LEARNING LOCAL SEARCH WITH THEORETICAL INDICATORS FOR JOB SHOP SCHEDULING

Anonymous authorsPaper under double-blind review

ABSTRACT

Job shop scheduling problem (JSSP), where job sequences must be assigned across multiple machines to minimize makespan under fixed routes and varying processing times, is one of the most challenging combinatorial optimization problems. To improve search efficiency, we propose LSI, Local Search with Indicators, a learning-based local search method for JSSP. LSI integrates scheduling-theoretic conditions as indicators into the action evaluation, enabling the policy to focus on swaps that guarantee makespan reduction. By incorporating theoretically proven conditions into the action evaluation, LSI prioritizes promising swaps rather than treating all moves equally, representing a principled improvement of makespan. Despite relying only on a lightweight multilayer perceptron (MLP) policy network, LSI achieves competitive or superior performance compared to strong state-of-theart approaches on diverse JSSP benchmarks, offering faster inference and robust scalability without retraining. These results demonstrate the effectiveness of embedding problem-structured theoretical principles into learning-based combinatorial optimization.

1 Introduction

The Job Shop Scheduling Problem (JSSP) is one of the most challenging combinatorial optimization problems (COPs), known to be NP-hard (Garey et al. (1976)). Unlike routing problems—e.g., the Traveling Salesman Problem (TSP), Vehicle Routing Problem (VRP), and its capacitated variant (CVRP)—JSSP requires each job to follow a fixed machine route with predetermined processing times. Each job consists of a sequence of operations, each of which must be processed on a designated machine for a specified duration.

Although recent methods have used reinforcement learning (RL) or imitation learning (IL) to learn complex encoder architectures such as convolutional neural networks (CNNs) (Liu et al. (2020); Han & Yang (2020)), recurrent neural networks (RNNs) including long short-term memory (LSTM) networks (Monaci et al. (2024); Iklassov et al. (2023)) and Transformer models (Zhao et al. (2022); Chen et al. (2022)), and graph neural networks (GNNs) (Zhang et al. (2020); Park et al. (2021b); Liu & Huang (2023); Park et al. (2021a); Lee & Kim (2022; 2024)) for JSSPs, no learning-based approach has yet reported optimal solutions for instances involving more than 15 machines and 15 jobs, indicating substantial room for further improvement.

This paper is motivated by two core research questions: (1) Can theoretical insights into the JSSP guide the learning of better policies in learning-based optimization? (2) How can such theoretical knowledge be effectively incorporated into the policy network? To address these questions, we focus on local search frameworks and propose a novel method that integrates theoretical makespan reduction conditions into the policy design.

There are three primary approaches to solving JSSPs: exact methods, improvement methods, and constructive methods. Exact methods, such as the branch-and-bound method, guarantee optimal solutions but often require excessive computational time, making them impractical for large-scale problems (Brucker et al. (1994)). Improvement methods iteratively enhance complete solutions through various search strategies, while constructive methods sequentially build solutions by assigning operations step by step. Given the prohibitive runtime of exact methods, most practical solvers rely on heuristics, either constructive or improvement. Constructive methods have attracted significant attention in time-critical scenarios due to their rapid sequential decision-making capabilities. Recent

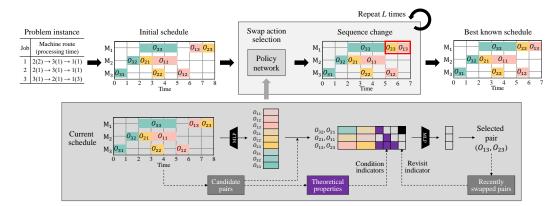


Figure 1: Overview of Local Search with Indicators (LSI), our proposed learning-based local search method for JSSPs. It begins with a given initial schedule, then iteratively swaps a pair of operations. To select a promising swap action, the policy network concatenates the embedding vectors, the theoretically derived condition indicators, and the tabu indicator of each candidate operation pair, then evaluates it. O_{ij} denotes the j-th operation of job i.

studies (Zhang et al. (2020); Park et al. (2021b); Liu & Huang (2023); Park et al. (2021a); Lee & Kim (2022; 2024)) have applied GNNs combined with RL or IL to assign operations in real time. Although these methods generate feasible assignments immediately, they generally yield lower-quality solutions compared to improvement methods, which refine entire schedules through iterative adjustments. While constructive methods excel in speed, their solution quality still lags behind that of improvement methods, motivating a closer look at improvement methods. Improvement methods, such as population-based approaches including Genetic Algorithms (GA) and Particle Swarm Optimization (PSO), and local search approaches including Simulated Annealing (SA), Tabu Search (TS), and Variable Neighborhood Search (VNS), are known to produce high-quality solutions, although they tend to consume more computational time than constructive methods. Recently, learning-based local search methods have emerged, leveraging GNN-based encoders trained via RL to identify promising pairs of consecutive operations on the same machine (Falkner et al. (2022); Zhang et al. (2024a;b)).

Several studies have attempted to incorporate theoretical insights into learning-based approaches for solving JSSPs. Lee & Kim (2024) proposed a learning-based constructive method with a compact action space by ensuring reachability to an optimal schedule. Additionally, recent learning-based local search methods (Falkner et al. (2022); Zhang et al. (2024a;b)) adopt the critical path-based N5 neighborhood structure similar to a traditional local search approach (Nowicki & Smutnicki (1996)). This structure considers all consecutive operation swaps that could potentially reduce the makespan of the current schedule as candidate moves to generate neighbor solutions (Kuhpfahl & Bierwirth (2016)). Although the policies learn to select promising moves from the N5 neighbors, they treat all candidates as equally likely. They do not incorporate theoretical criteria that can distinguish which candidate moves are more likely to reduce the makespan, leaving room for further improvement.

Novelty. In contrast to previous learning-based local searches that rely on complex GNN architectures and treat N5 neighbors as a black-box, we propose a lightweight approach that incorporates theoretically grounded indicators into the policy network using only multilayer perceptrons (MLPs), as illustrated in Figure 1. We identify three novel necessary conditions for makespan reduction in JSSP and encode them as binary indicators to guide action selection. This principled integration of problem-specific knowledge enables our method to achieve superior performance on standard JSSP benchmarks, while offering faster inference and improved scalability.

2 PRELIMINARIES

Job shop scheduling problem (JSSP). JSSP is a classical NP-hard combinatorial optimization problem, proven to be NP-hard (Garey et al. (1976)). It is frequently encountered in complex manufacturing environments, such as semiconductors (Gupta & Sivakumar (2006)) or battery production

systems (Liu et al. (2021)). A JSSP instance comprises a set of N jobs and M machines. Each job is composed of a sequence of operations with predefined processing orders and machine assignments. Each operation must be processed on a specified machine for a given processing time. There is a precedence constraint between successive operations within each job, and machines can process only one operation at a time. Among the various objective functions considered for JSSPs, minimizing the maximum completion time, also known as makespan, is the most prevalent, as it leads to better system utilization and overall productivity (Xiong et al. (2022)). Consequently, this study aims to minimize the makespan $C_{\rm max}$.

Critical path. In a feasible schedule, a path is a directed chain of consecutive operations induced by job-route precedence and machine-processing order, from the earliest start to the latest completion. The critical path is any longest path whose length (sum of processing times) equals the makespan (Kuhpfahl & Bierwirth (2016)). For example, the sequence $O_{31}-O_{32}-O_{21}-O_{11}-O_{12}-O_{13}-O_{23}$ is the critical path of the initial schedule illustrated in Figure 1, where O_{ij} denotes the j-th operation of job i. There is no idle time between consecutive operations on the critical path, and each operation on the path satisfies EST = LST, where EST (earliest start time) is the earliest possible time to start the operation in the current schedule, and LST (latest start time) is the latest possible time to start it without delaying the makespan.

Neighborhood structures. A key factor in the effectiveness of local search approaches is the choice of neighbors to explore. In the context of JSSPs, critical path-based neighborhood structures, denoted N1 (Van Laarhoven et al. (1992)), N2 (Dell'Amico & Trubian (1993)), and N5 (Nowicki & Smutnicki (1996)), are proposed to solve JSSPs and generate neighbor schedules by swapping consecutive operations on the same machine along the critical path. The inclusion relationships among N1, N2, and N5 are illustrated in Figure 2. The N1 neighborhood structure considers all such adjacent swaps and is complete,

Figure 2: Schedule groups that can be moved by each neighborhood structure from the current schedule.

meaning that any optimal schedule can be reached from any arbitrary initial solution through only N1 moves Van Laarhoven et al. (1992). The N2 structure reduces the number of candidate swaps by pruning less promising ones Dell'Amico & Trubian (1993), and N5 prunes even further by keeping only those swaps that may reduce the makespan Nowicki & Smutnicki (1996). Empirical studies have shown that N5 captures most of the improvement benefits of N1 at a fraction of the evaluation overhead (Nowicki & Smutnicki (1996); Kuhpfahl & Bierwirth (2016)). Further explanations and illustrative examples of these neighborhood structures are provided in Appendix B.

3 RELATED WORKS

Classical local search for solving JSSPs. Local search methods have been widely used to solve JSSPs due to their ability to effectively explore the solution space (Nowicki & Smutnicki (1996); Van Laarhoven et al. (1992); Dell'Amico & Trubian (1993); Glover (1986); Mladenović & Hansen (1997); Zhang et al. (2007)). These approaches typically begin with a given solution and iteratively refine it until a stopping criterion such as a time limit or convergence threshold is met. Each local search method employs a strategy to escape local optima by occasionally accepting worse solutions. SA probabilistically accepts worse solutions, with an adaptable acceptance probability as the search progresses (Van Laarhoven et al. (1992)). TS maintains a tabu list of recent explored moves to prevent revisiting of solutions and focuses exploration on unexplored neighborhoods (Glover (1986)), and VNS perturbs the current solution if no improvement is found in a predefined number of iterations (Mladenović & Hansen (1997)). Although highly effective on small instances, their reliance on fixed neighborhood structure and manually tuned rules, such as acceptance probability, tabu list size, and perturbation method, can limit adaptability and performance in more diverse or large-scale settings.

Learning-based local search for solving JSSPs. Building on these classical ideas, recent learning-based methods employ RL to learn the promising selection of moves among candidates based on

163

164

165

166

167

168

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

187 188

189 190

191

192

193

194

195

196

197

199

200

201

202

203

204

205206

207208

209

210

211

212

213214

215

critical paths using GNN-based policy networks (Falkner et al. (2022); Zhang et al. (2024a;b)). NeuroLS integrates an Implicit Quantile Network (IQN) within a VNS framework: when the makespan has not improved for two consecutive moves, the policy perturbs the schedule by randomly sampling from the larger N1 neighbors (Falkner et al. (2022)). Its state representation includes features such as the current and best makespans, and counts of non-improving steps and perturbations. L2S adopts a TS framework with an adaptive tabu list size, inspired by Zhang et al. (2007), and trains its GNN-based policy using n-step REINFORCE. Each operation is represented by features including its EST, LST, and processing time (Zhang et al. (2024a)). TBGAT further enriches this approach with a bidirectional topological Graph Attention Network (bi-GAT): one pass encodes the forward topological rank, EST, and processing time, while the other pass uses the backward topological rank and LST (Zhang et al. (2024b)). The combined embeddings enhance the model's ability to capture structural awareness. Although recent learning-based approaches have driven significant advances in JSSP performance, they share three notable limitations: (1) they treat all candidate swaps as equally probable, without leveraging theoretical distinctions in their potential to reduce makespan, (2) rely on computationally intensive GNN encoders, which slow down inference and hinder scalability to larger instances, and (3) only incorporate hand-engineered features that are not explicitly aligned with makespan reduction conditions.

To address these issues, we propose a novel framework that explicitly incorporates theoretical insights into the policy network. We derive three novel necessary conditions for makespan reduction in JSSP and prove that their joint satisfaction provides a sufficient condition in the special case of a single critical path. These theoretically grounded conditions are integrated as binary indicators into a lightweight policy network composed solely of MLPs. By avoiding complex GNN architectures, our approach significantly reduces model complexity and accelerates inference, thereby enhancing scalability. Despite the simplicity of the architecture, our method achieves state-of-the-art (SOTA) performance across JSSP benchmarks. These results highlight the effectiveness of integrating theoretical insights into the design of learning-based combinatorial optimization methods.

4 Proposed Method

We propose Local Search with Indicators (LSI), a learning-based local search framework that integrates three theoretically derived conditions for makespan reduction as binary indicators within the policy network. These indicators help guide the selection of promising swap actions at each step of the local search. LSI operates under the standard local search framework. Starting from an initial schedule generated by a simple dispatching rule, it iteratively updates the schedule by selecting and applying a swap action between consecutive operations on the same machine, as illustrated in Figure 1. At each iteration, the N_5 neighborhood structure is used to generate candidate swaps, each candidate is evaluated by the policy network based on the embedding vector concatenated with the embeddings of involved operations, binary indicators corresponding to the theoretical conditions, and a revisit status indicator. The action with the highest selection probability is applied to update the current schedule and is then added to the recently visiting list. This process repeats until a termination condition is met, and the best schedule found so far is returned as the final output. LSI emphasizes the use of theoretical indicators to guide decisions, improving efficiency while remaining awareness of both search history and problem structure. To train the policy network through RL, we employ the n-step REINFORCE. To enable this, we formulate the local search process as the MDP used by L2S (Zhang et al. (2024a)).

4.1 MARKOV DECISION PROCESS (MDP)

State. The state s_t at time step t represents the current schedule, including the features of the operations. For each operation u, we consider three features: (1) processing time p_u , (2) EST est_u , and (3) LST lst_u . est_u denotes the earliest possible time to start operation u in the current schedule, and lst_u denotes the latest possible time to start it without delaying the makespan of the schedule. Note that operations with equal est_u and lst_u are on the critical path.

Action. An action a_t is defined as a swap between two consecutive operations on the same machine. The candidate action set A_t at time t comprises all feasible swaps.

State transition. When action a_t is selected, the corresponding swap updates the current schedule, resulting in the next state s_{t+1} . The EST and LST for all operations are recomputed accordingly. The episode ends either when no further candidate actions remain $(A_t = \emptyset)$ or when a predefined step limit is reached.

Reward. The reward function $r(s_t, a_t)$ is designed to improve the best solution found so far. It is defined as: $r(s_t, a_t) = \max(C_{\max}(s_t^*) - C_{\max}(s_{t+1}), 0)$, where s_t^* denotes the best solution found up to step t, and $s_0^* = s_0$. The cumulative reward up to step t becomes: $\sum_{t'=0}^t r(s_{t'}, a_{t'}) = C_{\max}(s_0) - C_{\max}(s_t^*)$. By maximizing this cumulative reward, the policy network can directly optimize the performance of the solution that will be returned.

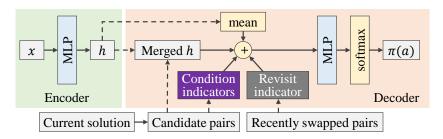


Figure 3: The architecture of the policy network.

4.2 ENCODER

The encoder in our model is a simple MLP. As shown in Figure 3, this MLP takes state features x as input and produces a high-dimensional embedding h_u for each operation u. We chose this architecture over complex GNN because our decoder's theoretical indicators capture the essential relational information. Ablation studies show that our simple MLP encoder enables much faster inference without losing solution quality compared to relying on complex GNN architectures.

4.3 Decoder

The decoder computes the action selection probabilities for each candidate action. Its key innovation is the use of three theoretically derived condition indicators whose joint satisfaction provides a sufficient condition under the restricted case of a single critical path, embedded as binary features. For every candidate swap, three binary indicators are computed, each reflecting whether the move satisfies a corresponding theoretical condition. These indicators inject problem-specific knowledge into the network, enabling more informed action selection.

Unlike L2S, LSI retains all candidates and encodes their revisit status as a binary feature in the policy network, as illustrated in Figure 1, where traditional tabu search excludes recent left moves. Also like TBGAT, the selected action a_t is added to the list of recently swapped pairs, removing the oldest pair to maintain the list capacity, as described in Appendix E.

Makespan reduction conditions in JSSP. We present three novel propositions that describe when swapping two consecutive operations on the same machine can reduce the makespan. Unlike prior works Nowicki & Smutnicki (1996); Zhang et al. (2007); Xie et al. (2023), which define neighborhoods such as N5 that include all improving moves, shown as Figure 2, our propositions identify a smaller subset of N5 and provide a formal necessary and sufficient condition for makespan reduction when the schedule contains a single critical path.

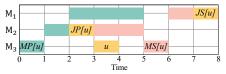


Figure 4: The directly connected operations with job or machine precedence relations for operation u in a schedule, where the operations with the same color denotes the same job.

To state these precisely, we first introduce four relation-

ships for any operation u. The job-predecessor of u, denoted JP[u], is the operation immediately before u in its job sequence, and the job-successor, JS[u], is the operation immediately after u in its job. Similarly, the machine-predecessor, MP[u], is the operation scheduled just before u on the same

machine, and the machine-successor, MS[u], is the operation scheduled immediately after u on that machine. The prime notation (e.g., est'_u) indicates the value after the swap, and $ect_u = est_u + p_u$ denotes the earliest completion time (ECT) of operation u. With these definitions in place, the proofs of the three necessary conditions are given in Appendix C.

Proposition 1. When consecutive operations u and v are swapped on a machine of a given schedule, the makespan cannot decrease if $lst_{JS[v]} \leq ect'_v$.

Proposition 2. When consecutive operations u and v are swapped on a machine of a given schedule, the makespan cannot decrease if $lst_{JS[u]} \leq ect'_u$.

Proposition 3. When consecutive operations u and v are swapped on a machine of a given schedule, the makespan cannot decrease if $lst_{MS[v]} \leq ect'_u$.

In the case of a schedule with only one critical path, the makespan is reduced if and only if the swap of operations u and v violates both Propositions 2 and 3. This case is covered by Theorem 1, proven in Appendix D, although we do not explicitly use this theorem in our policy network. In schedules with multiple critical paths, the swap of operations u and v that violates all three Propositions 1, 2, and 3 either reduces the makespan or the number of critical paths, as proven in Theorem 2 and Theorem 3 (Appendix D).

Theorem 1. For a schedule with only one critical path, the makespan of a given schedule decreases when consecutive operations u and v are swapped on a machine if and only if $lst_{JS[u]} > ect'_u$ and $lst_{MS[v]} > ect'_u$.

Theorem 2. For a schedule with multiple critical paths, the makespan of a given schedule decreases when consecutive operations u and v are swapped on a machine if and only if $lst_{JS[u]} > ect'_u$, $lst_{MS[v]} > ect'_u$, and all critical paths include consecutive operations u and v.

Theorem 3. For a schedule with multiple critical paths, the makespan or the number of critical paths of the schedule decreases when consecutive operations u and v on a machine are swapped, if $lst_{JS[v]} \leq ect'_v$, $lst_{JS[u]} > ect'_u$, and $lst_{MS[v]} > ect'_u$.

Embedding structure. For a candidate action involving the swap of operations u and v, the decoder generates a joint embedding vector h_{uv} defined as $[h_u\|x_u\|h_v\|x_v\|h_G\|\mathbb{1}_{P(u,v)}\|\mathbb{1}_{T(u,v)}]$, where $\|$ represents concatenation, h_u is the embedding vector of operation u, x_u is the state feature of operation u, h_G is the average embedding vector across all operations, $\mathbb{1}_{P(u,v)}$ denotes a set of binary indicators representing whether the swap of (u,v) satisfies the conditions of three propositions we have developed, and $\mathbb{1}_{T(u,v)}$ indicates whether the swap action is in the list of recently swapped pairs. h_{uv} is fed into an MLP, whose outputs are normalized via softmax to yield selection probabilities over all candidate swaps. At each step, the swap with the highest probability is selected as the next move.

Adaptive list size of recently swapped pairs. LSI adopts an adaptive tabu strategy (Zhang et al. (2007)), which is also used in TBGAT. In contrast to conventional tabu search that excludes recently swapped pairs, LSI retains all candidate actions even though be recently swapped, and encodes their revisit status as a binary feature, allowing the policy to learn when revisiting such moves is beneficial. This approach is implemented in TBGAT's publicly available code, although it is not explicitly documented in the original paper. The size of the list is adaptively determined based on the ratio of the number of jobs to the number of machines in each JSSP instance, with additional stochastic variation, as detailed in Appendix E.

5 LEARNING PROCESS

Our model is trained via RL, specifically an entropy-regularized n-step REINFORCE algorithm, as adopted in TBGAT (Zhang et al. (2024b)). The entropy term promotes generalization and encourages exploration of the action space. At each time step t, we compute the normalized, discounted cumulative reward \bar{R}_t and use it to weight the log-likelihood of the chosen action under our policy $\pi_{\theta}(a_t|s_t)$. We add an entropy $\mathcal{H}(\pi_{\theta}) = -\mathbb{E}_{a \sim \pi_{\theta}} \log(\pi_{\theta}(a))$, scaled by a factor β which controls the strength of entropy regularization, to encourage exploration. Concretely, we minimize the loss:

$$\mathcal{L}(\theta) = -\sum_{t} [\bar{R}_{t} \log \pi_{\theta}(a_{t}|s_{t}) + \beta \mathcal{H}(\pi_{\theta}(\cdot|s_{t}))]. \tag{1}$$

				Tabi	C 1. 1	vican	optin	manty	Sup	101 0	ich j	751 0	CHCIII	mark	grou	p acre	os ui	110101	iit iiic	moas	•					
	TA						AE	3Z			FT															
Method	15x	:15	20x	:15	20x	20	30x	:15	30x	20	50x	15	50x	20	100	x20	10x		20x	15	6x	6	10x	10	202	x5
	Gap	Time	Gap	Time	Gap	Time	Gap	Time	Gap	Time	Gap	Time	Gap	Time	Gap	Time	Gap	Time	Gap	Time	Gap	Time	Gap	Time	Gap	Time
CP (10 sec)	0.3%	9.4s	3.2%	9.3s	3.8%	10.1s	8.5%	9.2s	13.2%	10.0s	10.2%	9.8s	15.7%	9.8s	12.5%	9.1s	0.0%	0.5s	3.1%	10.1s	0.0%	3.1s	0.0%	0.6s	0.0%	0.0s
CP (1 min)	0.2%	42.4s	1.4%	50.9s	1.8%	1.0m	4.2%	54.4s	6.0%	1.0m	3.6%	1.0m	6.9%	1.0m	8.8%	59.1s	0.0%	0.7s	1.9%	1.0m	0.0%	3.2s	0.0%	0.5s	0.0%	0.0s
CP (5 min)	0.0%	2.2m	1.2%	4.3m	1.6%	5.0m	2.4%	4.5m	4.0%	5.0m	0.2%	3.3m	2.1%	4.8m	4.9%	5.0m	0.0%	0.8s	0.8%	5.0m	0.0%	7.2s	0.0%	0.5s	0.0%	0.0s
CP (30 min)	0.0%	5.2m	0.7%	24.1m	0.7%	30.0m	1.1%	21.6m	2.6%	30.0m	0.0%	2.0m	0.3%	16.8m	0.0%	12.5m	0.0%	0.5s	0.4%	21.0m	0.0%	2.0s	0.0%	0.3s	0.0%	0.0s
MOR	16.7%	0.2s	23.4%	0.3s	19.5%	0.3s	21.5%	0.4s	24.0%	0.7s	15.6%	0.9s	16.2%	1.3s	7.7%	3.2s	7.6%	0.1s	17.5%	0.3s	23.6%	0.1s	26.1%	0.1s	34.3%	0.0s
LTT	19.5%	0.2s	20.0%	0.3s	18.4%	0.3s	20.3%	0.4s	23.7%	0.7s	14.3%	0.9s	15.2%	1.3s	6.5%	3.2s	6.5%	0.1s	19.5%	0.3s	9.1%	0.1s	17.2%	0.1s	24.8%	0.0s
FDD/MWKR	17.7%	0.2s	21.3%	0.3s	19.9%	0.3s	21.7%	0.4s	24.0%	0.7s	15.3%	0.9s	16.3%	1.3s	7.7%	3.2s	9.7%	0.1s	17.9%	0.3s	21.8%	0.1s	18.0%	0.1s	27.0%	0.0s
SN	15.3%	3.5s	19.4%	6.6s	17.2%	11.0s	19.1%	17.1s	23.7%	28.3s	13.9%	52.5s	13.5%	1.6m	6.7%	7.4m	6.1%	0.7s	20.5%	6.6s	7.3%	0.8s	19.5%	1.6s	28.6%	0.2s
IRD	8.9%	2.5s	11.7%	3.8s	12.5%	4.4s	11.6%	7.2s	14.4%	8.7s	4.9%	15.7s	9.5%	20.3s	2.3%	1.3m	4.8%	1.0s	10.7%	3.5s	5.5%	1.0s	7.1%	1.5s	3.3%	0.4s
NeuroLS-500	6.2%	6.8s	9.9%	8.7s	9.8%	10.9s	12.0%	12.9s	14.6%	16.3s	9.5%	21.9s	9.9%	27.9s	5.0%	1.0m	1.5%	4.1s	10.5%	9.0s	0.0%	2.8s	2.4%	4.2s	9.6%	4.7s
NeuroLS-1000	4.9%	13.7s	8.5%	17.4s	8.5%	21.7s	10.9%	25.8s	13.0%	32.6s	8.1%	43.9s	8.9%	55.8s	4.3%	2.0m	1.5%	8.2s	9.6%	18.1s	0.0%	5.5s	2.4%	8.3s	3.4%	9.4s
NeuroLS-5000	3.1%	1.1m	5.7%	1.5m	5.3%	1.8m	6.8%	2.1m	8.9%	2.7m	3.4%	3.7m	5.2%	4.7m	2.0%	10.0m	1.1%	40.8s	5.1%	1.5m	0.0%	27.6s	2.3%	41.5s	2.2%	47.2s
L2S-500	8.8%	9.3s	11.9%	10.1s	12.0%	10.9s	15.4%	12.7s	18.7%	14.0s	11.1%	16.2s	13.7%	22.8s	8.0%	50.2s	2.8%	7.4s	13.5%	10.2s	3.6%	6.8s	9.9%	7.5s	7.0%	7.4s
L2S-1000	6.3%	18.7s	10.5%	20.3s	11.2%	22.2s	13.4%	24.7s	16.7%	28.4s	8.9%	32.9s	11.6%	45.4s	6.2%	1.7m	2.8%	15.0s	11.9%	19.9s	0.0%	13.5s	8.0%	15.1s	7.0%	15.0s
L2S-5000	5.5%	1.5m	8.6%	1.7m	8.8%	1.9m	9.5%	2.0m	12.7%	2.4m	4.5%	2.8m	7.1%	3.8m	2.3%	8.4m	1.4%	1.3m	8.9%	1.7m	0.0%	1.1m	5.7%	1.2m	3.9%	1.2m
TBGAT-500	7.9%	12.6s	10.4%	14.6s	11.3%	17.5s	15.7%	17.2s	18.1%	19.3s	11.0%	23.9s	12.3%	24.4s	7.1%	42.0s	1.1%	9.2s	10.0%	12.8s	0.0%	7.4s	5.2%	10.3s	9.5%	11.7s
TBGAT-1000	6.5%	24.9s	8.8%	28.7s	9.8%	34.1s	13.7%	33.7s	15.5%	37.3s	8.9%	46.9s	10.4%	47.5s	5.6%	1.4m	1.1%	17.9s	9.7%	25.3s	0.0%	14.2s	4.8%	20.5s	6.7%	23.2s
TBGAT-5000	4.8%	2.1m	7.1%	2.3m	7.4%	2.7m	10.3%	2.7m	11.2%	2.9m	5.0%	3.9m	6.1%	3.9m	2.0%	6.7m	0.8%	1.5m	6.5%	2.1m	0.0%	1.2m	2.9%	1.7m	4.0%	1.9m
LSI-500	6.3%	16.5s	8.6%	16.1s	9.4%	17.5s	12.1%	19.5s	14.8%	22.8s	8.4%	24.9s	10.1%	28.1s	5.7%	46.0s	2.5%	8.2s	9.8%	18.0s	5.5%	6.0s	9.5%	9.1s	2.2%	10.4s
LSI-1000	5.2%	33.9s	7.4%	32.1s	8.0%	35.3s	9.9%	37.9s	12.2%	45.9s	6.3%	49.8s	8.1%	54.3s	3.9%	1.5m	1.4%	16.6s	8.8%	36.5s	0.0%	11.7s	6.0%	18.2s	2.2%	20.5s
LSI-5000	3.6%	2.7m	5.0%	2.6m	5.0%	2.9m	6 1%	3.4m	8 4%	3.6m	2.0%	4.2m	4.8%	4.6m	0.9%	7.7m	0.8%	1.4m	5.4%	2.4m	0.0%	58 Oc	2.0%	1.5m	2.2%	1.8m
				2.0111	2.0 /0	2.7111	0.1 /0	J.7111	0.470		2.0 /0	7.2111	T.0 /0	4.0111	0.7/0	/./111	0.0 /0	1.4111	J. T/U	2.4111	0.0 /0	50.05	2.0 /0	1.5111	2.2 /0	
	i		200,0	2.011	2.0 /0	2.7111	0.1 /0			5.011	2.0 %	7.2111	4.0 //	4.0111	0.5 /6	7.7111	0.070	1.4111			0.0 //	30.08				
Method	10:						10x	L	A		20x		30x	-		i	20x	1	SW	v .		i	OR 10x	B	Y	N
Method	10: Gap		15: Gap		20:		10x	L			20x		30x	-	15>	i	20x	1	SW 20x	v .	50x	i	OR 10x	B	YI 20x	N
	Gap	x5 Time	15: Gap	x5 Time	20: Gap	x5 Time	10x Gap	L 10 Time	A 15x Gap	10 Time	20x Gap	10 Time	30x Gap	10 Time	15x Gap	15 Time	20x Gap	10 Time	SW 20x Gap	VV 15 Time	50x Gap	10 Time	OR 10x Gap	RB 10 Time	Y! 20x Gap	N 20 Time
CP (10 sec)	Gap 0.0%	x5 Time 0.2s	15: Gap 0.0%	x5 Time 0.0s	20: Gap 0.0%	x5 Time 6.2s	10x Gap 0.4%	L 10 Time 4.6s	A 15x Gap 0.0%	Time 0.1s	20x Gap 0.5%	10 Time 4.9s	30x Gap 0.0%	10 Time 0.1s	15x Gap 0.0%	15 Time 2.3s	20x Gap 2.4%	10 Time 10.0s	SW 20x Gap 7.0%	7V 15 Time 10.0s	50x Gap 6.1%	10 Time	OR 10x Gap 0.0%	RB 110 Time	20x Gap 4.3%	N 320 Time 10.0s
CP (10 sec) CP (1 min)	Gap 0.0% 0.0%	x5 Time 0.2s 0.2s	15: Gap 0.0% 0.0%	x5 Time 0.0s 0.0s	20: Gap 0.0% 0.0%	x5 Time 6.2s 17.5s	10x Gap 0.4% 0.0%	L. 110 Time 4.6s 14.6s	A 15x Gap 0.0% 0.0%	110 Time 0.1s 0.1s	20x Gap 0.5% 0.3%	10 Time 4.9s 18.7s	30x Gap 0.0% 0.0%	10 Time 0.1s 0.1s	15x Gap 0.0% 0.0%	2.3s 2.0s	20x Gap 2.4% 2.0%	10 Time 10.0s 50.2s	SW 20x Gap 7.0% 3.4%	Time 10.0s 1.0m	50x Gap 6.1% 3.8%	10 Time 6.8s 32.4s	OR 10x Gap 0.0% 0.0%	2.6s 2.8s	Y1 20x Gap 4.3% 1.7%	N i20 Time 10.0s 1.0m
CP (10 sec) CP (1 min) CP (5 min)	Gap 0.0% 0.0% 0.0%	0.2s 0.2s 0.5s	15: Gap 0.0% 0.0% 0.0%	x5 Time 0.0s 0.0s 0.0s	20: Gap 0.0% 0.0% 0.0%	x5 Time 6.2s 17.5s 28.9s	10x Gap 0.4% 0.0% 0.0%	L. 10 Time 4.6s 14.6s 56.8s	A 15x Gap 0.0% 0.0% 0.0%	110 Time 0.1s 0.1s 0.1s	20x Gap 0.5% 0.3% 0.4%	10 Time 4.9s 18.7s 1.1m	30x Gap 0.0% 0.0% 0.0%	10 Time 0.1s 0.1s 0.2s	15x Gap 0.0% 0.0% 0.0%	2.3s 2.0s 3.4s	20x Gap 2.4% 2.0% 1.8%	10 Time 10.0s 50.2s 4.5m	SW 20x Gap 7.0% 3.4% 4.2%	15 Time 10.0s 1.0m 5.0m	50x Gap 6.1% 3.8% 2.2%	10 Time 6.8s 32.4s 2.6m	OR 10x Gap 0.0% 0.0% 0.0%	RB 10 Time 2.6s 2.8s 4.4s	20x Gap 4.3% 1.7% 1.8%	N 320 Time 10.0s 1.0m 5.0m
CP (10 sec) CP (1 min) CP (5 min) CP (30 min)	Gap 0.0% 0.0% 0.0% 0.0% 0.0%	x5 Time 0.2s 0.2s 0.5s 0.2s	152 Gap 0.0% 0.0% 0.0% 0.0%	0.0s 0.0s 0.0s 0.0s 0.1s	20: Gap 0.0% 0.0% 0.0% 0.0%	x5 Time 6.2s 17.5s 28.9s 14.6s	10x Gap 0.4% 0.0% 0.0% 0.0%	L. 110 Time 4.6s 14.6s 56.8s 22.5s	A 15x Gap 0.0% 0.0% 0.0% 0.0%	0.1s 0.1s 0.1s 0.1s 0.1s	20x Gap 0.5% 0.3% 0.4% 0.0%	10 Time 4.9s 18.7s 1.1m 6.0m	30x Gap 0.0% 0.0% 0.0% 0.0%	10 Time 0.1s 0.1s 0.2s 0.1s	15x Gap 0.0% 0.0% 0.0% 0.0%	2.3s 2.0s 3.4s 1.9s	20x Gap 2.4% 2.0% 1.8% 0.8%	10 Time 10.0s 50.2s 4.5m 19.8m	SW 20x Gap 7.0% 3.4% 4.2% 3.1%	Time 10.0s 1.0m 5.0m 30.0m	50x Gap 6.1% 3.8% 2.2% 0.6%	10 Time 6.8s 32.4s 2.6m 7.8m	OR 10x Gap 0.0% 0.0% 0.0% 0.0%	2.6s 2.8s 4.4s 2.4s	Y1 20x Gap 4.3% 1.7% 1.8% 1.3%	N 220 Time 10.0s 1.0m 5.0m 30.0m
CP (10 sec) CP (1 min) CP (5 min) CP (30 min) MOR	Gap 0.0% 0.0% 0.0% 0.0% 13.0%	0.2s 0.2s 0.5s 0.2s 0.1s	152 Gap 0.0% 0.0% 0.0% 0.0% 2.4%	0.0s 0.0s 0.0s 0.0s 0.1s 0.0s	20: Gap 0.0% 0.0% 0.0% 0.0% 2.9%	x5 Time 6.2s 17.5s 28.9s 14.6s 0.1s	10x Gap 0.4% 0.0% 0.0% 0.0% 13.3%	L. 110 Time 4.6s 14.6s 56.8s 22.5s 0.2s	A 15x Gap 0.0% 0.0% 0.0% 0.0% 21.0%	0.1s 0.1s 0.1s 0.1s 0.1s	20x Gap 0.5% 0.3% 0.4% 0.0%	10 Time 4.9s 18.7s 1.1m 6.0m 0.2s	30x Gap 0.0% 0.0% 0.0% 0.0%	10 Time 0.1s 0.1s 0.2s 0.1s	15> Gap 0.0% 0.0% 0.0% 0.0% 18.2%	2.3s 2.0s 3.4s 1.9s 0.3s	20x Gap 2.4% 2.0% 1.8% 0.8% 40.9%	10 Time 10.0s 50.2s 4.5m 19.8m 0.2s	SW 20x Gap 7.0% 3.4% 4.2% 3.1% 35.0%	Time 10.0s 1.0m 5.0m 30.0m 0.3s	50x Gap 6.1% 3.8% 2.2% 0.6% 29.1%	10 Time 6.8s 32.4s 2.6m 7.8m 0.5s	OR 10x Gap 0.0% 0.0% 0.0% 0.0% 26.6%	RB 110 Time 2.6s 2.8s 4.4s 2.4s 0.1s	Y1 20x Gap 4.3% 1.7% 1.8% 1.3%	N 220 Time 10.0s 1.0m 5.0m 30.0m 0.4s
CP (10 sec) CP (1 min) CP (5 min) CP (30 min) MOR LTT	Gap 0.0% 0.0% 0.0% 0.0% 13.0% 12.6%	x5 Time 0.2s 0.2s 0.5s 0.2s 0.1s	15: Gap 0.0% 0.0% 0.0% 0.0% 2.4% 2.3%	x5 Time 0.0s 0.0s 0.0s 0.1s 0.0s 0.0s	20: Gap 0.0% 0.0% 0.0% 0.0% 2.9% 3.5%	x5 Time 6.2s 17.5s 28.9s 14.6s 0.1s 0.1s	10x Gap 0.4% 0.0% 0.0% 0.0% 13.3% 13.0%	L. 110 Time 4.6s 14.6s 56.8s 22.5s 0.2s 0.2s	A 15x Gap 0.0% 0.0% 0.0% 0.0% 21.0% 15.3%	0.1s 0.1s 0.1s 0.1s 0.1s 0.1s	20x Gap 0.5% 0.3% 0.4% 0.0% 17.4% 16.5%	10 Time 4.9s 18.7s 1.1m 6.0m 0.2s 0.2s	30x Gap 0.0% 0.0% 0.0% 0.0% 6.3% 4.1%	10 Time 0.1s 0.1s 0.2s 0.1s 0.1s 0.1s	15x Gap 0.0% 0.0% 0.0% 0.0% 18.2% 15.1%	2.3s 2.0s 3.4s 1.9s 0.3s 0.3s	20x Gap 2.4% 2.0% 1.8% 0.8% 40.9% 29.3%	10 Time 10.0s 50.2s 4.5m 19.8m 0.2s 0.2s	SW 20x Gap 7.0% 3.4% 4.2% 3.1% 35.0% 29.3%	Time 10.0s 1.0m 5.0m 30.0m 0.3s 0.3s	50x Gap 6.1% 3.8% 2.2% 0.6% 29.1% 21.5%	10 Time 6.8s 32.4s 2.6m 7.8m 0.5s 0.5s	OR 10x Gap 0.0% 0.0% 0.0% 0.0% 26.6% 19.8%	2.6s 2.8s 4.4s 2.4s 0.1s 0.1s	Y1 20x Gap 4.3% 1.7% 1.8% 1.3% 18.1% 19.7%	N 320 Time 10.0s 1.0m 5.0m 30.0m 0.4s 0.4s
CP (10 sec) CP (1 min) CP (5 min) CP (30 min) MOR LTT FDD/MWKR	Gap 0.0% 0.0% 0.0% 0.0% 13.0% 12.6% 13.2%	x5 Time 0.2s 0.2s 0.5s 0.2s 0.1s 0.1s	15: Gap 0.0% 0.0% 0.0% 0.0% 2.4% 2.3% 4.6%	x5 Time 0.0s 0.0s 0.0s 0.1s 0.0s 0.0s 0.0s	20. Gap 0.0% 0.0% 0.0% 0.0% 2.9% 3.5% 2.8%	x5 Time 6.2s 17.5s 28.9s 14.6s 0.1s 0.1s	10x Gap 0.4% 0.0% 0.0% 0.0% 13.3% 13.0% 14.9%	L.10 Time 4.6s 14.6s 56.8s 22.5s 0.2s 0.2s 0.2s	A 15x Gap 0.0% 0.0% 0.0% 21.0% 15.3% 13.1%	0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s	20x Gap 0.5% 0.3% 0.4% 0.0% 17.4% 16.5% 19.3%	10 Time 4.9s 18.7s 1.1m 6.0m 0.2s 0.2s 0.2s	30x Gap 0.0% 0.0% 0.0% 0.0% 6.3% 4.1% 7.8%	10 Time 0.1s 0.1s 0.2s 0.1s 0.1s 0.1s	15x Gap 0.0% 0.0% 0.0% 0.0% 18.2% 15.1% 16.6%	2.3s 2.0s 3.4s 1.9s 0.3s 0.3s 0.3s	20x Gap 2.4% 2.0% 1.8% 0.8% 40.9% 29.3% 38.3%	100 Time 10.0s 50.2s 4.5m 19.8m 0.2s 0.2s 0.2s	SW 20x Gap 7.0% 3.4% 4.2% 3.1% 35.0% 29.3% 34.5%	Time 10.0s 1.0m 5.0m 30.0m 0.3s 0.3s 0.3s	50x Gap 6.1% 3.8% 2.2% 0.6% 29.1% 21.5% 23.5%	10 Time 6.8s 32.4s 2.6m 7.8m 0.5s 0.5s	OR 10x Gap 0.0% 0.0% 0.0% 0.0% 26.6% 19.8%	2.6s 2.8s 4.4s 2.4s 0.1s 0.1s	Y1 20x Gap 4.3% 1.7% 1.8% 1.3% 18.1% 19.7% 20.9%	N (220 Time 10.0s 1.0m 5.0m 30.0m 0.4s 0.4s
CP (10 sec) CP (1 min) CP (5 min) CP (30 min) MOR LTT FDD/MWKR SN	Gap 0.0% 0.0% 0.0% 0.0% 13.0% 12.6% 13.2% 12.1%	x5 Time 0.2s 0.2s 0.5s 0.2s 0.1s 0.1s 0.1s	15: Gap 0.0% 0.0% 0.0% 0.0% 2.4% 2.3% 4.6% 2.7%	x5 Time 0.0s 0.0s 0.0s 0.1s 0.0s 0.0s 0.0s 0.0s	20. Gap 0.0% 0.0% 0.0% 0.0% 2.9% 3.5% 2.8% 3.6%	x5 Time 6.2s 17.5s 28.9s 14.6s 0.1s 0.1s 1.9s	10x Gap 0.4% 0.0% 0.0% 0.0% 13.3% 14.9% 11.9%	L.10 Time 4.6s 14.6s 56.8s 22.5s 0.2s 0.2s 0.8s	A 15x Gap 0.0% 0.0% 0.0% 0.0% 15.3% 13.1% 14.6%	0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s	20x Gap 0.5% 0.3% 0.4% 0.0% 17.4% 16.5% 19.3% 15.7%	4.9s 18.7s 1.1m 6.0m 0.2s 0.2s 0.2s 4.1s	30x Gap 0.0% 0.0% 0.0% 0.0% 6.3% 4.1% 7.8% 3.1%	10 Time 0.1s 0.1s 0.2s 0.1s 0.1s 0.1s 0.1s 0.1s	15x Gap 0.0% 0.0% 0.0% 0.0% 18.2% 15.1% 16.6% 16.1%	2.3s 2.0s 3.4s 1.9s 0.3s 0.3s 0.3s 3.5s	20x Gap 2.4% 2.0% 1.8% 0.8% 40.9% 29.3% 38.3% 34.4%	100 Time 10.0s 50.2s 4.5m 19.8m 0.2s 0.2s 0.2s 3.9s	SW 20x Gap 7.0% 3.4% 4.2% 3.1% 35.0% 29.3% 34.5% 30.6%	10.0s 1.0m 5.0m 30.0m 0.3s 0.3s 0.3s 6.7s	50x Gap 6.1% 3.8% 2.2% 0.6% 29.1% 21.5% 23.5% 25.4%	10 Time 6.8s 32.4s 2.6m 7.8m 0.5s 0.5s 0.5s 25.1s	OR 10x Gap 0.0% 0.0% 0.0% 0.0% 26.6% 19.8% 19.8% 20.0%	2.6s 2.8s 4.4s 2.4s 0.1s 0.1s 0.8s	Y1 20x Gap 4.3% 1.7% 1.8% 1.3% 18.1% 19.7% 20.9% 18.4%	10.0s 1.0m 5.0m 30.0m 0.4s 0.4s 11.2s
CP (10 sec) CP (1 min) CP (5 min) CP (30 min) MOR LTT FDD/MWKR SN IRD	Gap 0.0% 0.0% 0.0% 0.0% 13.0% 12.6% 13.2% 12.1% 4.6%	0.2s 0.2s 0.2s 0.5s 0.2s 0.1s 0.1s 0.1s 0.6s	15: Gap 0.0% 0.0% 0.0% 0.0% 2.4% 2.3% 4.6% 2.7% 0.1%	0.0s 0.0s 0.0s 0.1s 0.0s 0.1s 0.0s 0.0s	20. Gap 0.0% 0.0% 0.0% 0.0% 2.9% 3.5% 2.8% 3.6% 0.1%	x5 Time 6.2s 17.5s 28.9s 14.6s 0.1s 0.1s 0.1s 1.9s 1.8s	10x Gap 0.4% 0.0% 0.0% 0.0% 13.3% 14.9% 11.9% 4.1%	L.10 Time 4.6s 14.6s 56.8s 22.5s 0.2s 0.2s 0.2s 0.8s 2.2s	A 15x Gap 0.0% 0.0% 0.0% 21.0% 15.3% 14.6% 8.5%	0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s	20x Gap 0.5% 0.3% 0.4% 0.0% 17.4% 16.5% 19.3% 15.7% 5.9%	10 Time 4.9s 18.7s 1.1m 6.0m 0.2s 0.2s 0.2s 4.1s 2.8s	30x Gap 0.0% 0.0% 0.0% 0.0% 6.3% 4.1% 7.8% 3.1% 0.9%	10 Time 0.1s 0.1s 0.2s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s	15x Gap 0.0% 0.0% 0.0% 0.0% 18.2% 15.1% 16.6% 10.8%	2.3s 2.0s 3.4s 1.9s 0.3s 0.3s 0.3s 4.9s	20x Gap 2.4% 2.0% 1.8% 0.8% 40.9% 29.3% 38.3% 34.4% 11.8%	100 Time 10.0s 50.2s 4.5m 19.8m 0.2s 0.2s 0.2s 3.9s 2.8s	SW 20x Gap 7.0% 3.4% 4.2% 3.1% 35.0% 29.3% 34.5% 30.6% 13.0%	10.0s 1.0m 5.0m 30.0m 0.3s 0.3s 0.3s 6.7s 3.8s	50x Gap 6.1% 3.8% 2.2% 0.6% 29.1% 21.5% 23.5% 25.4% 4.2%	10 Time 6.8s 32.4s 2.6m 7.8m 0.5s 0.5s 0.5s 25.1s 9.7s	OR 10x Gap 0.0% 0.0% 0.0% 0.0% 26.6% 19.8% 19.8% 20.0% 9.0%	2.6s 2.8s 4.4s 2.4s 0.1s 0.1s 0.8s 1.0s	YI 20x Gap 4.3% 1.7% 1.8% 1.3% 18.1% 19.7% 20.9% 18.4% 13.9%	10.0s 1.0m 5.0m 30.0m 0.4s 0.4s 11.2s 4.3s
CP (10 sec) CP (1 min) CP (5 min) CP (30 min) MOR LTT FDD/MWKR SN IRD NeuroLS-500	Gap 0.0% 0.0% 0.0% 0.0% 13.0% 12.6% 13.2% 12.1% 4.6% 0.9%	0.2s 0.2s 0.2s 0.5s 0.2s 0.1s 0.1s 0.6s 0.9s	15: Gap 0.0% 0.0% 0.0% 0.0% 2.4% 2.3% 4.6% 2.7% 0.1% 0.0%	0.0s 0.0s 0.0s 0.1s 0.0s 0.1s 0.0s 0.0s	20. Gap 0.0% 0.0% 0.0% 0.0% 2.9% 3.5% 2.8% 3.6% 0.1%	x5 Time 6.2s 17.5s 28.9s 14.6s 0.1s 0.1s 0.1s 1.9s 1.8s	10x Gap 0.4% 0.0% 0.0% 0.0% 13.3% 13.0% 14.9% 11.9% 4.1% 2.8%	L.10 Time 4.6s 14.6s 56.8s 22.5s 0.2s 0.2s 0.2s 0.8s 2.2s 3.9s	A 15x Gap 0.0% 0.0% 0.0% 0.0% 15.3% 13.1% 14.6% 8.5% 3.9%	0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s	20x Gap 0.5% 0.3% 0.4% 0.0% 17.4% 16.5% 19.3% 15.7% 5.9%	10 Time 4.9s 18.7s 1.1m 6.0m 0.2s 0.2s 0.2s 4.1s 2.8s 7.3s	30x Gap 0.0% 0.0% 0.0% 0.0% 6.3% 4.1% 7.8% 3.1% 0.9%	10 Time 0.1s 0.2s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s	15x Gap 0.0% 0.0% 0.0% 0.0% 18.2% 15.1% 16.6% 10.8% 5.7%	2.3s 2.0s 3.4s 1.9s 0.3s 0.3s 0.3s 0.3s 4.9s 7.1s	20x Gap 2.4% 2.0% 1.8% 0.8% 40.9% 29.3% 38.3% 34.4% 11.8% 24.3%	100 Time 10.0s 50.2s 4.5m 19.8m 0.2s 0.2s 0.2s 3.9s 2.8s 7.4s	SW 20x Gap 7.0% 3.4% 4.2% 3.1% 35.0% 29.3% 34.5% 30.6% 13.0% 22.3%	10.0s 1.0m 5.0m 30.0m 0.3s 0.3s 0.3s 6.7s 3.8s 8.7s	50x Gap 6.1% 3.8% 2.2% 0.6% 29.1% 21.5% 23.5% 25.4% 4.2% 20.6%	10 Time 6.8s 32.4s 2.6m 7.8m 0.5s 0.5s 0.5s 25.1s 9.7s 16.3s	OR 10x Gap 0.0% 0.0% 0.0% 26.6% 19.8% 20.0% 9.0% 5.3%	2.6s 2.8s 4.4s 2.4s 0.1s 0.1s 0.8s 1.0s 3.8s	YI 20x Gap 4.3% 1.7% 1.8% 1.3% 18.1% 19.7% 20.9% 18.4% 13.9% 9.4%	Time 10.0s 1.0m 5.0m 30.0m 0.4s 0.4s 11.2s 4.3s 10.7s
CP (10 sec) CP (1 min) CP (5 min) CP (30 min) MOR LTT FDD/MWKR SN IRD NeuroLS-500 NeuroLS-1000	Gap 0.0% 0.0% 0.0% 0.0% 13.0% 12.6% 13.2% 12.1% 4.6% 0.9% 0.9%	x5 Time 0.2s 0.2s 0.5s 0.2s 0.1s 0.1s 0.6s 0.9s 3.0s 6.0s	15: Gap 0.0% 0.0% 0.0% 0.0% 2.4% 2.3% 4.6% 2.7% 0.1% 0.0% 0.0%	0.0s 0.0s 0.0s 0.0s 0.1s 0.0s 0.0s 0.0s	20. Gap 0.0% 0.0% 0.0% 0.0% 2.9% 3.5% 2.8% 3.6% 0.1% 0.0 %	x5 Time 6.2s 17.5s 28.9s 14.6s 0.1s 0.1s 0.1s 1.9s 1.8s 5.0s 10.0s	10x Gap 0.4% 0.0% 0.0% 0.0% 13.3% 14.9% 11.9% 4.1% 2.8% 2.4%	L. 10 Time 4.6s 14.6s 56.8s 22.5s 0.2s 0.2s 0.2s 0.8s 2.2s 3.9s 7.8s	A 15x Gap 0.0% 0.0% 0.0% 0.0% 15.3% 13.1% 14.6% 8.5% 3.9% 3.7%	0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s	20x Gap 0.5% 0.3% 0.4% 0.0% 17.4% 16.5% 19.3% 15.7% 5.9% 4.0%	4.9s 18.7s 1.1m 6.0m 0.2s 0.2s 0.2s 4.1s 2.8s 7.3s 14.5s	30x Gap 0.0% 0.0% 0.0% 0.0% 6.3% 4.1% 7.8% 3.1% 0.9% 0.1%	10 Time 0.1s 0.1s 0.2s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1	15x Gap 0.0% 0.0% 0.0% 18.2% 15.1% 16.6% 10.8% 5.7% 4.9%	2.3s 2.0s 3.4s 1.9s 0.3s 0.3s 0.3s 0.3s 4.9s 7.1s 14.3s	20x Gap 2.4% 2.0% 1.8% 0.8% 40.9% 29.3% 38.3% 34.4% 11.8% 24.3% 22.1%	100 Time 10.0s 50.2s 4.5m 19.8m 0.2s 0.2s 0.2s 3.9s 2.8s 7.4s 14.8s	SW 20x Gap 7.0% 3.4% 4.2% 3.1% 35.0% 29.3% 34.5% 30.6% 13.0% 22.3% 20.2%	10.0s 1.0m 5.0m 30.0m 0.3s 0.3s 0.3s 6.7s 3.8s 8.7s 17.5s	50x Gap 6.1% 3.8% 2.2% 0.6% 29.1% 21.5% 23.5% 25.4% 4.2% 20.6% 19.6%	10 Time 6.8s 32.4s 2.6m 7.8m 0.5s 0.5s 0.5s 25.1s 9.7s 16.3s 32.7s	OR 10x Gap 0.0% 0.0% 0.0% 26.6% 19.8% 19.8% 20.0% 9.0% 5.3% 3.9%	2.6s 2.8s 4.4s 2.4s 0.1s 0.1s 0.1s 0.8s 1.0s 3.8s 7.6s	YI 20x Gap 4.3% 1.7% 1.8% 1.3% 18.1% 19.7% 20.9% 18.4% 13.9% 9.4% 7.8%	Time 10.0s 1.0m 5.0m 30.0m 0.4s 0.4s 0.4s 11.2s 4.3s 10.7s 21.3s
CP (10 sec) CP (1 min) CP (5 min) CP (30 min) MOR LTT FDD/MWKR SN IRD NeuroLS-500 NeuroLS-1000 NeuroLS-5000	Gap 0.0% 0.0% 0.0% 0.0% 13.0% 12.6% 13.2% 12.1% 4.6% 0.9% 0.9% 0.0%	x5 Time 0.2s 0.2s 0.5s 0.2s 0.1s 0.1s 0.6s 0.9s 3.0s 6.0s 29.8s	15: Gap 0.0% 0.0% 0.0% 0.0% 2.4% 2.3% 4.6% 2.7% 0.1% 0.0% 0.0% 0.0%	x5 Time 0.0s 0.0s 0.0s 0.1s 0.0s 0.0s 0.0s 1.2s 0.6s 4.0s 8.1s 40.4s	20. Gap 0.0% 0.0% 0.0% 0.0% 2.9% 3.5% 2.8% 3.6% 0.1% 0.0% 0.0%	x5 Time 6.2s 17.5s 28.9s 14.6s 0.1s 0.1s 0.1s 1.9s 1.8s 5.0s 10.0s 50.2s	10x Gap 0.4% 0.0% 0.0% 13.3% 13.0% 14.9% 11.9% 4.1% 2.8% 2.4% 1.1%	L. 10 Time 4.6s 14.6s 56.8s 22.5s 0.2s 0.2s 0.2s 0.2s 0.8s 2.2s 3.9s 7.8s 39.2s	A 15x Gap 0.0% 0.0% 0.0% 0.0% 15.3% 13.1% 14.6% 8.5% 3.9% 3.7% 2.3%	0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s	20x Gap 0.5% 0.3% 0.4% 0.0% 17.4% 16.5% 19.3% 15.7% 5.9% 4.0% 2.2%	10 Time 4.9s 18.7s 1.1m 6.0m 0.2s 0.2s 0.2s 4.1s 2.8s 7.3s 14.5s 1.2m	30x Gap 0.0% 0.0% 0.0% 0.0% 6.3% 4.1% 7.8% 3.1% 0.9% 0.1% 0.1%	10 Time 0.1s 0.1s 0.2s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1	15x Gap 0.0% 0.0% 0.0% 0.0% 18.2% 15.1% 16.6% 16.1% 10.8% 5.7% 4.9% 2.7%	2.3s 2.0s 3.4s 1.9s 0.3s 0.3s 0.3s 4.9s 7.1s 14.3s 1.2m	20x Gap 2.4% 2.0% 1.8% 0.8% 40.9% 29.3% 38.3% 34.4% 11.8% 24.3% 22.1% 12.5%	100 Time 10.0s 50.2s 4.5m 19.8m 0.2s 0.2s 3.9s 2.8s 7.4s 14.8s 1.2m	SW 20x Gap 7.0% 3.4% 4.2% 31.0% 29.3% 34.5% 30.6% 13.0% 22.3% 20.2% 14.9%	Time 10.0s 1.0m 5.0m 30.0m 0.3s 0.3s 6.7s 3.8s 8.7s 17.5s 1.5m	50x Gap 6.1% 3.8% 2.2% 0.6% 29.1% 21.5% 23.5% 25.4% 4.2% 20.6% 19.6% 16.4%	10 Time 6.8s 32.4s 2.6m 7.8m 0.5s 0.5s 0.5s 25.1s 9.7s 16.3s 32.7s 2.7m	OR 10x Gap 0.0% 0.0% 0.0% 26.6% 19.8% 19.8% 20.0% 9.0% 5.3% 3.9% 1.9%	2.6s 2.8s 4.4s 2.4s 0.1s 0.1s 0.1s 0.8s 1.0s 3.8s 7.6s 38.0s	YI 20x Gap 4.3% 1.7% 1.8% 1.3% 18.1% 19.7% 20.9% 18.4% 13.9% 9.4% 7.8% 5.2%	10.0s 1.0m 5.0m 30.0m 0.4s 0.4s 11.2s 4.3s 10.7s 21.3s 1.8m
CP (10 sec) CP (1 min) CP (5 min) CP (30 min) MOR LTT FDD/MWKR SN IRD NeuroLS-500 NeuroLS-500 L2S-500	Gap 0.0% 0.0% 0.0% 0.0% 13.0% 13.2% 12.1% 4.6% 0.9% 0.9% 0.0% 2.1%	0.2s 0.2s 0.2s 0.5s 0.2s 0.1s 0.1s 0.1s 0.6s 0.9s 3.0s 6.0s 29.8s 6.9s	15: Gap 0.0% 0.0% 0.0% 0.0% 2.4% 2.3% 4.6% 2.7% 0.1% 0.0% 0.0%	x5 Time 0.0s 0.0s 0.0s 0.1s 0.0s 0.0s 0.0s 4.0s 4.0s 4.0s 4.0s	20. Gap 0.0% 0.0% 0.0% 0.0% 2.9% 3.5% 2.8% 3.6% 0.1% 0.0% 0.0% 0.0%	x5 Time 6.2s 17.5s 28.9s 14.6s 0.1s 0.1s 0.1s 1.9s 1.8s 5.0s 10.0s 50.2s 7.1s	10x Gap 0.4% 0.0% 0.0% 0.0% 13.3% 14.9% 11.9% 4.1% 2.8% 2.4% 1.1%	L. 10 Time 4.6s 14.6s 56.8s 22.5s 0.2s 0.2s 0.2s 0.2s 0.8s 2.2s 3.9s 7.8s 39.2s	A 15x Gap 0.0% 0.0% 0.0% 0.0% 15.3% 14.6% 8.5% 3.9% 3.7% 2.3% 5.4%	0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s	20x Gap 0.5% 0.3% 0.0% 17.4% 16.5% 5.9% 5.4% 4.0% 2.2% 6.9%	10 Time 4.9s 18.7s 1.1m 6.0m 0.2s 0.2s 4.1s 2.8s 7.3s 14.5s 1.2m 8.9s	30x Gap 0.0% 0.0% 0.0% 0.0% 6.3% 4.1% 3.1% 0.9% 0.1% 0.1% 0.1%	10 Time 0.1s 0.2s 0.1s 0.1s 0.1s 0.1s 9.3s 1.6s 10.8s 21.6s 1.8m	15x Gap 0.0% 0.0% 0.0% 18.2% 15.1% 16.6% 10.8% 5.7% 4.9% 2.7% 7.4%	2.3s 2.0s 3.4s 1.9s 0.3s 0.3s 0.3s 3.5s 4.9s 7.1s 14.3s 1.2m	20x Gap 2.4% 2.0% 1.8% 0.8% 40.9% 29.3% 34.4% 11.8% 24.3% 22.1% 12.5% 27.7%	100 Time 10.0s 50.2s 4.5m 19.8m 0.2s 0.2s 0.2s 0.2s 19.8s 7.4s 14.8s 1.2m 8.8s	SW 20x Gap 7.0% 3.4% 4.2% 3.1% 35.0% 29.3% 34.5% 30.6% 13.0% 22.3% 20.2% 14.9% 26.5%	10.0s 1.0m 5.0m 30.0m 0.3s 0.3s 6.7s 3.8s 8.7s 17.5s 1.5m 9.7s	50x Gap 6.1% 3.8% 2.2% 0.6% 29.1% 21.5% 23.5% 25.4% 4.2% 20.6% 19.6% 16.4% 21.4%	10 Time 6.8s 32.4s 2.6m 7.8m 0.5s 0.5s 25.1s 9.7s 16.3s 32.7s 2.7m 12.5s	OR 10x Gap 0.0% 0.0% 0.0% 0.0% 26.6% 19.8% 20.0% 9.0% 5.3% 3.9% 1.9%	2.6s 2.8s 4.4s 2.4s 0.1s 0.1s 0.1s 0.8s 1.0s 3.8s 7.6s 38.0s 7.4s	Y1 20x Gap 4.3% 1.7% 1.8% 1.3% 18.1% 19.7% 20.9% 18.4% 13.9% 9.4% 7.8% 5.2% 13.9%	10.0s 1.0m 5.0m 30.0m 0.4s 0.4s 11.2s 4.3s 10.7s 21.3s 1.8m 11.7s
CP (10 sec) CP (1 min) CP (5 min) CP (30 min) MOR LTT FDD/MWKR SN IRD NeuroLS-500 NeuroLS-5000 L2S-500 L2S-1000	Gap 0.0% 0.0% 0.0% 0.0% 13.0% 12.6% 13.24 14.6% 0.9% 0.9% 0.0% 1.8%	0.2s 0.2s 0.2s 0.5s 0.2s 0.1s 0.1s 0.6s 0.9s 3.0s 6.0s 29.8s 6.9s 14.0s	15: Gap 0.0% 0.0% 0.0% 0.0% 2.4% 2.3% 4.6% 2.7% 0.1% 0.0% 0.0% 0.0% 0.0%	0.0s 0.0s 0.0s 0.1s 0.0s 0.0s 0.0s 0.0s	20. Gap 0.0% 0.0% 0.0% 0.0% 2.9% 3.5% 2.8% 3.6% 0.1% 0.0% 0.0% 0.0%	x5 Time 6.2s 17.5s 28.9s 14.6s 0.1s 0.1s 0.1s 1.9s 1.8s 5.0s 50.2s 7.1s 14.5s	10x Gap 0.4% 0.0% 0.0% 13.3% 14.9% 11.9% 4.1% 2.4% 2.4% 2.3%	L. 10 Time 4.6s 14.6s 56.8s 22.5s 0.2s 0.2s 0.2s 0.2s 3.9s 7.8s 39.2s 7.5s	A 15x Gap 0.0% 0.0% 0.0% 0.0% 15.3% 13.1% 14.6% 8.5% 3.9% 3.7% 2.3% 4.8%	0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s	20x Gap 0.5% 0.3% 0.0% 17.4% 16.5% 19.3% 5.9% 4.0% 2.2% 6.9% 6.4%	10 Time 4.9s 18.7s 1.1m 6.0m 0.2s 0.2s 0.2s 4.1s 2.8s 7.3s 14.5s 1.2m 8.9s 17.5s	30x Gap 0.0% 0.0% 0.0% 0.0% 6.3% 4.1% 7.8% 3.1% 0.9% 0.1% 0.1% 0.0%	10 Time 0.1s 0.1s 0.2s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1	15x Gap 0.0% 0.0% 0.0% 18.2% 15.1% 16.6% 5.7% 4.9% 2.7% 7.4% 7.2%	2.3s 2.0s 3.4s 1.9s 0.3s 0.3s 0.3s 4.9s 7.1s 14.3s 1.2m 9.0s 18.2s	20x Gap 2.4% 2.0% 1.8% 0.8% 40.9% 29.3% 38.3% 34.4% 11.8% 24.3% 22.1% 12.5% 27.7% 25.1%	100 Time 10.0s 50.2s 4.5m 19.8m 0.2s 0.2s 0.2s 3.9s 2.8s 7.4s 14.8s 1.2m 8.8s 17.6s	SW 20x Gap 7.0% 3.4% 4.2% 3.1% 35.0% 29.3% 34.5% 30.6% 13.0% 22.3% 24.2%	10.0s 1.0m 5.0m 30.0m 0.3s 0.3s 0.3s 6.7s 3.8s 8.7s 17.5s 19.0s	50x Gap 6.1% 3.8% 2.2% 0.6% 29.1% 21.5% 23.5% 25.4% 4.2% 20.6% 19.6% 19.6% 21.4%	10 Time 6.8s 32.4s 2.6m 7.8m 0.5s 0.5s 0.5s 25.1s 9.7s 16.3s 32.7s 2.7m 12.5s 25.4s	OR 10x Gap 0.0% 0.0% 0.0% 26.6% 19.8% 19.8% 20.0% 5.3% 3.9% 1.9% 8.2% 6.6%	2.6s 2.8s 4.4s 2.4s 0.1s 0.1s 0.1s 0.8s 1.0s 3.8s 7.6s 38.0s 7.4s 15.0s	Y1 20x Gap 4.3% 1.7% 1.8% 1.3% 18.1% 19.7% 20.9% 18.4% 13.9% 9.4% 7.8% 5.2% 13.9% 11.5%	N (220 Time 10.0s 1.0m 5.0m 30.0m 0.4s 0.4s 11.2s 4.3s 10.7s 21.3s 11.7s 23.4s
CP (10 sec) CP (1 min) CP (5 min) CP (30 min) MOR LTT FDD/MWKR SN IRD NeuroLS-500 NeuroLS-1000 NeuroLS-5000 L2S-5000 L2S-1000 L2S-5000 L2S-5000	Gap 0.0% 0.0% 0.0% 0.0% 13.0% 12.6% 13.2% 12.1% 4.6% 0.9% 0.9% 0.0% 1.8%	0.2s 0.2s 0.2s 0.5s 0.1s 0.1s 0.1s 0.6s 0.9s 3.0s 6.9s 14.0s 1.2m	15: Gap 0.0% 0.0% 0.0% 0.0% 2.4% 2.3% 4.6% 2.7% 0.1% 0.0% 0.0% 0.0% 0.0%	0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s	20. Gap 0.0% 0.0% 0.0% 0.0% 2.9% 3.5% 2.8% 3.6% 0.1% 0.0% 0.0% 0.0% 0.0%	x5 Time 6.2s 17.5s 28.9s 14.6s 0.1s 0.1s 0.1s 1.9s 1.8s 5.0s 10.0s 50.2s 7.1s 14.5s	10x Gap 0.0% 0.0% 0.0% 13.3% 13.0% 11.9% 4.1% 2.8% 2.4% 1.1% 4.4% 0.9%	L:10 Time 4.6s 14.6s 56.8s 22.5s 0.2s 0.2s 0.2s 0.2s 3.9s 7.8s 39.2s 7.5s 15.0s	A 15x Gap 0.0% 0.0% 0.0% 0.0% 15.3% 13.1% 14.6% 8.5% 3.7% 2.3% 4.8% 3.7%	0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s	20x Gap 0.5% 0.3% 0.0% 17.4% 16.5% 19.3% 15.7% 5.9% 4.0% 2.2% 6.9% 6.4% 4.2%	10 Time 4.9s 18.7s 1.1m 6.0m 0.2s 0.2s 0.2s 4.1s 2.8s 7.3s 14.5s 1.2m 8.9s 17.5s 1.4m	30x Gap 0.0% 0.0% 0.0% 0.0% 4.1% 7.8% 3.1% 0.9% 0.1% 0.0% 0.0% 0.0%	10 Time 0.1s 0.1s 0.2s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1	15x Gap 0.0% 0.0% 0.0% 18.2% 15.1% 16.6% 10.8% 5.7% 4.9% 2.7% 7.4% 7.2% 5.4%	2.3s 2.0s 3.4s 1.9s 0.3s 0.3s 0.3s 0.3s 1.2s 7.1s 14.3s 1.2m 9.0s 18.2s 1.5m	20x Gap 2.4% 2.0% 1.8% 0.8% 40.9% 29.3% 38.3% 34.4% 11.8% 22.1% 22.1% 27.7% 25.1% 19.9%	100 Time 10.0s 50.2s 4.5m 19.8m 0.2s 0.2s 3.9s 2.8s 7.4s 14.8s 17.6s 1.4m	SW 20x Gap 7.0% 3.4% 4.2% 3.1% 35.0% 29.3% 30.6% 13.0% 20.2% 14.9% 24.2% 18.2%	10.0s 1.0m 5.0m 30.0m 0.3s 0.3s 0.3s 6.7s 3.8s 8.7s 17.5s 15.5m 9.7s 19.0s 1.7m	50x Gap 6.1% 3.8% 2.2% 0.6% 29.1% 21.5% 23.5% 25.4% 4.2% 20.6% 19.6% 19.6% 21.4% 19.9% 17.3%	10 Time 6.8s 32.4s 2.6m 7.8m 0.5s 0.5s 0.5s 25.1s 9.7s 16.3s 32.7s 12.5s 2.7m 12.5s 25.4s 2.1m	OR 10x Gap 0.0% 0.0% 0.0% 26.6% 19.8% 20.0% 9.0% 5.3% 3.9% 1.9% 8.2% 6.6% 3.8%	2.6s 2.8s 4.4s 2.4s 0.1s 0.1s 0.1s 0.8s 1.0s 3.8s 7.6s 38.0s 7.4s 15.0s 1.3m	Y1 20x Gap 4.3% 1.7% 1.8% 1.3% 18.1% 19.7% 20.9% 18.4% 13.9% 9.4% 7.8% 5.2% 13.9% 11.5% 8.8%	10.0s 1.0m 5.0m 30.0m 0.4s 0.4s 11.2s 4.3s 10.7s 21.3s 11.7s 23.4s 1.9m
CP (10 sec) CP (1 min) CP (5 min) CP (30 min) MOR LTT FDD/MWKR SN IRD NeuroLS-500 NeuroLS-5000 L2S-500 L2S-500 L2S-5000 TBGAT-500	Gap 0.0% 0.0% 0.0% 0.0% 13.0% 12.6% 13.2% 12.1% 4.6% 0.9% 0.9% 0.0% 1.8% 1.8%	0.2s 0.2s 0.2s 0.5s 0.1s 0.1s 0.1s 0.6s 0.9s 3.0s 6.0s 29.8s 14.0s 1.2m	15: Gap 0.0% 0.0% 0.0% 0.0% 2.4% 2.3% 4.6% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 1.1%	0.0s 0.0s 0.0s 0.1s 0.0s 0.0s 0.0s 0.0s	20. Gap 0.0% 0.0% 0.0% 0.0% 2.9% 3.5% 2.8% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	x5 Time 6.2s 17.5s 28.9s 14.6s 0.1s 0.1s 0.1s 1.9s 1.8s 5.0s 10.0s 50.2s 7.1s 14.5s 1.2m	10x Gap 0.0% 0.0% 0.0% 13.3% 13.0% 14.9% 4.1% 2.8% 2.4% 1.1% 4.4% 2.3% 0.9 %	L. 10 Time 4.6s 14.6s 56.8s 22.5s 0.2s 0.2s 0.2s 0.8s 2.2s 3.9s 7.8s 39.2s 7.5s 15.0s	A 15x Gap 0.0% 0.0% 0.0% 0.0% 15.3% 13.1% 8.5% 3.7% 2.3% 5.4% 4.8% 3.7% 5.8%	0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s	20x Gap 0.5% 0.3% 0.4% 0.0% 17.4% 16.5% 19.3% 5.9% 4.0% 2.2% 6.9% 6.4% 4.2%	10 Time 4.9s 18.7s 1.1m 6.0m 0.2s 0.2s 0.2s 4.1s 2.8s 7.3s 14.5s 1.2m 8.9s 17.5s 1.4m 11.4s	30x Gap 0.0% 0.0% 0.0% 0.0% 6.3% 4.1% 7.8% 3.1% 0.9% 0.1% 0.0% 0.0% 0.0% 1.5%	10 Time 0.1s 0.1s 0.2s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 1.6s 1.8m 10.2s 20.4s 1.7m 4.9s	15x Gap 0.0% 0.0% 0.0% 18.2% 15.1% 16.6% 10.8% 5.7% 4.9% 2.7% 7.2% 5.4%	2.3s 2.0s 3.4s 1.9s 0.3s 0.3s 0.3s 3.5s 4.9s 7.1s 14.3s 1.2m 9.0s 18.2s 1.5m 12.1s	20x Gap 2.4% 2.0% 1.8% 0.8% 40.9% 29.3% 38.3% 34.4% 11.8% 22.1% 22.1% 27.7% 25.1% 19.9% 31.0%	100 Time 10.0s 50.2s 4.5m 19.8m 0.2s 0.2s 0.2s 3.9s 2.8s 14.8s 1.2m 8.8s 17.6s 1.4m 15.6s	SW 20x Gap 7.0% 3.4% 4.2% 3.1% 35.0% 29.3% 34.5% 20.2% 14.9% 26.5% 24.2% 18.2% 24.3%	10.0s 1.0m 5.0m 30.0m 0.3s 0.3s 0.3s 6.7s 3.8s 8.7s 17.5s 1.5m 9.7s 19.0s 1.7m	50x Gap 6.1% 3.8% 2.2% 0.6% 29.1% 21.5% 23.5% 4.2% 20.6% 19.6% 16.4% 21.4% 19.9% 17.3% 21.1%	10 Time 6.8s 32.4s 2.6m 7.8m 0.5s 0.5s 0.5s 25.1s 9.7s 16.3s 32.7s 2.7m 12.5s 25.4s 2.1m 29.8s	OR 10x Gap 0.0% 0.0% 0.0% 0.0% 26.6% 19.8% 20.0% 9.0% 5.3% 3.9% 1.9% 8.2% 6.6% 3.8% 7.0%	2.6s 2.8s 4.4s 2.4s 0.1s 0.1s 0.1s 0.8s 1.0s 3.8s 7.6s 38.0s 7.4s 15.0s 1.3m	YI 20x Gap 4.3% 1.7% 1.8% 1.3% 18.1% 19.7% 20.9% 18.4% 13.9% 9.4% 7.8% 5.2% 13.9% 11.5% 8.8% 10.4%	10.0s 1.0m 5.0m 30.0m 0.4s 0.4s 11.2s 4.3s 10.7s 21.3s 11.7s 23.4s 1.9m 14.3s
CP (10 sec) CP (1 min) CP (5 min) CP (30 min) MOR LTT FDD/MWKR SN IRD NeuroLS-500 NeuroLS-1000 NeuroLS-5000 L2S-5000 L2S-5000 L2S-5000 TBGAT-500 TBGAT-1000	Gap 0.0% 0.0% 0.0% 0.0% 13.0% 12.6% 13.2% 12.1% 4.6% 0.9% 0.0% 1.8% 1.8% 3.5% 3.5%	0.2s 0.2s 0.2s 0.5s 0.1s 0.1s 0.6s 0.9s 3.0s 6.0s 29.8s 6.9s 14.0s 1.2m 2.3s 3.1s	15: Gap 0.0% 0.0% 0.0% 0.0% 2.4% 4.6% 2.7% 0.1% 0.0% 0.0% 0.0% 0.0% 1.1%	x5 Time 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 4.0s 4	20. Gap 0.0% 0.0% 0.0% 0.0% 2.9% 3.5% 2.8% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0	x5 Time 6.2s 17.5s 28.9s 14.6s 0.1s 0.1s 1.9s 1.8s 5.0s 10.0s 50.2s 7.1s 14.5s 12.m 1.7s 3.3s	10x Gap 0.4% 0.0% 0.0% 13.3% 14.9% 11.9% 4.1% 2.8% 1.1% 4.4% 2.3% 0.9% 1.8%	L:10 Time 4.6s 14.6s 56.8s 22.5s 0.2s 0.2s 0.2s 0.8s 2.2s 3.9s 7.8s 39.2s 7.5s 15.0s 1.3m 9.1s	A 15x Gap 0.0% 0.0% 0.0% 0.0% 15.3% 13.1% 8.5% 3.7% 2.3% 4.8% 5.4% 5.4%	0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s	20x Gap 0.5% 0.3% 0.4% 0.0% 17.4% 16.5% 19.3% 5.9% 4.0% 2.2% 6.4% 4.2% 6.7% 5.4%	10 Time 4.9s 18.7s 1.1m 6.0m 0.2s 0.2s 0.2s 4.1s 2.8s 7.3s 14.5s 1.2m 8.9s 17.5s 1.4m 11.4s 22.8s	30x Gap 0.0% 0.0% 0.0% 0.0% 6.3% 4.1% 7.8% 0.1% 0.1% 0.0% 0.1% 0.0% 0.0% 1.5% 1.4%	10 Time 0.1s 0.1s 0.2s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 1.6s 1.8m 10.2s 20.4s 1.7m 4.9s 6.3s	15) Gap 0.0% 0.0% 0.0% 18.2% 15.1% 16.6% 16.1% 2.7% 4.9% 2.7% 7.4% 7.2% 5.4% 7.0% 4.8%	2.3s 2.0s 3.4s 1.9s 0.3s 0.3s 0.3s 3.5s 4.9s 7.1s 14.3s 1.2m 9.0s 18.2s 1.5m	20x Gap 2.4% 2.0% 1.8% 0.8% 40.9% 29.3% 38.3% 21.8% 22.1% 12.5% 27.7% 25.1% 19.9% 31.0% 29.8%	100 Time 10.0s 50.2s 4.5m 19.8m 0.2s 0.2s 0.2s 14.8s 1.2m 8.8s 17.6s 1.4m 15.6s 31.2s	SW 20x Gap 7.0% 3.4% 4.2% 3.1% 29.3% 34.5% 30.6% 13.0% 20.2% 14.9% 26.5% 24.2% 24.3% 23.0%	10.0s 1.0m 5.0m 30.0m 0.3s 0.3s 0.3s 0.3s 17.5s 17.5s 1.5m 9.7s 19.0s 1.7m 17.0s 34.3s	50x Gap 6.1% 3.8% 2.2% 0.6% 29.1% 21.5% 23.5% 4.2% 20.6% 19.6% 16.4% 21.4% 19.9% 17.3% 21.1% 20.1%	10 Time 6.8s 32.4s 2.6m 7.8m 0.5s 0.5s 0.5s 0.5s 16.3s 32.7s 2.7m 12.5s 25.4s 2.1m 29.8s 59.5s	OR 10x Gap 0.0% 0.0% 0.0% 26.6% 19.8% 20.0% 9.0% 5.3% 3.9% 1.9% 6.6% 7.0% 5.7%	2.6s 2.8s 4.4s 2.4s 0.1s 0.1s 0.1s 0.8s 1.0s 3.8s 7.6s 38.0s 7.4s 15.0s 1.3m 10.4s 20.8s	YI 20x Gap 4.3% 1.7% 1.8% 1.3% 18.1% 19.7% 20.9% 18.4% 13.9% 9.4% 5.2% 11.5% 8.8% 10.4% 8.5%	10.0s 1.0m 5.0m 30.0m 0.4s 0.4s 0.4s 11.2s 4.3s 10.7s 21.3s 1.8m 11.7s 23.4s 1.9m 14.3s 28.1s
CP (10 sec) CP (1 min) CP (5 min) CP (30 min) MOR LTT FDD/MWKR SN IRD NeuroLS-500 NeuroLS-1000 NeuroLS-5000 L2S-5000 L2S-5000 L2S-5000 TBGAT-5000 TBGAT-5000 TBGAT-5000	Gap 0.0% 0.0% 0.0% 0.0% 13.0% 12.6% 12.1% 4.6% 0.9% 0.9% 0.0% 1.8% 3.5% 3.5% 3.5%	2.5 Time 0.2s 0.2s 0.5s 0.2s 0.1s 0.1s 0.6s 0.9s 3.0s 6.0s 29.8s 6.9s 14.0s 1.2m 2.3s 3.8s 9.8s	15: Gap 0.0% 0.0% 0.0% 0.0% 2.4% 4.6% 2.7% 0.1% 0.0% 0.0% 0.0% 1.1% 0.0%	0.0s 0.0s 0.0s 0.1s 0.0s 0.0s 0.0s 1.2s 0.6s 4.0s 8.1s 40.4s 6.8s 13.9s 1.2m 0.9s 9.2s	20. Gap 0.0% 0.0% 0.0% 0.0% 2.9% 3.5% 2.8% 3.6% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0	x5 Time 6.2s 17.5s 28.9s 14.6s 0.1s 0.1s 1.9s 1.8s 5.0s 50.2s 7.1s 14.5s 1.2m 1.7s 3.3s 16.1s	10x Gap 0.4% 0.0% 0.0% 13.3% 14.9% 11.9% 4.1% 2.4% 1.1% 4.4% 2.3% 0.9% 1.8% 1.4%	1.0 Time 4.6s 14.6s 56.8s 22.5s 0.2s 0.2s 0.2s 0.8s 2.2s 3.9s 7.5s 15.0s 1.3m 9.1s 18.2s 1.6m	A 15x Gap 0.0% 0.0% 0.0% 0.0% 15.3% 13.1% 14.6% 8.5% 3.7% 2.3% 5.4% 4.8% 3.7% 5.8% 2.8%	0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 2.0s 1.1s 5.6s 11.2s 55.9s 16.0s 1.3m 10.8s 21.4s	20x Gap 0.5% 0.3% 0.4% 0.0% 17.4% 16.5% 19.3% 15.7% 5.9% 5.4% 4.0% 6.4% 4.2% 6.74% 4.9%	10 Time 4.9s 18.7s 1.1m 6.0m 0.2s 0.2s 4.1s 2.8s 7.3s 14.5s 1.2m 8.9s 17.5s 1.4m 11.4s 22.8s 52.0s	30x Gap 0.0% 0.0% 0.0% 6.3% 4.1% 7.8% 3.1% 0.9% 0.1% 0.1% 0.0% 0.0% 1.5% 1.4% 1.1%	10 Time 0.1s 0.2s 0.1s 0.1s 0.1s 0.1s 9.3s 1.6s 10.8s 21.6s 21.6s 20.4s 1.7m 4.9s 6.3s 16.9s	153 Gap 0.0% 0.0% 0.0% 15.1% 16.6% 4.9% 2.7% 7.2% 4.9% 4.9% 4.9% 4.8% 3.8%	2.3s 2.0s 3.4s 1.9s 0.3s 0.3s 0.3s 3.5s 4.9s 7.1s 14.3s 1.2m 9.0s 18.2s 1.5m 12.1s 24.5s 2.0m	20x Gap 2.4% 2.0% 1.8% 0.8% 40.9% 29.3% 38.3% 34.4% 11.8% 22.1% 12.5% 27.7% 25.1% 19.9% 31.0% 27.7%	100 Time 10.0s 50.2s 4.5m 19.8m 0.2s 0.2s 3.9s 2.8s 7.4s 11.2m 8.8s 17.6s 1.4m 15.6s 2.5m	SW 20x Gap 7.0% 3.4% 4.2% 3.1% 35.0% 29.3% 34.5% 30.6% 13.0% 22.3% 24.2% 14.9% 26.5% 24.2% 24.3% 24.3% 17.0%	10.0s 1.0m 5.0m 30.0m 0.3s 0.3s 6.7s 3.8s 8.7s 17.5s 19.0s 1.7m 17.0s 2.7m	50x Gap 6.1% 3.8% 2.2% 0.6% 29.1% 21.5% 23.5% 25.4% 4.2% 20.6% 19.6% 19.6% 17.3% 21.1% 21.1% 20.1%	10 Time 6.8s 32.4s 2.6m 7.8m 0.5s 0.5s 0.5s 25.1s 9.7s 16.3s 32.7s 2.7m 12.5s 25.4s 2.1m 29.8s 4.9m	OR 10x Gap 0.0% 0.0% 0.0% 26.6% 19.8% 19.8% 20.0% 9.0% 5.3% 3.9% 6.6% 3.8% 7.0% 4.5%	2.6s 2.8s 4.4s 2.4s 0.1s 0.1s 0.1s 0.8s 1.0s 3.8s 7.6s 38.0s 7.4s 15.0s 1.3m 10.4s 2.4s	YI 20x Gap 4.3% 1.7% 1.8% 1.396 18.1% 20.9% 18.4% 13.9% 9.4% 7.8% 5.2% 13.9% 11.5% 8.8% 10.4% 5.6%	N (220 Time 10.0s 1.0m 5.0m 5.0m 0.4s 0.4s 11.2s 4.3s 11.7s 23.4s 1.9m 14.3s 2.3m
CP (10 sec) CP (1 min) CP (5 min) CP (30 min) MOR LTT FDD/MWKR SN IRD NeuroLS-500 NeuroLS-5000 L2S-5000 L2S-5000 L2S-5000 TBGAT-500 TBGAT-5000 TBGAT-5000 LSI-5000	Gap 0.0% 0.0% 0.0% 0.0% 13.0% 12.6% 13.2% 12.1% 4.6% 0.9% 0.9% 0.9% 3.5% 3.5% 3.5% 3.5% 2.9%	2.5 Time 0.2s 0.2s 0.2s 0.2s 0.1s 0.1s 0.1s 0.6s 0.9s 3.0s 6.0s 29.8s 6.9s 14.0s 1.2m 2.3s 3.1s 9.8s 9.0s	15: Gap 0.0% 0.0% 0.0% 0.0% 2.4% 2.3% 4.6% 2.7% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0	x5 Time 0.0s 0.0s 0.0s 0.1s 0.0s 0.0s 0.0s 0.0s	200 Gap 0.0% 0.0% 0.0% 0.0% 0.0% 2.9% 3.5% 3.6% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0	x5 Time 6.2s 17.5s 28.9s 14.6s 0.1s 1.9s 1.8s 5.0s 5.0s 7.1s 14.5s 1.2m 1.7s 1.3s 5.1c 1.3s 1.4.5s 1.2m 1.3s 1.3s 1.3s 1.3s 1.3s 1.3s 1.3s 1.3s	10x Gap 0.4% 0.0% 0.0% 13.3% 13.0% 14.9% 11.9% 2.4% 1.1% 4.4% 0.9% 1.8% 1.8% 1.4% 2.0%	L 10 Time 4.6s 14.6s 56.8s 22.5s 0.2s 0.2s 0.2s 0.2s 15.0s 1.3m 9.1s 15.0s 1.3m 9.1s 15.0s 1.3m 12.1s	A 15x Gap 0.0% 0.0% 0.0% 0.0% 15.3% 13.1% 14.6% 3.7% 2.3% 5.4% 3.7% 5.8% 5.4% 4.9%	0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s	20x Gap 0.5% 0.3% 0.4% 0.0% 17.4% 19.3% 15.7% 5.9% 6.4% 4.0% 2.2% 6.9% 6.4% 4.2% 5.4% 5.4% 5.4% 5.4%	10 Time 4.9s 18.7s 1.1m 6.0m 0.2s 0.2s 4.1s 2.8s 7.3s 1.4m 11.4s 11.4s 52.0s 13.4s	30xGap 0.0% 0.0% 0.0% 0.0% 6.3% 4.1% 7.8% 3.1% 0.9% 0.1% 0.0% 0.1% 0.1% 0.1% 0.1% 0.0% 0.1% 0.0%	0.1s 0.1s 0.2s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 9.3s 1.6s 10.8s 21.6s 11.8m 10.2s 20.4s 1.7m 4.9s 6.3s 16.9s	155 Gap 0.0% 0.0% 0.0% 18.2% 16.6% 16.1% 10.8% 7.2% 7.4% 7.2% 5.4% 7.2% 3.8% 5.1%	2.3s 2.0s 3.4s 1.9s 0.3s 0.3s 0.3s 3.5s 4.9s 7.1s 14.3s 1.2m 9.0s 18.2s 1.5m 12.1s 24.5s 2.0m	20xGap 2.4% 2.0% 1.8% 0.8% 40.9% 29.3% 38.3% 34.4% 11.8% 221.7% 221.1% 12.5% 27.7% 25.1% 19.9% 31.0% 27.7% 25.4%	10.0s 50.2s 4.5m 19.8m 0.2s 0.2s 0.2s 3.9s 2.8s 7.4s 11.2m 8.8s 1.2m 15.6s 2.5m 21.6s	SW 20x Gap 7.0% 3.4% 4.2% 3.1% 35.0% 29.3% 34.5% 30.6% 13.0% 22.3% 20.2% 14.9% 24.3% 24.3% 23.0% 21.4%	10.0s 1.0m 5.0m 30.0m 0.3s 0.3s 0.3s 6.7s 17.5s 1.5m 9.7s 19.0s 1.7m 17.0s 34.3s 2.7m	50x Gap 6.1% 3.8% 2.2% 0.6% 29.1% 221.5% 225.4% 4.2% 20.6% 19.9% 17.3% 21.14% 19.9% 17.3% 21.17.6% 20.7%	10 Time 6.8s 32.4s 2.6m 7.8m 0.5s 0.5s 0.5s 25.1s 16.3s 32.7s 2.7m 12.5s 2.1m 29.8s 59.5s 4.9m 42.2s	OR 10x Gap 0.0% 0.0% 0.0% 0.0% 0.0% 19.8% 19.8% 19.8% 19.8% 19.8% 19.5.3% 8.2% 6.6% 3.8% 7.0% 4.5% 5.3%	2.6s 2.8s 4.4s 2.4s 0.1s 0.1s 0.1s 0.1s 0.8s 7.6s 38.0s 7.4s 15.0s 1.3m 10.4s 20.8s 1.7m	Y1 20x Gap 4.3% 1.7% 1.8% 1.3% 18.1% 19.7% 20.9% 18.4% 13.9% 5.2% 13.9% 5.2% 11.5% 8.8% 5.6% 9.2%	10.0s 1.0m 5.0m 30.0m 0.4s 0.4s 0.4s 11.2s 4.3s 10.7s 21.3s 1.8m 11.7s 23.4s 1.9m 14.3s 28.1s 2.3m
CP (10 sec) CP (1 min) CP (5 min) CP (30 min) MOR LTT FDD/MWKR SN IRD NeuroLS-500 NeuroLS-1000 NeuroLS-5000 L2S-5000 L2S-5000 L2S-5000 TBGAT-5000 TBGAT-5000 TBGAT-5000	Gap 0.0% 0.0% 0.0% 0.0% 13.0% 12.6% 12.1% 4.6% 0.9% 0.9% 0.0% 1.8% 3.5% 3.5% 3.5%	x5 Time 0.2s 0.2s 0.5s 0.2s 0.1s 0.1s 0.6s 6.0s 29.8s 6.9s 3.1t 2.3s 3.1t 2.3s 3.1t 2.3s 3.1t 3.1t 3.1t 3.1t 3.1t 3.1t 3.1t 3.1t	15: Gap 0.0% 0.0% 0.0% 2.4% 2.3% 4.6% 2.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0	0.0s 0.0s 0.0s 0.1s 0.0s 0.0s 0.0s 1.2s 0.6s 4.0s 8.1s 40.4s 6.8s 13.9s 1.2m 0.9s 9.2s	20. Gap 0.0% 0.0% 0.0% 0.0% 2.9% 3.5% 2.8% 3.6% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0	x5 Time 6.2s 17.5s 28.9s 14.6s 0.1s 0.1s 0.1s 1.9s 50.2s 7.1s 1.4.5s 10.0s 50.2s 7.1s 14.5s 16.1s 3.3s 16.1s	10x Gap 0.4% 0.0% 0.0% 0.0% 13.3% 14.9% 11.9% 4.1% 2.8% 2.4% 1.1% 4.8% 0.9% 1.8% 1.4% 2.3% 0.9% 1.8% 1.4% 1.4% 2.0% 1.9%	1.0 Time 4.6s 14.6s 56.8s 22.5s 0.2s 0.2s 0.2s 0.8s 2.2s 3.9s 7.5s 15.0s 1.3m 9.1s 18.2s 1.6m	A 15x Gap 0.0% 0.0% 0.0% 0.0% 15.3% 13.1% 13.1% 14.6% 3.7% 2.3% 5.4% 3.7% 4.4% 4.4% 4.4%	0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 2.0s 1.1s 5.6s 11.2s 55.9s 16.0s 1.3m 10.8s 21.4s	20x Gap 0.5% 0.3% 0.4% 16.5% 19.3% 15.7% 4.0% 2.2% 6.9% 5.49 4.0% 4.2% 6.7% 5.49 4.2% 6.5% 3.9%	10 Time 4.9s 18.7s 1.1m 6.0m 0.2s 0.2s 4.1s 2.8s 7.3s 14.5s 1.2m 8.9s 17.5s 1.4m 11.4s 22.8s 52.0s	30x Gap 0.0% 0.0% 0.0% 6.3% 4.1% 7.8% 3.1% 0.9% 0.1% 0.1% 0.0% 0.0% 1.5% 1.4% 1.1%	0.1s 0.2s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1	153 Gap 0.0% 0.0% 0.0% 15.1% 16.6% 4.9% 2.7% 7.2% 4.9% 4.9% 4.9% 4.8% 3.8%	2.3s 2.0s 3.4s 1.9s 0.3s 0.3s 0.3s 3.5s 4.9s 7.1s 14.3s 1.2m 9.0s 18.2s 1.5m 12.1s 24.5s 2.0m	20xGap 2.4% 2.0% 1.8% 40.9% 29.3% 40.9% 29.3% 31.4% 22.1% 12.5% 225.1% 19.9% 31.0% 29.8% 29.8% 29.8% 21.8%	10.0s 50.2s 4.5m 19.8m 0.2s 0.2s 0.2s 1.2m 8.8s 1.2m 15.6s 11.4m 15.6s 31.2s 2.5m 41.3s	SW 20x Gap 7.0% 3.4% 4.2% 3.1% 35.0% 29.3% 34.5% 30.6% 13.0% 22.3% 24.2% 14.9% 26.5% 24.2% 24.3% 24.3% 17.0%	VV 15 Time 10.0s 1.0m 5.0m 30.0m 0.3s 0.3s 6.7s 17.5s 1.5m 9.7s 11.7m 17.0s 34.3s 2.7m 17.0s 37.8s 37.8s	50x Gap 6.1% 3.8% 2.2% 6.0.6% 29.1% 21.5% 20.6% 19.6% 16.4% 21.14% 21.14% 21.17.6% 20.17.6% 20.17.6% 20.17.6% 20.4%	10 Time 6.8s 32.4s 2.6m 7.8m 0.5s 0.5s 0.5s 2.5.1s 16.3s 32.7s 2.7m 12.5s 2.1m 29.8s 59.5s 4.9m 4.2.2s 1.2m	OR 10x Gap 0.0% 0.0% 0.0% 26.6% 19.8% 19.8% 20.0% 9.0% 5.3% 3.9% 6.6% 3.8% 7.0% 4.5%	2.6s 2.8s 4.4s 2.4s 0.1s 0.1s 0.1s 0.1s 0.1s 1.0s 3.8s 7.6s 38.0s 7.4s 15.0s 1.3m 10.4s 20.8s 1.7m 10.4s 20.8s	YI 20x Gap 4.3% 1.7% 1.8% 1.396 18.1% 20.9% 18.4% 13.9% 9.4% 7.8% 5.2% 13.9% 11.5% 8.8% 10.4% 5.6%	N (220 Time 10.0s 1.0m 5.0m 30.0m 0.4s 0.4s 11.2s 4.3s 10.7s 21.3s 1.8m 11.7s 23.4s 1.9m 14.3s 28.1s 2.3m 15.4s 30.4s

Policy parameters are updated periodically based on gradient estimates gathered from sample trajectories. The entire learning process, which includes trajectory collection, gradient computation, and parameter updates, is provided in Algorithm 1 in Appendix F.

6 EXPERIMENTS

Baselines and test datasets. We compared the performance of our method with dispatching rule-based constructive heuristic methods (largest tail time (LTT) rule (Lee & Kim (2024)), most operations remaining (MOR) rule, minimum ratio of flow due date to most work remaining (FDD/MWKR) rule (Sels et al. (2012))), learning-based constructive heuristics (SN (Park et al. (2021a)) and IRD (Lee & Kim (2024))), local search methods (TS Zhang et al. (2007), NeuroLS (Falkner et al. (2022)), L2S (Zhang et al. (2024a)), and TBGAT (Zhang et al. (2024b))), and an exact method (constraint programming (CP) (Zhou (1996))). We evaluated all methods on JSSP benchmark datasets: TA (Taillard (1993)), LA (Lawrence (1984)), ABZ (Adams et al. (1988)), FT (Muth & Thompson (1963)), ORB (Applegate & Cook (1991)), SWV (Storer et al. (1992)), and YN (Yamada & Nakano (1992)). An instance denoted as 'benchmark NxM' contains N jobs and M machines. Performance is measured by the optimality gap, defined as $\frac{C}{C^*} - 1$, where C is the makespan of a schedule obtained by each method and C^* is the optimal or best-known makespan.

Performance for JSSP benchmark datasets. We initialized the schedules using the FDD/MWKR rule and computed EST and LST using the topological linear-time algorithm proposed by Zhang et al. Zhang et al. (2024a). L2S, TBGAT, and LSI were trained and validated on JSSP instances with 10 jobs and 10 machines, while NeuroLS used instances with 15 jobs and 15 machines. Details of implementation and configuration are provided in Appendix G.

Table 1 reports the results grouped by benchmark type, problem size, and method. The number following each learning-based local search method (NeuroLS, L2S, TBGAT, and LSI) in the table denotes the number of search iterations, and the reported running time is derived by batching computations across instances within each instance group. Although LSI is trained only on 10x10 instances, it generalizes well to significantly larger instances, highlighting its strong scalability. LSI also demonstrates superior performance compared to other learning-based methods while requiring similar computational resources. In particular, LSI outperforms both L2S and TBGAT across nearly all benchmark groups with the same search iterations. Figure 5 also shows the performance and computational time of large-scale JSSP benchmarks. In terms of both the solution quality (optimality gap) and the computational efficiency (end-to-end running time), LSI outperforms all learning-based methods, classical dispatchers, and the CP solver.

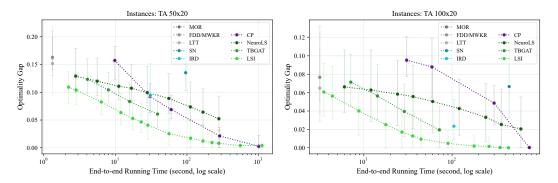


Figure 5: Mean optimality gap and mean end-to-end running time for large-scale benchmarks.

Ablation studies. Table 2 reports the performance of different policy network architectures. In the table, 'Gap' denotes the average optimality gap across all 162 JSSP benchmark instances, 'Rank' indicates the average rank among the four compared methods within each iteration, and 'Diff' represents the average difference in optimality gap from the best-performing method for each instance with the same number of iterations. A 'Diff' of 0% indicates that the method consistently achieved the best performance across all instances under its iteration setting. The inclusion of condition indicators significantly improves performance for both encoder types, a simple MLP and TBGAT's

Table 2: Evaluation of different policy network architecture under varying search iterations.

# of iterations		500			1000			5000	
Method	Gap	Rank	Diff	Gap	Rank	Diff	Gap	Rank	Diff
None + MLP	12.7%	3.60	4.3%	11.2%	3.50	4.3%	8.2%	3.35	3.9%
None + bi-GAT (TBGAT)	10.7%	2.78	2.4%	9.4%	2.78	2.5%	7.0%	2.81	2.6%
Indicators + MLP (LSI)	9.0%	1.86	0.7%	7.6%	1.86	0.6%	5.0%	1.85	0.6%
Indicators + bi-GAT	8.9%	1.76	0.6%	7.6%	1.86	0.6%	5.2%	1.99	0.8%

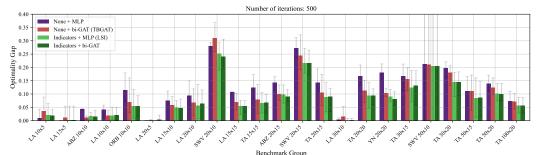


Figure 6: Mean optimality gap for benchmark groups with different policy network structures.

bi-GAT. 'Indicators' in Table 2 refers to the use of our proposed condition indicators in the decoder, while 'None' indicates that no theoretical insights are incorporated into the policy network. Both encoders with condition indicators achieve nearly identical performance, differing by less than 0.2%. This suggests that our theoretically derived indicators can serve as an effective substitute for complex neural architectures designed to capture problem-specific features. Figure 6 also shows the effectiveness of the condition indicators across different benchmark groups. As shown in the figure, within each benchmark group of the same size, the performance difference between using a simple MLP and a bi-GAT encoder remains negligible when the condition indicators are used. The other results of ablation studies across other four components are presented in Appendix I: the effectiveness of (1) different ways to incorporate the propositions into the local search method, (2) different state features, (3) different critical-based neighborhood structures, and (4) different training instance sizes.

7 Conclusion

We propose **LSI** (Local Search with Indicators), a novel learning-based local search method for makespan minimization in Job Shop Scheduling Problems (JSSPs). LSI replaces complex GNN architectures with a lightweight MLP policy network that incorporates three binary indicators derived from newly identified necessary conditions for makespan reduction. These conditions, which we define through a theoretical analysis of schedule improvement under consecutive operation swaps, are used to guide the policy network toward selecting only the most promising moves within the N5 neighbors. By embedding these problem-specific theoretical insights into the policy, LSI achieves superior performance and scalability across JSSP benchmarks while significantly reducing inference time. Experimental results across diverse JSSP benchmarks demonstrate that our proposed indicators not only enhance the solution quality but also enable the use of a lightweight MLP-based encoder, outperforming prior methods that rely on complex neural architectures such as Graph Attention Network (GAT). This result highlights that problem-specific insights related to the objective function can serve as an effective substitute for architectural complexity.

Limitations and future works. While the approach shows strong performance, it has some limitations. The theoretical indicators we propose are problem-specific and must be manually derived for each combinatorial optimization problem (COP), which may limit generalizability and automation of this approach. Future work will focus on two directions. One is to generalize our method to other COPs, such as vehicle routing problems or scheduling problems with additional constraints, by deriving analogous theoretical indicators. The other is to develop representation learning techniques that can autonomously discover and learn such objective-aligned features, reducing reliance on hand-crafted indicators.

REFERENCES

- Joseph Adams, Egon Balas, and Daniel Zawack. The shifting bottleneck procedure for job shop scheduling. *Management Science*, 34(3):391–401, 1988.
- David Applegate and William Cook. A computational study of the job-shop scheduling problem. *ORSA Journal on Computing*, 3(2):149–156, 1991.
 - Jacek Błażewicz, Erwin Pesch, and Małgorzata Sterna. The disjunctive graph machine representation of the job shop scheduling problem. *European Journal of Operational Research*, 127(2):317–331, 2000
 - Peter Brucker, Bernd Jurisch, and Bernd Sievers. A branch and bound algorithm for the job-shop scheduling problem. *Discrete Applied Mathematics*, 49:107–127, 1994.
 - Ruiqi Chen, Wenxin Li, and Hongbing Yang. A deep reinforcement learning framework based on an attention mechanism and disjunctive graph embedding for the job-shop scheduling problem. *IEEE Transactions on Industrial Informatics*, 19(2):1322–1331, 2022.
 - Mauro Dell'Amico and Marco Trubian. Applying tabu search to the job-shop scheduling problem. *Annals of Operations research*, 41(3):231–252, 1993.
 - Jonas K Falkner, Daniela Thyssens, Ahmad Bdeir, and Lars Schmidt-Thieme. Learning to control local search for combinatorial optimization. In *Joint European Conference on Machine Learning and Knowledge Discovery in Databases*, pp. 361–376. Springer, 2022.
 - Michael R Garey, David S Johnson, and Ravi Sethi. The complexity of flowshop and jobshop scheduling. *Mathematics of Operations Research*, 1(2):117–129, 1976.
 - Fred Glover. Future paths for integer programming and links to artificial intelligence. *Computers & Operations Research*, 13(5):533–549, 1986.
 - Amit Kumar Gupta and Appa Iyer Sivakumar. Job shop scheduling techniques in semiconductor manufacturing. *The International Journal of Advanced Manufacturing Technology*, 27(11):1163–1169, 2006.
 - Bao-An Han and Jian-Jun Yang. Research on adaptive job shop scheduling problems based on dueling double dqn. *IEEE Access*, 8:186474–186495, 2020.
 - Zangir Iklassov, Dmitrii Medvedev, Ruben Solozabal Ochoa De Retana, and Martin Takac. On the study of curriculum learning for inferring dispatching policies on the job shop scheduling. In *International Joint Conference on Artificial Intelligence*, pp. 5350–5358, 2023.
 - Jens Kuhpfahl and Christian Bierwirth. A study on local search neighborhoods for the job shop scheduling problem with total weighted tardiness objective. *Computers & Operations Research*, 66:44–57, 2016.
 - Stephen Lawrence. Resource constrained project scheduling: An experimental investigation of heuristic scheduling techniques (supplement). *Graduate School of Industrial Administration, Carnegie-Mellon University*, 1984.
 - Je-Hun Lee and Hyun-Jung Kim. Imitation learning for real-time job shop scheduling using graph-based representation. In 2022 Winter Simulation Conference (WSC), pp. 3285–3296. IEEE, 2022.
 - Je-Hun Lee and Hyun-Jung Kim. Graph-based imitation learning for real-time job shop dispatcher. *IEEE Transactions on Automation Science and Engineering*, 2024.
- Chien-Liang Liu and Tzu-Hsuan Huang. Dynamic job-shop scheduling problems using graph neural network and deep reinforcement learning. *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, 53(11), 2023.
 - Chien-Liang Liu, Chuan-Chin Chang, and Chun-Jan Tseng. Actor-critic deep reinforcement learning for solving job shop scheduling problems. *Ieee Access*, 8:71752–71762, 2020.

- Yangtao Liu, Ruihan Zhang, Jun Wang, and Yan Wang. Current and future lithium-ion battery manufacturing. *IScience*, 24(4):1–17, 2021.
- Nenad Mladenović and Pierre Hansen. Variable neighborhood search. *Computers & Operations Research*, 24(11):1097–1100, 1997.
 - Marta Monaci, Valerio Agasucci, and Giorgio Grani. An actor-critic algorithm with policy gradients to solve the job shop scheduling problem using deep double recurrent agents. *European Journal of Operational Research*, 312(3):910–926, 2024.
 - John F Muth and Gerald L Thompson. Industrial Scheduling. Prentice-Hall, 1963.
 - Eugeniusz Nowicki and Czeslaw Smutnicki. A fast taboo search algorithm for the job shop problem. *Management Science*, 42(6):797–813, 1996.
 - Junyoung Park, Sanjar Bakhtiyar, and Jinkyoo Park. Schedulenet: Learn to solve multi-agent scheduling problems with reinforcement learning. *arXiv* preprint arXiv:2106.03051, 2021a.
 - Junyoung Park, Jaehyeong Chun, Sang Hun Kim, Youngkook Kim, and Jinkyoo Park. Learning to schedule job-shop problems: Representation and policy learning using graph neural network and reinforcement learning. *International Journal of Production Research*, 59(11):3360–3377, 2021b.
 - Veronique Sels, Nele Gheysen, and Mario Vanhoucke. A comparison of priority rules for the job shop scheduling problem under different flow time-and tardiness-related objective functions. *International Journal of Production Research*, 50(15):4255–4270, 2012.
 - Robert H Storer, S David Wu, and Renzo Vaccari. New search spaces for sequencing problems with application to job shop scheduling. *Management Science*, 38(10):1495–1509, 1992.
 - Eric Taillard. Benchmarks for basic scheduling problems. *European Journal of Operational Research*, 64(2):278–285, 1993.
 - Peter JM Van Laarhoven, Emile HL Aarts, and Jan Karel Lenstra. Job shop scheduling by simulated annealing. *Operations Research*, 40(1):113–125, 1992.
 - Jin Xie, Xinyu Li, Liang Gao, and Lin Gui. A new neighbourhood structure for job shop scheduling problems. *International Journal of Production Research*, 61(7):2147–2161, 2023.
 - Hegen Xiong, Shuangyuan Shi, Danni Ren, and Jinjin Hu. A survey of job shop scheduling problem: The types and models. *Computers & Operations Research*, 142:105731, 2022.
 - Takeshi Yamada and Ryohei Nakano. A genetic algorithm applicable to large-scale job-shop problems. In *PPSN*, volume 2, pp. 281–290, 1992.
 - ChaoYong Zhang, PeiGen Li, ZaiLin Guan, and YunQing Rao. A tabu search algorithm with a new neighborhood structure for the job shop scheduling problem. *Computers & Operations Research*, 34(11):3229–3242, 2007.
 - Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and Xu Chi. Learning to dispatch for job shop scheduling via deep reinforcement learning. *Advances in Neural Information Processing Systems*, 33:1621–1632, 2020.
 - Cong Zhang, Zhiguang Cao, Wen Song, Yaoxin Wu, and Jie Zhang. Deep reinforcement learning guided improvement heuristic for job shop scheduling. In *The Twelfth International Conference on Learning Representations*, 2024a.
 - Cong Zhang, Zhiguang Cao, Yaoxin Wu, Wen Song, and Jing Sun. Learning topological representations with bidirectional graph attention network for solving job shop scheduling problem. In *The* 40th Conference on Uncertainty in Artificial Intelligence, 2024b.
 - Linlin Zhao, Weiming Shen, Chunjiang Zhang, and Kunkun Peng. An end-to-end deep reinforcement learning approach for job shop scheduling. In *IEEE International Conference on Computer Supported Cooperative Work in Design (CSCWD)*, pp. 841–846. IEEE, 2022.
 - Jianyang Zhou. A constraint program for solving the job-shop problem. In *Principles and Practice of Constraint Programming—CP96: Second International Conference*, pp. 510–524, Cambridge, MA, USA, August 1996. Springer.

ACKNOWLEDGMENTS

This work was supported by (We will add a funding program after accept), and this paper have edited by using several LLM services.

APPENDIX

We provide further details of our paper in the appendix. Our code implementation can be found in https://github.com/***/*** (Code will be made publicly available upon acceptance).

A DISJUNCTIVE GRAPH TO REPRESENT JSSP INSTANCE

Although our proposed method, LSI, does not directly employ a disjunctive graph-based representation, we introduce it here to provide context for comparison with prior works that have utilized this structure to learn architectural information implied in the JSSP.

The JSSP can be modeled as a disjunctive graph (Błażewicz et al. (2000)), as illustrated in Figure 7. In this representation, each operation—including dummy operations—is represented as a node. Specifically, each node O_{ij} denotes the j-th operation of job i, which must be processed on a specified machine for a given processing time. Dummy nodes O_S and O_T represent the artificial start and terminal operations with zero processing time. Nodes with the same color belong to the same job, indicating their precedence relationship.

There are two types of arcs in the disjunctive graph: conjunctive (directed) arcs represent precedence constraints between successive operations within a job, while disjunctive (undirected) arcs connect operations assigned to the same machine. Once the processing sequence between operations assigned to the same machine is determined, the corresponding disjunctive arc becomes directed.

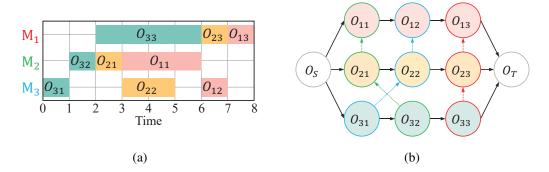


Figure 7: (a) A schedule of a JSSP instance with three jobs and three machines and (b) the disjunctive graph of the schedule.

Several prior studies have adopted GNN architectures based on the disjunctive graph-based representation to encode operations' features (Zhang et al. (2020); Park et al. (2021b); Liu & Huang (2023); Park et al. (2021a); Lee & Kim (2022; 2024); Falkner et al. (2022); Zhang et al. (2024a;b)). This representation captures both the precedence relations across operations within a job and the operation sequence on each machine under the current schedule. Such structural encoding enhances the model's capacity to capture scheduling-specific characteristics and the underlying topological information of the current schedule.

B Critical Path-based Neighborhood Structures

As described in Section 2, a critical path is defined as the longest path from the operation with the earliest start time to the operation with the latest completion time, where the total path length equals the sum of processing times of the operations along the path. No idle time exists between consecutive operations on the critical path, and its length is equal to the schedule's makespan. For

instance, Figure 8 shows all critical paths that can be found in the schedule illustrated in Figure 7. The critical block is a subset of the operations on the critical path and is defined as maximal sequences of consecutive operations processed on the same machine within the critical path. For example, there are three critical blocks $\{O_{31}\}$, $\{O_{32}\}$, and $\{O_{33}, O_{23}, O_{13}\}$ on the critical path of Figure 8 (a), and four critical blocks $\{O_{31}\}$, $\{O_{32}, O_{21}, O_{11}\}$, $\{O_{12}\}$, and $\{O_{13}\}$ on the critical path of Figure 8 (b).

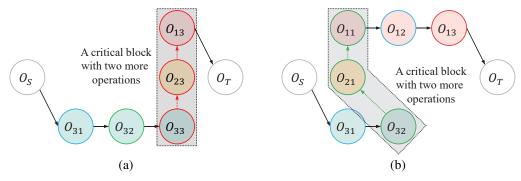


Figure 8: Two critical paths of the schedule illustrated in Figure 7.

A neighborhood structure generates neighbor schedules from the current schedule in local search methods. The N1 neighborhood structure considers all possible swaps of consecutive operations in critical blocks (Van Laarhoven et al. (1992)). N2 narrows these to pairs at the beginning or end of critical blocks (Dell'Amico & Trubian (1993)). N5 further refines N2 by excluding pairs at the beginning of the first critical block or the end of the last, except when these are at the end of the first block or the beginning of the last, respectively (Nowicki & Smutnicki (1996)). For example, in the critical paths shown in Figures 8 (a) and (b), N5 considers the pairs (O_{33}, O_{23}) , (O_{23}, O_{21}) , and (O_{21}, O_{11}) as candidates. The pair (O_{23}, O_{13}) is excluded because O_{13} is the last operation in the critical path and O_{23} is not at the beginning of its block.

All three neighborhood structures ensure feasibility by generating acyclic disjunctive graphs only (Van Laarhoven et al. (1992)). While N1 can theoretically reach the optimal schedule from any initial solution (Van Laarhoven et al. (1992)), N5 is widely adopted for its efficiency. It considers fewer operation pairs than N1 and N2 while including all pairs whose swaps can potentially improve the makespan Nowicki & Smutnicki (1996), as shown in Figure 2. This makes N5 effective in practice.

C PROOFS OF NECESSARY CONDITIONS FOR MAKESPAN REDUCTION

The proofs of three propositions proposed in Section 4.3 are as follows. JP[u] and JS[u] denote the job-predecessor and job-successor operations of operation u, respectively, while MP[u] and MS[u] represent its machine-predecessor and machine-successor operations, respectively. Note that ect'_v can be calculated as $\max(ect_{MP[u]}, ect_{JP[v]}) + p_v$ and ect'_u can be calculated as $\max(est_u, ect'_v) + p_u$. The propositions hold for all consecutive operations on the same machine, not just those on critical paths.

Proposition 1. When consecutive operations u and v are swapped on a machine of a given schedule, the makespan cannot decrease if $lst_{JS[v]} \leq ect'_v$.

Proof. By definition, LST is the latest time an operation can start without delaying the makespan. Therefore, increasing the LST of any job's last operation increases the makespan. If $lst_{JS[v]} \leq ect'_v$, then $lst_{JS[v]} \leq ect'_v \leq est'_{JS[v]} \leq lst'_{JS[v]}$ due to the precedence constraint of v and the definitions of EST and LST. From the perspective of the job of v, the LST of its subsequent operations, including JS[v], will remain the same or be delayed. This implies that the LST of the last operation of the job of v will also remain the same or be delayed. Consequently, the makespan will either remain the same or increase.

Proposition 2. When consecutive operations u and v are swapped on a machine of a given schedule, the makespan cannot decrease if $lst_{JS[u]} \leq ect'_u$.

Proof. The proof follows the same logic as Proposition 1. The condition $lst_{JS[u]} \leq ect'_u$ implies $lst_{JS[u]} \leq lst'_{JS[u]}$, which ensures that the makespan cannot decrease.

Proposition 3. When consecutive operations u and v are swapped on a machine of a given schedule, the makespan cannot decrease if $lst_{MS[v]} \leq ect'_u$.

Proof. We consider determined operation orders for all machines except for operations u and v. By the definition of LST, increasing the LST of the last operation processed on any machine increases the makespan. If $lst_{MS[v]} \leq ect'_u$, then $lst_{MS[v]} \leq ect'_u \leq est'_{MS[v]} \leq lst'_{MS[v]}$ since operation u precedes MS[v] on their compatible machine. From the machine's perspective, the LST of subsequent operations including MS[v] will either remain the same or be delayed. This implies that the LST of the last operation on the machine will also either remain the same or be delayed. Consequently, the makespan will either remain the same or increase.

D PROOF OF SUFFICIENT CONDITION FOR MAKESPAN REDUCTION

Definitnion: Downstream-affected operations. Given a swap of consecutive operations (u, v) on a machine, let $F^+(u, v)$ denote the set of operations reachable from u or v by repeatedly taking a job successor or a machine successor. We call elements of $F^+(u, v)$ downstream-affected operations. Note that u and v are not in $F^+(u, v)$.

Lemma 1. Locality of perturbation. Swapping (u, v) can change EST and ECT only for downstream-affected operations: for any operation $w \notin F^+(u, v)$, $est'_w = est_w$ and $ect'_w = ect_w$.

Proof. Suppose $est'_w \neq est_w$ for some $w \notin F^+(u,v)$. Since $est_w = \max\{ect_{JP[w]}, ect_{MP[w]}\}$, a change at w implies $ect'_x \neq ect_x$ for some immediate predecessor $x \in \{JP[w], MP[w]\}$. Iterating the same reasoning on x (and so on) produces a finite backward chain of nodes with changed est/ect that must originate at u or v, the only place where the schedule was modified. Hence, there exists a successor sequence from u or v to w. This is in contradiction with $w \notin F^+(u,v)$. Therefore, $est'_w = est_w$ and thus $ect'_w = ect_w$ for all $w \notin F^+(u,v)$.

Lemma 2. LST monotonicity for downstream-affected operations. Let O_T denote the terminal dummy operation. If $lst'_{O_T} \geq lst_{O_T}$ (the makespan is the same or increasing), then we have $lst'_w \geq lst_w$ for any $w \in F^+(u, v)$.

Proof. For each operation x, $lst_x = \min\{lst_{JS[x]}, lst_{MS[x]}\} - p_x$. Order the nodes of $F^+(u, v)$ by their successor distance to O_T and proceed by induction.

If w's only successor is O_T , then $lst_w' = lst_{O_T} - p_w \ge lst_{O_T} - p_w = lst_w$. If $lst_{JS[w]}' \ge lst_{JS[w]}$ and $lst_{MS[w]}' \ge lst_{MS[w]}$, then $lst_w' = \min\{lst_{JS[x]}', lst_{MS[x]}'\} - p_w \ge lst_w = \min\{lst_{JS[x]}, lst_{MS[x]}'\} - p_w$. Therefore, $lst_w' \ge lst_w$ for all $w \in F^+(u, v)$ by induction. \square

Theorem 1 For a schedule with only one critical path, the makespan of the schedule decreases when consecutive operations u and v on a machine are swapped if and only if $lst_{JS[u]} > ect'_u$ and $lst_{MS[v]} > ect'_u$.

Proof. (\Rightarrow) *Necessity via contrapositive.* If $LST_{JS[u]} \leq ECT'_u$ or $LST_{MS[v]} \leq ECT'_u$, then by Propositions 2 and 3 the swap cannot reduce the makespan, independently of how many critical paths exist.

 (\Leftarrow) Sufficiency by contradiction. Since a decrease in makespan means the LST of the dummy terminal operation O_T decreases, we assume, for contradiction, that $lst'_{O_T} \geq lst_{O_T}$ while $lst_{JS[u]} > ect'_u$ and $lst_{MS[v]} > ect'_u$ both hold. When operations u and v are swapped, all operations on the paths from either u or v to O_T are affected. We call these paths affected paths, excluding the path containing both u and v. Since O_T is at the end of all affected paths and lst_w is defined as $\min(lst_{JS[w]}, lst_{MS[w]}) - p_w$, for any operation w on an affected path (except u and v), $lst'_w \geq lst_w$ must hold.

The new critical path in the new schedule must include one of the affected paths, since any increase in path length must result from EST adjustments due to the swap. Note that operations before u on the original critical path remain unchanged and must be part of any new critical path. Therefore, we only need to investigate the paths after the swap. All affected paths begin with one of three operation pairs: (v, JS[v]), (u, JS[u]), or (u, MS[v]). We investigate these cases:

- (1) Let an affected path starting with (v,JS[v]) be the new critical path. We know that $ect_v \leq est_{JS[v]} \leq lst_{JS[v]} \leq lst_{JS[v]} = est_{JS[v]}' = ect_v'$ by definition of EST and the characteristic of critical path. However, $est_v' < est_v$ must hold. By definition, $est_v' = \max(ect_{JP[v]}, ect_{MP[u]})$ since $ect_{JP[v]}' = ect_{JP[v]}$ and $ect_{MP[u]}' = ect_{MP[u]}$ as these operations are not affected by the swap. Also, since u is on the unique critical path while JP[v] is not, we have $est_v = \max(ect_{JP[v]}, ect_u) = ect_u$ and $ect_{MP[u]} < ect_u$. Therefore, $est_v' = \max(ect_{JP[v]}, ect_{MP[u]}) < ect_u = est_v$. This contradicts $ect_v < ect_v'$.
- (2) Let an affected path starting with (u, JS[u]) be the new critical path. Then $lst_{JS[u]} \leq lst'_{JS[u]} = est'_{JS[u]} = ect'_u$ would hold, contradicting $lst_{JS[u]} > ect'_u$.
- (3) Let an affected path starting with (u, MS[v]) be the new critical path. Then $lst_{MS[v]} \leq lst'_{MS[v]} = est'_{MS[v]} = ect'_u$ would hold, contradicting $lst_{MS[v]} > ect'_u$.

Since all possible cases lead to contradictions, our assumption $lst'_{O_T} \ge lst_{O_T}$ must be false. Therefore, the makespan decreases when $lst_{JS[u]} > ect'_u$ and $lst_{MS[v]} > ect'_u$.

Theorem 2 For a schedule with multiple critical paths, the makespan strictly decreases when consecutive operations u and v on a machine are swapped iff

$$LST_{JS[u]} > ECT'_u$$
, $LST_{MS[v]} > ECT'_u$, and every critical path contains v .

Proof. (\Rightarrow) *Necessity via contrapositive.* If $LST_{JS[u]} \leq ECT'_u$ or $LST_{MS[v]} \leq ECT'_u$, Propositions 2–3 preclude any decrease. Moreover, if some critical path omits v, then by Lemma 1 it can remain unchanged by the swap, preserving the old makespan—contradiction.

 (\Leftarrow) Sufficiency by contradiction. Assume the three conditions and suppose $LST'_{O_T} \geq LST_{O_T}$. Every critical path contains v, so after the swap any critical suffix must start at one of (v,JS[v]), (u,JS[u]), (u,MS[v]). Using Lemma 2 and the same calculations as in Theorem 1: case (v,JS[v]) is impossible because $ECT'_v < ECT_v$; cases (u,JS[u]) and (u,MS[v]) contradict $LST_{JS[u]} > ECT'_u$ and $LST_{MS[v]} > ECT'_u$, respectively. Thus $LST'_{O_T} < LST_{O_T}$ and the makespan decreases. \square

Theorem 3. For a schedule with multiple critical paths, if

$$LST_{JS[v]} > ECT'_v, \qquad LST_{JS[u]} > ECT'_u, \qquad LST_{MS[v]} > ECT'_u,$$

then swapping the consecutive pair (u,v) either (i) strictly reduces the makespan or (ii) keeps the makespan but strictly reduces the number of critical paths.

Proof. Setup. The three strict inequalities ensure that, after swapping, there is no blocking at JS[v] with respect to ECT_v' , nor at JS[u] or MS[v] with respect to ECT_u' . Since $p_u>0$ and MP[u] immediately precedes u on the same machine, we have $ECT_{MP[u]} < ECT_u$; hence

$$EST'_v = \max\{ECT_{JP[v]}, ECT_{MP[u]}\} < \max\{ECT_{JP[v]}, ECT_u\} = EST_v \ \Rightarrow \ ECT'_v < ECT_v$$

By Lemma 11, only paths intersecting $F^+(u,v)$ may change. By Lemma 2, if the makespan does not decrease $(LST'_{O_T} \geq LST_{O_T})$, then $LST'_w \geq LST_w$ for any $w \in F^+(u,v) \setminus \{u,v\}$.

Consider any original critical path P and classify its relation to (u, v) into six exhaustive, mutually exclusive cases:

- (1) **Independent:** P shares no operation with $\{u, v\}$.
- (2) **Both:** P contains both u and v.

- (3) **Share-before-**u: P shares some operations before u but excludes v.
- (4) **Share-all-before-**u **but exclude** v**:** P shares all operations up to u but excludes v.
- (5) **Share-after-**v: P shares some operations after v.

(6) **Share-all-after-**v **but exclude** u**:** P shares all operations after v but excludes u.

Case (2) After the swap, any critical suffix must start at one of (v, JS[v]), (u, JS[u]), or (u, MS[v]). However, (v, JS[v]) is impossible because $ECT'_v < ECT_v$; starting at (u, JS[u]) would force $LST_{JS[u]} \leq ECT'_u$; starting at (u, MS[v]) would force $LST_{MS[v]} \leq ECT'_u$. Each contradicts the assumptions. Hence P is no longer critical. If all critical paths are of this type, the makespan strictly decreases; otherwise the number of critical paths strictly decreases.

Case (5: Share-after-v. Then any critical suffix must start at (v, JS[v]), which is impossible because $ECT'_v < ECT_v$. By Lemma 22, $LST'_{JS[v]} \ge LST_{JS[v]} \ge ECT_v > ECT'_v$, so $EST'_{JS[v]} = LST'_{JS[v]} = ECT'_v$ cannot hold. Thus P is no longer critical; the same conclusion as in Case (2) follows.

Case (3) If P remains critical, its critical suffix must start at (u, JS[u]), which requires $LST'_{JS[u]} = EST'_{JS[u]} = ECT'_u$. By Lemma 2, $LST'_{JS[u]} \geq LST_{JS[u]}$, hence $LST_{JS[u]} \leq ECT'_u$, contradicting $LST_{JS[u]} > ECT'_u$. Thus P is not critical; the same conclusion as above holds.

Cases (4) and (6) For Case (4), a critical suffix from (u, JS[u]) would enforce $LST_{JS[u]} \leq ECT'_u$, contradicting $LST_{JS[u]} > ECT'_u$. For Case (6), a critical suffix via (u, MS[v]) would enforce $LST_{MS[v]} \leq ECT'_u$, contradicting $LST_{MS[v]} > ECT'_u$.

Case (1) Such paths can keep their length (Lemma 1). However, by the strict advance at v and the absence of blocking at JS[v], JS[u], and MS[v], at least one of the other cases occurs and drops from criticality.

Therefore either the makespan decreases (if all critical paths fall) or the number of critical paths strictly decreases.

E ADAPTIVE REVISITING CRITERIA

The length of list that saves recently swapped operation pairs is randomly selected between the given minimal and maximal values L_{\min} and L_{\max} simply for each instance, following the adaptive tabu strategy proposed by Zhang et al. (2007). The L_{\min} and L_{\max} are computed as follows:

$$\begin{split} L &= 10 + \frac{N}{M} \\ L_{\min} &= \left\lfloor L + \frac{1}{2} \right\rfloor \\ L_{\max} &= \left\{ \left\lfloor 1.4L + \frac{1}{2} \right\rfloor, & \text{if } N \leq 2M \\ \left\lfloor 1.5L + \frac{1}{2} \right\rfloor, & \text{otherwise} \\ \end{split} \right. \end{split}$$

F DETAILED LEARNING PROCESS

Training loop including trajectory collection, gradient computation, and parameter updates is described in Algorithm 1.

G CONFIGURATIONS OF EXPERIMENTS

Configurations including activation functions, hyperparameters, and hardware settings are shown in Table 3.

867868869

870 871 872

874

876

888 889

890 891 892

893

894

895

896

Algorithm 1 Entropy Regularized *n*-step REINFORCE

```
844
              Input: training problem size N \times M, validation instances \mathcal{I}^{val}
845
              Parameter: batch size B, # of epochs N^{epoch}, # of steps per epoch T, learning period d^{learn}, validation period
846
              d^{val}, learning rate \alpha, strength of entropy regularization \beta
847
              Output: best parameter set \theta^{best}
               1: Initialize \theta, \theta^{best} = \theta, \bar{\mathcal{C}}^{best} = \infty
848
               2: for epoch = 1 to N^{epoch} do
849
                        Generate B instances with N jobs and M machines
               3:
850
               4:
                        Initialize schedules \{s_0^1, ..., s_0^B\} by using FDD/MWKR rule
851
               5:
                        for t = 0 to T do
                            for s_t^b \in \bar{s_0^1},...,s_0^B do
852
               6:
                                Sample an action a_t^b \sim \pi_{\theta}(a_t^b|s_t^b)
853
               7:
                                Derive s_{t+1}^b, r(a_t^b, s_t^b), and \mathcal{H}(\pi_{\theta}(\cdot|s_t^b)) by a_t^b
854
               8:
               9:
855
                            if t \mod d^{learn} = 0 then
              10:
856
                                Compute \bar{R} by normalizing cumulative rewards
              11:
857
                                \mathcal{L}(\theta) = -\sum_{b=1}^{B} \sum_{i=0}^{d^{learn}} [\bar{R}_{t-j}^{b} \log \pi_{\theta}(a_{t-j}^{b} | s_{t-j}^{b}) + \beta \mathcal{H}(\pi_{\theta}(\cdot | s_{t-j}^{b}))]
              12:
                                \theta \leftarrow \text{Adam}(\theta, \nabla_{\theta} \mathcal{L}(\theta))
              13:
859
              14:
                            end if
              15:
                        end for
                        if epoch \mod d^{val} = 0 then
861
              16:
                            ar{\mathcal{C}} = 	ext{mean of objectives for } \mathcal{I}^{val} 	ext{ with } \pi_{	heta}
862
              17:
                            if \bar{\mathcal{C}} < \bar{\mathcal{C}}^{best} then
              18:
863
                                \bar{\mathcal{C}}^{best} = \bar{\mathcal{C}}, \theta^{best} = \theta
              19:
864
              20:
                            end if
              21:
                        end if
866
              22: end for
```

Table 3: Model and Training Configuration.

Component	Setting
Encoder activation function	LeakyReLU
Decoder activation function	tanh
Optimizer	Adam
MLP architecture	4 layers, 512 hidden units
Encoder output dimension	128
Batch size (B)	64
Epochs (N^{epoch})	2000
Steps per epoch (T)	500
Learning period (d^{learn})	10
Validation period (d^{val})	10
Learning rate (α)	1e-5
Entropy regularization strength (β)	1e-5
CPU	Intel Core i7-7700K @ 4.20GHz
GPU	NVIDIA GeForce RTX 4090

H ACTION SELECTION ANALYSIS

I ABLATION STUDIES

Table 5 shows the results of five different ablation studies: the effectiveness of (1) condition indicators with different encoders, (2) different types of proposition identifiers, (3) different state features, (4) different neighborhood structures, and (5) different sizes of training instances. In the table, 'Gap' represents the average optimality gap for 162 JSSP instances, and 'Diff' represents the average difference in optimality gap from the best-performing method of each instance in each block. A 'Diff' of 0% indicates that the method consistently achieved the best performance across all instances.

Table 4: Satisfaction ratio (%) of proposition conditions and tabu across iterations and JSSP instance groups.

Condition	# of	· 1								
	iterations	TA 15×15	TA 20×15	TA 20×20	TA 30×15	TA 30×20				
including tabu list	500	23.3	22.5	14.9	25.6	19.2				
-	1000	25.1	27.8	16.2	29.4	22.5				
	5000	24.6	33.1	21.9	39.2	27.4				
$lst_{JS[v]} > ect'_v$.	500	99.8	99.8	99.6	99.7	99.7				
[.]	1000	99.8	99.8	99.6	99.7	99.7				
	5000	99.7	99.8	99.6	99.7	99.7				
$lst_{JS[u]} > ect'_u$	500	91.0	89.5	91.1	87.3	90.0				
	1000	90.4	90.0	91.1	87.3	90.0				
	5000	90.9	87.7	89.6	88.9	88.6				
$lst_{MS[v]} > ect'_u$	500	84.6	85.7	89.0	92.9	88.0				
. ,	1000	83.9	82.9	88.1	91.3	87.4				
	5000	84.0	83.8	87.5	89.3	85.8				

Table 5: Results of Ablation Studies.

M. d. d.		0 1	# of iter		5000		
Method	50		100		500		
	Gap	Diff	Gap	Diff	Gap	Diff	
None + MLP	12.5%	4.3%	11.1%	4.2%	8.1%	3.8%	
None + bi-GAT (TBGAT)	10.6%	2.4%	9.3%	2.5%	6.9%	2.6%	
indicators + MLP (LSI)	8.9%	0.7%	7.5 %	0.6%	4.9%	0.6%	
indicators + bi-GAT	8.9%	0.7%	7.5%	0.6%	5.1%	0.8%	
intersection indicator	9.1%	0.8%	7.7%	0.8%	5.1%	0.7%	
indicators (LSI)	8.9%	0.6%	7.5 %	0.6%	4.9%	0.6%	
values	10.1%	1.7%	9.0%	2.1%	6.9%	2.6%	
normalized values	9.8%	1.5%	8.8%	2.0%	6.5%	2.2%	
simple (LSI)	8.9%	1.1%	7.5%	1.0%	4.9%	0.9%	
simple + topological order	8.6%	0.7%	7.2 %	0.8%	4.8%	0.8%	
simple + instance-dependent	8.8%	1.0%	7.4%	1.0%	4.8%	0.8%	
N1 multiple	9.5%	1.5%	8.1%	1.5%	5.4%	1.2%	
N1	9.6%	1.6%	8.3%	1.7%	5.4%	1.3%	
N5 multiple (LSI)	8.9%	0.9%	7.5 %	0.8%	4.9%	0.8%	
N5	8.9%	0.9%	7.5%	0.9%	4.9%	0.8%	
N5 + action masking	17.6%	9.5%	17.6%	10.9%	17.6%	13.4%	
LSI 10x10	8.9%	1.0%	7.5%	0.7%	4.9%	0.6%	
LSI 15x15	9.3%	1.4%	8.2%	1.4%	5.8%	1.5%	
LSI 20x20	9.6%	1.7%	8.5%	1.7%	6.0%	1.7%	
LSI 30x20	9.4%	1.5%	8.2%	1.4%	6.2%	1.9%	
TBGAT 10x10	10.6%	2.7%	9.3%	2.6%	6.9%	2.6%	
TBGAT 15x15	10.7%	2.8%	9.6%	2.9%	7.3%	3.0%	
TBGAT 20x20	11.0%	3.1%	10.2%	3.5%	8.7%	4.4%	
TBGAT 30x20	10.2%	2.3%	9.1%	2.4%	6.9%	2.7%	

The inclusion of condition indicators significantly improves performance for both encoder types, a simple MLP and TBGAT's bidirectional topological GAT (bi-GAT). Both encoders with indicators achieve almost identical performance, differing by less than 0.2%. This suggests that our theoretically-derived indicators can effectively replace complex neural structures designed to learn problem characteristics.

For indicator types, we compared our approach with three alternatives: (1) intersection indicator, which denotes satisfying all three propositions' conditions simultaneously, (2) values, which represent the differences between the left and right sides of propositions' conditions, and (3) normalized values,

where each difference is normalized by the maximal processing time of operations. Both our approach and intersection indicator outperform value-based approaches, showing nearly identical performance, differing by less than 0.2%.

The impact of state features was examined by comparing variants with additional features: the topological order of operations used in TBGAT and instance-dependent features, including features used in SN or IRD. In contrast, LSI uses three simple state features: processing time, EST, and LST of operations. These additional features provided only minor improvements with 0.1–0.3% lower Gap, suggesting that simple features are sufficient.

For neighborhood structures, while N1 theoretically guarantees optimal solution reachability, N5 showed better empirical performance with 0.5–0.8% lower Gap, probably due to its more focused search space. Considering multiple critical paths (N5 multiple) performed similarly to considering a single critical path randomly chosen (N5). However, using intersection indicator for action masking led to premature convergence to local optima, resulting in worse performance.

Training with instances of different sizes (10x10 to 30x20) showed that larger training instances did not necessarily lead to better performance. Interestingly, training LSI with the smallest instances (10x10) demonstrates the best performance.

J EXTENDED EXPERIMENTAL ANALYSIS

We conducted an ablation study to assess the individual effects of the components of our approach. We first test for the effectiveness of condition indicators and the encoder's structure. The results are shown in Figures 9. In these figures, the x-axis represents benchmark groups, while the y-axis shows the optimality gap. Results are shown with different iteration numbers. The performance remains consistent whether using a simple MLP or TBGAT's bidirectional topological GAT (bi-GAT) as an encoder structure when condition indicators are incorporated. Without condition indicators, the bi-GAT structure performs better than MLP, yet still underperforms compared to approaches using condition indicators.

We further examined various indicator types, with the results presented in Figures 10. The 'label_v' represents the numerical difference between the left and right-hand sides of the propositions' conditions, while 'label_v_norm' denotes this value normalized by maximal processing time. 'label_intersection' sets the indicator to 1 only when the conditions of all three propositions are simultaneously satisfied, while 'label_l' denotes our proposed approach that considers the conditions individually. Although the performance difference between 'label_intersection' and individual condition consideration was not substantial, considering conditions independently generally showed slightly better performance.

TBGAT utilized not only processing time, EST, and LST but also topological order of each operation as operation features. We investigated the effectiveness of incorporating this topological information and the operation features used in the dispatcher from Section 4.3. As illustrated in Figures 11, the inclusion of these additional features demonstrated negligible impact on performance enhancement.

We also investigated the impact of neighborhood structures used in generating candidate moves. Finally, we examined the effectiveness of different neighborhood structures in generating candidate moves. While N5 neighborhood structure contains all makespan-improving moves, it lacks the theoretical guarantee of optimal solution reachability that N1 neighborhood structure possesses with its broader action space. However, as shown in Figures 12, using N5 neighborhood structure experimentally outperformed using N1 neighborhood structure. Furthermore, considering multiple critical paths simultaneously with N5 neighborhood structure ('N5_multi') showed slightly better performance than randomly selecting a single critical path ('N5'). Additionally, the case where condition indicators from the decoder were used for action masking is denoted as 'N5_improve' in the figure. This approach appears to have converged prematurely to local optima before reaching 500 iterations.

Finally, we test for different training problem sizes. We conducted experiments with increasing problem sizes from 10x10 to 20x20, and the results are shown in Figures 13, which include the ranges of optimal gaps across three replications for our proposed approach. Counter to intuition, we observed performance degradation in some JSSP instances even when the training problem size was

Figure 9: Mean optimality gap for benchmarks groups with different policy network structures and different iteration numbers.

closer to the size of the target instances. This suggests that broader solution spaces in the training process might hinder convergence to effective policies.

Figure 10: Mean optimality gap for benchmarks groups with different ways to corporate the theoretically derived conditions for makespan reduction and different iteration numbers.

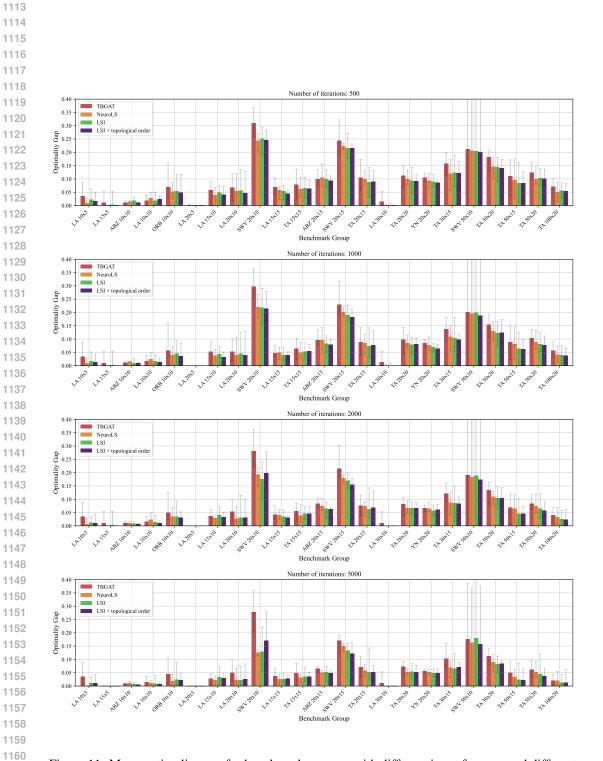


Figure 11: Mean optimality gap for benchmarks groups with different input features and different iteration numbers.

Figure 12: Mean optimality gap for benchmarks groups with different neighborhood structures and different iteration numbers.

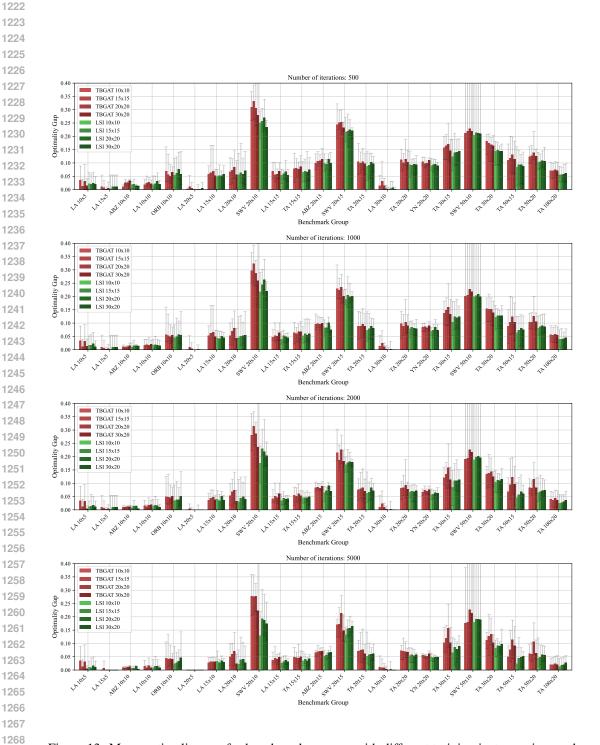


Figure 13: Mean optimality gap for benchmarks groups with different training instance sizes and different iteration numbers.