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Abstract

We study the implicit regularization effects induced by (observation) weighting of
pretrained features. For weight and feature matrices of bounded operator norms
that are infinitesimally free with respect to (normalized) trace functionals, we
derive equivalence paths connecting different weighting matrices and ridge regu-
larization levels. Specifically, we show that ridge estimators trained on weighted
features along the same path are asymptotically equivalent when evaluated against
test vectors of bounded norms. These paths can be interpreted as matching the
effective degrees of freedom of ridge estimators fitted with weighted features. For
the special case of subsampling without replacement, our results apply to indepen-
dently sampled random features and kernel features and confirm recent conjectures
(Conjectures 7 and 8) of the authors on the existence of such paths in [50]. We
also present an additive risk decomposition for ensembles of weighted estimators
and show that the risks are equivalent along the paths when the ensemble size
goes to infinity. As a practical consequence of the path equivalences, we develop
an efficient cross-validation method for tuning and apply it to subsampled pre-
trained representations across several models (e.g., ResNet-50) and datasets (e.g.,
CIFAR-100).

1 Introduction

In recent years, neural networks have become state-of-the-art models for tasks in computer vision and
natural language processing by learning rich representations from large datasets. Pretrained neural
networks, such as ResNet, which are trained on massive datasets like ImageNet, serve as valuable
resources for new, smaller datasets [32]. These pretrained models reduce computational burden and
generalize well in tasks such as image classification and object detection due to their rich feature
space [32, 69]. Furthermore, pretrained features or neural embeddings, such as the neural tangent
kernel, extracted from these models, serve as valuable representations of diverse data [33, 66].

However, despite their usefulness, fitting models based on pretrained features on large datasets can
be challenging due to computational and memory constraints. When dealing with high-dimensional
pretrained features and large sample sizes, direct application of even simple linear regression may be
computationally infeasible or memory-prohibitive [23, 44]. To address this issue, subsampling has
emerged as a practical solution that reduces the dataset size, thereby alleviating the computational and
memory burden. Subsampling involves creating smaller datasets by randomly selecting a subset of the
original data points. Beyond these computational and memory advantages, subagging can also greatly
improve predictive performance in overparameterized regimes, especially near model interpolation
thresholds [53]. Moreover, through distributed learning, models fitted on multiple subsampled
datasets can be aggregated as an ensemble to provide more stable predictions [20, 21, 51].

There has been growing interest in understanding the effects of subsampling (without replacement)
[16, 25, 37, 50, 51]. These works relate subsampling to explicit ridge regularization, assuming either
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Table 1: Overview of related work on the equivalence of implicit regularization and explicit ridge regularization.

Main analysis Feature structure Weight structure Reference

Risk characterization
Gaussian subsampling [37]

linear subsampling [51]
Gaussian bootstrapping [5, 16, 17]

Estimator equivalence

linear subsampling [50]
general general Theorem 1
general subsampling Theorem 2

linear, random, kernel subsampling Propositions 3–5

Risk equivalence linear subsampling [50]
general general Theorem 6

Gaussian features ϕ ∼ N (0p,Σ) or linearly decomposable features (referred to as linear features
in this paper) ϕ = Σ1/2z, where Σ ∈ Rp×p is the covariance matrix and z ∈ Rp contains i.i.d.
entries with zero means and bounded 4 + δ moments for some δ > 0. Specifically, [50] establish a
connection between implicit regularization induced by subsampling and explicit ridge regularization
through a path defined by the tuple (k/n, λ), where k and n are the subsample size and the full
sample size, respectively, and λ is the ridge regularization level. Along this path, any subsample
estimator with the corresponding ridge regularization exhibits the same first-order (or estimator
equivalence) and second-order (or risk equivalence) asymptotic limits. Moreover, the endpoints of
all such paths along the two axes of k = n (no subsampling) and λ = 0 (no regularization) span the
same range. Although these results have been demonstrated for linear features, [50] also numerically
observe similar equivalence behavior in more realistic contexts and propose conjectures for random
features and kernel features based on heuristic “universality” justifications. However, extending these
results to encompass more general feature structures and other sampling schemes remains an open
question.

Towards answering this question, in this paper, we view subsampling as a weighted regression
problem [67]. This perspective allows us to study the equivalence in its most general form, considering
arbitrary feature structures and weight structures. The general weight matrix approach used in this
study encompasses various applications, including subsampling, bootstrapping, variance-adaptive
weighting, survey, and importance weighting, among others. By interpreting subsampling as a
weighted regression problem, we leverage recent tools from free probability theory, which have been
developed to analyze feature sketching [39, 42, 54]. Building on these theoretical tools, we establish
implicit regularization paths for general weighting and feature structures. We summarize our main
results below and provide an overview of our results in the context of recent related work in Table 1.

1.1 Summary of results and paper outline

We summarize our main results and provide an outline for the paper below.

• Paths of weighted representations. In Section 3, we demonstrate that general weighted mod-
els exhibit first-order equivalence along a path (Theorem 1) when the weight matrices are
asymptotically independent of the data matrices. This path of equivalence can be computed
directly from the data using the formula provided in Equation (2). Furthermore, we provide a
novel interpretation of this path in terms of matching effective degrees of freedom of models
along the path for general feature structures when the weights correspond to those arising from
subsampling (Theorem 2).

• Paths of subsampled representations. We further specialize our general result in Theorem 2 for
the weights induced by subsampling without replacement to structured features in Section 3.2.
These include results for linear random features, nonlinear random features, and kernel features,
as shown in Propositions 3–5, respectively. The latter two results also resolve Conjectures 7
and 8 raised by [50] regarding subsampling regularization paths for random and kernel features,
respectively.
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• Risk equivalences and tuning. In Section 4, we demonstrate that an ensemble of weighted models
has general quadratic risk equivalence on the path, with an error term that decreases inversely as
1/M as the number of ensemble size M increases (Theorem 6). The risk equivalence holds for
both in-distribution and out-of-distribution settings. For subsampling general features, we derive
an upper bound for the optimal subsample size (Proposition 7) and propose a cross-validation
method to tune the subsample and ensemble sizes (Algorithm 1), validated on real datasets in
Section 4.3.

This level of generality is achievable because we do not analyze the risk of either the full model or
the weighted models in isolation. Instead, we relate these two sets of models, allowing us to maintain
weak assumptions about the features. The key assumption underlying our results is the asymptotic
freeness of weight matrices with respect to the data matrices. While directly testing this assumption is
generally challenging, we verify its validity through its consequences on real datasets in Section 4.3.

1.2 Related literature

We provide a brief account of other related work below to place our work in a better context.

Linear features. Despite being overparameterized, neural networks generalize well in practice [70, 71].
Recent work has used high-dimensional “linearized” networks to investigate the various phenomena
that arise in deep learning, such as double descent [12, 46, 48], benign overfitting [10, 35, 45], and
scaling laws [7, 19, 66]. This literature analyzes linear regression using statistical physics [14, 60] and
random matrix theory [22, 30]. Risk approximations hold under random matrix theory assumptions
[6, 30, 66] in theory and apply empirically on a variety of natural data distributions [43, 60, 66].

Random and kernel features. Random feature regression, initially introduced in [56] as a way to
scale kernel methods, has recently been used for theoretical analysis of neural networks and trends
of double descent in deep networks [1, 46]. The generalization of kernel ridge regression has been
studied in [11, 40, 57]. The risks of kernel ridge regression are also analyzed in [9, 19, 29]. The neural
representations we study are motivated by the neural tangent kernel (NTK) and related theoretical
work on ultra-wide neural networks and their relationships to NTKs [34, 68].

Resampling analysis. Resampling and weighted models are popular in distributed learning to provide
more stable predictions and handle large datasets [20, 21, 51]. Historically, for ridge ensembles,
[36, 61] derived risk asymptotics under Gaussian features. Recently, there has been growing interest
in analyzing the effect of subsampling in high-dimensional settings. [37] considered least squares
ensembles obtained by subsampling, where the final subsampled dataset has more observations
than the number of features. For linear models in the underparameterized regime, [59] also provide
certain equivalences between subsampling and iterative least squares approaches. The asymptotic
risk characterization for general data models has been derived by [51]. [25, 50] extended the scope
of these results by characterizing risk equivalences for both optimal and suboptimal risks and for
arbitrary feature covariance and signal structures. Very recently, different resampling strategies for
high-dimensional supervised regression tasks have been analyzed by [17] under isotropic Gaussian
features. Cross-validation methods for tuning the ensemble of ridge estimators and other penalized
estimators are discussed in [13, 25, 26]. Our work adds to this literature by considering ensembles of
models with general weighting and feature structures.

2 Preliminaries

In this section, we formally define our weighted estimator and state the main assumption on the
weight matrix. Let fnn : Rd → Rp be a pretrained model. Let {(xi, yi) : i = 1, . . . , n} in Rd × R be
the given dataset. Applying fnn to the raw dataset, we obtain the pretrained features ϕi = fnn(xi)
for i = 1, . . . , n as the resulting neural representations or neural embeddings. In matrix notation,
we denote the pretrained feature matrix by Φ = [ϕ1, . . . ,ϕn]

⊤ ∈ Rn×p. Let W ∈ Rn×n be a
general weight matrix used for weighting the observations. The weight matrix W is allowed to be
asymmetric, in general.

3



We consider fitting ridge regression on the weighted dataset (WΦ,Wy). Given a ridge penalty λ,
the ridge estimator fitted on the weighted dataset is given by:

β̂W ,λ := argmin
β∈Rp

(
∥Wy −WΦβ∥22

n
+ λ∥β∥22

)
= (Φ⊤W⊤WΦ+ nλIp)

†Φ⊤W⊤Wy. (1)

In the definition above, we allow for λ = 0, in which case the corresponding ridgeless estimator is
defined as the limit λ → 0+. For λ < 0, we use the Moore-Penrose pseudoinverse. An important
special case is where W is a diagonal matrix, in which case the above estimator reduces to weighted
ridge regression. This type of weight matrix encompasses various applications, such as resampling,
bootstrapping, and variance weighting. Our main application in this paper will be subsampling.

For our theoretical results, we assume that the weight matrix W preserves some spectral structure of
the feature matrix Φ. This assumption is captured by the condition of asymptotic freeness between
W⊤W and the feature Gram matrix ΦΦ⊤. Asymptotic freeness is a concept from free probability
theory [64].

Assumption A (Weight structure). Let W⊤W and ΦΦ⊤/n converge almost surely to bounded
operators that are infinitesimally free with respect to (tr[·], tr[C(·)]) for any C independent of W
with ∥C∥tr uniformly bounded. Additionally, let W⊤W have a limiting S-transform that is analytic
on the lower half of the complex plane.

At a high level, Assumption A captures the notion of independence but is adapted for non-commutative
random variables of matrices. We provide background on free probability theory and asymptotic
freeness in Appendix A.3. Here, we briefly list a series of invertible transformations from free
probability to help define the S-transform [47]. The Cauchy transform is given by GA(z) =
tr[(zI − A)−1]. The moment generating series is given by MA(z) = z−1GA(z−1) − 1. The
S-transform is given by SA(w) = (1 + w−1)M⟨−1⟩

A (w). These are the Cauchy transform (negative
of the Stieltjes transform), moment generating series, and S-transform of A, respectively. Here,
M⟨−1⟩

A denotes the inverse under the composition of MA. The notation tr[A] denotes the average
trace tr[A]/p of A ∈ Rp×p.

The freeness of a pair of matrices A and B means that the eigenvectors of one are completely
unaligned or incoherent with those of the other. For example, if A = URU⊤ for a uniformly
random unitary matrix U drawn independently of the positive semidefinite B and R, then A and
B are almost surely asymptotically infinitesimally free [15]. Other well-known examples include
Wigner matrices, which are asymptotically free with respect to deterministic matrices [4, Theorem
5.4.5]. Gaussian matrices, where the Gram matrix G = ΦΦ⊤/n = U(V V ⊤/n)U⊤ and any
deterministic S, are almost surely asymptotically free [47, Chapter 4, Theorem 9]. Although not
proven in full generality, it is expected that diagonal matrices are asymptotically free from data Gram
matrices constructed using i.i.d. data. In Section 3.2, we will provide additional examples of feature
matrices, such as random and kernel features from machine learning, for which our results apply.

Our results involve the notion of degrees of freedom from statistical optimism theory [27, 28].
Degrees of freedom in statistics count the number of dimensions in which a statistical model
may vary, which is simply the number of variables for ordinary linear regression. To account for
regularization, this notion has been extended to effective degrees of freedom (Chapter 3 of [31]).
Under some regularity conditions, from Stein’s relation [63], the degrees of freedom of a predictor
f̂ are measured by the trace of the operators y 7→ (∂/∂y)f̂(Φ). For the ridge estimator β̂I,µ

fitted on (Φ,y) with penalty µ, the degrees of freedom is consequently the trace of its prediction
operator y 7→ Φ(Φ⊤Φ+ µIp)

†Φ⊤y, which is also referred to as the ridge smoother matrix. That is,
df(β̂I,µ) = tr[Φ⊤Φ(Φ⊤Φ+ µIp)

†]. We denote the normalized degrees of freedom by df = df/n.
Note that df(β̂I,µ) ≤ min{n, p}/n ≤ 1.

Finally, we express our asymptotic results using the asymptotic equivalence relation. Consider
sequences {An}n≥1 and {Bn}n≥1 of (random or deterministic) matrices (which includes vectors
and scalars). We say that An and Bn are equivalent and write An ≃ Bn if limp→∞ | tr[Cn(An −
Bn)]| = 0 almost surely for any sequence Cn of matrices with bounded trace norm such that
lim sup ∥Cn∥tr <∞ as n→ ∞. Our forthcoming results apply to a sequence of problems indexed
by n. For notational simplicity, we omit the explicit dependence on n in our statements.
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3 Implicit regularization paths

We begin by characterizing the implicit regularization induced by weighted pretrained features. We
will show that the degrees of freedom of the unweighted estimator β̂I,µ on the full data (Φ,y) with
regularization parameter µ are equal to the degrees of freedom of the weighted estimator β̂W ,λ for
some regularization parameter λ. For estimator equivalence, our data-dependent set of weighted
ridge estimators (W , λ) that connect to the unweighted ridge estimator (I, µ) is defined in terms of
“matching” effective degrees of freedom of component estimators in the set.

To state the upcoming result, denote the Gram matrix of the weighted data as GW = WΦΦ⊤W⊤/n
and the Gram matrix of the unweighted data as GI = ΦΦ⊤/n. Furthermore, let λ+min(A) denote
the minimum positive eigenvalue of a symmetric matrix A.
Theorem 1 (Implicit regularization of weighted representations). For GI ∈ Rn×n, suppose that the
weight matrix W ∈ Rn×n satisfies Assumption A and lim sup ∥y∥22/n < ∞ as n → ∞. For any
µ > − lim infn→∞ λ+min(GI), let λ > −λ+min(GW ) be given by the following equation:

λ = µ/SW⊤W (−df(β̂I,µ)), (2)

where SW⊤W is the S-transform of the operator W⊤W . Then, as n→ ∞, it holds that:

df(β̂W ,λ) ≃ df(β̂I,µ) and β̂W ,λ ≃ β̂I,µ. (3)

In other words, to achieve a target regularization of µ on the unweighted data, Theorem 1 provides a
method to compute the regularization penalty λ with given weights W from the available data using
(2). The weighted estimator then has asymptotically the same degrees of freedom as the unweighted
estimator. This means that the level of effective regularization of the two estimators is the same.
Moreover, the estimators themselves are structurally equivalent; that is, c⊤(β̂W ,λ − β̂I,µ)

a.s.−−→ 0 for
every constant vector c with bounded norm. The estimator equivalence in Theorem 1 is a “first-order”
result, while we will also characterize the “second-order” effects in Section 4.

The notable aspect of Theorem 1 is its generality. The equivalence results hold for a wide range of
weight matrices and allow for negative values for the regularization levels. Furthermore, we have not
made any direct assumptions about the feature matrix Φ, the weight matrix W , and the response
vector y (other than mild bounded norms). The main underlying ingredient is the asymptotic freeness
between W and Φ, which we then exploit using tools developed in [39] in the context of feature
sketching. We discuss special cases of interest for W and Φ in the upcoming Sections 3.1 and 3.2.

3.1 Examples of weight matrices

There are two classes of weighting matrices that are of practical interest:

• Non-diagonal weighting matrices. One can consider observation sketching, which involves
some random linear combinations of the rows of the data matrix. Such observation sketching is
beneficial for privacy, as it scrambles the rows of the data matrix, which may contain identifiable
information about individuals. It also helps in reducing the effect of non-i.i.d. data that arise
in time series or spatial data, where one wants to smooth away the impact of irregularities or
non-stationarity.

• Diagonal weighting matrices. When observations are individually weighted, W is a diagonal
matrix, which includes scenarios such as resampling, bootstrapping, and subsampling. Note that
even with subsampling, one can have a non-binary diagonal weighting matrix. For example, one
can consider sampling with replacement or sampling with a particular distribution, which yields
non-binary diagonal weighting matrices. Other examples of non-binary diagonal weighting
matrices include inverse-variance weighting sampling to mitigate the effects of heterogeneous
variations if the responses have different variances for different units.

In general, the set of equivalent weighted estimators depends on the corresponding S-transform as in
(2), and it can be numerically evaluated. When focusing on subsampling without replacement, the
data-dependent path for equivalent estimators with associated subsampling and regularization levels
can be explicitly characterized in the following result by analyzing the S-transform of subsampling
operators.
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Figure 1: Equivalence under subsampling. The left panel shows the heatmap of degrees of freedom, and the right
panel shows the random projection EW [a⊤β̂W ,λ] where a ∼ N (0p, Ip/p). In both heatmaps, the red color
lines indicate the predicted paths using Equation (4), and the black dashed lines indicate the empirical paths by
matching empirical degrees of freedom. The data is generated according to Appendix F.1 with n = 10000 and
p = 1000, and the results are averaged over M = 100 random weight matrices W .

Theorem 2 (Regularization paths due to subsampling). For a subsampling matrix W (k) consisting
of k unit diagonal entries, the path (2) in terms of (k, λ) simplifies to:

(1− df/n) · (1− λ/µ) = (1− k/n), (4)

where we denote by df = df(β̂I,µ) = df(β̂W ,λ) for notational simplicity.

The relation (4) is remarkably simple, yet quite general! It provides an interplay between the
normalized target complexity df/n, regularization inflation λ/µ, and subsample fraction k/n:

(1− normalized complexity) · (1− regularization inflation) = (1− subsample fraction). (5)

Since the normalized target complexity and subsample fraction are no greater than one, (5) also implies
that the regularization level λ for the subsample estimator is always lower than the regularization
level µ for the full estimator. In other words, subsampling induces (positive) implicit regularization,
reducing the need for explicit ridge regularization. This is verified numerically in Figure 1.

For a fixed target regularization amount µ, the degrees of freedom df(β̂I,µ) of the ridge estimator
on full data is fixed. Thus, we can observe that the path in the (k/n, λ)-plane is a line. There are
two extreme cases: (1) when the subsample size k is close to n, we have µ ≈ λ; and (2) when the
subsample size is near 0, we have µ ≈ ∞. When λ = 0, the effective regularization level λ is such
that df(β̂W (k),λ) = df(β̂I,µ) = k, which we find to be a neat relation!

Beyond subsampling without replacement, one can also consider other subsample matrixs. For
example, for bootstrapping k entries, we observe a similar equivalent path in Figure 5. Additionally,
for random sample reweighting, as shown in Figure 6, we also observe certain equivalence behaviors
of degrees of freedom. This indicates that Theorem 1 also applies to more general weighting schemes.

3.2 Examples of feature matrices

As mentioned in Section 2, when the feature matrix Φ consists of i.i.d. Gaussian features, any
deterministic matrix W satisfies the condition stated in Assumption A. However, our results are
not limited to Gaussian features. In this section, we will consider more general families of features
commonly analyzed in machine learning and demonstrate the applicability of our results to them.

(1) Linear features. As a first example, we consider linear features composed of (multiplicatively)
transformed i.i.d. entries with sufficiently bounded moments by a deterministic covariance matrix.

Proposition 3 (Regularization paths with linear features). Suppose the feature ϕ can be decomposed
as ϕ = Σ1/2z, where z ∈ Rp contains i.i.d. entries zi for i = 1, . . . , p with mean 0, variance 1, and
satisfies E[|zi|4+µ] ≤Mµ <∞ for some µ > 0 and a constant Mµ, and Σ ∈ Rp×p is a deterministic
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Figure 2: Equivalence of degrees of freedom for various feature structures under subsampling. The three panels
correspond to linear features, random features with ReLU activation function (2-layer), and kernel features
(polynomial kernel with degree 3 and without intercept), respectively. In all heatmaps, the red color lines indicate
the predicted paths using Equation (4), and the black dashed lines indicate the empirical paths by matching the
empirical degrees of freedom. The data is generated according to Appendix F.1 with n = 5000 and p = 500,
and the results are averaged over M = 100 random weight matrices W .

symmetric matrix with eigenvalues uniformly bounded between constants rmin > 0 and rmax <∞.
Then, as n, p→ ∞ such that p/n→ γ > 0, the equivalences in (3) hold along the path (4).

Features of this type are common in random matrix theory [8] and in a wide range of applications,
including statistical physics [14, 60], high-dimensional statistics [22, 55, 58], machine learning [18],
among others. The generalized path (2) in Theorem 2 recovers the path in Proposition 4 of [50].
Although the technique in this paper is quite different and more general than that of [50].

(2) Kernel features. As the second example, Theorem 2 also applies to kernel features. Kernel
features are a generalization of linear features and lift the input feature space to a high- or infinite-
dimensional feature space by applying a feature map x 7→ ϕ(x). Kernel methods use the kernel
function K(xi,xj) = ⟨ϕ(xi),ϕ(xj)⟩ to compute the inner product in the lifted space.

Proposition 4 (Regularization paths with kernel features). Suppose the same conditions as in
Proposition 3 and the kernel function is of the form K(xi,xj) = g(∥xi∥22/p, ⟨xi,xj⟩/p, ∥xj∥

2
2/p),

where g is C1 around (τ, τ, τ) and C3 around (τ, 0, τ) and τ := limp→∞ tr[Σ]/d. Then, as n→ ∞,
the equivalences in (3) hold in probability along the path (4).

The assumption in Proposition 4 is commonly used in the risk analysis of kernel ridge regression
[9, 19, 29, 57], among others. Here, Ck denotes the class of functions that are k-times continuously
differentiable. It includes neural tangent kernels (NTKs) as a special case. Proposition 4 confirms
Conjecture 8 of [50] for these types of kernel functions.

(3) Random features. Finally, we consider random features that were introduced by [56] as a way to
scale kernel methods to large datasets. Linked closely to two-layer neural networks [46], the random
feature model has fnn(x) = σ(Fx), where F ∈ Rd×p is some randomly initialized weight matrix,
and σ : R → R is a nonlinear activation function applied element-wise to Fx.

Proposition 5 (Regularization paths with random features). Suppose xi ∼ N (0,Σ) and the activa-
tion function σ : R → R is differentiable almost everywhere and there are constants c0 and c1 such
that |σ(x)|, |σ′(x)| ≤ c0e

c1x, whenever σ′(x) exists. Then, as n, p, d→ ∞ such that p/n→ γ > 0
and d/n→ ξ > 0, the equivalences in (3) hold in probability along the path (4).

As mentioned in the related work, random feature models have recently been used as a standard
model to study various generalization phenomena observed in neural networks theoretically [1, 46].
Proposition 5 resolves Conjecture 7 of [50] under mild regularity conditions on the activation function.

It is worth noting that the prior works mentioned above, including [50], have focused on first
characterizing the risk asymptotics in terms of various population quantities for each of the cases
above. In contrast, our work in this paper deviates from these approaches by not expressing the risk
in population quantities but rather by directly relating the estimators at different regularization levels.
In the next section, we will explore the relationship between their squared prediction risks.
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4 Prediction risk asymptotics and risk estimation

The results in the previous section provide first-order equivalences of the estimators, which are
related to the bias of the estimators. In practice, we are also interested in the predictive performance
of the estimators. In this section, we investigate the second-order equivalence of weighting and
ridge regularization through ensembling. Specifically, we show that aggregating estimators fitted on
different weighted datasets also reduces the additional variance. Furthermore, the prediction risks of
the full-ensemble weighted estimator and the unweighted estimator also match along the path.

Before presenting our risk equivalence result, we first introduce some additional notation. Assume
there are M i.i.d. weight matrices W1, . . . ,WM ∈ Rn×n. The M -ensemble estimator is defined as:

β̂W1:M ,λ =M−1
M∑
m=1

β̂Wm,λ, (6)

and its performance is quantified by the conditional squared prediction risk, given by:

R(β̂W1:M ,λ) = Ex0,y0 [(y0 − ϕ⊤
0 β̂W1:M ,λ)

2 | Φ,y, {Wm}Mm=1], (7)

where (x0, y0) is a test point sampled independently from some distribution Px0,y0 that may be
different from the training distribution Px,y, and ϕ0 = fnn(x0) is the pretrained feature at the test
point. The covariance matrix of the test features ϕ0 is denoted by Σ0. When Px0,y0 = Px,y, we
refer to it as the in-distribution risk. On the other hand, when Px0,y0 differs from Px,y, we refer to
it as the out-of-distribution risk. Note that the conditional risk RM is a scalar random variable that
depends on both the dataset (Φ,y) and the weight matrix Wm for m ∈ [M ]. Our goal in this section
is to analyze the prediction risk of the ensemble estimator (6) for any ensemble size M .
Theorem 6 (Risk equivalence along the path). Under the setting of Theorem 1, assume that the
operator norm of Σ0 is uniformly bounded in p and that each response variable yi for i = 1, . . . , n
has mean 0 and satisfies E[|yi|4+µ] ≤Mµ <∞ for some µ,Mµ > 0. Then, along the path (4),

R(β̂W1:M ,λ) ≃ R(β̂I,µ) +
C

M
tr[(GI + µI)†yy⊤(GI + µIn)

†], (8)

where the constant C is given by:

C = −∂µ/∂λ · λ2S ′
W⊤W (−df(β̂I,µ)) tr[(GI + µI)†(ΦΣ0Φ

⊤/n)(GI + µI)†]. (9)

At a high level, Theorem 6 provides a bias-variance-like risk decomposition for both the squared
risks of weighted ensembles. The risk of the weighted predictor is equal to the risk of the unweighted
equivalent implicit ridge regressor (bias) plus a term due to the randomness due to weighting
(variance). The inflation factor C controls the magnitude of this term, and it decreases at a rate
of 1/M as the ensemble size M increases (see Figure 7 for a numerical verification of this rate).
Therefore, by using a resample ensemble with a sufficiently large size M , we can retain the statistical
properties of the full ridge regression while reducing memory usage and increasing parallelization.

Theorem 6 extends the risk equivalence results in [50, 52]. Compared to previous results, Theorem 6
provides a broader risk equivalence that holds for general weight and feature matrices, as well as an
arbitrary ensemble sizeM . It is important to note that Theorem 6 holds even when the test distribution
differs from the training data, making it applicable to out-of-distribution risks. Furthermore, our
results do not rely on any specific distributional assumptions for the response vector, making them
applicable in a model-free setting. The key idea behind this result is to exploit asymptotic freeness
between the subsample and data matrices. Next, we will address the question of optimal tuning.

4.1 Optimal oracle tuning

As in Theorem 2, we next analyze various properties related to optimal subsampling weights and
their implications for the risk of optimal ridge regression. Recall that the subsampling matrix W (k)

is a diagonal matrix with k ∈ {1, . . . , n} nonzero diagonal entries, which is parameterized by the
subsample size k. Note that the optimal regularization parameter µ∗ for the full data (W (k) = I
or k = n) is a function of the distribution of pretrained data and the test point. Based on the risk
equivalence in Theorem 6, there exists an optimal path of (k, λ) with the corresponding full-ensemble
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Figure 3: Equivalence in pretrained features of pretrained ResNet-50 on Flowers-102 datasets.

estimator β̂
W

(k)
1:∞,λ

:= limM→∞ β̂
W

(k)
1:M ,λ

that achieves the optimal predictive performance at (n, µ∗).
In particular, the ridgeless ensemble with λ∗ = 0 happens to be on the path. From previous work
[25, 50], the optimal subsample size k∗ for λ∗ = 0 has the property that k∗ ≤ p under linear features.
We show in the following that this property can be extended to include general features.
Proposition 7 (Optimal subsample ratio). Assume the subsampling matrix W as defined in Theo-
rem 2. Let µ∗ = argminµ≥0R(β̂W

(k)
1:∞,µ

). Then the corresponding subsample size satisfies:

k∗ = df(β̂
W

(k)
1:∞,µ∗) ≤ rank(GI). (10)

The optimal subsample size k∗ obtained from Proposition 7 is asymptotically optimal. For linear
features, in the underparameterized regime where n > p, [25, 50] show that the optimal subsample
size k∗ is asymptotically no larger than p. This result is covered by Proposition 7 by noting that
rank(GI) ≤ p under linear features. It is interesting and somewhat surprising to note that in the
underparameterized regime (when p ≤ n), we do not need more than p observations to achieve the
optimal risk. In this sense, the optimal subsampled dataset is always overparameterized.

When the limiting risk profiles R(γ, ψ, µ) := limp/n→γ,p/k→ψ R(β̂W
(k)
1:∞,µ

) exist for subsample
ensembles, the limiting risk of the optimal ridge predictor infµ≥0 R(γ, γ, µ) is monotonically
decreasing in the limiting sample aspect ratio γ [50]. This also (provably) confirms the sample-wise
monotonicity of optimally-tuned risk for general features in an asymptotic sense [48]. Due to the risk
equivalence in Theorem 6, for any µ > 0, there exists ψ such that R(γ, γ, µ) = R(γ, ψ, 0). This
implies that infµ≥0 R(γ, γ, µ) = infψ≥γ R(γ, ψ, 0). In other words, tuning over subsample sizes
with sufficiently large ensembles is equivalent to tuning over the ridge penalty on the full data.

4.2 Data-dependent tuning

As suggested by Proposition 7, the optimal subsample size is smaller than the rank of the Gram matrix.
This result has important implications for real-world datasets where the number of observations (n)
is much larger than the number of features (p). In such cases, instead of using the entire dataset, we
can efficiently build small ensembles with a subsample size k ≤ p. This approach is particularly
beneficial when n is significantly higher than p, for example, when n = 1000p. By fitting ensembles
with only M = 100 base predictors, we can potentially reduce the computational burden while still
achieving optimal predictive performance. Furthermore, this technique can be especially valuable
in scenarios where computational resources are limited or when dealing with massive datasets that
cannot be easily processed in their entirety.

In the following, we propose a method to determine the optimal values of the regularization parameter
µ∗ for the full ridge regression, as well as the corresponding subsample size k∗ and the optimal
ensemble size M∗. According to Theorem 6, the optimal value of M∗ is theoretically infinite.
However, in practice, the prediction risk of the M -ensemble predictor decreases at a rate of 1/M
as M increases. Therefore, it is important to select a suitable value of M that achieves the desired
level of performance while considering computational constraints and the specified error budget. By
carefully choosing an appropriate M , we can strike a balance between model accuracy and efficiency,
ensuring that the subsampled neural representations are effectively used in downstream tasks.

Consider a grid of subsample size Kn ⊆ {1, . . . , n}; for instance, Kn = {0, k0, 2k0, . . . , n} where
k0 is a subsample size unit. For a prespecified subsample size k ∈ Kn and ensemble size M0 ∈

9



Algorithm 1 Meta-algorithm for tuning of ensemble sizes and subsample matrices.

Input: A dataset Dn = {(xi, yi) ∈ Rp × R : 1 ≤ i ≤ n}, a regularization parameter λ, a class of
subsample matrix distribution Pn = {Pk}k∈Kn , a ensemble size M0 ≥ 2 for risk estimation,
and optimality tolerance parameter δ.

1: Build ensembles β̂
W

(k)
1:M0

,λ
with M0 base estimators, where W

(k)
1 , . . . ,W

(k)
M0

i.i.d.∼ Pk for each

k ∈ Kn.
2: Estimate the prediction risk of β̂

W
(k)
1:M0

,λ
with R̂m,k by CV methods such as CGCV [13], for

k ∈ Kn and m = 1, . . . ,M0.
3: Extrapolate the risk estimations R̂m,k for m > M0 using (11) and (12).
4: Select a subsample size k̂ ∈ argmink∈Kn

R̂∞,k. that minimizes the extrapolated estimates.
5: Select an ensemble size M̂ ∈ argminm∈N 1{R̂m,k̂ > R̂∞,k̂ + δ} for the δ-optimal risk.

6: If M̂ > M0, fit a M̂ -ensemble estimator β̂
W

(k̂)

1:M̂
,λ

.

Output: Return the tuned estimator β̂
W

(k̂)

1:M̂
,λ

, and the risk estimators R̂M,k for all M,k.

N, suppose we have multiple risk estimates R̂m of Rm for m = 1, . . . ,M0. The squared risk
decomposition [51, Eq (7)] along with the equivalence path (8) implies that Rm = m−1R1 +(
1−m−1

)
R∞, for m = 1, . . . ,M0. Summing these equations yields

∑M0

m=1Rm =
∑M0

m=1
1
mR1 +∑M0

m=1

(
1−m−1

)
R∞. Thus, we can estimate R∞ by:

R̂∞ =
( M0∑
m=1

R̂m −
M0∑
m=1

m−1R̂1

)
/

M0∑
m=1

(
1−m−1

)
. (11)

Then, the extrapolated risk estimates R̂m (with m > M0) are defined as:

R̂m := m−1R̂1 +
(
1−m−1

)
R̂∞ for m > M0. (12)

The meta-algorithm that implements the above cross-validation procedure is provided in Algorithm 1.
To efficiently tune the parameters of ridge ensembles, we use and combine the corrected generalized
cross-validation (CGCV) method [13] and the extrapolated cross-validation (ECV) method [26]. The
improved CV method is implemented in the Python library [24].

4.3 Validation on real-world datasets

In this section, we present numerical experiments to validate our theoretical results on real-world
datasets. Figure 3 provides evidence supporting Assumption A on pretrained features extracted
from commonly used neural networks applied to real-world datasets. The first panel of the figure
demonstrates the equivalence of degrees of freedom for these pretrained features. Furthermore, we
also observe consistent behavior across different neural network architectures and different datasets
(see Figures 8 and 9). Remarkably, the path of equivalence can be accurately predicted, offering
valuable insight into the underlying dynamics of these models. This observation suggests that the
pretrained features from widely used neural networks exhibit similar properties when applied to real-
world data, regardless of the specific architecture employed. The ability to predict the equivalence path
opens up new possibilities for optimizing the performance of these models in practical applications.

One implication of the equivalence results explored in Theorems 1 and 6 is that instead of tuning
for the full ridge penalty µ on the large datasets, we can fix a small value of the ridge penalty λ, fit
subsample ridge ensembles, and tune for an optimal subsample size k. To illustrate the validity of
the tuning procedure described in Algorithm 1, we present both the actual prediction errors and their
estimates by Algorithm 1 in Figure 4. We observe that the risk estimates closely match the prediction
risks at different ensemble sizes across different datasets. Even with a subsampling ratio k/n of 0.01
and a sufficiently large M , the risk estimate is close to the optimal risk. A smaller subsample size
could also yield even smaller prediction risk in certain datasets.
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Figure 4: Risk estimation by corrected and extrapolated generalized cross-validation. The risk estimates are
computed based on M0 = 25 base estimators using Algorithm 1 with λ = 10−3.

5 Limitations and outlook

While our results are quite general in terms of applying to a wide variety of pretrained features,
they are limited in that they only apply to ridge regression fitted on the pretrained features. The key
challenge for extending the analysis based on Assumption A to general estimators beyond ridge
regression is the characterization of the effect of subsampling general resolvents as additional ridge
regularization. To extend to generalized linear models, one approach is to view the optimization as
iteratively reweighted least squares [38] in combination with the current results. Another approach is
to combine our results with the techniques in [41] to obtain deterministic equivalents for the Hessian,
enabling an understanding of implicit regularization due to subsampling beyond linear models.

Beyond implicit regularization due to subsampling, there are other forms of implicit regularization,
such as algorithmic regularization due to early stopping in gradient descent [2, 3, 49], dropout
regularization [62, 65], among others. In some applications, multiple forms of implicit regularization
are present simultaneously. For instance, during a mini-batch gradient step, implicit regularization
arises from both iterative methods and mini-batch subsampling. The results presented in this paper
may help to make explicit the combined effect of various forms of implicit regularization.
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Appendix

This serves as an appendix to the paper “Implicit Regularization Paths of Weighted Neural Represen-
tations.” The beginning (unlabeled) section of the appendix provides an organization for the appendix,
followed by a summary of the general notation used in both the paper and the appendix. Any other
specific notation is explained inline where it is first used.

Organization

• In Appendix A, we provide a brief technical background on free probability theory and various
transforms that we need and collect known asymptotic ridge equivalents that we use in our
proofs.

• In Appendix B, we present proofs of the theoretical results in Section 3 (Theorems 1 and 2 and
Propositions 3–5).

• In Appendix C, we present proofs of the theoretical results in Section 4 (Theorem 6 and
Proposition 7).

• In Appendix D, we provide additional illustrations for the results in Section 3 (Figures 5 and 6).
• In Appendix E, we provide additional illustrations for the results in Section 4 (Figures 7–9),

including our meta-algorithm for tuning (Algorithm 1) that is not included in the main text due
to space constraints.

• In Appendix F, we provide additional details on the experiments in both Section 3 and Section 4.

Notation

We use blackboard letters to denote some special sets: N denotes the set of natural numbers, R
denotes the set of real numbers, R+ denotes the set of positive real numbers, C denotes the set of
complex numbers, C+ denotes the set of complex numbers with positive imaginary part, and C−

denotes the set of complex numbers with negative imaginary part. We use [n] to denote the index set
{1, 2, . . . , n}.

We denote scalars and vectors using lower-case letters and matrices using upper-case letters. For
a vector β, β⊤ denotes its transpose, and ∥β∥2 denotes its ℓ2 norm. For a pair of vectors u and v,
⟨u,v⟩ denotes their inner product. For a matrix X ∈ Rn×p, X⊤ ∈ Rp×n denotes its transpose,
and X† ∈ Rp×n denotes its Moore-Penrose inverse. For a square matrix A ∈ Rp×p, tr[A] denotes
its trace, tr[A] denotes its average trace tr[A]/p, and A−1 denotes its inverse, provided that A is
invertible. For a symmetric matrix A, λ+min(A) denotes its minimum nonzero eigenvalue. For a
positive semidefinite matrix G, G1/2 denotes its principal square root. For a matrix X , we denote by
∥X∥op its operator norm with respect to the ℓ2 vector norm. It is also the spectral norm of X . For a
matrix X , we denote by ∥X∥tr its trace norm. It is given by tr[(X⊤X)1/2], and is also the nuclear
norm X . We denote p× p identity matrix by Ip, or simply by I when it is clear from the context.

For symmetric matrices A and B, we use A ⪯ B to denote the Loewner ordering to mean that
A−B is a positive semidefinite matrix. For two sequences of matrices Ap and Bp, we use Ap ≃ Bp

to denote a certain asymptotic equivalence; see Appendix A.3 for a precise definition.

A Technical background

A.1 Basics of free probability theory

In this section, we briefly review definitions from free probability theory and its applications to random
matrices. This review will help set the stage by introducing the various mathematical structures and
spaces we are working with. It will also introduce some of the notation used throughout the text.

Free probability is a mathematical framework that deals with non-commutative random variables
[19]. The use of free probability theory has appeared in various recent works in statistical machine
learning, including [1, 2, 11, 12, 17]. Good references on free probability theory include [3, 13], from
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which we borrow some basic definitions in the following. All the material in this section is standard
in free probability theory and mainly serves to keep the definitions self-contained.
Definition 8 (Non-commutative algebra). A set A is called a (complex) algebra (over the field
of complex numbers C) if it is a vector space (over C with addition +), equipped with a bilinear
multiplication ·, such that for all x, y, z ∈ A and α ∈ C,

(1) x · (y · z) = (x · y) · z,

(2) (x+ y) · z = x · z + y · z,

(3) x · (y + z) = x · y + x · z,

(4) α(x · y) = (αx) · y = x · (αy).

In addition, an algebra is called unital if a multiplicative identity element exists. We will use 1A to
denote this identity element. We will drop the “·” symbol to denote multiplication over the algebra.
Definition 9 (Non-commutative probability space). Let A over C be a unital algebra with identity
1A. Let φ : A → C be a linear functional which is unital (that is, φ(1A) = 1). Then (A, φ) is
called a non-commutative probability space, and φ is called a state. A state φ is said to be tracial if
φ(xy) = φ(yx) for all x, y ∈ A.
Definition 10 (Moments). Let (A, φ) be a non-commutative probability space. The numbers
{φ(xk)}∞k=1 are called the moments of the variable x ∈ A.
Definition 11 (∗-algebra). An algebra A is called a ∗-algebra if there exists a mapping x→ x∗ from
A → A such that, for all x, y ∈ A and α ∈ C,

(1) (x+ y)∗ = x∗ + y∗,

(2) (αx)∗ = αx∗,

(3) (xy)∗ = y∗x∗,

(4) (x∗)∗ = x.

A variable x of a ∗-algebra is called self-adjoint if x = x∗. A unital linear functional φ on a ∗-algebra
is said to be positive if φ(x∗x) ≥ 0 for all x ∈ A.
Definition 12 (∗-probability space). Let A be a unital ∗-algebra with a positive state φ. Then (A, φ)
is called a ∗-probability space.
Example 1. Denote by Mp(C) the collection of all p× p matrices with complex entries. Let the
multiplication and addition operations be defined in the usual way. The ∗-operation is the same as
taking the conjugate transpose. Let tr : Mp(C) → C be the normalized trace defined by:

tr(A) =
1

p
tr[A].

The state tr is tracial and positive.
Definition 13 (Free independence). Suppose (A, φ) is a ∗-probability space. Then, the ∗-sub-
algebras {Ai}i∈I of A are said to be ∗-freely independent (or simply ∗-free) if, for all n ≥ 2 and
all x1, x2, · · · , xn from {Ai}i∈I , κn(x1, x2, · · · , xn) = 0 whenever at least two of the xi are from
different Ai. In particular, any collection of variables is said to be ∗-free if the sub-algebras generated
by these variables are ∗-free.
Lemma 14. Suppose (A, φ) is a ∗-probability space. If x and y are free in (A, φ), then for all
non-negative integers n and m,

φ(xnym) = φ(xn)φ(ym) = φ(ymxn).

In other words, elements of the algebra are considered free if any alternating product of centered
polynomials is also centered.

In this work, we will consider φ to be the normalized trace. The normalized trace is the generalization
of 1

p tr[A] for A ∈ Cp×p to elements of a C∗-algebra A. Specifically, for any self-adjoint a ∈ A and
any polynomial p, we have

φ(p(a)) =

∫
p(z) dµa(z),
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where µa is the probability measure that characterizes the spectral distribution of a.
Definition 15 (Convergence in spectral distribution). Let (A, φ) be a C∗-probability space. We say
that A1, . . . ,Am ∈ Cp×p converge in spectral distribution to elements a1, . . . , am ∈ A if, for all
1 ≤ ℓ <∞ and 1 ≤ ij ≤ m for 1 ≤ j ≤ ℓ, we have

1

p
tr[Ai1 · · ·Aiℓ ] → φ(ai1 · · · aiℓ).

Then, with slight abuse of notation, two matrices A,B ∈ Rp×p are said to be free if

1

p
tr

[
L∏
ℓ=1

polyAℓ (A)polyBℓ (B)

]
= 0,

for all L ≥ 1 and all centered polynomials, that is, tr[polyAℓ (A)] = 0. This notation is an abuse
of notation because finite matrices cannot satisfy this condition. However, they can satisfy it
asymptotically as p→ ∞, and in this case, we say that A and B are asymptotically free.

Note: With some abuse of notation, we will let matrices in boldface denote both the finite matrix
and the limiting element in the free probability space. The limiting element can be understood, for
example, as a bounded linear operator on a Hilbert space. We also remark that all notions we need
are well-defined in this limit as well, as long as they are appropriately normalized.

A.2 Useful transforms and their relationships

In this section, we review the key transforms used in free probability theory and their interrelation-
ships.
Definition 16 (Cauchy transform). Let a be an element of a ∗-probability space (A, φ). Suppose
there exists some C > 0 such that |φ(an)| ≤ Cn for all n ∈ N. Then the Cauchy transform of a is
defined as:

Ga(z) =
∞∑
n=0

φ(an)

zn+1

for all z ∈ C with |z| > C.

Note that the Cauchy transform is the negative of the Stieltjes transform. In this paper, we will focus
only on the Cauchy transform. Recall that for a probability measure ν on R and for z /∈ R, the
Cauchy transform of ν is defined as:

G(z) =
∫
R

1

z − x
dν(x).

The definition above is motivated by the following property of the Cauchy transform of a measure.
Suppose ν is a probability measure whose support is contained in [−C,C] for some C > 0 and which
has moments {mk(ν)}∞k=0. Then the Cauchy transform of ν is defined for z ∈ C with |z| > C as:

Gν(z) =
∞∑
k=0

mk(ν)

zk+1
.

Definition 17 (Moment generating function). Let a be an element of a ∗-probability space (A, φ).
The moment generating function of a is defined as:

Ma(z) = 1 +

∞∑
k=1

φ(ak)zk

for z ∈ C such that |z| < ra. Here, ra is the radius of convergence of the series.

For a probability measure ν, the moment generating function is defined analogously. (Note: The
definition above is not to be confused with the moment generating function of a random variable in
probability theory.) The Cauchy transform is related to the moment series via:

Ga(z) =
1

z
Ma

(
1

z

)
. (13)
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In the other direction, we have:

Ma(z) =
1

z
Ga
(
1

z

)
− 1. (14)

Definition 18 (S-transform). For

Ma(z) =

∞∑
m=0

φ(am)zm,

we define the S-transform of a by:

Sa(w) =
1 + w

w
M⟨−1⟩

a (w), (15)

where M⟨−1⟩ denotes the inverse under composition of M.

Finally, in terms of operator A, we summarize the series of invertible transformations between the
various transforms introduced in this section.

• Cauchy transform:
GA(z) = tr[(zI −A)−1].

• Moment generating series:

MA(z) =
1

z
GA

(
1

z

)
− 1.

• S-transform:

SA(w) =
1 + w

w
M⟨−1⟩

A (w).

Here:

• MA(z) =
∑∞
k=1 tr[A

k]zk is the moment generating series.

• M⟨−1⟩
A denotes the inverse under composition of MA.

• tr[A] denotes the average trace tr[A]/p of a matrix A ∈ Rp×p.

A.3 Asymptotic ridge resolvents

In this section, we provide a brief background on the language of asymptotic equivalents used in the
proofs throughout the paper. We will state the definition of asymptotic equivalents and point to useful
calculus rules. For more details, see [16, Appendix S.7].

To concisely present our results, we will use the framework of asymptotic equivalence [5, 6, 16],
defined as follows. Let Ap and Bp be sequences of matrices of arbitrary dimensions (including
vectors and scalars). We say that Ap and Bp are asymptotically equivalent, denoted as Ap ≃ Bp,
if limp→∞ | tr[Cp(Ap − Bp)]| = 0 almost surely for any sequence of random matrices Cp with
bounded trace norm that are independent of Ap and Bp. Note that for sequences of scalar random
variables, the definition simply reduces to the typical almost sure convergence of sequences of random
variables involved.

The notion of deterministic equivalents obeys various calculus rules such as sum, product, differenti-
ation, conditioning, and substitution. We refer the reader to [16] for a comprehensive list of these
calculus rules, their proofs, and other related details.

Next, we collect first- and second-order asymptotic equivalents for sketched ridge resolvents from
[11, 17], which will be useful for our extensions to weighted ridge resolvents.

Assumption B (Sketch structure). Let S ∈ Rp×q be the feature sketching matrix and X ∈ Rn×p
be the data matrix. Let SS⊤ and 1

nX
⊤X converge almost surely to bounded operators that

are infinitesimally free with respect to ( 1p tr[·], tr[Θ(·)]) for any Θ independent of S with ∥Θ∥tr
uniformly bounded. Additionally, let SS⊤ have a limiting S-transform that is analytic on the lower
half of the complex plane.
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For the statement to follow, let us define Σ̂ := 1
nX

⊤X . Let λ̃0 := − lim infp→∞ λ+min(S
⊤Σ̂S).

Here, recall that λ+min(A) represents the minimum nonzero eigenvalue of a symmetric matrix A.

Theorem 19 (Free sketching equivalence; [11], Theorem 7.2). Under Assumption B, for all λ > λ̃0,

S(S⊤Σ̂S + λIq)
†S⊤ ≃ (Σ̂+ νIp)

†, (16)

where ν > −λ+min(Σ̂) is increasing in λ > λ̃0 and satisfies:

ν ≃ λSSS⊤(− tr[Σ̂S(S⊤Σ̂S + λIq)
†S⊤]) ≃ λSSS⊤(− tr[Σ̂(Σ̂+ νIp)

†]). (17)

Lemma 20 (Second-order equivalence for sketched ridge resolvents; [17], Lemma 15). Under the
settings of Lemma 21, for any positive semidefinite Ψ with uniformly bounded operator norm, for all
λ > λ̃0,

S(S⊤Σ̂S + λIq)
†S⊤ΨS(S⊤Σ̂S + λIq)

†S⊤ ≃ (Σ̂+ νIp)
†(Ψ+ ν′ΨIp)(Σ̂+ νIp)

†, (18)

where ν′Ψ ≥ 0 is given by:

ν′Ψ = −∂ν
∂λ
λ2S ′

SS⊤(− tr[Σ̂(Σ̂+ νIp)
†]) tr[(Σ̂+ νIp)

†Ψ(Σ̂+ νIp)
†]. (19)

B Proofs in Section 3

B.1 Proof of Theorem 1

Our main ingredient in the proof is Lemma 21. We will first show estimator equivalence and then
show degrees of freedom equivalence.

Estimator equivalence. Recall from (1) the ridge estimator on the weighted data is:

β̂W ,λ = (Φ⊤W⊤WΦ/n+ λIp)
†Φ⊤W⊤Wy/n.

This is the “primal” form of the ridge estimator. Using the Woodbury matrix identity, we first write
the estimator into its “dual” form.

β̂W ,λ = Φ⊤W⊤(WΦΦ⊤W⊤/n+ λIn)
†Wy/n

= Φ⊤W⊤(GW + λIn)
†Wy/n.

Now, we can apply the first part of Lemma 21 to the matrix W⊤(GW + λIn)
†W . From (31), we

then have the following equivalence:

β̂W ,λ ≃ Φ⊤(GI + µIn)
†y/n

= Φ⊤(ΦΦ⊤ + µIn)
†y/n

= (Φ⊤Φ/n+ µIn)
†Φ⊤y/n = β̂I,µ,

where µ satisfies the following equation:

µ = λSW⊤W

(
− tr[GI(GI + µIn)

†]

n

)
= λSW⊤W (− df(β̂I,µ)).

Note that in the simplification, we used the Woodbury identity again to go back from the dual form
into the primal form for the ridge estimator based on the full data. Rearranging, we obtain the desired
estimator equivalence. We next move on to showing the degrees of freedom equivalence.

Degrees of freedom equivalence. For the subsampled estimator β̂W ,λ, the effective degrees of
freedom is given by:

df(β̂W ,λ) = tr[Φ⊤Φ/n(Φ⊤Φ/n+ λIp)
†]

= tr[Φ(Φ⊤Φ/n+ λIp)
†Φ⊤/n]

= tr[(ΦΦ⊤/n+ λIn)
†ΦΦ⊤/n].
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The second equality above follows from the push-through identity Φ(Φ⊤Φ/n + λIp)
†Φ⊤ =

(ΦΦ⊤ + λIn)
†ΦΦ⊤. Recognizing the quantity inside the trace as the degrees of freedom of the full

ridge estimator, we have
µ = λSW⊤W (−df(β̂I,µ)).

We can equivalently write the equation above as

−S−1
W⊤W

(µ
λ

)
= df(β̂I,µ) or

µ

λ
= SW⊤W (−df(β̂I,µ)).

Rearranging the display above provides the desired degrees of freedom equivalence and finishes the
proof.

B.2 Proof of Theorem 2

We will apply Theorem 1 to the subsampling weight matrix W . The main ingredient that we need
is the S-transform of the spectrum of the matrix W⊤W . As summarized in Appendix A.2, one
approach to compute the S-transform is to go through the following chain of transforms. First, we
apply the Cauchy transform, then the moment-generating series, and finally, take the inverse to obtain
the S-transform. We will do this in the following steps.

Cauchy transform. Recall that the Cauchy transform from Definition 16 can be computed as:

GW⊤W (z) = tr[(zIn −W⊤W )−1].

Moment generating series. We can then compute the moment series from Definition 17 using (14) as
follows:

MW⊤W (z) =
1

z
tr

[(
1

z
In −W⊤W

)−1
]
− 1

= tr[(In − zW⊤W )−1]− tr[In]

= − tr[In] + tr[(In − zW⊤W )−1]

= tr[(zW⊤W − In + In)(In − zW⊤W )−1]

= tr[zW⊤W (In − zW⊤W )−1].

We now note that the matrix W⊤W has k eigenvalues of 1 and n− k eigenvalues of 0. Therefore,
we have

MW⊤W (z) = tr[zW⊤W (In − zW⊤W )−1]

=
1

n

(
n∑
i=1

zdi
1− zdi

)

=
k

n
· z

1− z
. (20)

S-transform. The inverse of the moment generating series map z 7→ MW⊤W (z) from (20) is:

M⟨−1⟩(w) =
w

w + k/n
. (21)

Therefore, from Definition 18 and using (21), we have

S(w) = 1 + w

w
· w

w + k/n
=

1 + w

w + k/n
. (22)

Now, we are ready to apply Theorem 1 to the subsampling matrix W .

Substituting (22) into (2), we get

µ

λ
= S(− df(β̂I,µ)) =

1− df(β̂I,µ)

− df(β̂I,µ) + k/n
.
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Rearranging, we obtain
df(β̂I,µ) · (µ− λ) = µ · (k/n)− λ.

Thus, we get

df(β̂I,µ) = −λ− µ · (k/n)
µ− λ

.

In other words, we have

1− df(β̂I,µ) =

(
µ

µ− λ

)
·
(
1− k

n

)
.

Multiplying (1− λ/µ) on both sides, we arrive at the desired relation. This completes the proof.

B.3 Proof of Proposition 3

We prove this by matching the path (4) with the one in [15]. Let γ = p/n, ψ = p/k, Hp be the
spectral distribution of Σ̂ = X⊤X/n. The path from Equation (5) of [15] is given by the following
equation:

µ = (ψ − γ)

∫
r

1 + v(µ, γ)r
dHp(r), (23)

where v(µ, γ) is the unique solution to the following fixed-point equation:

1

v(µ, γ)
= µ+ γ

∫
r

1 + v(µ, γ)r
dHp(r) = ψ

∫
r

1 + v(µ, γ)r
dHp(r). (24)

For given γ and µ, we will show that ψ that solves (23) gives rise k = p/ψ that also solves (4) with
λ = 0:

− 1
n tr

[
1
nXX⊤( 1

nXX⊤ + µIn
)†
] = −k

n
.

Rearranging the above equation yields:

k

n
= 1− µ tr

[(
1
nXX⊤ + µIn

)†
] = 1− µv(µ, γ),

where the second equality is from Lemma B.2 of [15]. This implies that

µ =

(
1− k

n

)
1

v(µ, γ)

=

(
1− k

n

)
ψ

∫
r

1 + v(µ, γ)r
dHp(r)

= (ψ − γ)

∫
r

1 + v(µ, γ)r
dHp(r),

where the second equality follows from (24). The above is the same as the path (23) in [15]. This
finishes the proof.

B.4 Proof of Proposition 4

We first describe the setup for the kernel ridge regression formulation and then show the desired
equivalence.

Setup. Let K(·, ·) : Rd × Rd → R be a kernel function. Let H denote the reproducing kernel Hilbert
space associated with kernel K. Kernel ridge regression with the subsampling matrix W solves the
following problem with tuning parameter λ ≥ 0:

f̂W ,λ = argmin
f∈H

∥Wy −W f(X)∥22/n+ λ∥f∥2H,

where f(X) = [f(x1), . . . , f(xn)]
⊤. Kernel ridge regression predictions have a closed-form

expression:
f̂W ,λ(x) = K(x,X)⊤W⊤(WK(X,X)W⊤ + λIn)

†Wy.
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Here, K(x,X) ∈ Rn with i-th entry K(x,xi), and K(X,X) ∈ Rn×n with the ij-th entry
K(xi,xj).

The predicted values on the training data X are given by

f̂W ,λ(X) = K(X,X)⊤W⊤(WK(X,X)W⊤ + λIn)
†Wy.

Here, the matrix K(X,X)⊤W⊤(WK(X,X)W⊤ + λIn)
†W is the smoothing matrix.

Define GI = K(X,X) and GW = WK(X,X)W⊤. Leveraging the kernel trick, the preceding
optimization problem translates into solving the following problem (in the dual domain):

α̂W ,λ = argmin
α∈Rn

α⊤ (GW + λIn)α+ 2α⊤Wy,

where the dual solution is given by α̂W ,λ = (GW + λIn)
†Wy. The correspondence be-

tween the dual and primal solutions is simply given by: β̂W ,λ = Φ⊤W⊤α̂W ,λ where Φ =
[ϕ(x1), . . . , ϕ(xn)]

⊤ is the feature matrix and ϕ : Rd 7→ H is the feature map of the Hilbert space H
with kernel K. Thus, f̂W ,λ(X) = WΦβ̂W ,λ = WΦΦ⊤W⊤α̂W ,λ = GW (GW + λIn)

†Wy

and the degrees of freedom is given by df(β̂I,µ) = tr[GW (GW + λIn)
†].

Next, we show that (3) holds. Alternatively, one can also show that

α̂W ,λ ≃ α̂I,µ, and f̂W ,λ(x0) ≃ f̂I,µ(x0),

which we omit due to similarity. Our proof strategy consists of two steps. We first show that it suffices
to establish the desired result for the linearized version. We then show that we can suitably adapt our
result for the linearized version.

Linearization of kernels. In the below, we will show that for µ ≥ 0,

W⊤(GW + λIn)
†W ≃ (GI + µIn)

†,

tr[λ(GW + λIn)
†] ≃ tr[µ(GI + µIn)

†],

where W and λ ≥ 0 satisfy that

µ = λSW⊤W (− 1
n tr[GI(GI + λIn)

†]) = λSW⊤W (− 1
n tr[GW (GW + µIn)

†]). (25)

Using assumptions of Proposition 3 and the assumption in Proposition 4, by [18, Proposition 5.1],2

∥GI −Glin
I ∥op

p−→ 0,

where

Glin
I = c0In + c11n1

⊤
n + c2XX⊤

and (c0, c1, c2) associated with function g in Proposition 4 and τ = limp→∞ tr[Σ]/p are defined as

c0 = g(τ, τ, τ)− g(τ, 0, τ)− c2
tr[Σ]

p
, (26)

c1 = g(τ, 0, τ) + g′′(τ, 0, τ)
tr[Σ2]

2p2
, (27)

c2 = g′(τ, 0, τ). (28)

Assume Cn is a sequence of random matrices with bounded trace norm. Note that

tr[Cp((GI + µIn)
† − (Glin

I + µIn)
†)]

≤ tr[Cp]∥(GI + µIn)
† − (Glin

I + µIn)
†∥op

≤ tr[Cp]∥(GI + µIn)
†∥op∥(Glin

I + µIn)
†∥op∥GI −Glin

I ∥op
a.s.−−→ 0.

2Assumption A1 of [18] requires finite 5+ δ-moments, which can be relaxed to only finite 4+ δ-moments as
in the assumption of Proposition 3, by a truncation argument as in the proof of Theorem 6 of [7, Appendix A.4].
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where in the last inequality, we use a matrix identity A−1 − B−1 = A−1(B − A)B−1 for two
invertible matrices A and B. Thus, we have

(GI + µIn)
† ≃p (Glin

I + µIn)
†. (29)

Hence, combining (29) and the transition property of asymptotic equivalence [15, Lemma S.7.4 (1)],
it suffices to show

W⊤(Glin
W + λIn)

†W ≃ (Glin
I + µIn)

†,

where Glin
W = WGlin

I W⊤, and λ and µ satisfy (25). Similarly, we can also show that the path (25)
is asymptotically equivalent to

µ = λSW⊤W (− 1
n tr[Glin

I (Glin
I + λIn)

†]) = λSW⊤W (− 1
n tr[Glin

W (Glin
W + µIn)

†]). (30)

Equivalence for linearized kernels. We next show that the resolvent equivalence result holds for K lin.
This follows from additional manipulations building on Lemma 21.

B.5 Proof of Proposition 5

In the below, we will show that for µ ≥ 0,

W⊤(WΦΦ⊤W⊤/n+ λIn)
†W ≃ (ΦΦ⊤/n+ µIn)

†,

tr[λ(WΦΦ⊤W⊤/n+ λIn)
†] ≃ tr[µ(ΦΦ⊤/n+ µIn)

†].

Under assumptions in Proposition 5, the linearized features take the form

Φlin =

√
ρs
d
FX +

√
ρsωsU ,

where the constants ρs and ωs are given in Proposition 5 and U ∈ Rn×p has i.i.d. standard normal
entries. From Claim A.13 of [10], the linear functionals of the estimators β̂D,λ and β̂I,µ with random
features Φ and Φlin are asymptotically equivalent. Now, following the proof of Proposition 4, we
apply Lemma 21 on Φlin to yield the desired result.

B.6 Technical lemmas

In preparation for the forthcoming statement, define λ0 = − lim infn→∞ λ+min(GW ). Recall the
Gram matrices G = ΦΦ⊤/n and GW = WΦΦ⊤W⊤/n.
Lemma 21 (General first-order equivalence for freely subsampled ridge resolvents). For W ∈ Rn×n,
suppose Assumption A holds for WW⊤. Then, for all λ > λ0,

W⊤(GW + λI)†W ≃ (G+ µI)†, (31)

tr[λ(GW + λIn)
†] ≃ tr[µ(G+ µIn)

†], (32)

where µ > −λ+min(G) solves the equation:

µ = λSWW⊤(− tr[G(G+ µV )†]) ≃ λSWW⊤(− tr[GW (GW + λV )†]). (33)

Proof of Lemma 21. The first result follows from using Theorem 19 by suitably changing the roles
of X and Φ. In particular, we set Φ to be X⊤ and W to be S and apply Theorem 19 to obtain

W⊤(WΦΦ⊤W⊤/n+ λIn)
†W ≃ (ΦΦ⊤/n+ µIn)

†. (34)

Writing in terms of G and GW , this proves the first part (31).

For the second part, we use the result (34) in the first part and multiply both sides by ΦΦ⊤/n to get

(ΦΦ⊤/n) ·W⊤(WΦΦ⊤W⊤/n+ λIn)
†W ≃ (ΦΦ⊤/n) · (ΦΦ⊤/n+ µIn)

†.

Using the trace property of asymptotic equivalence [15, Lemma S.7.4 (4)], we have

tr[(ΦΦ⊤/n) ·W⊤(WΦΦ⊤W⊤/n+ λIn)
†W ] ≃ tr[(ΦΦ⊤/n) · (ΦΦ⊤/n+ µIn)

†].
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Using the cyclic property of the trace operator yields

tr[(WΦΦ⊤/n) ·W⊤(WΦΦ⊤W⊤/n+ λIn)
†] ≃ tr[(ΦΦ⊤/n) · (ΦΦ⊤/n+ µIn)

†].

In terms of G and GW , this is the same as

tr[GW (GW + λIn)
†] ≃ tr[G(G+ µIn)

†].

Adding and subtracting λIn and µIn on the left- and right-hand resolvents, we arrive at the second
part (32). This completes the proof.

C Proofs in Section 4

C.1 Proof of Theorem 6

The main ingredients of the proof are Lemmas 21 and 22. We begin by decomposing the unknown
response y0 into its linear predictor and residual. Specifically, let β0 be the optimal projection
parameter given by β0 = Σ−1

0 E[ϕ0y0]. Then, we can express the response as the sum of its
best linear predictor, ϕ⊤

0 β0, and the residual, y0 − ϕ⊤
0 β0. Denote the variance of this residual by

σ2
0 = E[(y0 − ϕ⊤

0 β0)
2]. It is easy to see that the risk decomposes as follows:

R(β̂W1:M ,λ) = E
[
(y0 − ϕ⊤

0 β̂W1:M ,λ)
2 | Φ,y, {Wm}Mm=1

]
= (β̂W1:M ,λ − β0)

⊤Σ(β̂W1:M ,λ − β0) + σ2
0 .

Here, we used the fact that (y0 − ϕ⊤
0 β0) is uncorrelated with ϕ0, that is, E[ϕ0(y0 − ϕ⊤

0 β0)] = 0p.
We note that ∥β0∥2 <∞ and Σ0 has uniformly bounded operator norm.

Observe that

R(β̂W1:M ,λ) = (β̂W1:M ,λ − β0)
⊤Σ0(β̂W1:M ,λ − β0) + σ2

0

=

(
1

M

M∑
m=1

β̂Wm,λ − β0

)⊤

Σ0

(
1

M

M∑
m=1

β̂Wm,λ − β0

)
+ σ2

0

=
1

M2

M∑
k,ℓ=1

β̂⊤
Wk,λ

Σ0β̂Wℓ,λ −
2

M

M∑
m=1

β⊤
0 Σ0β̂Wm,λ + β⊤

0 Σ0β0 + σ2
0

=
1

M2

M∑
k,ℓ=1

(β̂⊤
Wk,λ

Σ0β̂Wℓ,λ − β̂⊤
I,µΣ0β̂I,µ) + β̂⊤

I,µΣ0β̂I,µ

− 2

M

M∑
m=1

β⊤
0 Σ0β̂Wm,λ + β⊤

0 Σ0β0 + σ2
0 .

By Lemma 21, note that
1

M

M∑
k=1

β̂Wm,λ ≃ β̂I,µ.

Thus, we have

R(β̂W1:M ,λ) ≃
1

M2

M∑
k,ℓ=1

(
β̂⊤
Wk,λ

Σ0β̂Wℓ,λ − β̂⊤
I,µΣ0β̂I,µ

)
+ β̂⊤

I,µΣ0β̂I,µ − 2

M

M∑
m=1

β⊤
0 Σ0β̂I,µ + β⊤

0 Σ0β0 + σ2
0 .

Now, by two applications of Lemma 21, we know that β̂⊤
Wk,λ

Σ0β̂Wℓ,λ − β̂I,µΣ0β̂I,µ
a.s.−−→ 0 when

k ̸= ℓ since Wk and Wℓ are independent. Hence, we have

R(β̂W1:M ,λ) ≃
1

M2

M∑
m=1

(
β̂⊤
Wm,λΣ0β̂Wm,λ − β̂⊤

I,µΣ0β̂I,µ

)
+ (β̂I,µ − β0)

⊤Σ0(β̂I,µ − β0) + σ2
0
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≃ 1

M

(
β̂⊤
W ,λΣ0β̂W ,λ − β̂⊤

I,µΣ0β̂I,µ

)
+ (β̂I,µ − β0)

⊤Σ0(β̂I,µ − β0) + σ2
0

=
1

M

(
β̂⊤
W ,λΣ0β̂W ,λ − β̂⊤

I,µΣ0β̂I,µ

)
+R(β̂I,µ) (35)

where we used the fact that the M terms where k = ℓ converge identically in the second to last line
and a risk decomposition similar to that for β̂W1:M ,λ in the last line. Thus, it suffices to evaluate the
difference β̂⊤

λΣ0β̂λ − β̂⊤
µΣ0β̂µ to finish the proof.

We have

β̂⊤
W ,λΣ0β̂W ,λ − β̂⊤

I,µΣ0β̂I,µ

= (y⊤W⊤/n)WΦ(Φ⊤W⊤WΦ/n+ λIp)
†Σ0(Φ

⊤W⊤WΦ/n+ λIp)
†Φ⊤W⊤(Wy/n)

− (y⊤Φ/n)(Φ⊤Φ/n+ µIp)
†Σ0(Φ

⊤Φ/n+ µIp)
†(Φ⊤y/n)

= tr[W⊤WΦ( 1nΦ
⊤W⊤WΦ+ λIp)

†Σ0(
1
nΦ

⊤W⊤WΦ+ λIp)
†Φ⊤W⊤W /n · (yy⊤)]

− tr[Φ(Φ⊤Φ/n+ µIp)
†Σ0(Φ

⊤Φ/n+ µIp)
†Φ⊤/n · (yy⊤)]

≃ tr[(ΦΦ⊤/n+ µIn)
†(ΦΣ0Φ

⊤/n+ µ′
Σ0

In)(ΦΦ⊤/n+ µIn)
†(yy⊤)]

− tr[Φ(Φ⊤Φ/n+ µIp)
†Σ0(Φ

⊤Φ/n+ µIp)
†Φ⊤/n · (yy⊤)]

= tr[(ΦΦ⊤/n+ µIn)
†(ΦΣ0Φ

⊤/n)(ΦΦ⊤/n+ µIn)
†(yy⊤)]

+ µ′
Σ0

tr[(ΦΦ⊤ + µIn)
†(yy⊤)(ΦΦ⊤ + µIn)

†]

− tr[(ΦΦ⊤/n+ µIn)
†(ΦΣ0Φ

⊤/n)(ΦΦ⊤/n+ µIn)
†(yy⊤)]

= µ′
Σ0

tr[(ΦΦ⊤ + µIn)
†(yy⊤)(ΦΦ⊤ + µIn)

†], (36)

where in the third line, we used the second-order equivalence for freely weighted ridge resolvents from
Lemma 22; in the fourth line, we employed the push-through identity multiple times. Substituting
for µ′

Σ0
from Lemma 22 in (36) and substituting this back into (35), we arrive at the desired

decomposition. This completes the proof.

C.2 Proof of Proposition 7

We use the path (4) with k∗ and µ∗, and setting λ∗ = 0:(
1− df(β̂I,µ∗)

n

)
=

(
1− k∗

n

)
.

This suggests that

k∗ = df(β̂I,µ∗).

Note that r := rank(X⊤X) = rank(GI). By the definition of degrees of freedom, it follows that

df(β̂I,µ∗) = tr[X⊤X(X⊤X + µ∗Ip)
†]

=

r∑
i=1

si
si + µ∗ ≤ r = rank(GI),

where s1, . . . , sr are non-zero eigenvalues of X⊤X . This finishes the proof.

C.3 Technical lemmas

Recall from Appendix B.6 that we define λ0 = − lim infn→∞ λ+min(WΦΦ⊤W⊤/n).
Lemma 22 (General second-order equivalence for freely weighted ridge resolvents). Under the
settings of Lemma 21, for any positive semidefinite Σ0 with uniformly bounded operator norm, for
all λ > λ0,

1
nW

⊤WΦ( 1nΦ
⊤W⊤WΦ+ λIp)

†Σ0(
1
nΦ

⊤W⊤WΦ+ λIp)
†Φ⊤W⊤W
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≃ ( 1nΦΦ⊤ + µIn)
†( 1nΦΣ0Φ

⊤ + µ′
Σ0

In)(
1
nΦΦ⊤ + µIn)

†, (37)

where µ′
Σ0

≥ 0 is given by:

µ′
Σ0

= −∂µ
∂λ
λ2S ′

WW⊤

(
− 1

n tr
[
1
nΦΦ⊤( 1nΦΦ⊤ + µIn)

†])
· 1
p tr

[
( 1nΦΦ⊤ + µIn)

†( 1nΦΣ0Φ
⊤)( 1nΦΦ⊤ + µIn)

†]. (38)

Proof. We use the Woodbury matrix identity to write

1
nWW⊤Φ( 1nΦ

⊤WW⊤Φ+ λIp)
†Σ0(

1
nΦ

⊤WW⊤Φ+ λIp)
†Φ⊤WW⊤

= 1
nW ( 1nW

⊤ΦΦ⊤W + λIm)†W⊤ΦΣ0Φ
⊤W ( 1nW

⊤ΦΦ⊤W + λIm)†W⊤.

The equivalence in (37) and the inflation parameter in (38) now follow from the second-order result
for feature sketch by substituting W for S, Φ for Φ⊤, and 1

nΦΣ0Φ
⊤ for Σ0 in (18).
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D Additional illustrations for Section 3

D.1 Implicit regularization paths for bootstrapping
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Figure 5: Equivalence under bootstrapping. The left panel shows the heatmap of degrees of freedom, and
the right panel shows the random projection EW [a⊤β̂W ,λ] where a ∼ N (0p, Ip/p). In both heatmaps, the
red lines indicate the predicted paths using Equation (4), and the black dashed lines indicate the empirical
paths obtained by matching empirical degrees of freedom. Despite the complexity of the theoretical path for
bootstrapping, we observe that the empirical paths closely resemble it. Therefore, the theoretical path for
sampling without replacement from (4) serves as a good approximation.

D.2 Implicit regularization paths with non-uniform weights
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Figure 6: Equivalence under non-uniform weighting. The left panel shows the heatmap of degrees of freedom,
and the right panel shows the random projection EW [a⊤β̂W ,λ], where a ∼ N (0p, Ip/p). The weights
(diag(W )) for observations are initially generated as (9/10)i for i = 0, . . . , n− 1, subsample k entries from
{1, . . . , n}, zero out the other n − k entries, and then normalized to have norm k. The black dashed lines
indicate the empirical paths obtained by matching the empirical degrees of freedom.
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E Additional illustrations for Section 4

E.1 Rate illustration for ensemble risk against ensemble size
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Figure 7: Risk equivalence for random feature structures when sampling without replacement. The solid lines
represent the prediction risks and their estimates of the subsample ridge ensemble, and the red dashed lines
indicate the prediction error of the full ridge predictor. The data and random features with the ReLU activation
function are generated according to Appendix F.1 with n = 5000 and p = 500. The regularization level for
the full ridge is set as µ = 1, and each subsampled ridge ensemble is fitted with M = 100 randomly sampled
subsampling matrices. For each value of λ, the subsample ratio is determined by solving Equation (4).

E.2 Real data illustrations for implicit regularization paths
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Figure 8: Equivalence in pretrained features of pretrained ResNet-18 on CIFAR-10 dataset.
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Figure 9: Equivalence in features of randomly initialized ResNet-18 on Fashion-MNIST dataset.

F Details of experiments

F.1 Simulation details

The simulation settings are as follows.

• Covariance model. The covariance matrix of an auto-regressive process of order 1 (AR(1)) is
given by Σar1 ∈ Rd×d, where (Σar1)ij = ρ

|i−j|
ar1 for some parameter ρar1 ∈ (0, 1). For the

simulations, we set ρar1 = 0.25.
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• Signal model. Define β0 = 1
5

∑5
j=1 w(j) where w(j) is the eigenvector of Σar1 associated with

the top jth eigenvalue r(j).

• Response model. We generated data (xi, yi) ∈ Rd×R for i = 1, . . . , n from a nonlinear model:

yi = x⊤
i β0 +

1

p
(∥xi∥22 − tr[Σar1]) + εi, xi = Σ

1
2
ar1zi, zij

iid∼ t5
σ5
, εi ∼

t5
σ5
,

(M-AR1)

where σ5 =
√
5/3 is the standard deviation of t5 distribution.

The benefit of using the above nonlinear model is that we can clearly separate the linear and the
nonlinear components and compute the quantities of interest because β0 happens to be the best linear
projection.

The linear, random, and kernel features are generated as follows.

• Linear features. For a given feature dimension p, we use d = p raw features from (M-AR1) as
linear features.

• Random features. For generating random features, we use d = 2p raw features from (M-AR1)
and sample a randomly initialized weight matrix F ∈ Rp×d whose entries are i.i.d. samples
from N (0, d−1/2). Then the transform feature is given by x̃i = φ(Fxi) ∈ Rp, where φ is a
nonlinear transformation and set to be ReLU function in our experiment.

• Kernel features. For kernel features, we use d = p raw features from (M-AR1) to construct the
kernel matrix.

In the simulations, the estimates are averaged across 20 simulations with different random seeds.

F.2 Experimental details in Section 4.3

Following the similar experimental setup in [20], we use residual networks to extract features on
several computer vision datasets, both at random initialization and after pretraining. More specifically,
we consider ResNet-{18, 34, 50, 101} applied to the CIFAR-{10,100} [9], Fashion-MNIST [21],
Flowers-102 [14], and Food-101 [4] datasets. All random initialization was done following [8];
pretrained networks (obtained from PyTorch) were pretrained on ImageNet, and the outputs of the
last pretrained layer on each dataset mentioned above were used as the embedding feature Φ.

After obtaining the embedding features from the last layer of the neural network model, we further
normalize each row of the pretrained feature to have a norm of p, and center the one-hot labels to
have zero means. To reduce the computational burden, we only consider the first 10 one-hot labels of
all datasets. For datasets with different data aspect ratios, we stratify 10% of the training samples as
the training set for the CIFAR-100 dataset. The training and predicting errors are the mean square
errors on the training and test sets, respectively, aggregated over all the labels.
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should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental details are included in the appendix, and the source code is
provided in the supplementary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The standard errors across multiple random seeds are included for Figure 7.
Note that for the heatmaps, we only report the mean statistics because of visual constraints.
However, the standard errors for the heatmaps are small enough not to impact the regulariza-
tion paths indicated.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The compute resources are described in the README file of the submitted
code in the supplementary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [NA]

Justification: The paper provides a theoretical analysis and does not have immediate societal
impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not pose any risks that require safeguards.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper correctly cites papers of related assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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