances the efficacy
of hand-crafted regularization. These results position DC loss as a statistically
grounded, performance-enhancing alternative to conventional fidelity losses for
an important class of unsupervised noise-dominated inverse problems.

1 INTRODUCTION

Reconstructing a true signal from a single set of noisy measurements is a prevalent challenge in
scientific computing (Vogel, 2002; [Tarantola, [2005; |Aster et al., 2018)), with applications spanning
medical imaging (Bertero et al.,2021;[McCann et al.||2017; Ribes and Schmitt, 2008} |Louis,|1992),
remote sensing (Efremenko and Kokhanovsky, [2021; Baret and Buis, 2008), time-series denoising
(Gubbins| [2004), astronomical data analysis (Craig and Brown, [1986; |[Lucy} |1994), and geophysical
inversion (Parker, |1994; [Linde et al.| |2015). In these problems, the reconstruction objective typi-
cally combines a data-fidelity term with a regularizer: data-fidelity enforces consistency with the
measurement process and noise model, while regularization encodes prior structure in the signal.

While regularization has evolved substantially, from hand-crafted penalties to internal learning
and learned image-space priors (Habring & Holler, [2024), the underlying data-fidelity terms have
changed little. Standard objectives such as mean squared error (MSE) or negative log-likelihood
(NLL) score each residual point-by-point. Even when the noise model is known, optimizing these
objectives encourages the estimator to match each individual noise realization, rather than ensur-
ing that the measurements are statistically compatible with the model. This creates a mismatch:
under a noisy realization, the ground-truth signal is not a minimizer of the data-fidelity term, so
regularization must compensate for noise-fitting instead of focusing solely on structure.



Under review as a conference paper at ICLR 2026

We address this limitation directly by reframing the data-fidelity objective. We introduce distribu-
tional consistency (DC) loss, which evaluates whether the measurements are collectively consistent
with the noise distributions implied by a candidate reconstruction. Each measurement is mapped to
its percentile value under the cumulative distribution function (CDF) of its predicted noise model,
and the resulting collection of percentile values is compared to the uniform distribution expected
under a correct model (Figure[T). Instead of reducing individual residuals, DC loss tests whether the
entire noisy dataset behaves like a typical draw from the assumed noise process.

DC loss applies whenever the noise distribution is known or can be estimated, including het-
eroscedastic settings such as Poisson counts or Gaussian noise with known variance. It requires
only one noise realization per measurement but many independent measurements overall. This set-
ting is satisfied in common inverse problems such as pixel-wise imaging (Fan et al., 2019), dense
time-series sampling (Gubbins| [2004), and tomographic reconstruction (Arridge et al.,[2019).

CONTRIBUTIONS:

* We introduce DC loss as a new principled data-fidelity term built from distributional cali-
bration. Evaluating DC loss is simple and compatible with auto-differentiation frameworks.

* We analyze how DC loss compares to pointwise objectives: for parameter estimates that are
far from the solution, DC loss exhibits MSE/NLL-like convergence, while near the solution
it removes the incentive to fit noise, enabling stable prolonged optimization.

* Across the settings we study, DC loss improves practical reconstructions: (a) Deep Image
Prior (DIP) denoising (Ulyanov et al.,|2020) with clipped Gaussian noise, where DC loss
removes the need for early stopping and yields higher peak PSNR than MSE; (b) PET
image reconstruction under a Poisson model (Gourion and Nolll 2002), where DC loss
reduces noise artifacts at high iteration numbers and pairs well with TV regularization,
achieving superior noise—detail trade-offs at much smaller regularization strengths.

* We demonstrate the real-world applicability of DC loss through experiments on real 3D
PET brain data.

2 BACKGROUND

2.1 PROBLEM FORMULATION

We consider inverse problems where a latent signal is mapped through a known forward model and
corrupted by stochastic noise drawn from a known distribution. No paired measurement—ground-
truth data are available for learning, though a pre-trained regularizer may be provided.

Let unknown parameters * € © be mapped by a known forward operator f : ©@ — RN to a

noise—free signal (or mean data) y = f(0*) = (y1,...,yn). Measurements m = (mq,..., my)
are then modeled as noisy draws from known, per—index likelihoods tied to that signal,
m;i ~ Di(yi) = Di(f(0%)s), (L

where each family D; has y; as its single unknown parameter (e.g., Poisson rate, Gaussian mean
with known variance). Our goal is to recover an estimate 6 close to 8%, given m, f, and {D;}}¥ .

Classical data—fidelity terms enforce pointwise agreement between f (é) and m, which can promote
overfitting in expressive models by tracking individual noise realizations. In Section [3] we instead
assess distributional agreement: given a candidate y = f (é), we ask whether the measurements m
are statistically consistent with the predicted noise models {D; (7;) }}¥,.

2.2 RELATED WORK

While most progress in inverse problems has focused on regularization, some works have considered
the design of data-fidelity terms. Robust variants such as the Huber and Student’s t losses (Mohan
et al.,2015;[Kazantsev et al.,2017) can reduce outlier influence but do not prevent noise-fitting under
a correct noise model. Stein’s unbiased risk estimate (Metzler et al., | 2018) penalizes the divergence
of the estimator to control its sensitivity to noise, effectively regularizing the architecture rather than
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Figure 1: Illustration of the proposed DC loss. Top: predicted signals illustrating under-, well-
and over-fitting to noisy measurements. Bottom: empirical CDF-value histograms for each case
(assuming many predicted points). Poor fit histograms skew towards O or 1; good fits give uniform
histograms; overfitting gives a sharp peak near 0.5. DC loss penalizes departures from uniformity.

altering the underlying incentive to match the observed noise. DC loss operates in a different regime
from Noise2Noise (Lehtinen et al., 2018)), which requires multiple noisy observations, or end-to-end
trained approaches (Heckell 2025)), which require paired measurement—ground-truth data.

DC loss is instead linked most strongly to classical goodness-of-fit tests such as the Kol-
mogorov—Smirnov (K-S) and Cramér—von Mises (CvM) criteria (Kolmogorov,|1933};|Cramér, |1928))
as well as related work in emission tomography (Llacer et al.||1989). The K-S and CvM formulations
provide post-hoc assessments of goodness-of-fit using L> and L discrepancies between empirical
and theoretical distributions. DC loss may be viewed as a optimization-friendly analogue of these
tests: by changing the metric, we obtain a smooth, differentiable objective suitable for optimization
rather than post-hoc assessment. This avoids the limitations of post-hoc stopping criteria in iterative
reconstruction, such as spatially variant convergence and ambiguity in determining when a recon-
struction is complete. This mechanism parallels the stabilization achieved by semi-convergence and
early-stopping methods (Elfving et al.|[2014) but embeds it directly in the loss, allowing data fidelity
and regularization to interact synergistically.

3 METHOD

3.1 FROM POINTWISE TO DISTRIBUTIONAL CONSISTENCY

The Probability Integral Transform (PIT) provides a simple way to test whether a model’s predicted
distributions are statistically consistent with observed data. For each measurement m; and its corre-
sponding predicted noise distribution D;(g; ), we compute the cumulative probability

s; = Fi(m; | §i) = Pep, (g, (c < my).

Each value s; represents the percentile position of m; within its predicted distribution. The PIT
says, that if the model is correctly calibrated, these percentiles are uniformly distributed on [0, 1]:
about 10% of data fall below the 10th percentile, 50% below the median, and so 01ﬂ Departures
from uniformity therefore indicate systematic mismatch between the model and data.

Figure[T]illustrates this idea. For a predicted signal y (red curve), we evaluate the CDF of each noise
model D;(y;) (vertical Gaussians) at the corresponding measurement m; (black crosses). Collecting

'See Appendix for a full mathematical statement of this result.
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Algorithm 1 Generalized Distributional Consistency Loss

Require: Estimate 0c O, observed data m, number of measurements N, CDFs F,--- , Fy cor-
responding to noise distributions Dy, - - - , Dy, forward operator f : @ — RY

Iy < f(6)
2: s« (Fi(ma|th), ..., En(mn|gn)) > Evaluate CDF of model at observed data
3: r < logit(s) > Apply logit transform
4: Sample u ~ Logistic(0, 1)V > Generate /N samples from target distribution
5: Sort r and u in ascending order
6: Lpc(0) + + Zf\; |ri — wil > Compute Wasserstein-1 distance
7: return Lpc(6)

these s; values yields an empirical distribution whose shape reflects how well the model explains
the data:

* Underfitting: a histogram with peaks near 0 or 1 shows that most measurements lie in
improbable regions of their predicted distributions D; (g; ).

* Well-calibrated: a uniform histogram shows that each quantile contains its expected share
of data.

* Overfitting: a histogram with a sharp peak near 0.5 shows that most measurements lie near
the center of their predicted noise distribution.

This motivates the concept of distributional consistency: a prediction is distributionally consistent
when the empirical distribution of its CDF values is uniform. The next subsection formalizes this
intuition into a differentiable loss.

3.2 DISTRIBUTIONAL CONSISTENCY LOSS FORMULATION

Given a current parameter estimate 8, we evaluate each measurement m; under its predicted noise

distribution D;(f(0);) via its cumulative probability

S; ‘= Fi(mi | f(H)Z) = Pc~Di(f(é)i)(C < mi). (2)
When the model is well-calibrated, the PIT guarantees that these percentiles s; follow a uniform
distribution on [0, 1]. We therefore aim to make the empirical distribution of s = (s1,...,sn) as

close to uniform as possible.

However, directly matching s to Uniform|0, 1] often leads to vanishing gradients: when a predicted

mean is far from m;, s; saturates near O or 1, giving ggf ~ (. To address this, we apply the logit
J

transform (inverse sigmoid)

r; = logit(s;) = ln( % ) , 3)

l—Si

which stretches the endpoints to 00 and preserves gradient sensitivity. This maps the uniform
target to a Logistic(0, 1) distributionE] To measure the discrepancy between the empirical {r;} and
the Logistic(0, 1) reference, we compute the Wasserstein-1 (Earth Mover’s) distance:

. 1 X
Loc(0) = 5 DI —wil, 4)
=1

where {u;}¥ | are sorted samples from Logistic(0, 1).

This formulation encourages 0 to produce predictions whose implied noise distributions make the
observed data statistically typical, rather than merely close in value, offering a principled alternative
to pointwise losses. Algorithm [I]summarizes the steps taken to calculate DC loss.

2See Appendix for a derivation.
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Figure 2: Interaction of DC loss and MSE loss with regularization. Crosses denote the predicted
noise-free values y implied by different parameter settings. With MSE loss, the estimate is pulled
toward the noisy maximum-likelihood estimate (MLE); adding regularization forces a compromise
between data-fidelity and regularity. With DC loss, many estimates that explain the data attain (near-
)zero loss, forming a manifold around the MLE; adding regularization then simply selects among
these data-consistent solutions rather than trading fidelity for regularity.

4 RELATION TO POINTWISE ERROR FUNCTIONS

4.1 EARLY-STAGE OPTIMIZATION BEHAVIOR

To avoid numerical precision difficulties, we may wish to use an approximation that directly esti-
mates r;, avoiding the need to compute the CDF value s; and then apply the logit as separate steps
(i.e. combining Steps 1 and 2 in Algorithm . For example, when D;(9;) = N (9;,02), if \moi—yl
is large then s; = Pcuar(g,,02)(c < m;) may be exactly O or 1 under float precision. To resolve
this issue, we may calculate r; = logit(s;) in one step, using appropriate approximations for s; and
logit. When s; ~ 1 (i.e. m; > 9;), using the Laplace tail approximation to a Gaussian distribution
we obtain:

.62 )
r; = logit(s;) ~ (mi — :) +1In (mZU yl) + In(v27) . (5)

202
Note that when predicted value ¢; is much smaller than the measured value m;, r; is dominated by
the squared term in the approximation. A derivation and the s; ~ 0 case are given in Appendix [C]

Now consider the DC loss contribution for index ¢ and the gradient it gives to ¢; when g; is far from
y;. The per-sample term is |r; — u;|, where r; = logit(F;(m; | 4;)) and w; is the corresponding
sorted reference value from Logistic(0,1). When Imlai_yll is large, |r;| dominates the bounded wu;,
o |r; — u;| &~ |r;| and the gradient w.r.t. §; is governed by Jr;/07;. Using the Gaussian tail
approximation in equation [, dr;/39; ~ —(m; — ¥;)/o?. Thus, far from the solution, DC loss
provides essentially the same pointwise update direction as MSE on the noisy measurement,

with differences emerging only near the data-consistent regime.

A similar result holds for Poisson noise, with DC loss exhibiting similar behavior to the negative
Poisson log-likelihood function when g; is far from the true signal value y; (see Appendix [C).

4.2 LATE-STAGE OPTIMIZATION BEHAVIOR & INTERACTION WITH REGULARIZATION

We have shown that DC loss behaves similarly to MSE/NLL when a given estimate is far from the
maximum likelihood estimate. Now, we consider how DC loss behaves close to the true solution.

Consider the simple case where the forward operator A is I and the noise model is Gaussian noise
with variance 2. Then, the ground truth noise-free measurements y are exactly the true parameters
0*. Let the noise vector be n ~ N(0, 02). Then measurements m are simply m = 8* + n.

In this setting, a “worst-case” for DC loss minimization occurs when the optimizer attributes the
noise with the wrong sign, i.e. predicting —n instead of n. Because DC loss enforces distributional
(not pointwise) agreement, this estimate attains the same DC loss as the ground truth. Then,
Oyors-pc = M — (—Il) =m+n=0"+2n. (6)
Hence, in the worst case, our Ly error is ||2n||2. Our best case is, of course, zero Lo error. In
comparison, using MSE as the data-fidelity term leads directly to the noisy maximum likelihood
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Figure 3: Images denoised with DIP over time (o = %). Top row: MSE loss; bottom row: DC
loss. DIP-MSE converges to a noisy image; DIP-DC does not.
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Figure 4: Histograms of the CDF values of measured data (s; values from Section [3.2) from per-

forming DIP with MSE (top) and DC loss (bottom) as iteration increases (o = %).

estimate, and a guaranteed Ly error of ||n| 5. Figure[2]summarizes the conclusion from this analysis,
namely that DC loss can but is not guaranteed to deliver a lower error estimate than MSE loss, and
that the quality of estimate depends also on the prior assumptions introduced and optimization path.

In the following section, we demonstrate this behavior empirically in different unsupervised inverse
problem settings.

5 APPLICATIONS

5.1 DEEP IMAGE PRIOR (DIP) FOR GAUSSIAN DENOISING

DIP (Ulyanov et all, 2020) is a popular method for unsupervised image denoising. In DIP, a ran-
domly initialized convolutional neural network is given a fixed pure-noise input and trained, with an
MSE objective, to reproduce the noisy target image. The network’s inductive bias encourages the

recovery of structured content, enabling unsupervised denoising, provided early stopping of training
iterations is used to prevent overfitting the noise in the target image 2023).

Instead of the standard MSE loss, we investigated using our DC loss with DIP to avoid overfitting
without necessitating early stopping. In our experiments, we followed the method (including the
neural architecture) of [Ulyanov et al| (2020). Appendix [E]gives the full experimental details.

In Figure El we show the result of the DIP method using our DC loss (DIP-DC) and MSE (DIP-
MSE). It is clear that after 1,000 iterations DIP-MSE begins to overfit to noise. By 10,000 iterations,
this has resulted in severe degradation of the image quality, with the noise spikes from the noisy
image visible in the DIP-MSE image. In contrast, the DIP-DC image suffers no such degradation.
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Figure 6: PET image reconstructions formed with three iterative algorithms (NLL-Adam, DC-Adam
and MLEM) shown with increasing iteration number. The proposed DC loss (row 2) clearly avoids
the noise overfitting with NLL as an objective, whether with Adam optimization (row 1) or with the
MLEM optimization algorithm (row 3).

This effect is also seen in the histograms of s; values (Figure ) and loss trajectories (Figure [5) for
each case. Figure @ demonstrates that the MSE loss tends to zero for DIP-MSE, while the MSE
loss converges to a non-zero value for DIP-DC. Similarly, in Figure [Sb| DC loss tends towards zero
for DIP-DC, and converges to a value away from zero for DIP-MSE.

Further, in Figure [5c| we plot the PSNR during the optimization process, showing that DIP-DC
achieves its optimum PSNR and then plateaus, while training with the standard MSE loss leads to
worse performance over time. We also observe that the peak PSNR achieved is higher with DIP-
DC compared to DIP-MSE. Figure shows that this trend is not confined to o = %, but is
general: DIP-DC outperforms DIP-MSE at peak PSNR, and the improvement increases with o.
We hypothesize that this is because with MSE loss, the DIP network begins to overfit to noise before
finer details can benefit from the inductive prior; as our DC loss does not allow overfitting, we avoid

this issue and thereby achieve stronger regularization.

In Appendix [E] we show further results and trends with varied o values, as well as results evaluating
the effect of misspecifying the noise model.

5.2 TOMOGRAPHIC IMAGE RECONSTRUCTION FROM POISSON NOISY MEASUREMENTS

Medical imaging features many noisy inverse problems, of which a notable example is positron
emission tomography (PET). In PET image reconstruction, a linear forward model A maps the
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Figure 8: Edge-preserving TV-regularized PET image reconstruction with different data terms. Un-
der NLL, the regularizer must both suppress noise-fitting and impose structure; with DC loss, noise-
fitting is already controlled, so the regularizer can concentrate on promoting desirable properties.
This yields lower error and better detail at smaller 5 for DC+TV than for NLL+TV.

unknown activity image 6 to the ideal sinogram y = A@. The detector then records counts m ~
Poisson(y), introducing Poisson measurement noise that reconstruction algorithms must handle.

Clinical PET scans meet DC loss’s assumptions of a known noise model and a large number of
independent measurements. We investigate the use of DC loss for PET image reconstruction from
noisy measurement data. Existing unregularized algorithms optimize an image estimate with respect
to the negative Poisson log-likelihood (NLL):
N
NLL(6|m) = > —m; In([A6];) + [A6]; + In(m;!) . 7)
i=1
Clinically-used algorithms for PET reconstruction, such as MLEM (maximum-likelihood
expectation-maximization) (Shepp and Vardi, |1982)), use early stopping on the number of iterations
to avoid overfitting, which manifests as noise spikes and other image artifacts (Jonsson et al.l |{1998).

Using a BrainWeb phantom (Cocosco et al., [1997), we modeled the PET reconstruction process in
2D with a single ring of a cylindrical PET scanner (Schramm and Thielemans}, [2023). We then op-
timized an image 6 with respect to the NLL and DC loss using Adam (Kingma and Bal 2015)) (with
learning rate 5 x 103), as well as using the clinically-relevant MLEM algorithm for comparison.

In Figure[6] we show the visual results from each algorithm over 10,000 iterations. We see that both
MLEM and NLL-Adam overfit to noise in the image, with varying convergence rates. We further see
that DC-Adam does not overfit the noise in the data. This is also observed in Figure [7a) where the
NLL of the DC-Adam image plateaus after 2,000 iterations, and in Figure[7b| where the NLL-Adam
and MLEM images do not converge to zero DC loss. In Figure[/c| we see that DC-Adam converges
at the minimum error of NLL-Adam, although MLEM achieves a slightly better minimum error than
both (likely due to the non-negativity constraint in the MLEM algorithm).

In this setting the problem is less over-parameterized than in Sections [5.1] and Appendix SO
perfectly fitting the noise is harder. Even so, DC loss delivers a clear advantage: it converges to its
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Figure 9: An axial slice from reconstruction of a real 3D PET dataset with DC-Adam or NLL-Adam,
demonstrating the stable late-iteration behavior of DC loss as observed in synthetic experiments.

best solution and stays there, rather than briefly peaking and then chasing noise. In practice this
yields stable late-iteration behavior without early stopping, fewer noise artifacts in highly iterated
images, and better agreement with the assumed noise model. By contrast, conventional fidelity
terms tend to overfit as iterations progress. Additional setup details and experiments on the impact
of over-parameterization are provided in Appendix

5.2.1 REGULARIZATION WITH DC LOSS

Regularization is commonly used in medical image reconstruction to compensate for the
noise—fitting tendency of standard data-fidelity terms. We therefore augmented the PET image re-
construction objective with a regularization penalty, which introduces the regularization strength
hyperparameter 3

¢(0,m) = NLL(O|m) + 5-TV(8) . (8)

For this experiment, we reconstructed from 4 x lower count data while using an edge-preserving
variant of total variation (TV) as the regularization term (details in Appendix [F:4).

DC+TYV achieved better quantitative accuracy and stronger noise suppression at its optimum S than
NLL+TV, as shown by Figure[8] Very notably, even with little to no regularization, DC loss still
delivers low NRMSE results. In contrast, as shown in Figure [§b] NLL+TV required substantially
greater regularization to counter noise fitting; the reconstruction with lowest NRMSE is noticeably
smoother and less detailed than its DC+TV counterpart. Notably, the optimal 5 for DC+TV also
was orders of magnitude smaller than for NLL+TV (Figure [8a); this aligns with our hypothesis that
DC loss doesn’t place regularization in opposition to data-fidelity (see Figure [2)).

By curbing noise fitting at the data-fidelity term, DC loss enables a more favorable trade-off: weaker
regularization suffices to suppress noise without sacrificing detail.

5.2.2 REAL PET FEASIBILITY STUDY

To assess the practical feasibility of DC loss on real measurement data, we applied it to a clinical
3D PET brain scan acquired on a Siemens Biograph mMR system. The dataset comprises over 70
million lines of response, and reconstruction uses a full physical forward model including attenua-
tion, detector normalisation, scatter, and randoms. An axial slice comparing the vendor reconstruc-
tion with late-iteration DC-Adam and NLL-Adam reconstructions (10,000 iterations, 21 subsets) is
shown in Fig. [0} full reconstruction details are provided in Appendix [F3]

In this clinical dataset, DC loss yields a stable late-iteration reconstruction, whereas NLL-Adam dis-
plays the characteristic high-frequency amplification commonly observed at large iteration counts.
This experiment therefore demonstrates that DC loss is operationally feasible on real clinical PET
data and behaves as expected under realistic measurement and modelling conditions.

This experiment is intended as a first demonstration of real-world applicability. In practice, the
regimes where overfitting becomes most problematic are lower-dose acquisitions or high-resolution
reconstructions, where stronger priors are typically used. Those settings provide natural next targets
for evaluating DC loss in even more challenging scenarios.
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6 DISCUSSION

Across the settings we have studied, DC loss initially tracks pointwise losses but then shifts trajec-
tory and converges once the measurements are statistically explained, at which stage, in contrast,
further updates with pointwise losses mostly chase noise rather than signal. This behavior matches
the theory in Section [4} once the set of CDF values is close to the uniform target, DC no longer
rewards per-sample noise fitting.

Crucially, combining DC with regularization, whether implicit (e.g., DIP) or explicit (e.g., edge-
preserving TV), yields stronger results than pointwise losses, because DC reduces the tension be-
tween data-fidelity and regularization; the fidelity term stops pulling toward noise, and the regular-
izer can preserve structure instead of fighting noise fitting.

As discussed in Section 2] DC loss effectively defines an equivalence class of solutions: any
prediction that induces an (approximately) uniform distribution of CDF values across measurements
attains low DC loss. This flattens the objective near good solutions. While this guards against
noise-chasing, it does not by itself distinguish between plausible and implausible signals within the
data-consistent regime; architectural priors or explicit penalties provide that structure.

We expect DC loss to be most useful (a) in over-parameterized regimes where many viable solutions
exist and noise fitting is a concern, and (b) when paired with priors that encourage interpretable or
realistic outputs. In the main text, we have shown DC loss integrating well with DIP and handcrafted
priors. We further demonstrate applicability to 1D noisy deconvolution in Appendix [D] and noisy
image deblurring with plug-and-play priors (Venkatakrishnan et al.l 2013) in Appendix |G} we also
anticipate compatibility with score-based generative models for inverse problems (Song et al.,[2022).

6.1 LIMITATIONS AND SCOPE

DC loss assumes independent measurements and a known (or estimable) noise model per measure-
ment, and it benefits from a large enough set of measurements to reliably assess collective residual
behavior. These conditions hold in many large-scale inverse problems (e.g., imaging, tomography,
spatial sensing) but may limit applicability in small-data regimes or when noise is poorly charac-
terized. Likewise, DC is not designed for settings where the ill-posedness of the forward operator,
rather than noise, is the main challenge, such as inpainting or problems with large null spaces, where
overfitting noisy measurements is not a primary concern. For discrete noise models (e.g., Poisson),
exact uniformity of CDF values need not hold; the randomized probability integral transform could
be employed (Appendix [A.3). Computationally, DC loss adds overhead time relative to pointwise
methods (Appendix [H), although in our experiments this was not a bottleneck.

Finally, because DC loss tolerates a family of statistically valid solutions, it does not, on its own,
enforce structural properties such as regularity, sparsity, or coherence. As with pointwise losses,
priors or regularizers remain important to steer reconstructions toward plausible signals.

6.2 FUTURE WORK

We focused on DC loss paired with non-learned regularization to isolate the behavior of the fidelity
term itself. Appendix G shows that similar benefits also appear in a learned plug-and-play setting,
suggesting that DC loss should extend naturally to learned priors. Further work should explore this
integration more fully and study DC loss across additional operators, noise models, and problems.

7 CONCLUSION

We introduced distributional consistency (DC) loss, which reframes the data term in inverse prob-
lems as statistical consistency with the noise model across many independent measurements in a
single noisy dataset. The central advance is that DC loss removes the incentive for noise-chasing in
the data term, so optimization no longer rewards fitting a particular noise realization and regulariza-
tion can focus on structure rather than suppressing noise. Empirically, in DIP denoising and PET
image reconstruction, DC loss reduced reliance on early stopping and improved noise—detail trade-
offs, consistent with this picture. DC loss is simple to implement, compatible with standard priors,
and provides a practical data-fidelity term for many inverse problems with known noise models.

10
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REPRODUCIBILITY

To ensure the reproducibility of this work, further experimental details are listed in Appendices

and Additionally, Appendix [C] details the approximations used to enable practical
implementation of DC loss, with algorithm pseudocodes given as Algorithms 2] [3land[d Appendices

[A]and[B|also give more mathematical derivations used to support the formulation of DC loss.

A link to an anonymous repository containing source code will be uploaded for the reviewers to
view upon opening of the discussion forum.
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APPENDIX

ORGANIZATION

This appendix is organized as follows.

* Appendix [A] presents additional mathematical details supporting the derivation of DC loss.

* Appendix |[B| is more mathematically involved, and concerns the implications between
whether low DC loss implies low signal error and vice versa.

» Appendix |C| derives tail approximations used in the practical implementation of DC loss,
and gives the pseudocodes for implementing DC loss.

* Appendix [D]presents an illustrative example using DC loss to mitigate noise-fitting in 1D
signal deconvolution, with results that support the conclusions of the main paper in an
additional application area.

* Appendix[E]relates experimental details and further experimental results for the DIP section
of the main paper, including the effect of a mismatched noise model.

* Appendix [F] presents analogous content for the PET section of the main paper.

* Appendix [G] presents an example application of DC loss to a plug-and-play framework.
* Appendix [H] presents data on the time efficiency of DC loss.

* Appendix [[| declares the usage of LLMs as required by ICLR.

A  MATHEMATICAL DERIVATION OF DISTRIBUTIONAL CONSISTENCY LOSS

A.1 PROBABILITY INTEGRAL TRANSFORM (PIT)

We will justify the statement in Section that if the model parameters 6 are close to the true

parameters 0*, then the values s; := Fj(f(6),m;) are approximately uniformly distributed on
[0, 1]. This relies on the classical probability integral transform (Pearsonl [1938)), which we state and
prove below for convenience.

Lemma A.1 (Probability Integral Transform). Let Z be a continuous random variable with CDF
Fz. Then the transformed variable
U= Fy(2) )

is uniformly distributed on the interval [0, 1].

Proof. Let u € [0, 1]. We compute the CDF of U:

P(U <u) =P(Fz(Z) < u) (10)
=P(Z < F;'(u )) (11)
= Fz(F; " (u) = (12)

Here, I, 1(u) denotes the (generalized) inverse CDF of Z, which exists because F; is continuous
and strictly increasing. The last equality follows from the definition of the inverse CDF.

Thus, the distribution function of U is P(U < u) = w, which is the CDF of the uniform distribution
on [0, 1]. Therefore, U ~ Uniform|0, 1]. O

Application. In our context, for each ¢, let m; be a measurement assumed to be drawn from the
continuous model distribution D;(f;(6*)), which has CDF F;(6*,-). Then the probability integral
transform implies:

s; := F;(0*,m;) ~ Uniform|0, 1] . (13)

If 6 ~ 6*, then s; = Fi(é, m;) is approximately uniformly distributed as well (assuming f and D
are sufficiently well-behaved). This statement is made more precise in Appendix

14
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A.2 LOGIT TRANSFORM OF UNIFORM DISTRIBUTION

Let U ~ Uniform(0, 1) and define

7 = logit(U) = log (1_UU) . (14)

We show that Z ~ Logistic(0, 1) by deriving its CDF directly.

By definition of Z, we compute its CDF using the transformation method:

U
Fz(z) :IP’(ZSZ):IP’(Iog (1U> gz) . (15)
Apply the monotonic function exp to both sides:
U
FZ(Z)=P<1_U§€Z> . (16)
Solve the inequality for U:
U e?
<ef = U 17
-0~ =1t {an
Thus,
eZ
F =P < . 1
o) =P (U< 15 as
Since U ~ Uniform(0, 1), we have
e® 1
F = = . 1
#(2) 1+e* 14+e* (19
The CDF of Z matches that of a standard Logistic(0, 1) distribution. Therefore,
logit(U) ~ Logistic(0,1) . (20)

A.3 APPROXIMATION OF THE CDF OF A DISCRETE RANDOM VARIABLE

The probability integral transform in subsection[A.T|applies to continuous noise. For discrete noise,
F7 is a step function, so the naive PIT is not exactly uniform. In this work we use the naive
approach, which is often adequate in practice; we also note a simple randomized variant that would
make the transform exactly uniform if desired.

(A) Naive (non-randomized) PIT can be close to uniform when support is rich. Let Z be a

discrete random variable with CDF F; and pmf pz, and let m; il 7 . Define s; = Fz(m;) and the
empirical CDF
1
Fuuw) = & > s <ul. 1)

i=1

As N — oo, F, converges to the distribution of Fz(Z), which places mass at the jump values of
Fz. When Z has many support points with relatively balanced probabilities, the mass of F(Z)
is spread across many levels in [0, 1], and the empirical histogram of {s;} can look visually close
to uniform (e.g. see Figure [FI). This heuristic supports the empirical usefulness of DC loss with
discrete noise even without randomization.

(B) Randomized PIT makes the transform exactly uniform (discrete case). Define an indepen-
dent U ~ Uniform[0, 1] and the randomized PIT

Smd — Fu(Z7) 4+ Upz(Z),  where Fz(27) :lti%nFZ(t). (22)

15
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A direct calculation shows S™9 ~ Uniform|0, 1]. Indeed, for any u € [0, 1],

PS4 < u) Z]P’ ( 7(z7) +Upz(z) <u‘Zfz> (23)
u—F
*sz z Z((Z)))"'I{USFZ(Z)} = u, (24)

where (-)4 is the positive part and we used that the jumps of F partition [0, 1]. Applying the
(monotone) logit map gives

R™ = logit(S™*) ~ Logistic(0,1). (25)

Therefore, at the population level the DC loss is exactly zero.

Practical takeaway. Our experiments used the naive PIT for discrete noise (for simplicity). If
exact uniformity (and hence exact logisticity after the logit map) is desired at the population level,
one could instead apply the randomized PIT above with no other changes to the framework.

16
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B RELATIONSHIP BETWEEN DC L0OSS AND ERROR

Notation. Notation follows the main text. We briefly restate the pieces used below. Let 8* denote
the ground-truth parameter, f the forward operator, and y = f(0*) € R¥ the true signal vector. For
any candidate parameter , write § = f(6). For each i € {1,..., N}, the observation mn; (the ith
component of m € RY) is drawn from a parametric family D; (y;) with continuous CDF F;(- | ;).
Define the probability integral transform (PIT)

5i(0) = Fy(m; | 9;) € (0,1), (26)
and set . A
ri(0) = logit(s;(9)) € R. (27)
Let the empirical residual-score measure be
R 1 &
Poion =N 2; 0r.(6)° (28)
=
Independently, draw Z1, ..., Zp; kS Logistic(0, 1) and define the empirical logistic measure
. 1 X
pYe = 7 Z 8z, (29)
j=1

The (empirical two-sample) DC loss is
Lyu(0) = Wi(P, 5, Prf). (30)

Signal errOIE] is measured by the average squared error:
N 1 & 2
Erry(6) = Z; (9: — i) @31

B.1 ZERO SIGNAL ERROR = NEAR-ZERO EMPIRICAL DC LoOSS

Proposition B.1. [f Erry (é) = 0, then y; = y; for all i, and the following hold:
(a) Expectation identity. For each i and any bounded measurable test function f,

E[f(r:(8))] = Ezrogistic(o.n)[f(Z)]. (32)
(b) Empirical two-sample convergence. As N — oo and M — oo,

Lym(0) = Wi(P,, g, PF) 0. (33)
In particular, this holds if M = N and both tend to infinity.

(c) Two-sample rate in expectation. There exists a universal constant C < oo such that for all
N, M >1,

E[Ly.(0)] < c(\/ljv + \/%) . (34)

Proof. Since Errg(é) = 0, we have y; = y; for every 7. By the probability integral transform (with
F; continuous),

s:(0) = F;(m; | y;) ~ Uniform]0, 1]. (35)
Because logit : (0,1) — R is measurable and strictly increasing, the image of a uniform variable is
standard logistic; hence

r:(0) = logit(s;(#)) ~ Logistic(0, 1), (36)

3In this section, signal error is taken to mean the error on the forward-modeled estimate.
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which yields (a): for any bounded measurable f,

E[f (ri (é))] = EZNLogistic(O,l) [f(Z)] (37)
For (b), write P8 for the population logistic distribution and apply the triangle inequality:
> plo > lo lo plo
Wl(P{”(é)}, PE) < Wl(P{n_ oy P ) + W, (Plo5, PyE). (38)

Conditionally on {; = y;}. the sample {r;(8)}Y | is i.i.d. from P with finite first moment, and
similarly {Z; }]Ail is i.i.d. from P'°% and independent. By standard results for empirical measures
on R,

Wi(P,. g)y» P%%) 2250 as N — oo, (39)
Wi(P8, P%¥) 5 0 as M — o0, (40)

hence LN,M(BA) 225 0as N, M — .

For (c), take expectations and use known one-dimensional bounds for the empirical Wasserstein-1
distance (via the quantile representation and the Dvoretzky—Kiefer—Wolfowitz inequality):
R C A C
lo lo lo
BW(Pp o P < 5 EWAPSS BF)] < S

Combining with the triangle inequality gives

E[Lnm(0)] < C’( +1>. 42)

VM
O

3-

B.2 SMALL SIGNAL ERROR = SMALL DC LosSsS

We now argue that when the forward-model error is small, the empirical DC loss must also be

small. Intuitively, if §; is close to y; for each i, then the corresponding PIT values s;(0) are close

to the uniform law, hence their logit-transform r;(8) is close to the logistic law, leading to small
Wasserstein distance.

Proposition B.2. Suppose that for each i the CDF F;(- | n) is Lipschitz-continuous in 1, with
constant k; > 0 in the sense that

\Es(m | m) — Fi(m | y:)| < wiln—wi|  forallmin the support. (43)
Then the residual scores ;(0) satisfy
|logit(F;(m; | §:)) — logit(Fy(ms | i) | < Lildis — wil, (44)

where L; is a finite constant depending on r; and on the boundedness of the logistic derivative on
the relevant intervalll

Consequently, writing A\; = ; — y;, the empirical residual-score measure obeys
N
- - 1
Wi(Pp o)y Prratery) < NZILilAil- (45)

Corollary B.3. If Erry(0) = ~ 32, A2 is small, then the expected DC loss is also small. In
particular,

E|[Ly(0)] < C< Erra(6) + \/1M> (46)

where C.is a constant depending on the average Lipschitz constants % >, Li and the logistic ref-
erence distribution.

Proof sketch. The Lipschitz assumption transfers small perturbations in the signal values y; — y;
to small perturbations in the PIT values, and hence (by smoothness of the logit map on compact
intervals) to the residual scores. Averaging and using the definition of the Wasserstein-1 distance
yields the stated bound. Taking expectations and combining with the standard empirical-process

bound for p}\?fg relative to its population limit then gives the corollary. O

*Since logit has derivative 1/(s(1 — s)), it is Lipschitz on any compact sub-interval [¢,1 — ¢] C (0,1). In
practice, tail values contribute negligibly to Wasserstein-1, so this suffices.
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B.3 DOES SMALL DC Loss IMPLY SMALL ERROR?

The converse direction is more delicate. In general, while small DC loss does imply some bounds
on the signal error, it is not true that as DC loss tends to zero that signal error must also tend to zero.
DC loss is a global distributional criterion: it requires the logistic residual values to be statistically
indistinguishable from the logistic distribution, but this is only in aggregate and doesn’t place a
strong constraint on individual data points.

For example, in the Gaussian-noise identity model discussed in Section the estimate 6 = 0*+2n
produces residuals with the same distributional law as the true 8*, and hence yields nearly zero DC
loss, despite incurring Lo error ||y — y|l2 = [|2n||2. Thus low DC loss can coexist with hig
estimation error.

To obtain an implication of the form

L£(0;) -0 = Erry(6;) -0 forasequence of estimates (6,),

one would need to impose additional conditions, such as: (i) identifiability of the forward model,
(ii) additional constraints to DC loss introducing uniqueness for the distributional match, or (iii) the
use of regularization to select among the manifold of DC-loss minimizers.

In short, while small signal error always forces small DC loss, the reverse is not automatic: DC
loss controls distributional consistency, not pointwise closeness, and only under stronger structural
assumptions can the two be shown to coincide exactly.

Remark (role of regularization). DC loss enforces a distributional match: many parameter set-
tings can produce logit residual values that look logistic, so DC loss by itself may not pick a unique
solution. Regularization (implicit or explicit) is therefore essential: not as a penalty that trades off
data-fidelity (as with MSE/NLL), but as a selection rule within the set of DC-consistent solutions
(see Figure[2). This lens explains why DC loss can yield either higher or lower estimation error than
MSE, depending on the regularizer and optimization path. In practice, across the applications we
studied, DC loss performed reliably with standard forward models and regularizers. A plausible ex-
planation is that, far from the MLE, DC loss behaves similarly to pointwise losses (see Section ,
guiding optimization toward comparable estimates; near the solution, regularization selects among
the (near-)zero—DC loss candidates in a way that aligns with prior structure.

B.4 FROM SIGNAL ERROR TO PARAMETER ERROR
In this appendix we have measured error in the signal space, via

N
Erra(0) = &> (9 —vi)? y=f(0), y=f(0).
i=1
This choice is natural because both the DC loss and pointwise losses are defined directly on the
forward-modeled data, and it allows us to unlink the choice of forward model from the error analysis.
Nevertheless, one ultimately seeks control of the parameter error |0 — 6*||.

A simple link can be stated under mild conditions on the forward operator f. If f : © — R is
injective and locally bi-Lipschitz around 8%, then there exists a constant C' > 0 such that

16 —6%|| < C|y—yl2 = C\/NEr,(8). (47)

Thus small signal error implies small parameter error. In particular, our results showing that small
signal error leads to small DC loss extend, under such regularity assumptions, to the conclusion that
parameter estimates with low error also have low DC loss.

>Note DC loss will never reward an estimate that produces residuals that are extremely far from the true
signal, as it still penalizes residuals that are many o from the noisy signal value. As o tends to zero, the bound
that DC loss places on signal error will also tend to zero.
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C EVALUATING DC LOSS IN PRACTICE: CALCULATING THE LOGIT
FUNCTION OF A CDF VALUE

In subsection we motivated the direct approximation of logit(s) to avoid numerical precision
difficulties sequentially calculating s and applying the logit function. In this appendix, we derive ap-
propriate tail approximations to logit(s) for the cases of the Gaussian, Poisson and clipped Gaussian
distributions. These approximations are useful in settings where s is close to 0 or 1 and separately
evaluating the logit function and CDF is numerically unstable.

C.1 GAUSSIAN DISTRIBUTION

C.1.1 APPROXIMATING LOGIT(s) FOR THE TAILS OF A GAUSSIAN DISTRIBUTION

Consider drawing a measurement mn from a Gaussian distribution /' (§, o2). Let

sij(m—y)’ (48)
g

where ® denotes the standard Gaussian CDF, and

logit(s) = log (1 i s) . (49)

We derive asymptotic approximations for logit(s) in the extreme tails, where s = 1 or s /2 0. Define
the standardized variable:
z:= m-y . (50)

g

RIGHT TAIL: 2 > 0 (I.LE., s = 1)

Using a classical Laplace approximation for the upper tail of the Gaussian CDF,

1
1—@(2)72‘576722/27 asz — 00, 51

V2

we get:

1— 2
logit(s) = log (18> = —log (8) ~ —log(l —s) =~ % +logz +logv2m. (52)
-3 S

Thus,

N L\ 2 N
— 1 — —

logit <<I> (my)) ~ 3 (my) + log (m y) +logV2m, asm>7g. (53)
o o

g
LEFT TAIL: 2z < 0 (I.E., s = 0)

For large negative z, we use the lower tail approximation:

1 2
P(z2) ~ e * /% asz— —oc0. 54
O~ (54
Then,
2
logit(s) = log(s) — log(1 — s) =~ log(s) ~ f% —log |z| —log v2r . (55)
So,

m—y
o

—logVv2r, aam<y. (56)
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Algorithm 2 Distributional Consistency Loss for Gaussian Noise

Require: Parameter estimate é, observed data m, standard deviation o, number of measurements
N, tail threshold 7
1.y« f(0) > Predicted signal
2: Initialize empty vector z of length N
3: for7=1to N do

4 i 4= > Standardized residual
5: if z; > 7 then
2
6: i < 3 +log(z;) + log V2m > Right tail approximation
7: else if z; < —7 then
z,2 . . .
8: ri < —5 —log(|zi|) — log v2m > Left tail approximation
9: else
10: s; — D(z) > Evaluate Gaussian CDF
11: r; < log (1?’5' ) > Standard logit transform
12: end if
13: end for
14: Sample u ~ Logistic(0, 1)V > Generate N samples from reference distribution
15: Sort r and u in ascending order
16: L+ + SN — gl > Wasserstein-1 distance
17: return L
SUMMARY

Let z = mTﬂ;, then:

2
%—l—logz—i—log\/%r, z> 0,
2
logit (®(2)) ~ —% —log|z| —logV2m, z<0 (57
)
log (1((;22)) otherwise .

C.1.2 PSEUDOCODE FOR CALCULATING DISTRIBUTIONAL CONSISTENCY LOSS WITH
GAUSSIAN DISTRIBUTION

Algorithm gives a full pseudocode for calculating the distributional consistency loss when D;(§) =

N(g,02).
C.2 CLIPPED GAUSSIAN CDF

We extend our logit-CDF approximation to the case of a Gaussian distribution clipped to the interval
[0, 1]. This arises in applications where measurements are inherently bounded, such as normalized
image intensities. To handle this, we define a smoothed approximation to the CDF that matches
the Gaussian in the interior but transitions linearly near the boundaries to maintain continuity and
gradient stability.

Let ®(m; 4, o) be the Gaussian CDF centered at § with standard deviation o, and let ¢ > 0 define

the width of two linear regions near 0 and 1 respectively. We define a modified CDF F (m|g) for
m € [0, 1] by:

Q)(e;g7g)~T’ 0<m<e
€
F(m|g) = { ®(m;9,0), e<m<l—e¢ (58
—(1-—
<I>(1—e;g},o)+(1—<1>(1—e;g},a))-w, l—-e<m<1.

This construction ensures a smooth approximation to a clipped Gaussian CDF while avoiding dis-
continuities in the derivative.
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For measured values that are exactly 0 or 1, we uniformly resample the values to be within [0, €]
or [1 — €, 1], respectively. This avoids degenerate gradients and provides a consistent treatment of
boundary values.

To compute the logit of the CDF, we apply:

logit(F(m|g)) = log (%) . (59)

In the linear regions near 0 and 1, F'(m|{) behaves approximately linearly with respect to m, and
no special tail approximation is needed beyond standard numerical clamping (we clamp to a small
interval [enara, 1 — €nara] to avoid instability). In the central region of m values, the logit is computed
directly, with the tail approximations given in Equation |57|where m and ¢ are far apart.

This approach allows for stable and differentiable evaluation of logit(F'(m|g)) across the full range
of m € [0, 1], including at the boundaries.

C.2.1 PSEUDOCODE FOR CALCULATING DISTRIBUTIONAL CONSISTENCY LOSS WITH
CLIPPED GAUSSIAN DISTRIBUTION

Algorithm[3|gives a full pseudocode for calculating the distributional consistency loss for a Gaussian
distribution clipped to [0, 1].

C.3 PoissoN CDF
C.3.1 POISSON-GAMMA DUALITY

We consider how to efficiently evaluate the CDF of a one-dimensional Poisson random variable at
a measured value, i.e. compute s; values as defined in Section Suppose m € N is drawn
from a Poisson distribution with unknown mean, and 3 is a predicted mean value. We consider
the following Poisson-Gamma duality lemma that shows we may equivalently use an appropriately
defined Gamma CDF instead of a Poisson CDF:

Lemma C.1. Forally > 0 and m € N,

S(:&a m) =1- t(@7 m)a (60)
where
. e~ ¥ ~k . g e~ Uy™m
s(g,m) = k'y , t(g,m)= / — du. (61)
k=0 . 0 m:

Proof. Let X ~ Poisson(y) and Y ~ Gamma(m + 1,1). Then:
s(g,m) =P(X <m), (62)
tg,m) =P(Y <g). (63)

To justify the identity P(X < m) = P(Y > ), we appeal to the structure of a homogeneous
Poisson process { NV (t) };>¢ with unit rate. Then:

e The time Y of the (m + 1)™ event follows a Gamma distribution: ¥ ~ Gamma(m+ 1, 1).
. The count X = N(§), the number of events up to time ¢, is Poisson distributed with mean
7.
By construction, the events of the Poisson process satisfy:
{N(@@) <m} = {Y >4}, (64)

since if the (m + 1)™ event has not occurred by time g, there can be at most m events up to that time.
Therefore,
P(X <m)=PY >7g). (65)
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Algorithm 3 Distributional Consistency Loss for Clipped Gaussian Noise (with Tail Approxima-
tion)

Require: Parameter estimate é, observed data m, standard deviation o, number of measurements
N, ramp width e, tail threshold &
1y« f(6) > Predicted signal
2: Initialize empty vector r of length N
3: fori =1to N do

4 q<Yi
5: m 4 m;
6: if m = 0 then
7: m < Uniform(0, ¢) > Perturb endpoints to avoid discrete effects
8: else if m = 1 then
9: m < Uniform(1 — ¢, 1)
10: end if
11: 2 =4 > Standardized residual

122 ce 4 5(%)
130 e + @ (1279

g

14: if m < e then

15: S (%) - Ce > Linear ramp left
16: elseif m > 1 — ¢ then

17: S4Cl_e+ (@) (I—c1-e) > Linear ramp right
18: else

19: s ®(2) > Standard Gaussian CDF in central region
20: end if

21: if s < § then > Tail approximations to Logit of Gaussian CDF
22: ri < — (% + log(]z]) + log \/27r)

23: elseif s > 1 — 4 then

24: ri < % +log(|z]) + log v27

25: else

26: r; + log (1fs)

27: end if

28: end for

29: Sample u ~ Logistic(0, 1)V > Reference distribution
30: Sort r and u in ascending order

31: L+ Zfil |ri — wl > Wasserstein-1 distance

32: return L

Substituting equation [62} equation [63] and equation [65] gives:
5(y7m) =1- t(g7m> ) (66)

as claimed. O

As a consequence of the Poisson-Gamma duality lemma, we may calculate s in Section [3.2] by
evaluating the CDF of a Gamma(m + 1, 1) random variable. This is beneficial because PyTorch
does not support evaluating the CDF of a Poisson random variable, but does support evaluating the
CDF of a Gamma random variable. (While specifying a Poisson CDF manually is possible, it is
simpler to make use of optimized PyTorch functions where possible).

C.3.2 APPROXIMATION OF LOGIT(s) FOR POISSON CDF TAILS VIA GAMMA DUALITY AND
TAIL EXPANSIONS

Building on the Poisson-Gamma duality s(4, m) = 1 — ¢(g, m), where

Yy _—u,m
t(i),m) = / < mlf du=P(Y <§), Y ~Gamma(m+1,1), 67)
0 :
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Algorithm 4 Distributional Consistency Loss for Poisson Noise

Require: Parameter estimate é, observed data m, number of measurements [V, tail threshold e
1: y « f(6) > Predicted signal
2: Initialize empty vector r of length NV
3: fori=1to N do

4: q + max(g;,0) > Ensure non-negativity
5: s+ 1 — GammaCDF(q;a =m+ 1,5 =1) > Poisson posterior tail probability
6: if s < ¢ then

7: r; < m-log(q) —q—logT'(m+1) > Lower tail approximation
8: elseif s > 1 — ¢ then

9: r; < —m - log(q) + ¢ + logT'(m + 2) > Upper tail approximation
10: else
11: r; + log (155) > Standard logit transform
12: end if
13: end for
14: Sample u ~ Logistic(0, 1)V > Reference distribution
15: Sort r and u in ascending order
16: L+ + vazl |ri — sl > Wasserstein-1 distance

17: return L

we now derive asymptotic approximations for logit(s) in the extreme left and right tails, i.e., when
9> mor § < m, respectively.

LEFT TAIL: ( > m, SO s = 0)

In this regime, the CDF s is small, and we approximate it by the leading term of the Poisson proba-
bility mass function: A
e

S

(63)

m!
Apply logit, we obtain:
logit(s) ~ logs = mlogy — 4§ — logm! . (69)

RIGHT TAIL: (§ < m, SO s~ 1)

In this case, the upper tail 1 —s = ¢(¢, m) is small. We approximate the incomplete Gamma integral
by truncating its series expansion after the first term beyond the threshold m:

yAerl
N N
Then,
R gm+1
logit(s) =~ —log(1 — s) = —log (e‘y . M) = —(m+1)logy + 7 +log(m+1)!. (71)

SUMMARY:

The full approximation for logit(s), where s = P(X < m) and X ~ Poisson(g), is given by

mlogy — y — logm! ify>m,
logit(s(j,m)) ~ { —(m+1)log g+ g +log(m+ 1! ifg<m, (72)
log (%) otherwise .

C.3.3 PSEUDOCODE FOR CALCULATING DISTRIBUTIONAL CONSISTENCY LOSS WITH
POISSON DISTRIBUTION

Algorithm gives a full pseudocode for calculating the distributional consistency loss when D; () =
Poisson(g).
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D 1D DECONVOLUTION APPLICATION

We include the following example application to illustrate the use of DC loss in a simple non-
imaging context.

D.1 ILLUSTRATIVE EXAMPLE: DECONVOLUTION UNDER GAUSSIAN NOISE

Predicted signals (x € [0.5, 0.55]) Final CDF-value Histograms

6 . B MSE-trained
—-=- True signal 210 - BN DC-trained
41 —— MSE-trained g . ————— Uniform ref.
_ 2] —— DC-trained z 8 .
2 Noisy observations S 6
" : ]
v s
L]
—44 § 2
0.50 0.51 0.52 0.53 0.54 0.55 0 0.0 02 04 0.6 08 10
S CDF value
Convolved signals (X = [0.5’ 0.55]) 0.0200 MSE Loss Trajectory 25 DC Loss Trajectory
0.5 . —— MSE-trained —— MSE-trained
-—- True Slgnal 0.0175 —— DC-trained 20 —— DC-trained
001 —— MSE-trained 0.0150 ’
_ —— DC-trained  0.0125 15
© \ . N a n g
5-05 G on kernai x  Noisy observations 2 5.0100 £
v 2 910
0.0075 -
_10 4
0.0050 05
_15 4 —0,02 0.00 0.02 0.0025
0.0000 0.0
0.50 0.51 0.52 0.53 0.54 0.55 0 5000 10000 15000 20000 0 5000 10000 15000 20000
X Iteration Iteration

(a) Top: predicted deconvolved signals estimated with (b) Top: histograms of CDF values under each model’s
MSE and DC loss. Bottom: predicted deconvolved implied noise distributions. Bottom: training loss
signals after reapplying convolution with the known curves evaluating each of MSE and DC loss on MSE-
operator H. trained and DC-trained predictions.

Figure D1: 1D deconvolution with known Gaussian blur and noise level. MSE inversion amplifies
noise artifacts, while DC loss yields a cleaner, artifact-free reconstruction.

To illustrate DC loss in a classic inverse problem, we estimate a 1D signal 8* from blurred and noisy
measurements
m=HO0"+n, (73)

where H is a known Gaussian-blur convolution and n ~ N(0,02.;..I). A single ground-truth
signal, composed of low- and high-frequency sinusoids, is forward modeled and sampled at N =
500 discrete timesteps to produce noisy observations. We parameterize 0 directly as a free vector of
length N and optimize it under two objectives: the standard MSE ||H8 — m||2 and our DC loss. To
demonstrate the properties of both losses, both reconstructions use Adam (Kingma and Bal [2015))

for 20,000 iterations with learning rate 5 x 1073,

Figure [DTa]shows that the MSE-trained solution (red) overfits by amplifying small, high-frequency
noise producing pronounced oscillations. In contrast, the DC-trained solution (blue) remains smooth
and closely tracks the true signal (green dashed).

In Figure[DTD] the top row shows histograms of CDF values under each model’s implied Gaussian
noise distribution: the MSE-trained fit collapses its histogram at around 0.5 (indicative of overfit-
ting), whereas the DC-trained fit remains approximately uniform (distributionally consistent). The
bottom row shows the loss trajectories. In the MSE-loss plot, the MSE objective for the MSE-trained
reconstruction converges towards zero, while the DC-trained reconstruction’s MSE plateaus above
zero. In the DC-loss plot, the DC objective converges to

Ey~Logistic(0,1) UUH =1In4 ~ 1.386 (74)

for the MSE-trained reconstruction (Balakrishnan, |1985) (the expected distance when all CDFs col-
lapse to 0.5) whereas the DC-trained reconstruction’s DC loss converges near zero, avoiding noise
amplification.
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The rest of Appendix |D|provides implementation details and additional experiments varying the
number of measurements and the noise level.

D.2 EXPERIMENTAL DESIGN

To investigate DC loss for the task of deconvolution, a true signal was generated as 6(x) =

sin(10mz) + % sin(407z), and uniformly sampled at N = 500 points between 0 and 1.

To simulate a degraded observation, the signal was blurred using a 1D Gaussian kernel defined in
domain units. Specifically, a Gaussian kernel in index-space with Gipdex-space blur = 1.0, correspond-
ing to a signal-space blur of oy, = 0.002 was applied with a width of 31 points (i.e. 15 neighbors
of the central point on each side). The resulting kernel was applied by convolution with reflective
boundary conditions.

Finally, additive Gaussian noise with standard deviation oyse = 0.1 was added independently to
each measurement:
mi = (HO )i +ni i ~ N(0, 0hoise)- (75)

The deconvolution task was then to recover the original signal (pre-convolution) from the noisy
measurements.

For each experiment, Adam (Kingma and Ba, 2015) with a learning rate of 0.005 was run for 20,000
iterations. A vector of zeros was used as the starting set of parameters. Experiments were conducted
with a 24GB Nvidia GeForce RTX 3090 GPU; running deconvolution with MSE and then DC loss
took ~ 4 minutes (with many experiments able to be run in parallel).

Except where otherwise defined, we took opgise = 0.1, oy = 0.002 and N = 500.

D.3 ASSESSING DISTRIBUTIONAL CONSISTENCY OF THE TRUE SIGNAL

We investigated the assumption that the true clean image should theoretically induce a uniform
histogram of CDF values (asymptotically). In Figure we compared evaluating the DC loss
on the true convolved signal and on the noisy convolved signal for a varied number of measured
datapoints N.

For high IV, we see that evaluating the DC loss on the convolved true signal yields an approximately
uniform distribution of CDF values (and correspondingly low DC loss value), while evaluating the
DC loss on the noisy image yields a histogram with a peak at 0.5 (and correspondingly high DC loss
value of approximately In 4 - see Equation[74)). For lower values of IV, we obtain higher average DC
loss values and less uniform histograms for the true convolved signal, although still more uniform
than for the noisy signal.

D.4 VARYING NOISE LEVEL

In Figures [D3] [D4] and D3] we investigated varying the noise applied to the convolved signal (with
the values oyie = 0.01, 0.05 and 0.2 respectively). We observed that at the lowest noise level,
both loss functions resulted in a near-perfect fit to the true signal, but only the DC-trained prediction
avoided noise amplification effects in the estimate of the pre-convolved signal. This trend was seen
more dramatically as the noise level was increased. The fit to the true convolved signal worsened
for both loss functions, but only the MSE-trained vector experienced extreme noise amplification in
the pre-convolved signal (as a result of overfitting).

The loss trajectories and CDF histograms observed in these cases were consistent with those seen in

Section[D.1]
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Figure D2: Investigating the DC loss values obtained and the uniformity of CDF histograms in the
ideal and worst cases of evaluating the DC loss against the true convolved signal or noisy convolved
signal respectively. Subplots show the effect of increasing the number of measurements from N =
100 to N = 1,000,000. Uncertainty values are given as 1.96x the standard deviation over 100
evaluations of the (stochastic) loss on different instantiations of noise.
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Figure D3: Results for 1D deconvolution with known Gaussian blur with oy, = 0.02 and noise
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E DIP APPLICATION

E.1 EXPERIMENTAL DESIGN

We followed the experimental design of [Ulyanov et al| (2020) to specify a denoising task
for this work. We used the same hourglass architecture with skip connections described in
their paper, using their code made available at https://github.com/DmitryUlyanov/
deep-image—prior. In all experiments, we used Adam (Kingma and Ba, |2015) with learn-
ing rate 1 x 1073, Experiments were conducted with a 24GB Nvidia GeForce RTX 3090 GPU and
run for 10,000 iterations; for the largest image size 512 x 512, running DIP-MSE and then DIP-DC
took ~ 40 minutes (with ~ 4 experiments able to be run in parallel).

Images were first normalized to [0,1]. Then, Gaussian noise was added independently pixel- and
channel-wise to 3-channel RGB images with a fixed standard deviation o. Pixel intensities were
then clipped to [0,1], as in|Ulyanov et al.| (2020). The MSE and DC loss were then evaluated after
flattening channel and spatial dimensions to a 1D vector.

The clipping function induces a non-continuous noise distribution D; for each measurement (i.e. one
channel of one pixel), with probability mass at 0 and 1. However, the CDF of a clipped Gaussian
distribution may still be well approximated, and we use such an approximation in our experiments
in this section (details given in Appendix [C.2).

We investigated varied noise levels from o = 3% to 0 = 322, We fixed the random image and net-

work input for experiments comparing DIP-MSE to DIP-DC; for repeatability, we ran experiments
with 5 random seeds. Where error bars are shown in Figure [5d} [E2] and [E3] these are with respect
to 5 random initializations of random noise and network parameters. The results shown in the main

body of the paper are for random seed 0 and o = 27%, for the image of an F-16 aircraft.

The F-16 aircraft image is from a standard dataselE] intended for research purposes. The train, plane
and castle images are from Martin et al.| (2001) (and our usage complies with the custom license,
which states use is permitted “’for non-commercial research and educational purposes”). The cat
image is reproduced with permission from the photographer.

E.2 ASSESSING THE DISTRIBUTIONAL CONSISTENCY OF THE CLEAN IMAGE

We empirically validate the assumption that the true clean image should theoretically induce a uni-
form histogram of CDF values (asymptotically). In Figure[ET] we see that evaluating the DC loss on
the clean image yields an approximately uniform distribution of CDF values (and correspondingly
low DC loss value), while evaluating the DC loss on the noisy image yields a histogram with a peak
at 0.5 (and correspondingly high DC loss value of approximately In 4 - see Equation [74).

E.3 EFFECT OF VARIED NOISE LEVEL
10 100
255 255

Figure [E2] shows the peak SSIM achieved by each method on the F-16 image. Figure shows
the peak PSNR, the PSNR of the final image and the PSNR of the mean of the images at the
9100™, 9200™, - - - , 10000™ jterations.

In Figures [E4] [E5] [E6] [E7and [ES] we give more detailed results (for seed 0) at different noise levels
o.

We varied o from o = too = and performed DIP with each loss at each o.

E.4 RESULTS WITH VARIED IMAGES

We additionally show some results with varied o for different images, to validate that our findings
generalize beyond the F-16 aircraft image used in the main text.

Figure [E9| shows the output of DIP-DC and DIP-MSE on a selection of natural images at varied o.
These results are explored in more depth in Figures and showing loss curves

that correspond with what was observed in Section

6https ://sipi.usc.edu/database/database.php?volume=misc&image=11
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PSNR vs Noise Level
(for various choices of output image)
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Figure E3: PSNR metric values of variant outputs for DIP-MSE and DIP-DC. Specifically, the peak
PSNR achieved, the PSNR of the image at the 10000™ jteration and the PSNR of the mean of the
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-, 10000 iterations are shown. Uncertainty is with respect to 5
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Figure E4: Results for DIP-MSE and DIP-DC at 0 = 5.
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Figure E5: Results for DIP-MSE and DIP-DC at 0 = 2.
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Figure E8: Results for DIP-MSE and DIP-DC at 0 = 23
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Figure E10: Results for DIP-MSE and DIP-DC on cat image.
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Figure E11: Results for DIP-MSE and DIP-DC on horse image.
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Figure E13: Results for DIP-MSE and DIP-DC on castle image.
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E.5 EFFECT OF MISSPECIFIED NOISE

We considered the behavior of DC loss when the assumed noise model is systematically violated. For
all experiments, DC loss assumed the same noise model of a clipped Gaussian with o,55ymeq = %,

matching the setting used in the main paper.

To probe robustness, we generated data from three alternative families of noise distributions, each
controlled by a single scalar parameter that smoothly modulates the degree of mismatch. In every
case, the clean image and optimisation settings were kept fixed.

Outliers We first investigated the effect of sparse, heavy-tailed corruptions. For each pixel, with
probability p, we inflated the true noise standard deviation to oyye = HTassumed, drawing the mea-
surement from a heavier-tailed distribution than the one assumed by the loss.

We varied p from 0% to 25%. Figure[ET4]shows that the performance of DC loss degraded gracefully
over this range, with similar degradation observed relative to MSE loss.

Max PSNR vs probability of outliers
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) [ .¥] L]
LY w F

[
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(a) Max PSNR (with respect to iteration) as a func-

tion of p, the probability that a pixel’s measurement
is drawn from an outlier heavy-tailed distribution.

DIP Denaising with 25% outliers

Ground_ Truth Noisy Image DIP-MSE DIP-DC

L-.' L TT— [ - TT—

(b) Images corresponding to p = 25% on the above chart.

Figure E14: Results for outlier ablation study, investigating the effect of mispecifying the noise
distribution for p pixels.

Correlated noise We next examined noise with spatial correlation structure. Here, we drew an
i.i.d. Gaussian field e ~ V(0,02 ,.q) Of the same shape as the image, and then spatially smoothed
it using an isotropic Gaussian kernel. Specifically, letting g, denote a Gaussian blur with standard

deviation 7 pixels, the true noise was generated as

Nirue = gr * €.

The parameter 7 > 0 controls the strength of correlation: 7 = 0 recovers the matched i.i.d. model,
while increasing 7 broadens the correlation structure, thereby violating the independence assumption
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underlying the MSE and DC losses. After smoothing, ny,. Was rescaled to have standard deviation
Oassumed, €nsuring that only the correlation structure was altered, not the noise amplitude.

We varied 7 from 0 to 2.5. Figure [ET5] shows that the benefit of DC loss relative to MSE loss de-
grades severely when correlation is introduced. However, the performance of our method nonethe-
less degrades at a similar rate to MSE loss in this setting.
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(b) Images corresponding to 7 = 2.5 on the above chart.

Figure E15: Results for correlated noise ablation study, investigating the effect of mispecifying the
noise distribution by introducing correlated noise.

Heteroscedastic noise Thirdly, we tested a form of noise whose variance depends on the underly-
ing clean intensity.

For a pixel with clean value = € [0, 1], we defined the true noise level as
Otrue (T) = Tassumed (1 + a2z — 1)),

where oo € [—1, 1] determines the severity of heteroscedasticity. Thus o = 0 recovers the matched
homoscedastic model, while increasing || creates regions of inflated or reduced variance depending
on image brightness. For each pixel we then sampled

ntrue(x) ~ N(07 Utme($)2)7

and constructed the observed image as y = & + nyye(z) with clipping to [0, 1]. The parameter «
therefore provides a single scalar that smoothly controls the degree of mismatch, analogous to the
outlier rate p and correlation scale T above.

Our ablation test again demonstrated graceful degradation in the performance of both DC loss and
MSE loss with respect to the noise modelling mismatch.

Conclusion Taken together, these three experiments explore mismatches in tail behaviour, spatial
correlation, and variance structure. Each setting introduces a controlled departure from the assumed
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Figure E16: Results for heteroscedastic noise ablation study, investigating the effect of mispecifying
the noise distribution by introducing heteroscedastic noise.
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noise model, allowing us to assess how reconstruction quality evolves as the data deviate from the
idealised conditions encoded in the loss.

Under the noise model mismatch settings studied, DC loss’s performance degraded gracefully and
comparatively to MSE loss.
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F PET RECONSTRUCTION APPLICATION

F.1 EXPERIMENTAL DESIGN

A ground truth BrainWeb phantom was generated (Cocosco et al.l [1997) with a width and height
of Ny = 256 voxels, and multiplied by a scale factor of 0.1 (resulting in a mean voxel intensity
of 2.42). A forward model was specified using ParallelProj (Schramm and Thielemans} [2023),
approximating the dimensions of a single ring of a Siemens Biograph mMR PET scanner. Lines
of response were over-sampled by a factor of 4, and pairs of lines were then added together, so as
to simulate thicker lines of response, ensuring the projected rays intersected all voxels in the image
space (which avoided a null space in the projector for smaller voxel sizes).

This setup produced sinograms with 252 projection angles and 688 radial bins (for a total of 173376
lines of response, of which 54773 intersected non-zero voxels in the Ny = 256 ground truth phan-
tom).

For the case of regularized PET image reconstruction (corresponding to Section [5.2.1)), the intensity
of the phantom was 25% of the unregularized case, to simulate a lower-dose acquisition. The edge-
preserving TV penalty used is defined in subsection[F4} and Ny = 256 was used only.

For each of the algorithms NLL-Adam, DC-Adam and MLEM, our starting image iteration was an
image of uniform intensity equal to the mean intensity of non-zero voxels in the phantom.

For DC-Adam and NLL-Adam only, at each iteration, we multiplied the image estimate by a mask
representing the convex hull of the non-zero voxels in the phantom (information that can be derived
physically in a real PET scan from the attenuation map). Final images were passed through a ReLU
function to remove negative values (which are not physically realistic for a PET image). We pre-
conditioned each gradient update by dividing by the sensitivity image (i.e. the backprojected image
obtained by backprojecting a sinogram of ones).

For the experiments in subsection[F.3] the total sum of counts in the ground truth phantom was held
constant as the width of the phantom was varied from Ny = 64 to Ny = 512. In this appendix,
learning rate 0.01 was used for Ny = 512, 0.005 for Ny = 256 and 0.0025 for Ny < 128.

Experiments were conducted with a 24GB Nvidia GeForce RTX 3090 GPU and run for 10,000
iterations; for the largest image size 512 x 512, running DC-Adam, NLL-Adam and MLEM con-
secutively took ~ 30 minutes.

F.2 ASSESSING THE DISTRIBUTIONAL CONSISTENCY OF THE CLEAN PHANTOM

In contrast to the Gaussian setting, with a Poisson noise model we have a discrete CDF. As a result,
the theoretical guarantee of the probability integral transform does not strictly hold. However, the
true image estimate should still induce an approximately uniform histogram of CDF values, and we
investigate this assumption in this subsection.

Figure [FT] explores how changing the simulated radioactivity level (often referred to as the dose,
affecting the total number of measured counts) influences the histogram of CDF values for both
the ground-truth sinogram and the corresponding noisy sinogram. We also include an alternative
reference distribution: the CDF values of Poisson-distributed samples generated by treating each
noisy measurement as the Poisson mean. All count levels in this figure are expressed relative to the
baseline count level used for the PET results in the main paper.

These results demonstrate that targeting a uniform histogram of CDFs is an appropriate approxima-
tion for higher doses (analogously to how the Normal distribution becomes a good approximation
for the Poisson distribution for higher means). Further work is required to determine how to best ad-
just for the discrete nature of the Poisson distribution at lower doses, although the alignment shown
between the alternative target (blue line) in Figure[FT|and the true clean histogram is promising, as is
the option of using the randomized PIT. (We hypothesize that the peaks at 0.5 and 1.0 are primarily
due to very low measured values of 0 and 1, where the Poisson distribution is not well approximated
by any continuous distribution.)

47



2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

CDF histogram of clean sinogram
(DC loss value: 0.3178 + 0.0211)

CDF histogram of noisy sinogram
(DC loss value: 1.2956 + 0.0095)

1.75 1 40 4 Empirical density
—=- Uniform([0,1]) PDF
1.50 4 351
2 1.25 2301
2 2
[ [
o B S 25
3 100 >
= = 20
8 0.754 3
g € 151
& 0.50 A e
= Empirical density 10 1
0.254 === Uniform([0,1]) PDF 5
—— Discrete CDF alternative target
0.00 T T T T 0 — == — == —_———=== —===== — === T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
CDF values (s; values) CDF values (s; values)
(a) Count level 0.2.
CDF histogram of clean sinogram CDF histogram of noisy sinogram
(DC loss value: 0.1880 + 0.0205) (DC loss value: 1.3386 + 0.0095)
1.4+ Empirical density
40 - === Uniform([0,1]) PDF
1.2 4
> >
210 =mmmmmm—————— £
2 2 301
3 3
> 0.8 >
206 2 201
Q Q
[ [
a 0.4 i o
B Empirical density 10 A
0.24 === Uniform([0,1]) PDF
——— Discrete CDF alternative target
0.0 ~— { ¥ ¥ [
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
CDF values (s; values) CDF values (s; values)
(b) Count level 1.0.
CDF histogram of clean sinogram CDF histogram of noisy sinogram
(DC loss value: 0.1346 + 0.0204) (DC loss value: 1.3596 = 0.0095)
504 Empirical density
1.2 1 === Uniform([0,1]) PDF
> 1.0 =====————m oo ———— > 40 A
[%) (%)
5084 5
T Y © 4
2 2 30
% 0.6 Zg
2 2 20 A
& 0.4 o
s Empirical density 101
0.2 4 === Uniform([0,1]) PDF
—— Discrete CDF alternative target
0.0 ~— ¥ ¥ ¥ [ e e e EERE SRS
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
CDF values (s; values) CDF values (s; values)
(c) Count level 4.0

Figure F1: Investigating the DC loss values obtained and the uniformity of CDF histograms in the
ideal and worst cases of evaluating the DC loss against the true measured data or Poisson-noisy
measured data respectively. Subplots show the effect of increasing the number of measured counts
(and thereby reducing the impact of noise introduced by the Poisson noise model). Uncertainty
values are given as 1.96x the standard deviation over 100 evaluations of the (stochastic) loss on
different instantiations of noise.
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F.3 VARYING VOXEL SIZE AND THE NUMBER OF PARAMETERS TO ESTIMATE

We investigated the effect of over-parameterization on the PET reconstruction process with the DC
loss, by varying the width of the phantom from Ny = 64 to Ny = 512. Figures[F2] [F3] [F4] and[F3)
show the results of these experiments for Ny = 64, 128, 256 and 512 respectively.

It is clear that as the number of voxels increases (i.e. as we move into an over-parameterized regime),
the ability of traditional algorithms to overfit the noisy data increases, thereby leading to more noisy
reconstructions without early stopping. This pattern is particularly obvious in the histograms for
MLEM and NLL-Adam in Figures which become less uniform as the voxel size decreases.

NLL-Adam and DC-Adam do not build in non-negativity as a prior, whereas MLEM does, which
may explain its better peak metric values for NRMSE and SSIM.
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Figure F3: Results for PET reconstruction with image size Ny = 128.
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(b) Histograms associated with PET reconstruction outputs as a function of iteration number.
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Figure F4: Results for PET reconstruction with image size Ny = 256.
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Figure F5: Results for PET reconstruction with image size Ny = 512.
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F.4 FURTHER RESULTS WITH A REGULARIZED OBJECTIVE FUNCTION
We defined our edge-preserving TV prior as
1
EPTV(x) = + > wij (X1 — Xi ] + [Xi1, — X)), (76)
0,J

with edge-aware weights defined as

1
wm = .
1+ <\/(X1:,.7‘+1xi,j)2+(xz‘+1,jxi,j)2+€>2

(77)

K

In this work, k = 0.1 and € = 1e —8 were used. The width and height of each image was N; = 256.

In Figure we show the edge-preserving TV prior values obtained by image estimates found by
DC+TV and NLL+TV against NLL, DC loss and error values (NRMSE). In line with what was
expected, these charts exhibit different trends for DC+TV and NLL+TV.

Figure [F6a] shows that for high levels of regularization (i.e. large values of ) both DC+TV and
NLL+TV exhibit higher NRMSE (~ 40% or greater), as the strong regularization overpowers the
data-fidelity term, seeking to drive the edge-preserving TV prior (penalty) value closer to zero.
Interestingly, for DC+TV, we find many different image estimates (for a range of different regular-
ization strengths /) that give an NRMSE close to DC+TV’s minimum NRMSE, and only once an
image estimate’s value for edge-preserving TV (i.e. the prior or penalty value) dips too low does
it come into conflict with the data-fidelity constraint, resulting in worse NRMSE. In contrast, with
NLLA+TYV, the NRMSE changes with greater sensitivity to the regularization strength /3, with only a
very limited range of 3 values for which minimum NRMSE is achieved. It is precisely this lack of
conflict between the DC loss data-fidelity and the regularization prior which we theorize has led to
the improved NRMSE values obtained by DC+TV in Figures [8a] and [F6a]

With lower regularization strengths, as expected, DC+TV retains a low value of the NRMSE while
NLL+TV exhibits increasing NRMSE (as overfitting to noise occurs). Figure [F6b|displays a similar
chart, now showing DC loss against prior EPTV values for a range of image estimates obtained for
various /3 values. Both methods show a similar trend to that seen in Figure [F6a] (presumably because
DC loss and NRMSE are correlatedﬂ

For completeness, Figure [F6c] also shows a similar trend with NLL in place of DC loss. It is note-
worthy (and in line with concepts discussed previously) that the estimates found by DC+TV exhibit
relatively constant NLL loss values as regularization strength increases, before leaving this “stable
region” when balancing data-fidelity and regularization is no longer feasible at higher 5 values. This
point occurs at very similar 3 values in Figure as in Figure

The images shown with varying regularization strengths /3 in Figure[F7|underline these trends. With
low (or no) regularization strength, DC+TV finds a much better estimate than NLL+TYV, and it
retains some improvement still at optimum regularization strengths (as seen in Figure [§). At high
regularization strengths, both methods over-smooth and succumb to artifacts induced by the prior.

"The trend for NLL+TV surprisingly shows a relatively low prior penalty for the no regularization case.
Considering the images in Figure we attribute this to an imperfect prior not perfectly correlating with
error. The prior value for highly regularized images is still lower than for the unregularized case. Clearly, the
prior is having the desired effect, as increasing it reduces overfitting and promotes smoothness (with edges
respected). Further work could investigate this phenomenon with different regularization hyperparameters and
penalty choices).
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Figure F7: Example images produced with DC+TV and NLL+TV for regularized PET image re-
construction with an edge-preserving total variation penalty, at increasing regularization strengths
(. First column: ground truth images. Second column: image results with no explicit regularization.
Third column: image results with near-optimal choice of 5. Fourth column: indicative image results
with 3 chosen to be “too large”, resulting in regularization-induced artifacts for both methods.
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F.5 REAL PET DATA: EXPERIMENTAL SETUP

This section provides the full experimental details for the real-data reconstruction reported in Sec-
tion[5.2.2] We reconstructed a single 3D clinical PET brain scan acquired on a Siemens Biograph
mMR system (non-time-of-flight), using the same Adam-based optimisation framework as in the
synthetic PET experiments but with an approximation of the full physical forward model used clin-
ically.

Dataset and corrections. The dataset consisted of approximately 70 million lines of response,
axially compressed into span-11 sinograms of dimension 252 x 344 x 837. Vendor-provided software
supplied the corrective factors required for forward modelling: attenuation correction L (from the
MR-derived p-map), detector normalisation N, scatter estimation s, and randoms estimation r.

Forward model. We implemented the tomographic projection operator P using the open-source
ParallelProj library (Schramm and Thielemans, 2023)), parameterised with scanner-specific geome-
try to match the real system. The complete forward model A combined the projection operator with
all corrections:

Ax = NLC;:Px + r + s,

where C1; denotes the manufacturer’s span-1 to span-11 axial compression matrix.

We restricted consideration of sinogram bins to those lines-of-response that intersect the y-map, i.e.
lines of response that actually intersect matter.

Reconstruction grid. All reconstructions were performed directly on the same voxel grid as the
vendor reconstruction: 128 x 128 x 120 voxels with physical voxel dimensions (2.08626 mm) X
(2.08626 mm) x (2.03125 mm).

Optimisation. The initial image was defined as a uniform field on a binary support mask derived
from the p-map (after hole-filling). Voxels outside the support were assigned a constant value equal
to 1% of the mean activity inside the mask. Although not required for reconstruction, this warm
start stabilised the earliest iterations and expedited prototyping.

We compared Poisson NLL and DC as alternative data-fidelity terms, both optimised with Adam
using a learning rate of 10~* and a positivity projection applied after each update. In line with
standard practice for likelihood-based PET reconstruction, we accelerated computation by splitting
the sinogram into 21 ordered subsets and cycling through them during optimisation. All methods
were run for 10,000 iterations to expose the characteristic late-iteration behaviour of each loss.

For both NLL and DC, the gradient was preconditioned by dividing by a stabilised sensitivity image
AT1 + 1073, matching the effective diagonal scaling used in the MLEM algorithm.

NLL-Adam reconstruction took 0.037 sec/it compared to 0.057 sec/it for the DC-Adam reconstruc-
tion.

Notes. All reconstructions operated on the same PET grid, used identical physical corrections,
and differed only in the choice of data-fidelity term. The vendor image in Fig. [0 was the scanner’s
MLEM reconstruction, which may have included additional proprietary corrections.
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G PLUG-AND-PLAY WITH A LEARNED PRIOR

To demonstrate that DC loss applies cleanly to modern learned priors, we carried out an additional
experiment on image deblurring/denoising using a plug-and-play (PnP) framework with a pretrained
denoiser prior. Concretely, we consider a standard Gaussian deblurring model

Yy=AxXpe+n,  1n~N(0,0%]), (78)

where xq is a clean grayscale natural image, A is a spatially invariant Gaussian blur kernel, and
is additive white Gaussian noise. Pixel values are scaled to [0, 1] and clipped after noise is added, as
in the DIP experiments.

PnP-ADMM with a DnCNN prior. We adopt a plug-and-play ADMM scheme in which the prior
is represented by an off-the-shelf DnCNN denoiser (Zhang et al.,[2021), while the data term is either
the usual quadratic loss or DC loss. Introducing auxiliary and dual variables v and u, we iterate

x*1 ~ arg min {[jdam(A *X;y) + g lx — vt + ut”g}a (79)
o = Do(x 4 ut), (80)
uttl = gt 4 xtHL gt (81)

where p > 0 is the ADMM penalty parameter and D, is a DnCNN denoiser trained for a nominal
Gaussian noise level 7. The z—update in equation[79]is carried out by a small fixed number of gradi-
ent steps with Adam, while the v—update equation [80]is a pure denoising step (no backpropagation
through D).

Data terms: MSE vs. DC. We compare two choices for the data-fidelity term:
1
53 A x—yl3, (82)
Lpc(A *x;y) = Lpc-gus(A *X, y; 0), (33)

where Lpc.gauss 18 the clipped-Gaussian DC loss from the DIP experiments, applied to the flattened
residuals (A x x — y) with a Gaussian noise model of variance o2 and intensities clipped to [0, 1].
In the implementation, the DC loss is evaluated directly on the (B, C, H, W) tensors by flattening
all spatial and channel dimensions.

Lvse(A xx3y) =

‘We refer to the two PnP variants as:

* PnP-MSE: ADMM with quadratic data term Lysg.
¢ PnP-DC: ADMM with DC data term Lpc.

Experimental setup. We use the same F16 image as in the DIP experiments, converted to single-
channel grayscale. The forward operator A is a depthwise Gaussian convolution with kernel size
15 x 15 and kernel standard deviation 1.6 pixels. We simulate clean data yjean = A * Xe and then
add i.i.d. Gaussian noise n ~ N(0,02I) with o = 25/255, clipping the result back to [0, 1].

The PnP-ADMM scheme is initialized with x° = v = y and «° = 0. We run 2500 ADMM
iterations, and use 5 inner gradient steps with learning rate 10~ for the x—update. The denoiser D,
is a standard 17-layer DnCNN trained for 7 = 25/255 and kept fixed during the experiment (Zhang
et al.,[2021). Reconstruction quality is measured against Xy using PSNR and SSIM.

Results. We varied the hyperparameter p from 0.1 to 1000, carrying out a PnP reconstruction for
each of MSE and DC loss. Figure [F8]shows the PSNR achieved by each reconstruction against p.

PnP with DC loss achieves a higher peak PSNR than with MSE (27.5 dB versus 26.9 dB; images
shown in Figure[F9), and the DC curve is markedly flatter, indicating substantially greater robustness
to the choice of p.

This behavior follows directly from the properties of DC loss. In PnP-MSE, higher p places more
weight on the denoiser prior, while lower p places more weight on the data fidelity. With an MSE
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PnP: PSNR against regularization strength p
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Figure F8: PSNR values for PnP reconstruction with varied regularization strength p, for PnP-DC
and PnP-MSE.
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Figure F9: Images obtained with maximum PSNR when reconstructing from blurred and noisy
images, for PnP-MSE and PnP-DC.

data term, varying p changes this balance in a way that often leads to overfitting the specific noise
realisation in y (when the data term dominates) or oversmoothing (when the denoiser dominates).
As a result, PnP-MSE exhibits a narrow PSNR peak.

In contrast, DC loss stops rewarding further reductions in the residual once its distribution matches
the noise model. Consequently, the z—update no longer chases the measured noise, regardless of
whether p emphasises the data term or the prior. This makes the PnP-DC fixed point far less sensitive
to p and yields both the higher optimal PSNR and the observed hyperparameter stability.

This reinforces the earlier observation that DC behaves like MSE when far from the solution but
self-regularizes once noise consistency is reached, making it naturally compatible with PnP meth-
ods. Further work remains to explore these effects in a wider range of modern learned denoising
frameworks.
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H TIMING

H.1 EVALUATION SPEED OF DC LOSS

We benchmarked the computational cost of evaluating the DC loss against conventional pointwise
objectives (NLL and MSE) for both Gaussian and Poisson noise models. Timings were obtained
on a single NVIDIA RTX 3090 GPU, averaged over 1000 runs. The same pairs of uniform random
arrays (in the range [0,1]) were used to measure each pair of methods (DC / NLL or DC / MSE).

Results are reported separately for forward and backward passes, and for two representative dataset
sizes, N = 1,000 and N = 1,000,000.

Smaller scale (N = 1,000). At this moderate sample size, DC loss is measurably slower than
NLL/MSE but still lightweight in absolute terms: forward passes are on the order of 7 x 10™*s,
versus 3 x 1075 s for NLL/MSE; backward passes show a similar gap.

Table 1: Timing results (seconds) for N = 1,000 (mean =+ std).

Noise Pass Loss Mean Std

Poisson Forward DC 0.000749 0.000476
NLL 0.000032 0.000176

Backward DC 0.000237 0.000426

NLL 0.000042 0.000201

Gaussian  Forward DC 0.000704 0.000478
MSE 0.000030 0.000171

Backward DC 0.000266 0.000443

MSE 0.000026 0.000159

Larger scale (N = 1,000,000). At one million samples, the gap widens: DC loss forward passes
are about half a second, reflecting per-sample CDF/logit evaluations and sorting for the Wasserstein
term, whereas NLL/MSE remain in the millisecond range. Backward passes for DC are faster than
forwards but still notably slower than NLL/MSE.

Table 2: Timing results (seconds) for N = 1,000,000 (mean = std).

Noise Pass Loss Mean Std

Poisson Forward DC 0.503176  0.152972
NLL 0.002166 0.001515

Backward DC 0.042866 0.022514

NLL 0.001780 0.001442

Gaussian Forward DC 0.500350 0.154613
MSE 0.000825 0.000608

Backward DC 0.031831 0.017249

MSE 0.000965 0.000960

Context Solving inverse problems with modern unsupervised methods typically involves costly
regularizers (e.g.neural network evaluations) and forward operator evaluations (e.g. tomographic
projection). For context, the subsetted 3D tomography operator in Section [5.2.2] required approxi-
mately 0.012 s per evaluation, DC loss on the same problem required 0.017 s per evaluation, and a
single reverse-diffusion step with the architecture and methodology of (Singh et al., |2024)) required
1.05s.

DC loss therefore introduced a noticeable runtime overhead relative to NLL/MSE, but its cost re-
mained comparable to other common components in modern inverse-problem pipelines.
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Summary. DC loss carries a runtime overhead versus NLL/MSE. The overhead is small at N =
1,000, but becomes more noticeable at N = 1,000,000, driven chiefly by distribution evaluations
and sorting in the Wasserstein step. It may be possible to reduce this overhead with approximation
strategies and GPU-optimized kernels for DC loss at scale.
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I LLM USAGE

Large-language models (LLMs) were used to sanity check ideas, polish writing and assist with
converting code to algorithm pseudocode.
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