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ABSTRACT

While large pre-trained language models have made great strides in natural lan-
guage understanding benchmarks, recent studies have found that models rely more
on the superficial or short-cut features to make predictions. In this paper, we
study how to progressively and automatically detect and filter the biased data to
train a robust debiased model for NLU tasks. Rather than focusing on the human-
predefined biases or biases captured by a bias-only model of limited-capacity, we
introduce a new debiasing framework, called Bias-Progressive Auto-Debiasing
(BIASPAD), based on two observations: i) the higher the proportion of bias in
the training data, the more biased the model will be, and ii) a more biased model
has higher confidence in predicting the bias. The framework progressively trains a
bias-only model by using the most biased samples detected in the previous epoch,
which ensures a more biased model and leads to a robust debiased model. The
extensive experiments demonstrate the effectiveness of the proposed framework
on several challenging NLU datasets, where on HANS, we achieve 5% accuracy
improvement.

1 INTRODUCTION

In the last decade, deep representation learning has shown its general capability on a broad spec-
trum of tasks and made significant progress on natural language understanding datasets, e.g., GLUE
(Wang et al., 2018) and SuperGLUE (Wang et al., 2019). However, recent studies (Poliak et al.,
2018; Gururangan et al., 2018; McCoy et al., 2019) reveal that the models tend to capture dataset
biases (i.e., the superficial clues such as word overlaps and negative words) to make predictions,
rather than learning from the underlying features. Such an issue becomes the main barrier to the
models’ reliability in deployment, especially on out-of-distribution generalization. Moreover, the
issue still remains for the recent large-scale pre-trained models with generic representations.

As such, reducing the impact of dataset biases becomes the key challenge to learn robust natural
language understanding (NLU) models. Early works of debiasing methods rely heavily on human
experts (He et al., 2019; Clark et al., 2019; Mahabadi et al., 2020) to manually analyze the potential
biases in a specific artificial dataset and then define the most likely bias types in that dataset. Since
these experience-dependent methods are usually time-consuming, recent studies focus on automatic
and dataset-agnostic debiasing methods for NLU to cover more extensive bias types, including those
are hardly induced by the experts. The fundamental idea behind those automatic debiasing methods
is to firstly train a bias-only model and use it to implicitly or explicitly detect biased samples. Then
these samples are downweighed in the training of a debiased model.

Therefore, the key problem reduces to train a bias-only model. In previous works, two heuristic
assumptions are usually applied to train the bias-only model. The first is the ‘weak-model’ assump-
tion: models of lower capacity (e.g., Bag-of-words model or TinyBERT) are easier to learn from
shallow heuristics of the datasets, which results in a bias-only model (Sanh et al., 2020). The second
is the ‘small-data’ assumption: a model is prone to fitting shortcut or biased features in the dataset
in its early training stages (Utama et al., 2020a).

However, both assumptions cannot always hold and are full of uncertainty with many uncontrollable
factors. Intuitively, it is difficult to define how weak the model is and how small the dataset is, leaving
redundant hyperparameters. Moreover, the model for the bias-only purpose is inevitably fed with
normal or robust samples due to both i) the unknown dataset-specific biasing sample proportion and
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ii) the randomness of model-selecting or data-sampling. All these uncontrollable factors possibly
lead to a less-biased bias-only model and cause negative effects on the debiased model learning.

Thereby, we aim at a stable learning method for a better biased model in an automatic manner,
and the method should be agnostic to the datasets, bias types, model sizes, and data scales. First
of all, we conduct a pilot empirical study (see §3) that tries to figure out what’s more essential
to a better biased model. We straightforwardly observed i) a higher the proportion of bias in the
training data results in the more biased model, and ii) a more biased model has higher confidence in
predicting the bias. This motivates us to propose a brand-new debiasing framework, dubbed bias-
progressive auto-debiasing (BiasPAD), to obtain a better bias-only model by taking the inspiration
of boosting learning. Specifically, we propose to alternate between the biased data selection and
bias-only model training, where we use the most biased samples from the previous step to train the
bias-only model. Given our progressively-improved bias-boosted model that accurately identifying
the biased samples, we can simplely obtain a robust debiased model by a products-of-experts (PoE)
loss (He et al., 2019).

We evaluate our approach in various settings and receive a huge improvement. To the best of our
knowledge, our model delivers state-of-the-art performance on HANS (Zhang et al., 2019), NLI
Hard (Gururangan et al., 2018) and FEVER-SYMMETRIC (Schuster et al., 2019) without leverag-
ing extra data. We will open-source the code after publication.

2 RELATED WORK

Bias in Datasets. Dataset bias is inevitable in most human-crafted datasets (Wang et al., 2018;
2019), such bias could be simple word co-occurrence (Gururangan et al., 2018), negation words
(Utama et al., 2020a), or overlap relation between premise and hypothesis in natural language infer-
ence tasks (McCoy et al., 2019). Recent studies reveal that models can outperform random guesses
by utilizing such bias as shortcuts (Tsuchiya, 2018; Poliak et al., 2018), whereas the performance
of the fine-tuned models significantly drops when testing on a filtered bias-free dataset or on new
complex samples. Debiasing methods are therefore very much needed to obtain robust models with
reasoning skills to capture the underlying semantics.

Debiasing methods. Existing debiasing methods can be roughly classified as data-centric and
model-centric methods. Data-centric methods focus on improving the quality of the training data by
either i) removing the biased samples (Le Bras et al., 2020) or ii) generating new unbiased samples
(Zhang et al., 2019; Wu et al., 2022). For example, Le Bras et al. (2020) adversarially filter the
dataset biases and train the model on the filtered datasets. Zhang et al. (2019) generates additional
training samples through controlled word exchange and back-translation, supplemented by human
checks for fluency and paraphrase judgment. While promising, the researchers also showed that the
newly constructed datasets are hardly to be entirely bias-free and may even introduce significant
overhead, therefore it is crucial to build robust debiasing algorithms.

Model-centric methods share a common idea of building robust debiased models by reducing the
importance of the biased instances during training. They first build a bias-only model to identify the
biased instances, then reduce their importance in training by methods such as i) example reweighting
(Schuster et al., 2019), i.e., downweighting the biased samples, ii) confidence regularization (Utama
et al., 2020b), i.e., force the model to be less confident on the biased samples, and iii) product-
of-experts (He et al., 2019; Mahabadi et al., 2020), which leads the model learning from less bias
information by introcuding the output of the bias-only model to the training objective function.
Current ways to build bias-only models are basically based on the observations by (Sanh et al., 2020)
and (Utama et al., 2020a). Sanh et al. (2020) find a model with limited capacity (e.g., TinyBERT)
can be more biased than the models with larger capacity. They train a TinyBERT on the whole
training data and regard it as a bias-only model; then, they freeze the parameters of the TinyBERT
and co-train it with the larger model, where the trained larger model will be regarded as the debiased
model. Utama et al. (2020a) do an empirical study on a synthetic dataset and find a model will be
more biased if trained on a smaller dataset at an early training stage. They then obtain their bias-
only model by training a BERT-base model on a small fraction of the training dataset. However,
both works cannot assure a strong biased model since the bias-only models are not trained on the
bias-only datasets – the former utilize the entire dataset and the latter randomly select the subset
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Original
Premise

Entailment
The banker saw the actor.Hypothesis

Label

The banker near the judge saw the actor.

Synthetic
Add label-consistent bias
Entailment The banker saw the actor.

Contradiction The banker saw the actor.
Add label-conflicting bias

Figure 1: Example of the synthetic dataset, which is construct by inserting artificial shortcut in front of the
hypothesis of original samples. Two types of synthetic bias, i.e., label-consistent bias and label-conflicting
bias, are injected into the raw dataset.

of the training dataset to train the bias-only model, which can still bring general knowledge to the
bias-only model. In this work, we introduce a new bias-progressive auto-debiasing framework based
on two observations in Section 3, which ensures a stronger bias-only model and a robust debiased
model.

3 EMPIRICAL STUDY

Task Definition. We target natural language understanding tasks and regard the tasks as a general
multi-class classification problem. Given an input sentence pair x ∈ X , the goal is to predict the
semantic relationship label y ∈ {1, 2, ...,K}, where K is the number of classes. Specially, we aim
to obtain a robust debiased model Fd to make predictions free from reliance on the biased features
xb ∈ x and focus on the unbiased features xu ∈ x only.

Insights about Debiasing Architectures. Generally, debiasing architectures have two stages:
first, a bias-only model Fb is built to directly compute P (y|xb), which can be regarded as the con-
fidence of a sample being biased; then, a debiased model Fd is learned to behave differently from
the bias-only model by reducing the importance for the samples with high probability being biased.
Existing methods to build bias-only models are basically based on the following findings: i) smaller
models are easier to learn the bias information than larger models since the biased features are easier
to access than unbiased features (Sanh et al., 2020), and ii) a model will be biased if training on a
small fraction of the training dataset (Utama et al., 2020a). However, both findings cannot ensure
a strong biased model, since they do not have constraints on the dataset used to train the bias-only
model, where the model can still easily learn some general knowledge, especially on less-biased
datasets. In this work, we propose a bias-progressive training strategy to obtain a more biased bias-
only model without any additional prior knowledge. The strategy is mainly based on the following
assumptions: 1) the more biased samples in the training data, the more biased a model will be; 2)
the samples predicted by a bias-only model in high confidence are more likely to be biased.

Exploring with Synthetic Bias. To better verify these assumptions, we construct a controllable
synthetic dataset by inserting artificial bias into the MNLI dataset (Williams et al., 2018) (dataset
details can be found in Section 5.1). Figure 1 shows an example of the synthetic dataset. We
simulate two types of bias by appending a specific string in front of the original hypothesis as a
shortcut feature: One is label-consistent bias, which is constructed by inserting the golden label;
Another is label-conflicting bias, where a random label other than the golden label will be appended
to the raw hypothesis sentence. Specifically, we add the synthesized bias to η ∈ [0, 1] percentage
of the training dataset. For each instance, the injected bias could either be a label-consistent bias
or a label-conflicting bias (anti-bias), with a ratio of 8:2 to simulate the real-world distribution.
Besides, we construct two synthetic evaluation sets as a label-consistent bias-only set (bias set)
and a label-conflicting bias-only set (anti-bias set). Ideally, a strong bias-only model should have
learned the shortcuts, i.e., utilizing the inserted words as the predictions. Therefore it will have a
large performance gap on the bias set and the anti-bias set.

We verify our first assumption by fine-tuning a BERT-base model on several synthesized training
datasets with different η ∈ {0.1, 0.3, 0.5, 0.7} and evaluate them on three evaluation sets, i.e., the
original MNLI evaluation set, the bias set, and the anti-bias set. We can observe from Figure 2 that,
at the early stages of the training process, the accuracy tends to increase to 100% on the bias set
and drop to 0% on the anti-bias set, indicating the language models leaning to overfit superficial
features in the first few training epochs, which is also proved in Utama’s work (Utama et al., 2020a).
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Figure 2: Learning dynamics of BERT-base models fine-tuned on four synthetic MNLI training datasets with
different η ∈ {0.1, 0.3, 0.5, 0.7}. All models are evaluated on three evaluation sets, the original MNLI dev set,
the bias set, and the anti-bias set.

Figure 3: The confidence distribution of samples on three evaluation sets. Models are trained with 2000
random samples in synthetic MNLI datasets with different η ∈ {0.1, 0.3} for three epochs.

Furthermore, as the proportion of the biased data η grows in the raw training data, i.e., more biased
samples exist in the training data, the performance gap becomes more pronounced and stable be-
tween the bias set and the anti-bias set, and we will obtain a more biased model – which justify the
first assumption that, the more biased samples in the training data, the more biased a model will be.

To verify the second assumption, we explore the distribution of the bias-only model’s confidence on
the three three evaluation sets. Figure 3 shows that bias-only model will make predictions with high
confidence on the label-consistent bias samples, whereas the model has low confidence in predicting
the label for the label-conflicting bias sample. We can observe apparent confidence deviation among
the three evaluation datasets on a training dataset with a small fraction (i.e., 10%) of biased sam-
ples, such confidence deviation becomes more significant as the proportion of the biased samples
in the training dataset increases. This observation suggests i) the bias-only model will have high
confidence in predicting the biased samples, and ii) such confidence increases as the model becomes
more biased.

In a summary, our observations are:

• The more biased samples in the training data, the more biased a model will be.

• The samples predicted by a bias-only model in high confidence are more likely to be biased,
and such confidence increases as the bias-only model becomes more biased.

4 METHODOLOGY

4.1 OVERVIEW

We propose a Bias-Progressive Auto-Debiasing (BIASPAD) framework to automatically and suffi-
ciently training debiased model without any requirements for the prior knowledge about the biases.
Figure 4 shows the outline of the proposed framework, which includes i) a bias-boosted model
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Figure 4: An overview of the bias-progressive auto-
debiasing framework.

Algorithm 1 Bias-progressive Training
1: Input: dataset D with N samples; boost

step K; subset size n; average coefficient
λ

2: Output: bias-boosted model FK
b

3: s1i ← 0 ∀i ∈ 1...N
4: for k ∈ 1...K do
5: for i ∈ 1...N do
6: wk

i = exp(ski )/
∑N

j=1 exp(s
k
j )

7: end for
8: Sample Dk ⊂ D in size n based on wk

9: Re-initialize pre-trained F k
b

10: Finetune F k
b on Dk with cross-entropy

11: for i ∈ 1...N do
12: ∆si = P (ŷti |xi, θ

k
b )

13: sk+1
i ← λ ∗ ski + (1− λ) ∗∆si

14: end for
15: end for

learned by a bias-progressive training strategy, and ii) a robust debiased model co-trained with the
fixed bias-boosted model on the debiasing training objectives.

4.2 BIAS-BOOSTED BIAS-ONLY MODEL

Previous empirical studies reveal that a more biased bias-only model can be obtained by increasing
the proportion of the biased samples in the training dataset. Since it is difficult to identify the exact
biased samples without any prior knowledge, we use a bias-progressive training process to greedily
learning from the most biased samples at each training step. Algorithm 1 shows the steps to obtain
a bias-boosted model. First, given a dataset D with N samples, we initialize the bias scores {si|i ∈
(1, . . . , N)} for all samples {xi|i ∈ (1, . . . , N)} as zero. Then, at each step k, the weight wk

i for
xi to be sampled is calculated by wk

i = exp(ski )/
∑N

j=1 exp(s
k
j ), where w1

i = 1/N for all samples
at the first step. We then sample n instances Dk ⊂ D from the dataset with the weights {wk

i |i ∈
(1, . . . , N)} to train the bias-only model with the loss LCE = CrossEntropy(y, F k

b (x, θ
k
b )), where

θkb stands for the parameters of the bias-only model. At the end of each step, we update the bias
score for all samples with sk+1 = λsk+(1−λ) ·P (ŷt|xi, θ

k
b ), where P (ŷti |xi, θ

k
b ) is the confidence

for model to predict true label of xi, and λ is the moving average coefficient.

We repeat the above steps for K times to obtain the final bias-only model. At each step, 1) we update
the weights for the samples according to the confidence of the bias-only model – according to our
second observation, the biased samples will have higher confidence score and thus will have higher
weights to be sampled to form the subset Dk, and 2) the sampled subset Dk will contain more biased
samples after each step, meaning a more biased model Fb will be learned based on Dk according to
our first observation, which in turn, a more biased model Fb will have more confidence in identifying
the biased samples (according to our second observation) therefore increases the weights for the
more biased samples for the next step. By learning with the above bias-progressive training strategy,
we obtain a strong bias-boosted model.

4.3 DEBIASED MODEL LEARNING

After obtaining a bias-boosted bias-only model with the above steps, we now freeze the parameters
of the bias-boosted model and train the debiased model through one of the two debiasing training
objectives, i.e., example reweighting (Schuster et al., 2019) and product-of-experts (Sanh et al.,
2020).
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Example reweighting (ER) directly adjusts the weights of each training instance in the loss function
based on the likelihood a training instance is biased, where the likelihood is obtained from the trained
bias-boosted model Fb. The training objective for the debiased model Fd is:

LER = −
∑

(xi,yi)∈D

(1− P (ŷti |xi, θb)) logP (ŷti |xi, θd). (1)

where P (ŷti |xi, θb) is the confidence by the bias-only model for xi to be its golden label, θd and θb
are the parameters for the debiased model Fd and the bias-boosted model Fb, respectively.

Product-of-experts (PoE) encourages the debiased model to conpensate for the errors of the bias-
boosted model, instead of sampling with frequently on the difficult samples. It learns the debiased
model Fd via the following ensemble loss:

LPoE = −
∑

(xi,yi)∈D

logP (ŷti |xi, θd, θb), where P (ŷi|xi, θd, θb) = softmax(ldi + lbi ), (2)

where ld and lb indicate the logits obtained from the debiased model and the bias-boosted model,
respectively.

We mainly use product-of-expert to train the debiased model in the following experiments if without
explicity.

5 EXPERIMENTS

5.1 EVALUATION DATASETS

We evaluate our proposed Bias-Progressive Auto-Debiasing framework (BIASPAD) on two real-
world natural language understanding tasks, i.e., natural language inference and fact verification.

Natural language inference (NLI) tasks predict for the relationship between two sentences such
as entailment and contradiction. We select the widely used Multi-Genre Natural Language Infer-
ence (MNLI) dataset (Williams et al., 2018) to train the bias-boosted model and the debiased model,
then evaluate the performance of the debiased model by fine-tuning it on three evaluation datasets:
MNLI-dev, HANS (Zhang et al., 2019), and MNLI-Hard (Gururangan et al., 2018). MNLI dataset
contains ∼392K pairs of premise and hypothesis labeled in three categories, i.e., entailment, neu-
ral and contradiction. MNLI-dev is the original evaluation set for the MNLI dataset. HANS is
a challenging test set for NLI tasks, which includes ∼30K high word-overlapping sentence pairs
generated by various templates with each sample labeled as entailment or non-entailment, where
the two types of labels are equally distributed. One example for non-entailment is given a premise
“the doctor was paid by the actor”, the hypothesis is “the doctor paid the actor”. In MNLI, the high
word-overlapping pairs are highly correlated with the label entailment, where a model will typically
perform random on HANS without the debiasing strategies. MNLI-Hard (Gururangan et al., 2018)
is a subset of MNLI-dev which consists of only challenging samples.

Fact verification tasks predict for whether an evidence can support the given claim. Fact Extraction
and Verification (FEVER) dataset (Thorne et al., 2018) is a commonly used dataset for this task, it
consists of ∼145K pairs of claims and evidence with each pair marked as supporting, refuting, and
insufficiently informative. We use FEVER to train the bias-boosted model and the debiased model
and evaluate the performance of the debiased model on two evaluation sets: one FEVER-dev, which
is the original evalution set for FEVER; another is SYMMETRIC (Schuster et al., 2019), which is a
challenging test set synthesized based on the original sentence pairs in FEVER by inserting conflict
facts. Models rely heavily on negation words such as “not” or “reject” will face a huge performance
drop on this evaluation set.

5.2 IMPLEMENTATION DETAILS

According to the observations from our empirical study and the work by (Utama et al., 2020a), we
set the number of samples in the subset to train the bias-only model n as 2000, and train the bias-
only model for 3 epochs in each iteration. To obtain a bias-boosted model, the number of iterations
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Table 1: Comparison results on the evaluation datasets in accuracy, where HANS-Ent, HANS-Non-Ent, and
HANS-Total are the results for the entailment labeled samples, non-entailment labeled samples, and all samples,
respectively.

Objective MNLI dev HANS MNLI Hard FEVER
Total Ent Non-Ent Dev Symm.

BERT-base CE 84.52 62.43 98.12 26.74 76.96 85.60 63.10

Mahabadi et al. (2020) PoE 84.19 64.65 95.99 33.30 76.81 86.46 66.25
Utama et al. (2020a) PoE 80.70 68.50 86.24 50.76 - 85.40 65.30
Utama et al. (2020a) ER 81.40 68.60 87.06 50.14 - 87.20 65.60
Sanh et al. (2020) PoE 81.35 68.77 81.13 56.41 76.54 - -

BiasPAD ER 83.35 71.23 86.54 55.92 77.25 87.60 65.31
BiasPAD PoE 82.24 73.82 87.64 60.20 77.48 87.80 66.62

for the bias-progressive training process K is set to 3, which is verified to be enough to convergence;
the moving average coefficient λ in Section 4.2 is set to 0.5.

Both the bias-only model and the debiased model are fine-tuned on a BERT-base model (Devlin
et al., 2019) with ∼110M parameters. The embedding size is set to 32 and the learning rate is set
to 2e-5. The learning rate for the debiased model is linearly increased for 2000 warming steps and
linearly decreased to 0 afterward, while keeping 2e-5 for the bias-boosted model. We use an Adam
optimizer with default hyperparameters.

5.3 MAIN RESULTS

We compare our proposed bias-progressive auto-debiasing framework with a BERT-base model
trained with cross-entropy loss as the baseline and four existing state-of-the-art model-centric de-
biasing frameworks. Mahabadi et al. (2020) utilize prior knowledge of the bias types to identify
the biased samples to train a bias-only model then train the debiased model via product-of-experts
(PoE). Utama et al. (2020a) obtain the bias-only model by training it on a small fraction of the train-
ing dataset, and train their debiased model by either PoE or example reweighting (ER). Sanh et al.
(2020) get their bias-only model by training BERT-tiny on the whole training dataset and obtain the
debiased model via PoE. Our proposed BiasPAD framework and the two latter works do not require
the prior knowledge about the dataset bias. Table 1 shows the comparison results on the evaluation
datasets, where the results for the comparison methods are collected from the original papers, and
our results are the results averaged from five trials.

The proposed BiasPAD framework achieves SOTA results on the three challenging test sets, i.e.,
HANS, MNLI-Hard, and FEVER-Symm, by 5.1%, 0.7% and 0.4%, compared with all the previous
SOTA results on each dataset by either prior knowledge-available or prior knowledge-free frame-
works. Specifically, we significantly outperforms two other prior knowledge-free frameworks on
all three challenging test sets by 5.1%, 1.0%, and 1.0%, respectively, which indicates the proposed
BiasPAD framework has better performance in automatic bias capturing and debiasing. Comparing
our framework with the framework utilizing the manual prior knowledge, the proposed BiasPAD
still steadily provides better performance, which suggests the proposed framework may also capture
unknown bias that may be hardly identified by a human, exhibiting a strong generalization capa-
bility. Under different training objectives, the proposed BiasPAD consistently outperms the other
works with the same training objective, indicating the effectiveness of the bias-progressive training
strategy to obtain a strong bias-only model. Comparing the BERT-base model, with the other de-
biasing frameworks, we can see that all debiased models show degradation on the in-distribution
datasets, i.e., MNLI-dev and HANS Ent, where BiasPAD shows the minimal reduction among all
the knowledge-free debiasing methods, showing the advantage of the proposed framework. Over-
all, we obtain a stronger bias-boosted model and a robust debiased model through the proposed
bias-progressive auto-debiasing (BiasPAD) framework.
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6 ANALYSIS

6.1 THE BIAS-BOOST MODEL IS A MORE BIASED MODEL

Figure 5: AUC-ROC curve on datasets synthesized for two known biases on MNLI-dev dataset by
three bias-only models trained with different strategies.

In Section 5.3 we show that the proposed bias-progressive training strategy ensures a strong bias-
only model compared with the methods by Utama et al. (2020a) and Sanh et al. (2020). In this
part, we visualize such bias difference in the bias-only model by the following experiments. We
first obtained three bias-only models by either the strategy used in Utama et al. (2020a), Sanh et al.
(2020), or our bias-progressive training strategy. We reproduce the two other methods with the
suggested hyper-parameters claimed in the original papers, and the details can be found in Appendix.
We further synthesize two evaluation sets based on MNLI-dev set: one labels i) the samples with
high word overlap rate and with entailment as the true label to be 1 and ii) the other samples to be
0; another labels i) the samples containing negation words in hypothesis and with contradiction as
the true label to be 1 and ii) the other samples to be 0. The details for the calculation of the word
overlap rate and the list for the negation words can be found in the Appendix. We then verify the
performance of the above three bias-only models on the two synthesized datasets, where Figure 5
shows the AUC-ROC curve based on the confidence of the bias-only model. From the result, we
discover that our bias-progressive training strategy outperforms the other two on both types of biases,
with higher AUC scores and dominant ROC curves. This experiment shows, our bias-boosted model
has stronger ability in discriminating the two well-known biases compared with the others. That is,
our bias-boost model is a more biased model.

6.2 NUMBER OF ITERATIONS TO OBTAIN THE BEST BIAS-BOOSTED MODEL

Figure 6: AUC scores for two datasets synthesized for two known
biases on MNLI-dev dataset by our bias-boosted models at differ-
ent iterations.

We obtain our bias-boosted model
through a bias-progressive training
strategy, i.e., we step-wisely train the
bias-only model. One key question
is, how many iterations do we need to
obtain the best bias-boosted model?
To answer this question, we design
this experiment to observe the model
convergence process during the bias-
progressive training. Similar to Sec-
tion 6.1, we verify the results on two
synthesized biased datasets based on
the MNLI-dev dataset. We iterate the
bias-progressive training process for
six steps, i.e., K = 6, and at each
step, we evaluate the bias-only model on the two synthesized datasets and record their AUC scores.
The results are shown in Figure 6. We can see that at the first three iterations, the AUC scores
increase from 0.82/0.74 to 0.92/0.90 for the two evaluation sets, while just show slight fluctuation
after the fourth iteration. We draw two conclusions as 1) the bias-boosted model converges through

8



Under review as a conference paper at ICLR 2023

Figure 7: The x-axis indicates for the t-th epoch. Left: Accuracy difference of injecting cross-entropy loss
at t-th epoch for only one epoch. Right: Accuracy difference of injecting cross-entropy loss starting at t-th
epoch. For a clearer contrast, we show the difference value against the leftmost point.

the bias-progressive training progress, and 2) the model converges in the first few iterations, where
we select K = 3 to obtain the bias-boosted model in our experiments.

6.3 PERFORMANCE TRADEOFF BETWEEN IN-DISTRIBUTION AND OUT-OF-DISTRIBUTION
SETS

We investigate the trad-off between in- and out-of-domain performance of a debiased model by
setting the training objective as a multi-loss function (Sanh et al., 2020):

L = LPoE + αLCE, (3)

where LCE is a normal cross-entropy loss, and α is the parameter to adjust the tradeoff. Intuitively,
if fine-tuning a BERT-base model with only the cross-entropy loss, we will obtain a biased BERT-
base model which is just same as the baseline BERT-base model we compared in Section 1. One
advantage of introducing the cross-entropy loss (CE) is to improve the in-distribution performance
since we noticed a performance drop on the in-distribution datasets with using debiasing strategies.
So one question is, can we obtain a debiased model that has good performance in both in- and out-of-
distribution performance by training it with the objective 3? We answer this question by observing
the performance tradeoff in two strategies: 1) we insert the cross-entropy loss at t-th training epoch;
or 2) we continually insert the cross-entropy loss from the t-th training epoch. Figure 7 shows the
performance of the two strategies on four evaluation datasets, where MNLI-dev and HANS-ent can
be regarded as in-distribution sets, and HANS-not-ent can be regarded as the out-of-distribution
set. For the first strategy, we can see that adding the CE loss at a later stage improves the out-of-
distribution performance while preserves the in-distribution performance. For the second strategy,
we also observe a better tradeoff performance in a later training stage. Therefore, we condlude that
a better tradeoff performance between in- and out-of-distribution can be achieved by adding the CE
loss in a late stage during the debiased model training process.

7 CONCLUSION AND FUTURE WORK

Reducing the impact of dataset bias plays a crucial role in natural language understanding tasks. In
this paper, we propose a general bias-progressive auto-debiasing (BiasPAD) framework to obtain a
strong bias-boosted model and a debiased model that are robust to dataset bias. We post and verify
two assumptions as i) a bias-only model will be more biased if training on a dataset containing
more biased samples and ii) a bias-only model has high confidence in predicting the biased samples,
and such confidence increases as the bias-only model becomes more biased. We design a bias-
progressive training strategy based on the above two observations and obtain a strong bias-boosted
model. A robust debiased is then obtained by training with the bias-boosted model. The proposed
BiasPAD achieves the state-of-the-art results on three challenging datasets by improving the SOTA
results than two other debiasing-frameworks with 5.1%, 1.0%, and 1.0%, respectively. Our further
experiments also prove the effectiveness of the proposed BiasPAD framework in many ways. In
future works, we plan to investigate how the bias-only model and the debiased model can learn from
the mutual knowledge for the further enhancement.
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(eds.), Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL
2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pp. 3428–3448. As-
sociation for Computational Linguistics, 2019. URL https://doi.org/10.18653/v1/
p19-1334.

Adam Poliak, Jason Naradowsky, Aparajita Haldar, Rachel Rudinger, and Benjamin Van Durme.
Hypothesis only baselines in natural language inference. In Malvina Nissim, Jonathan Berant,
and Alessandro Lenci (eds.), Proceedings of the Seventh Joint Conference on Lexical and Com-
putational Semantics, *SEM@NAACL-HLT 2018, New Orleans, Louisiana, USA, June 5-6, 2018,
pp. 180–191. Association for Computational Linguistics, 2018. URL https://doi.org/
10.18653/v1/s18-2023.

Victor Sanh, Thomas Wolf, Yonatan Belinkov, and Alexander M Rush. Learning from others’ mis-
takes: Avoiding dataset biases without modeling them. In International Conference on Learning
Representations, 2020.

Tal Schuster, Darsh Shah, Yun Jie Serene Yeo, Daniel Roberto Filizzola Ortiz, Enrico Santus, and
Regina Barzilay. Towards debiasing fact verification models. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3419–3425, 2019.

James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. FEVER: a large-
scale dataset for fact extraction and verification. In Marilyn A. Walker, Heng Ji, and Amanda
Stent (eds.), Proceedings of the 2018 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies, NAACL-HLT 2018, New

10

https://doi.org/10.18653/v1/D19-1418
https://doi.org/10.18653/v1/n18-2017
https://doi.org/10.18653/v1/n18-2017
https://doi.org/10.18653/v1/2020.acl-main.769
https://doi.org/10.18653/v1/p19-1334
https://doi.org/10.18653/v1/p19-1334
https://doi.org/10.18653/v1/s18-2023
https://doi.org/10.18653/v1/s18-2023


Under review as a conference paper at ICLR 2023

Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers), pp. 809–819. Association for
Computational Linguistics, 2018. URL https://doi.org/10.18653/v1/n18-1074.

Masatoshi Tsuchiya. Performance impact caused by hidden bias of training data for recognizing tex-
tual entailment. In Nicoletta Calzolari, Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara
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