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ABSTRACT

Job shop scheduling problem (JSSP), where job sequences must be assigned across
multiple machines to minimize makespan under fixed routes and varying process-
ing times, is one of the most challenging combinatorial optimization problems.
To improve search efficiency, we propose LSI, Local Search with Indicators, a
learning-based local search method for JSSP. LSI integrates scheduling-theoretic
conditions as indicators into the action evaluation, enabling the policy to focus on
swaps that guarantee makespan reduction. By incorporating theoretically proven
conditions into the action evaluation, LSI prioritizes promising swaps rather than
treating all moves equally, representing a principled improvement of makespan.
Despite relying only on a lightweight multilayer perceptron (MLP) policy network,
LSI achieves competitive or superior performance compared to strong state-of-the-
art approaches on diverse JSSP benchmarks, offering faster inference and robust
scalability without retraining. These results demonstrate the effectiveness of embed-
ding problem-structured theoretical principles into learning-based combinatorial
optimization.

1 INTRODUCTION

The Job Shop Scheduling Problem (JSSP) is one of the most challenging combinatorial optimization
problems (COPs), known to be NP-hard (Garey et al.|(1976))). Unlike routing problems—e.g., the
Traveling Salesman Problem (TSP), Vehicle Routing Problem (VRP), and its capacitated variant
(CVRP)—IJSSP requires each job to follow a fixed machine route with predetermined processing
times. Each job consists of a sequence of operations, each of which must be processed on a designated
machine for a specified duration.

Although recent methods have used reinforcement learning (RL) or imitation learning (IL) to learn
complex encoder architectures such as convolutional neural networks (CNNs) (Liu et al.| (2020);
Han & Yang|(2020)), recurrent neural networks (RNNs) including long short-term memory (LSTM)
networks (Monaci et al.|(2024)); Iklassov et al.| (2023)) and Transformer models (Zhao et al.| (2022);
Chen et al.|(2022)), and graph neural networks (GNNs) (Zhang et al.| (2020); |Park et al.| (2021b));
Liu & Huang| (2023)); [Park et al.|(2021a); [Lee & Kim| (2022} 2024))) for JSSPs, no learning-based
approach has yet reported optimal solutions for instances involving more than 15 machines and 15
jobs, indicating substantial room for further improvement.

This paper is motivated by two core research questions: (1) Can theoretical insights into the JSSP
guide the learning of better policies in learning-based optimization? (2) How can such theoretical
knowledge be effectively incorporated into the policy network? To address these questions, we
focus on local search frameworks and propose a novel method that integrates theoretical makespan
reduction conditions into the policy design.

There are three primary approaches to solving JSSPs: exact methods, improvement methods, and
constructive methods. Exact methods, such as the branch-and-bound method, guarantee optimal
solutions but often require excessive computational time, making them impractical for large-scale
problems (Brucker et al.| (1994)). Improvement methods iteratively enhance complete solutions
through various search strategies, while constructive methods sequentially build solutions by assigning
operations step by step. Given the prohibitive runtime of exact methods, most practical solvers rely
on heuristics, either constructive or improvement. Constructive methods have attracted significant
attention in time-critical scenarios due to their rapid sequential decision-making capabilities. Recent
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Figure 1: Overview of Local Search with Indicators (LSI), our proposed learning-based local search
method for JSSPs. It begins with a given initial schedule, then iteratively swaps a pair of operations.
To select a promising swap action, the policy network concatenates the embedding vectors, the
theoretically derived condition indicators, and the tabu indicator of each candidate operation pair,
then evaluates it. O;; denotes the j-th operation of job .

studies (Zhang et al.| (2020); |[Park et al.| (2021b); [ILiu & Huang| (2023); [Park et al.| (2021a)); |Lee &
Kiml (20225 [2024))) have applied GNNs combined with RL or IL to assign operations in real time.
Although these methods generate feasible assignments immediately, they generally yield lower-
quality solutions compared to improvement methods, which refine entire schedules through iterative
adjustments. While constructive methods excel in speed, their solution quality still lags behind
that of improvement methods, motivating a closer look at improvement methods. Improvement
methods, such as population-based approaches including Genetic Algorithms (GA) and Particle
Swarm Optimization (PSO), and local search approaches including Simulated Annealing (SA), Tabu
Search (TS), and Variable Neighborhood Search (VNS), are known to produce high-quality solutions,
although they tend to consume more computational time than constructive methods. Recently,
learning-based local search methods have emerged, leveraging GNN-based encoders trained via RL
to identify promising pairs of consecutive operations on the same machine (Falkner et al.| (2022);
Zhang et al.|(2024aib)).

Several studies have attempted to incorporate theoretical insights into learning-based approaches for
solving JSSPs. [Lee & Kim|(2024) proposed a learning-based constructive method with a compact
action space by ensuring reachability to an optimal schedule. Additionally, recent learning-based
local search methods (Falkner et al.| (2022)); Zhang et al.|(2024ajb))) adopt the critical path-based N5
neighborhood structure similar to a traditional local search approach (Nowicki & Smutnicki| (1996)).
This structure considers all consecutive operation swaps that could potentially reduce the makespan
of the current schedule as candidate moves to generate neighbor solutions (Kuhpfahl & Bierwirth
(2016)). Although the policies learn to select promising moves from the N5 neighbors, they treat all
candidates as equally likely. They do not incorporate theoretical criteria that can distinguish which
candidate moves are more likely to reduce the makespan, leaving room for further improvement.

Novelty. In contrast to previous learning-based local searches that rely on complex GNN architec-
tures and treat /N5 neighbors as a black-box, we propose a lightweight approach that incorporates
theoretically grounded indicators into the policy network using only multilayer perceptrons (MLPs),
as illustrated in Figure[I] We identify three novel necessary conditions for makespan reduction in
JSSP and encode them as binary indicators to guide action selection. This principled integration of
problem-specific knowledge enables our method to achieve superior performance on standard JSSP
benchmarks, while offering faster inference and improved scalability.

2 PRELIMINARIES

Job shop scheduling problem (JSSP). JSSP is a classical NP-hard combinatorial optimization
problem, proven to be NP-hard (Garey et al.|(1976)). It is frequently encountered in complex manu-
facturing environments, such as semiconductors (Gupta & Sivakumar| (2006)) or battery production
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systems (Liu et al.|(2021))). A JSSP instance comprises a set of NV jobs and M machines. Each job is
composed of a sequence of operations with predefined processing orders and machine assignments.
Each operation must be processed on a specified machine for a given processing time. There is a
precedence constraint between successive operations within each job, and machines can process only
one operation at a time. Among the various objective functions considered for JSSPs, minimizing
the maximum completion time, also known as makespan, is the most prevalent, as it leads to better
system utilization and overall productivity (Xiong et al.| (2022))). Consequently, this study aims to
minimize the makespan Ciyax.

Critical path. In a feasible schedule, a path is a directed chain of consecutive operations induced by
job-route precedence and machine—processing order, from the earliest start to the latest completion.
The critical path is any longest path whose length (sum of processing times) equals the makespan
(Kuhpfahl & Bierwirth| (2016))). For example, the sequence O31—035—021—-011—-012—-013—053 is
the critical path of the initial schedule illustrated in Figure I} where O;; denotes the j-th operation of
job <. There is no idle time between consecutive operations on the critical path, and each operation
on the path satisfies EST = LST, where EST (earliest start time) is the earliest possible time to start
the operation in the current schedule, and LST (latest start time) is the latest possible time to start it
without delaying the makespan.

Neighborhood structures. A key factor in the
effectiveness of local search approaches is the —

choice of neighbors to explore. In the context —Optimalsolution — R
of JSSPs, critical path-based neighborhood struc- ~ or makespan / * / sol:l-;ieo}lf Makeipm\\\\
tures, denoted N1 (Van Laarhoven et al.| (1992)), N2 | N5 * improved /)

solutlons/

N2 (Dell’Amico & Trubian| (1993)), and N5 \ Nl N
(Nowicki & Smutnicki| (1996)), are proposed to _
solve JSSPs and generate neighbor schedules by
swapping consecutive operations on the same ma-
chine along the critical path. The inclusion rela-
tionships among N1, N2, and N5 are illustrated
in Figure[2| The N1 neighborhood structure con-
siders all such adjacent swaps and is complete,
meaning that any optimal schedule can be reached from any arbitrary initial solution through only
N1 moves|Van Laarhoven et al. (1992)). The N2 structure reduces the number of candidate swaps by
pruning less promising ones Dell’ Amico & Trubian|(1993)), and N5 prunes even further by keeping
only those swaps that may reduce the makespan |[Nowicki & Smutnicki| (1996). Empirical studies
have shown that N5 captures most of the improvement benefits of N1 at a fraction of the evaluation
overhead (Nowicki & Smutnicki| (1996); Kuhpfahl & Bierwirth|(2016)). Further explanations and
illustrative examples of these neighborhood structures are provided in Appendix [B]

Figure 2: Schedule groups that can be moved
by each neighborhood structure from the current
schedule.

3 RELATED WORKS

Classical local search for solving JSSPs. Local search methods have been widely used to solve
JSSPs due to their ability to effectively explore the solution space (Nowicki & Smutnicki| (1996);
Van Laarhoven et al.|(1992)); |Dell’ Amico & Trubian|(1993); |Glover (1986); Mladenovi¢ & Hansen
(1997); [Zhang et al.|(2007)). These approaches typically begin with a given solution and iteratively
refine it until a stopping criterion such as a time limit or convergence threshold is met. Each local
search method employs a strategy to escape local optima by occasionally accepting worse solutions.
SA probabilistically accepts worse solutions, with an adaptable acceptance probability as the search
progresses (Van Laarhoven et al.|(1992)). TS maintains a tabu list of recent explored moves to prevent
revisiting of solutions and focuses exploration on unexplored neighborhoods (Glover (1986))), and
VNS perturbs the current solution if no improvement is found in a predefined number of iterations
(Mladenovi¢ & Hansen| (1997)). Although highly effective on small instances, their reliance on fixed
neighborhood structure and manually tuned rules, such as acceptance probability, tabu list size, and
perturbation method, can limit adaptability and performance in more diverse or large-scale settings.

Learning-based local search for solving JSSPs. Building on these classical ideas, recent learning-
based methods employ RL to learn the promising selection of moves among candidates based on



Under review as a conference paper at ICLR 2026

critical paths using GNN-based policy networks (Falkner et al.|(2022); Zhang et al.|(2024aib)). Neu-
roLS integrates an Implicit Quantile Network (IQN) within a VNS framework: when the makespan
has not improved for two consecutive moves, the policy perturbs the schedule by randomly sampling
from the larger N1 neighbors (Falkner et al.| (2022)). Its state representation includes features
such as the current and best makespans, and counts of non-improving steps and perturbations. L2S
adopts a TS framework with an adaptive tabu list size, inspired by [Zhang et al.|(2007), and trains its
GNN-based policy using n-step REINFORCE. Each operation is represented by features including
its EST, LST, and processing time (Zhang et al.| (2024a)). TBGAT further enriches this approach
with a bidirectional topological Graph Attention Network (bi-GAT): one pass encodes the forward
topological rank, EST, and processing time, while the other pass uses the backward topological rank
and LST (Zhang et al.|(2024b))). The combined embeddings enhance the model’s ability to capture
structural awareness. Although recent learning-based approaches have driven significant advances in
JSSP performance, they share three notable limitations: (1) they treat all candidate swaps as equally
probable, without leveraging theoretical distinctions in their potential to reduce makespan, (2) rely
on computationally intensive GNN encoders, which slow down inference and hinder scalability to
larger instances, and (3) only incorporate hand-engineered features that are not explicitly aligned
with makespan reduction conditions.

To address these issues, we propose a novel framework that explicitly incorporates theoretical insights
into the policy network. We derive three novel necessary conditions for makespan reduction in
JSSP and prove that their joint satisfaction provides a sufficient condition in the special case of a
single critical path. These theoretically grounded conditions are integrated as binary indicators into
a lightweight policy network composed solely of MLPs. By avoiding complex GNN architectures,
our approach significantly reduces model complexity and accelerates inference, thereby enhancing
scalability. Despite the simplicity of the architecture, our method achieves state-of-the-art (SOTA)
performance across JSSP benchmarks. These results highlight the effectiveness of integrating
theoretical insights into the design of learning-based combinatorial optimization methods.

4 PROPOSED METHOD

We propose Local Search with Indicators (LSI), a learning-based local search framework that
integrates three theoretically derived conditions for makespan reduction as binary indicators within
the policy network. These indicators help guide the selection of promising swap actions at each
step of the local search. LSI operates under the standard local search framework. Starting from an
initial schedule generated by a simple dispatching rule, it iteratively updates the schedule by selecting
and applying a swap action between consecutive operations on the same machine, as illustrated in
Figure[T] At each iteration, the N5 neighborhood structure is used to generate candidate swaps, each
candidate is evaluated by the policy network based on the embedding vector concatenated with the
embeddings of involved operations, binary indicators corresponding to the theoretical conditions, and
a revisit status indicator. The action with the highest selection probability is applied to update the
current schedule and is then added to the recently visiting list. This process repeats until a termination
condition is met, and the best schedule found so far is returned as the final output. LSI emphasizes
the use of theoretical indicators to guide decisions, improving efficiency while remaining awareness
of both search history and problem structure. To train the policy network through RL, we employ the
n-step REINFORCE. To enable this, we formulate the local search process as the MDP used by L2S
(Zhang et al.| (2024a)).

4.1 MARKOV DECISION PROCESS (MDP)

State. The state s; at time step ¢ represents the current schedule, including the features of the
operations. For each operation u, we consider three features: (1) processing time p,,, (2) EST est,,
and (3) LST Ist,. est, denotes the earliest possible time to start operation v in the current schedule,
and [st,, denotes the latest possible time to start it without delaying the makespan of the schedule.
Note that operations with equal est,, and [st,, are on the critical path.

Action. An action a; is defined as a swap between two consecutive operations on the same machine.
The candidate action set A; at time ¢ comprises all feasible swaps.



Under review as a conference paper at ICLR 2026

State transition. When action a; is selected, the corresponding swap updates the current schedule,
resulting in the next state s;4 ;. The EST and LST for all operations are recomputed accordingly. The
episode ends either when no further candidate actions remain (A; = @) or when a predefined step
limit is reached.

Reward. The reward function r(s;, a;) is designed to improve the best solution found so far. It
is defined as: r(s¢, ar) = max(Crmax(s)) — Cmax(S¢+1),0), where s§ denotes the best solution
found up to step ¢, and s = so. The cumulative reward up to step ¢ becomes: ZE,IO r(sy,ap) =
Crnax(80) — Cmax(s7). By maximizing this cumulative reward, the policy network can directly
optimize the performance of the solution that will be returned.
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Figure 3: The architecture of the policy network.
4.2 ENCODER

The encoder in our model is a simple MLP. As shown in Figure [3] this MLP takes state features
x as input and produces a high-dimensional embedding h,, for each operation u. We chose this
architecture over complex GNN because our decoder’s theoretical indicators capture the essential
relational information. Ablation studies show that our simple MLP encoder enables much faster
inference without losing solution quality compared to relying on complex GNN architectures.

4.3 DECODER

The decoder computes the action selection probabilities for each candidate action. Its key innovation
is the use of three theoretically derived condition indicators whose joint satisfaction provides a
sufficient condition under the restricted case of a single critical path, embedded as binary features.
For every candidate swap, three binary indicators are computed, each reflecting whether the move
satisfies a corresponding theoretical condition. These indicators inject problem-specific knowledge
into the network, enabling more informed action selection.

Unlike L2S, LSI retains all candidates and encodes their revisit status as a binary feature in the policy
network, as illustrated in Figure I} where traditional tabu search excludes recent left moves. Also like
TBGAT, the selected action a, is added to the list of recently swapped pairs, removing the oldest pair
to maintain the list capacity, as described in Appendix [E]

Makespan reduction conditions in JSSP. We present M, ‘ JS[ul
three novel propositions that describe when swapping y, Y

two consecutive operations on the same machine can M, MP[M]‘ ‘ Y MS[u]

reduce the makespan. Unlike prior works Nowicki & 0 I I Y B S S
Smutnickil (1996); Zhang et al.| (2007); [ Xie et al.| (2023)), Time

which define neighborhoods such as N5 that include all Figure 4: The directly connected opera-
improving moves, shown as Figure [2] our propositions ~ tions with job or machine precedence rela-
identify a smaller subset of N5 and provide a formal nec- tions for operation u in a schedule, where
essary and sufficient condition for makespan reduction the operations with the same color denotes
when the schedule contains a single critical path. the same job.

To state these precisely, we first introduce four relation-

ships for any operation u. The job-predecessor of u, denoted J P[u], is the operation immediately
before w in its job sequence, and the job-successor, JS[u], is the operation immediately after u in its
job. Similarly, the machine-predecessor, M P[u], is the operation scheduled just before u on the same
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machine, and the machine-successor, M S[u], is the operation scheduled immediately after « on that
machine. The prime notation (e.g., est]) indicates the value after the swap, and ect,, = est,, + py,
denotes the earliest completion time (ECT) of operation «. With these definitions in place, the proofs
of the three necessary conditions are given in Appendix [C]

Proposition 1. When consecutive operations u and v are swapped on a machine of a given schedule,
the makespan cannot decrease if lst j5[,) < ect!.

Proposition 2. When consecutive operations u and v are swapped on a machine of a given schedule,
the makespan cannot decrease if Ist ygp,,) < ect,.

Proposition 3. When consecutive operations u and v are swapped on a machine of a given schedule,
the makespan cannot decrease if lst p5y) < ect),.

In the case of a schedule with only one critical path, the makespan is reduced if and only if the swap
of operations « and v violates both Propositions[2]and [3] This case is covered by Theorem [I] proven
in Appendix [D} although we do not explicitly use this theorem in our policy network. In schedules
with multiple critical paths, the swap of operations u and v that violates all three Propositions
[2l and [3]either reduces the makespan or the number of critical paths, as proven in Theorem [2]and
Theorem [3] (Appendix D).

Theorem 1. For a schedule with only one critical path, the makespan of a given schedule decreases
when consecutive operations u and v are swapped on a machine if and only if lst ;51 > ect,, and
Istprsp) > ecty,.

Theorem 2. For a schedule with multiple critical paths, the makespan of a given schedule decreases
when consecutive operations u and v are swapped on a machine if and only if lst jsp,) > ecty,
Istarsp) > ect!,, and all critical paths include consecutive operations v and v.

Theorem 3. For a schedule with multiple critical paths, the makespan or the number of critical
paths of the schedule decreases when consecutive operations u and v on a machine are swapped, if
Ist s < ecty, st jgpu) > ecty,, and lstyrgpy) > ecty,.

Embedding structure. For a candidate action involving the swap of operations « and v, the decoder
generates a joint embedding vector hy, defined as [hy ||y ||hy |20 | hal| 1 p(u,vo) | L1 (u,0)], Where ||
represents concatenation, h,, is the embedding vector of operation u, x,, is the state feature of
operation u, h¢ is the average embedding vector across all operations, 1 p(,, ) denotes a set of binary
indicators representing whether the swap of (u, v) satisfies the conditions of three propositions we
have developed, and 1, . indicates whether the swap action is in the list of recently swapped pairs.
h 1s fed into an MLP, whose outputs are normalized via softmax to yield selection probabilities
over all candidate swaps. At each step, the swap with the highest probability is selected as the next
move.

Adaptive list size of recently swapped pairs. LSI adopts an adaptive tabu strategy (Zhang et al.
(2007)), which is also used in TBGAT. In contrast to conventional tabu search that excludes recently
swapped pairs, LSI retains all candidate actions even though be recently swapped, and encodes
their revisit status as a binary feature, allowing the policy to learn when revisiting such moves is
beneficial. This approach is implemented in TBGAT’s publicly available code, although it is not
explicitly documented in the original paper. The size of the list is adaptively determined based on
the ratio of the number of jobs to the number of machines in each JSSP instance, with additional
stochastic variation, as detailed in Appendix

5 LEARNING PROCESS

Our model is trained via RL, specifically an entropy-regularized n-step REINFORCE algorithm, as
adopted in TBGAT (Zhang et al.|(2024b)). The entropy term promotes generalization and encourages
exploration of the action space. At each time step ¢, we compute the normalized, discounted
cumulative reward R, and use it to weight the log-likelihood of the chosen action under our policy
mo(at|st). We add an entropy H(mp) = —Eq~r, log(ms(a)), scaled by a factor 8 which controls the
strength of entropy regularization, to encourage exploration. Concretely, we minimize the loss:

L(0) = = "[Relogmg(ar|se) + BH(ma(:]5:))]- (1)

t



Table 1: Mean optimality gap for each JSSP benchmark group across different methods.

TA ABZ FT

Method 15x15 20x15 20x20 30x15 30x20 50x15 50x20 100x20 10x10 20x15 6x6 10x10 20x5
Gap Time | Gap Time | Gap Time | Gap Time | Gap Time | Gap Time | Gap Time | Gap Time | Gap Time | Gap Time | Gap Time | Gap Time | Gap Time
CP (10 sec) 0.3% 9.4s| 32% 9.3s| 3.8% 10.1s| 85% 9.2s|13.2% 10.0s|10.2% 9.8s|15.7% 9.8s|12.5% 9.1s| 0.0% 0.5s|] 3.1% 10.1s| 0.0% 3.1s| 0.0% 0.6s| 0.0% 0.0s
CP (1 min) 02% 42.4s| 14% 509s| 1.8% 1.0m| 42% 54.4s| 6.0% 1.0m| 3.6% 1.0m| 69% 1.0m| 8.8% 59.1s| 0.0% 0.7s| 1.9% 1.0m| 0.0% 3.2s| 0.0% 0.5s] 0.0% 0.0s
CP (5 min) 0.0% 22m| 12% 43m| 1.6% 5.0m| 2.4% 4.5m| 4.0% 5.0m| 02% 3.3m| 2.1% 4.8m| 49% 5.0m| 0.0% 0.8s] 0.8% 5.0m| 0.0% 7.2s| 0.0% 0.5s] 0.0% 0.0s
CP (30 min) 0.0% 5.2m| 0.7% 24.1m| 0.7% 30.0m| 1.1% 21.6m| 2.6% 30.0m| 0.0% 2.0m| 0.3% 16.8m| 0.0% 12.5m| 0.0% 0.5s| 0.4% 21.0m| 0.0% 2.0s| 0.0% 0.3s| 0.0% 0.0s
MOR 16.7% 0.25)23.4% 0.3s/19.5% 0.3s{21.5% 0.4s{24.0% 0.7s[15.6% 0.9s[16.2% 1.3s| 7.7% 3.2s] 7.6% 0.1s[17.5% 0.3s5[23.6% 0.15[26.1% 0.1s[34.3% 0.0s
LTT 19.5% 0.2s/20.0% 0.3s|18.4% 0.3s{20.3% 0.4s[23.7% 0.7s|14.3% 09s[152% 1.3s| 6.5% 3.2s| 6.5% 0.1s[19.5% 0.3s| 9.1% 0.1s|17.2% 0.1s|24.8% 0.0s
FDD/MWKR 177% 0.2s|21.3% 0.3s/199% 0.3s|21.7% 0.4s|24.0% 0.7s|153% 0.9s/16.3% 1.3s| 7.7% 3.2s| 9.7% 0.1s|17.9% 0.3s/21.8% 0.1s/18.0% 0.1s/27.0% 0.0s
SN 153% 3.5s/19.4%  6.6s|17.2% 11.0s|19.1% 17.1s|23.7% 28.3s|13.9% 52.5s/13.5% 1.6m| 6.7% 7.4m| 6.1% 0.7s]/20.5% 6.6s| 7.3% 0.8s/19.5% 1.6s/28.6% 0.2s
IRD 89% 2.5s|11.7% 3.85|12.5% 4.4s|11.6% 7.2/ 14.4% 8.7s| 4.9% 15.7s| 9.5% 20.3s| 2.3% 13m| 4.8% 1.0s{10.7% 3.5s| 55% 1.0s| 7.1% 1.5s| 3.3% 0.4s
NeuroLS-500 62% 6.8s| 99% 8.7s| 9.8% 10.9s|12.0% 12.9s|14.6% 16.3s| 9.5% 21.9s| 9.9% 27.9s| 5.0% 1.0m| 1.5% 4.1s[10.5% 9.0s| 0.0% 2.8s| 2.4% 4.2s] 9.6% 4.7s
NeuroLS-1000 49% 13.7s| 85% 17.4s| 8.5% 21.7s|10.9% 25.8s|13.0% 32.6s| 8.1% 43.9s| 89% 55.8s| 43% 2.0m| 1.5% 8.2s| 9.6% 18.1s| 0.0% 5.5s| 2.4% 83s| 3.4% 9.4s
NeuroLS-5000 31% 1.1m| 57% 1.5m| 53% 1.8m| 6.8% 2.1m| 89% 2.7m| 3.4% 3.7m| 52% 4.7m| 2.0% 10.0m| 1.1% 40.8s| 5.1% 1.5m| 0.0% 27.6s| 2.3% 41.5s| 2.2% 47.2s
L2S-500 88% 9.3s|11.9% 10.18)/12.0% 10.9s|15.4% 12.7s/18.7% 14.0s[11.1% 16.2s[13.7% 22.8s| 8.0% 50.2s| 2.8% 7.4s[13.5% 10.2s| 3.6% 6.8s| 9.9% 7.5s| 7.0% 7.4s
L2S-1000 6.3% 18.7s[10.5% 20.3s|11.2% 22.2s|13.4% 24.7s|16.7% 28.4s| 89% 32.9s|11.6% 45.4s| 6.2% 1.7m| 2.8% 15.0s|11.9% 19.9s| 0.0% 13.5s| 8.0% 15.1s| 7.0% 15.0s
L2S-5000 55% 1.5m| 8.6% 1.7m| 8.8% 19m| 9.5% 2.0m|12.7% 2.4m| 4.5% 2.8m| 7.1% 3.8m| 2.3% 8.4m| 1.4% 1.3m| 89% 1.7m| 0.0% 1.Im| 57% 1.2m| 3.9% 1.2m
TBGAT-500 79% 12.6s/10.4% 14.6s|11.3% 17.5s|15.7% 17.2s|18.1% 19.3s|11.0% 23.9s(12.3% 24.4s| 7.1% 42.0s| 1.1% 9.2s/10.0% 12.8s] 0.0% 7.4s| 52% 10.3s| 9.5% 11.7s
TBGAT-1000 6.5% 24.9s| 8.8% 28.7s| 9.8% 34.1s|13.7% 33.7s|15.5% 37.3s| 8.9% 46.9s|10.4% 47.5s| 5.6% 1.4m| 1.1% 17.9s| 9.7% 25.3s| 0.0% 14.2s| 4.8% 20.5s| 6.7% 23.2s
TBGAT-5000 48% 21m| 7.1% 23m| 7.4% 2.7m|103% 2.7m|11.2% 29m| 5.0% 3.9m| 6.1% 3.9m| 2.0% 6.7m| 0.8% 1.5m| 6.5% 2.Im| 0.0% 1.2m| 2.9% 1.7m| 4.0% 1.9m
LSI-500 6.3% 16.5s| 8.6% 16.1s| 9.4% 17.5s|12.1% 19.5s|14.8% 22.8s| 8.4% 24.9s(10.1% 28.1s| 5.7% 46.0s| 2.5% 8.2s| 9.8% 18.0s| 5.5% 6.0s| 9.5% 9.1s| 2.2% 10.4s
LSI-1000 52% 339s| 74% 32.1s| 8.0% 35.3s| 99% 37.9s|122% 45.9s| 6.3% 49.8s| 8.1% 54.3s| 3.9% 1.5m| 1.4% 16.6s| 8.8% 36.5s| 0.0% 11.7s| 6.0% 18.2s| 2.2% 20.5s
LSI-5000 3.6% 2.7m| 50% 2.6m| 50% 29m| 6.1% 3.4m| 84% 3.6m| 2.0% 4.2m| 4.8% 4.6m| 0.9% 7.7m| 0.8% 14m| 54% 2.4m| 0.0% 58.0s| 2.0% 1.5m| 2.2% 1.8m

LA SWv ORB YN

Method 10x5 15x5 20x5 10x10 15x10 20x10 30x10 15x15 20x10 20x15 50x10 10x10 20x20
Gap Time | Gap Time | Gap Time | Gap Time | Gap Time | Gap Time | Gap Time | Gap Time | Gap Time | Gap Time | Gap Time | Gap Time | Gap Time
CP (10 sec) 0.0% 0.2s|] 0.0% 0.0s] 0.0% 6.2s] 04% 4.6s] 0.0% 0.1s| 0.5% 4.9s| 0.0% 0.1s| 0.0% 2.3s| 2.4% 10.0s| 7.0% 10.0s|] 6.1% 6.8s| 0.0% 2.6s| 4.3% 10.0s
CP (1 min) 0.0% 0.2s| 0.0% 0.0s| 0.0% 17.5s| 0.0% 14.6s| 0.0% 0.1s| 0.3% 18.7s| 0.0% 0.1s| 0.0% 2.0s| 2.0% 50.2s| 3.4% 1.0m| 3.8% 32.4s| 0.0% 2.8s| 1.7% 1.0m
CP (5 min) 0.0% 0.5s| 0.0% 0.0s| 0.0% 289s| 0.0% 56.8s| 0.0% 0.1s| 04% 1.1m| 0.0% 0.2s| 0.0% 3.4s| 1.8% 4.5m| 42% 5.0m| 2.2% 2.6m| 0.0% 4.4s| 1.8% 5.0m
CP (30 min) 0.0% 0.2s| 0.0% 0.1s| 0.0% 14.6s| 0.0% 22.5s| 0.0% 0.1s| 0.0% 6.0m| 0.0% 0.1s| 0.0% 1.9s| 0.8% 19.8m| 3.1% 30.0m| 0.6% 7.8m| 0.0% 2.4s| 1.3% 30.0m
MOR 13.0% 0.1s| 2.4% 0.0s| 2.9% 0.1s[13.3% 0.2s{21.0% 0.1s[17.4% 0.2s| 6.3% 0.1s[18.2% 0.3s{40.9% 0.2s/35.0% 0.3s[29.1% 0.5s[26.6% 0.1s[18.1% 0.4s
LTT 12.6% 0.1s| 23% 0.0s| 3.5% 0.1s|13.0% 0.2s|153% 0.1s/16.5% 0.2s| 4.1% 0.1s[15.1% 0.3s/29.3% 0.2s/29.3% 0.3s/21.5% 0.5/ 19.8% 0.15/19.7% 0.4s
FDD/MWKR 132% 0.1s| 4.6% 0.0s| 2.8% 0.1s|14.9% 0.2s{13.1% 0.1s[19.3% 0.2s| 7.8% 0.1s[16.6% 0.3s/38.3% 0.2s|34.5% 0.3s5/23.5% 0.5/ 19.8% 0.1s/20.9% 0.4s
SN 121% 0.6s| 2.7% 1.2s| 3.6% 1.9s|11.9% 0.8s|14.6% 2.0s|15.7% 4.1s| 3.1% 9.3s/16.1% 3.5s/34.4% 3.95/30.6% 6.75/25.4% 25.15/20.0% 0.8s[18.4% 11.2s
IRD 4.6% 09s| 0.1% 0.6s| 0.1% 1.8s| 41% 2.2s| 85% 1.1s| 59% 2.8s| 0.9% 1.6s|10.8% 4.9s|11.8% 2.8s/13.0% 3.8s] 42% 9.7s| 9.0% 1.0s[13.9% 4.3s
NeuroLS-500 09% 3.0s| 0.0% 4.0s| 00% 5.0s) 28% 3.9s| 39% 5.6s| 5.4% 7.3s| 0.1% 10.8s| 5.7% 7.15|24.3% 7.4s/22.3% 8.75/20.6% 16.3s| 53% 3.8s| 9.4% 10.7s
NeuroLS-1000 09% 6.0s| 0.0% 8.1s| 0.0% 10.0s| 2.4% 7.8s| 3.7% 11.2s| 4.0% 14.5s| 0.1% 21.6s| 4.9% 14.3s/22.1% 14.85/20.2% 17.5s/19.6% 32.7s| 3.9% 7.6s| 7.8% 21.3s
NeuroLS-5000 0.0% 29.8s| 0.0% 40.4s| 0.0% 50.2s| 1.1% 39.2s| 2.3% 55.9s| 2.2% 1.2m| 0.0% 1.8m| 2.7% 1.2m|12.5% 1.2m|14.9% 1.5m|16.4% 2.7m| 1.9% 38.0s| 5.2% 1.8m
L2S-500 21% 6.9s| 0.0% 6.8 0.0% 7.1s| 44% 7.5s] 54% 8.0s| 6.9% 89s| 0.1% 10.2s| 7.4% 9.0s{27.7% 8.8s[26.5% 9.7s|21.4% 12.5s| 82% 7.4s|13.9% 11.7s
L2S-1000 1.8% 14.0s| 0.0% 13.9s| 0.0% 14.5s] 2.3% 15.0s] 4.8% 16.0s| 6.4% 17.5s| 0.0% 20.4s| 7.2% 18.2s[25.1% 17.6s{24.2% 19.0s|19.9% 25.4s| 6.6% 15.0s|11.5% 23.4s
L2S-5000 1.8% 12m| 0.0% 12m| 0.0% 1.2m| 09% 13m| 3.7% 1.3m| 42% 1.4m| 0.0% 1.7m| 54% 1.5m|19.9% 1.4m|18.2% 1.7m|[17.3% 2.lm| 3.8% 1.3m| 8.8% 1.9m
TBGAT-500 35% 23s| 1.1% 09s| 0.1% 1.7s] 1.8% 9.1s| 5.8% 10.8s| 6.7% 11.4s| 1.5% 4.9s| 7.0% 12.1s{31.0% 15.6s{24.3% 17.0s|21.1% 29.8s| 7.0% 10.4s|10.4% 14.3s
TBGAT-1000 35% 3.8 1.1% 1.9s| 0.0% 3.3s| 1.8% 18.2s| 54% 21.4s| 54% 22.8s| 1.4% 6.3s| 4.8% 24.5s{29.8% 31.25/23.0% 34.3s/20.1% 59.5s| 5.7% 20.8s| 8.5% 28.1s
TBGAT-5000 35% 9.8s) 0.0% 9.2s| 0.0% 16.1s| 1.4% 1.6m| 2.8% 1.8m| 4.9% 52.0s| 1.1% 169s| 3.8% 2.0m|27.7% 2.5m|17.0% 2.7m|17.6% 4.9m| 4.5% 1.7m| 5.6% 2.3m
LSI-500 29% 9.0s| 0.0% 9.1s| 0.0% 3.8s| 2.0% 12.1s| 49% 11.5s| 5.6% 13.4s| 0.0% 10.5s| 5.1% 14.0s/25.4% 21.6s/21.4% 19.75/20.7% 42.2s| 53% 13.5s] 9.2% 15.4s
LSI-1000 23% 18.1s| 0.0% 179s| 0.0% 5.3s| 1.9% 23.5s| 4.4% 22.7s| 3.9% 26.0s| 0.0% 11.8s| 3.8% 27.8s/21.8% 41.3s/18.6% 37.85/20.4% 1.2m| 4.6% 26.1s| 7.3% 30.4s
LSI-5000 1.1% 1.4m| 0.0% 1.5m| 0.0% 17.7s| 0.9% 19m| 3.2% 2.0m| 1.8% 2.1m| 0.0% 22.1s| 2.4% 2.2m|[11.2% 2.8m|13.5% 3.1m|[18.9% 5.4m| 2.2% 2.3m| 5.0% 2.5m
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Policy parameters are updated periodically based on gradient estimates gathered from sample trajec-
tories. The entire learning process, which includes trajectory collection, gradient computation, and
parameter updates, is provided in Algorithm [I]in Appendix [F}

6 EXPERIMENTS

Baselines and test datasets. We compared the performance of our method with dispatching rule-
based constructive heuristic methods (largest tail time (LTT) rule (Lee & Kim|(2024)), most operations
remaining (MOR) rule, minimum ratio of flow due date to most work remaining (FDD/MWKR)
rule (Sels et al.|(2012))), learning-based constructive heuristics (SN (Park et al.|(2021a)) and IRD
(Lee & Kim|(2024))), local search methods (TS Zhang et al.| (2007), NeuroLS (Falkner et al.| (2022))),
L2S (Zhang et al.|(2024a)), and TBGAT (Zhang et al.|(2024b)))), and an exact method (constraint
programming (CP) (Zhou| (1996)))). We evaluated all methods on JSSP benchmark datasets: TA
(Taillard (1993))), LA (Lawrence|(1984)), ABZ (Adams et al.| (1988))), FT (Muth & Thompson|(1963))),
ORB (Applegate & Cook! (1991))), SWV (Storer et al.|(1992)), and YN (Yamada & Nakano|(1992)).
An instance denoted as ‘benchmark NxM’ contains IV jobs and M machines. Performance is
measured by the optimality gap, defined as g — 1, where C is the makespan of a schedule obtained
by each method and C* is the optimal or best-known makespan.

Performance for JSSP benchmark datasets. We initialized the schedules using the FDD/MWKR
rule and computed EST and LST using the topological linear-time algorithm proposed by Zhang et
al. |[Zhang et al.|(2024a)). L2S, TBGAT, and LSI were trained and validated on JSSP instances with
10 jobs and 10 machines, while NeuroLS used instances with 15 jobs and 15 machines. Details of
implementation and configuration are provided in Appendix [G]

Table |1| reports the results grouped by benchmark type, problem size, and method. The number
following each learning-based local search method (NeuroLS, L2S, TBGAT, and LSI) in the table
denotes the number of search iterations, and the reported running time is derived by batching
computations across instances within each instance group. Although LSI is trained only on 10x10
instances, it generalizes well to significantly larger instances, highlighting its strong scalability. LSI
also demonstrates superior performance compared to other learning-based methods while requiring
similar computational resources. In particular, LSI outperforms both L2S and TBGAT across nearly
all benchmark groups with the same search iterations. Figure [5]also shows the performance and
computational time of large-scale JSSP benchmarks. In terms of both the solution quality (optimality
gap) and the computational efficiency (end-to-end running time), LSI outperforms all learning-based
methods, classical dispatchers, and the CP solver.

Instances: TA 50x20 Instances: TA 100x20
--8-- MOR --®:- MOR
0204 o FDDMWKR  --®- CP 012 1 o FDD/MWKR  --@- CP
LTT --®- NeuroLS LTT --®-- NeuroLS
@ SN --0-- TBGAT --e-- SN --0-- TBGAT
® o o IRD LsI 0.10 1 ... o IRD LsI
2.0.15 - e ||l L T T 15 e
é . l?) 0.08 -
> o = . .
= = ... °
s . =} RRETY YO
£ 010 £ 0069 K N SECER S
£ 1} £ . e .
° e, © 0.04 | “e.. L -
0.05 4 e ¥ .., L
..,
: 0.02 o e
K
e
0.00 4 - 0.00 4 .
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End-to-end Running Time (second, log scale) End-to-end Running Time (second, log scale)

Figure 5: Mean optimality gap and mean end-to-end running time for large-scale benchmarks.

Ablation studies. Table 2]reports the performance of different policy network architectures. In the
table, ‘Gap’ denotes the average optimality gap across all 162 JSSP benchmark instances, ‘Rank’
indicates the average rank among the four compared methods within each iteration, and ‘Diff’
represents the average difference in optimality gap from the best-performing method for each instance
with the same number of iterations. A ‘Diff” of 0% indicates that the method consistently achieved
the best performance across all instances under its iteration setting. The inclusion of condition
indicators significantly improves performance for both encoder types, a simple MLP and TBGAT’s
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Table 2: Evaluation of different policy network architecture under varying search iterations.

# of iterations 500 1000 5000
Method Gap Rank  Diff Gap Rank  Diff Gap Rank  Diff
None + MLP 127% 3.60 43% | 112% 350 43% | 82% 335 3.9%
None + bi-GAT (TBGAT) 10.7% 278 24% | 94% 2798 25% | 7.0% 281 2.6%
Indicators + MLP (LST) 9.0% 18 0.7% | 76% 1.8 0.6% | 5.0% 185 0.6%
Indicators + bi-GAT 89% 176 0.6% | 7.6% 186 06% | 52% 199 0.8%

Number of iterations: 500

o
=
£

N None + MLP

7 W None + bi-GAT (TBGAT)

| Indicators + MLP (LSI)
BN [ndicators + bi-GAT

Optimality Gap
s o o o o o
Z 28 5 o o
3 5 8 & 28 4

o
53

o
3
8

Benchmark Group

Figure 6: Mean optimality gap for benchmark groups with different policy network structures.

bi-GAT. ‘Indicators’ in Table 2]refers to the use of our proposed condition indicators in the decoder,
while ‘None’ indicates that no theoretical insights are incorporated into the policy network. Both
encoders with condition indicators achieve nearly identical performance, differing by less than
0.2%. This suggests that our theoretically derived indicators can serve as an effective substitute for
complex neural architectures designed to capture problem-specific features. Figure[6also shows the
effectiveness of the condition indicators across different benchmark groups. As shown in the figure,
within each benchmark group of the same size, the performance difference between using a simple
MLP and a bi-GAT encoder remains negligible when the condition indicators are used. The other
results of ablation studies across other four components are presented in Appendix [I} the effectiveness
of (1) different ways to incorporate the propositions into the local search method, (2) different state
features, (3) different critical-based neighborhood structures, and (4) different training instance sizes.

7 CONCLUSION

We propose LSI (Local Search with Indicators), a novel learning-based local search method for
makespan minimization in Job Shop Scheduling Problems (JSSPs). LSI replaces complex GNN
architectures with a lightweight MLP policy network that incorporates three binary indicators derived
from newly identified necessary conditions for makespan reduction. These conditions, which we
define through a theoretical analysis of schedule improvement under consecutive operation swaps,
are used to guide the policy network toward selecting only the most promising moves within the N5
neighbors. By embedding these problem-specific theoretical insights into the policy, LSI achieves
superior performance and scalability across JSSP benchmarks while significantly reducing inference
time. Experimental results across diverse JSSP benchmarks demonstrate that our proposed indicators
not only enhance the solution quality but also enable the use of a lightweight MLP-based encoder,
outperforming prior methods that rely on complex neural architectures such as Graph Attention
Network (GAT). This result highlights that problem-specific insights related to the objective function
can serve as an effective substitute for architectural complexity.

Limitations and future works. While the approach shows strong performance, it has some
limitations. The theoretical indicators we propose are problem-specific and must be manually derived
for each combinatorial optimization problem (COP), which may limit generalizability and automation
of this approach. Future work will focus on two directions. One is to generalize our method to
other COPs, such as vehicle routing problems or scheduling problems with additional constraints, by
deriving analogous theoretical indicators. The other is to develop representation learning techniques
that can autonomously discover and learn such objective-aligned features, reducing reliance on
hand-crafted indicators.
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APPENDIX

We provide further details of our paper in the appendix. Our code implementation can be found in
https://github.com/**x/%*« (Code will be made publicly available upon acceptance).

A DISJUNCTIVE GRAPH TO REPRESENT JSSP INSTANCE

Although our proposed method, LSI, does not directly employ a disjunctive graph-based representa-
tion, we introduce it here to provide context for comparison with prior works that have utilized this
structure to learn architectural information implied in the JSSP.

The JSSP can be modeled as a disjunctive graph (Btazewicz et al.|(2000)), as illustrated in Figure
In this representation, each operation—including dummy operations—is represented as a node.
Specifically, each node O;; denotes the j-th operation of job 4, which must be processed on a
specified machine for a given processing time. Dummy nodes Og and O represent the artificial start
and terminal operations with zero processing time. Nodes with the same color belong to the same
job, indicating their precedence relationship.

There are two types of arcs in the disjunctive graph: conjunctive (directed) arcs represent precedence
constraints between successive operations within a job, while disjunctive (undirected) arcs connect
operations assigned to the same machine. Once the processing sequence between operations assigned
to the same machine is determined, the corresponding disjunctive arc becomes directed.

M, 033 023 043
M, 033 02, 011
M5 |031 022 012
0 1 2 3 4 5 6 7 8
Time

() (b)

Figure 7: (a) A schedule of a JSSP instance with three jobs and three machines and (b) the disjunctive
graph of the schedule.

Several prior studies have adopted GNN architectures based on the disjunctive graph-based represen-
tation to encode operations’ features (Zhang et al.[(2020); |Park et al.|(2021b); |[Liu & Huang| (2023));
Park et al.| (2021a)); Lee & Kiml| (2022} |2024); [Falkner et al.[(2022); Zhang et al.|(2024azb)). This
representation captures both the precedence relations across operations within a job and the operation
sequence on each machine under the current schedule. Such structural encoding enhances the model’s
capacity to capture scheduling-specific characteristics and the underlying topological information of
the current schedule.

B CRITICAL PATH-BASED NEIGHBORHOOD STRUCTURES

As described in Section [2] a critical path is defined as the longest path from the operation with
the earliest start time to the operation with the latest completion time, where the total path length
equals the sum of processing times of the operations along the path. No idle time exists between
consecutive operations on the critical path, and its length is equal to the schedule’s makespan. For

12
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instance, Figure ] shows all critical paths that can be found in the schedule illustrated in Figure[7] The
critical block is a subset of the operations on the critical path and is defined as maximal sequences of
consecutive operations processed on the same machine within the critical path. For example, there
are three critical blocks {O31}, {O32}, and {Os3, O23, O13} on the critical path of Figure [8[(a), and
four critical blocks {O31}, {O32, 021,011}, {O12}, and {O13} on the critical path of Figure (b).

A critical block

0 with two more 0 0 “..  Acritical block 0
s operations T s )i “._ with two more T

() (b)
Figure 8: Two critical paths of the schedule illustrated in Figure

A neighborhood structure generates neighbor schedules from the current schedule in local search
methods. The N1 neighborhood structure considers all possible swaps of consecutive operations
in critical blocks (Van Laarhoven et al.|(1992)). N2 narrows these to pairs at the beginning or end
of critical blocks (Dell’ Amico & Trubian| (1993)). N5 further refines N2 by excluding pairs at the
beginning of the first critical block or the end of the last, except when these are at the end of the first
block or the beginning of the last, respectively (Nowicki & Smutnicki| (1996)). For example, in the
critical paths shown in Figures [8|(a) and (b), N5 considers the pairs (Os3, O23), (Oa23, O21), and
(O21,011) as candidates. The pair (O23, O13) is excluded because Oq3 is the last operation in the
critical path and O,3 is not at the beginning of its block.

All three neighborhood structures ensure feasibility by generating acyclic disjunctive graphs only
(Van Laarhoven et al.[(1992)). While N1 can theoretically reach the optimal schedule from any initial
solution (Van Laarhoven et al.[(1992))), N5 is widely adopted for its efficiency. It considers fewer
operation pairs than N1 and N2 while including all pairs whose swaps can potentially improve the
makespan [Nowicki & Smutnicki (1996), as shown in Figure[2] This makes N5 effective in practice.

C PROOFS OF NECESSARY CONDITIONS FOR MAKESPAN REDUCTION

The proofs of three propositions proposed in Section[4.3]are as follows. J P[u] and JS[u] denote the
job-predecessor and job-successor operations of operation u, respectively, while M P[u] and M S[u]
represent its machine-predecessor and machine-successor operations, respectively. Note that ect] can
be calculated as max(ect s ply), ect s pjy]) + po and ect;, can be calculated as max(est,,, ect;,) + pu.
The propositions hold for all consecutive operations on the same machine, not just those on critical
paths.

Proposition[I, When consecutive operations w and v are swapped on a machine of a given schedule,
the makespan cannot decrease if st ygp,) < ect,,.

Proof. By definition, LST is the latest time an operation can start without delaying the makespan.
Therefore, increasing the LST of any job’s last operation increases the makespan. If [st sy, < ect,,,
then [st sy < ect;, < est/; Sty < lst, S[o] due to the precedence constraint of v and the definitions
of EST and LST. From the perspective of the job of v, the LST of its subsequent operations, including
JS[v], will remain the same or be delayed. This implies that the LST of the last operation of the job
of v will also remain the same or be delayed. Consequently, the makespan will either remain the
same or increase. O

Proposition2 When consecutive operations u and v are swapped on a machine of a given schedule,
the makespan cannot decrease if lst j5[,) < ect!,.
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Proof. The proof follows the same logic as Proposition The condition Ist ;gp,) < ect,, implies
lstysp) <1 st/; S[u)® which ensures that the makespan cannot decrease. O

Proposition[3}  When consecutive operations u and v are swapped on a machine of a given schedule,
the makespan cannot decrease if lst 5, < ect!,.

Proof. We consider determined operation orders for all machines except for operations w and v. By
the definition of LST, increasing the LST of the last operation processed on any machine increases
the makespan. If sty g7,) < ecty,, then Ist g, < ect], < est), Sl S Ist), s[y) Since operation u
precedes M S[v] on their compatible machine. From the machine’s perspective, the LST of subsequent
operations including M S[v] will either remain the same or be delayed. This implies that the LST of
the last operation on the machine will also either remain the same or be delayed. Consequently, the
makespan will either remain the same or increase. O

D PROOF OF SUFFICIENT CONDITION FOR MAKESPAN REDUCTION

Definitnion: Downstream-affected operations. Given a swap of consecutive operations (u, v) on
a machine, let F'* (u,v) denote the set of operations reachable from u or v by repeatedly taking a job
successor or a machine successor. We call elements of F'™ (u, v) downstream-affected operations.
Note that u and v are not in F'+ (u, v).

Lemma 1. Locality of perturbation. Swapping (u,v) can change EST and ECT only for
downstream-affected operations: for any operation w ¢ FT(u,v), est), = est,, and ect!, = ect,,.

Proof. Suppose est), # est,, for some w ¢ F*(u,v). Since est,, = max{ect s ppu],ectrrpuw)}- a
change at w implies ect!, # ect, for some immediate predecessor z € {JP[w], M P[w]}. Iterating
the same reasoning on z (and so on) produces a finite backward chain of nodes with changed est/ect
that must originate at u or v, the only place where the schedule was modified. Hence, there exists
a successor sequence from u or v to w. This is in contradiction with w ¢ F*(u,v). Therefore,
est! = est,, and thus ect! = ect,, forall w ¢ F*(u,v).

Lemma 2. LST monotonicity for downstream-affected operations. Let O denote the terminal
dummy operation. If lst’oT > Isto, (the makespan is the same or increasing), then we have

Ist), > lsty, for any w € F*(u,v).

Proof. For each operation x, lst, = min{lst ;s(s), Strrspz)} — P Order the nodes of F'*(u,v) by
their successor distance to O and proceed by induction.

If w’s only successor is O, then Ist;, = Isty, — py > lsto, — pw = lsty. If lstf,s[w] >
Ist ysp) and lst’MS[w] > Istyrspu» then st = min{lstf,s[z],lst’Ms[x}} — pu > lst, =
min{lst ys(s), [stars]a]} — Pw. Therefore, Ist, > lst,, for all w € F'*(u,v) by induction. O

Theorem|[1] For a schedule with only one critical path, the makespan of the schedule decreases
when consecutive operations u and v on a machine are swapped if and only if Ist ;5[] > ect;, and

Istarsp) > ecty,.

Proof. (=) Necessity via contrapositive. If LST;gp,) < ECT,, or LSTyss1) < ECT,, then by
Propositions [2] and [3| the swap cannot reduce the makespan, independently of how many critical paths
exist.

(«<=) Sufficiency by contradiction. Since a decrease in makespan means the LST of the dummy terminal
operation O decreases, we assume, for contradiction, that lst’OT > Isto, while lst; S[u] > ect!,
and Istprgp,) > ect, both hold. When operations u and v are swapped, all operations on the
paths from either u or v to Op are affected. We call these paths affected paths, excluding the
path containing both » and v. Since Or is at the end of all affected paths and [st,, is defined as
min(lst s, It v spw]) — Pw. for any operation w on an affected path (except u and v), Ist;, > Ist,,
must hold.
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The new critical path in the new schedule must include one of the affected paths, since any increase
in path length must result from EST adjustments due to the swap. Note that operations before u on
the original critical path remain unchanged and must be part of any new critical path. Therefore, we
only need to investigate the paths after the swap. All affected paths begin with one of three operation
pairs: (v, JS[v]), (u, JS[u]), or (u, M S[v]). We investigate these cases:

(1) Let an affected path starting with (v, JS[v]) be the new critical path. We know that ect,, <
est ys) < lstysp) < lstfjs[v] = estf]S[U] = ect! by definition of EST and the characteristic of
critical path. However, est;, < est, must hold. By definition, est;, = max(ect ; p[,], ect prpu]) since
ect’ JPb] = ect jp[y) and ect’y, Pl = ect rrpy) s these operations are not affected by the swap. Also,
since w is on the unique critical path while .J P[v] is not, we have est,, = max(ect jp[y], ecty) = ecty

and ect pr py) < ecty. Therefore, est! = max(ect; Pl]s €ctarplu)) < ecty = est,. This contradicts
ect, < ectl.

(2) Let an affected path starting with (u, JS[u]) be the new critical path. Then Ist yg(u) < Ist/;g,; =
estf,s[u] = ect;, would hold, contradicting Ist ;5[ > ect,,.

IN

(3) Let an affected path starting with (u, M S[v]) be the new critical path. Then Ist /gy
lst’MS[v] = est), Sl) = ect,, would hold, contradicting Ist gy, > ect,.

Since all possible cases lead to contradictions, our assumption lst’OT > lsto, must be false. There-
fore, the makespan decreases when [st ;g1,) > ect;, and lstyrgp,) > ect,.
O

Theorem For a schedule with multiple critical paths, the makespan strictly decreases when
consecutive operations v and v on a machine are swapped iff

LST;sp > ECT,, LSTysp) > ECT,, and every critical path contains v.

Proof. (=) Necessity via contrapositive. If LST;g,) < ECT,, or LST) 51, < ECT,,, Proposi-
tions 2H3| preclude any decrease. Moreover, if some critical path omits v, then by Lemma ] it can
remain unchanged by the swap, preserving the old makespan—contradiction.

(«=) Sufficiency by contradiction. Assume the three conditions and suppose LSTy, . > LSTo,.. Every
critical path contains v, so after the swap any critical suffix must start at one of (v, JS[v]), (u, JS[u]),
(u, M S[v]). Using Lemma[2|and the same calculations as in Theorem[l} case (v, JS[v]) is impossible
because ECT, < ECT,; cases (u,.JS[u]) and (u, M S[v]) contradict LST g, > ECT,, and
LSTy s > ECT,, respectively. Thus LSTy, < LSTo, and the makespan decreases. O

Theorem[3} For a schedule with multiple critical paths, if
LSTJs[U] > ECTZ), LSTJs[u] > ECTIIL, LST]VIS[U] > ECTIIL,
then swapping the consecutive pair (u, v) either (i) strictly reduces the makespan or (ii) keeps the

makespan but strictly reduces the number of critical paths.

Proof. Setup. The three strict inequalities ensure that, after swapping, there is no blocking at J.S[v]
with respect to ECT), nor at JS[u] or M S[v] with respect to ECT.,. Since p,, > 0 and M P[u]
immediately precedes u on the same machine, we have ECT), Plu) < ECT,; hence

EST, = max{ECT;p,), ECTyppy} < max{ECT,py,, ECT,} = EST, = ECT, < ECT,

By Lemma 1 only paths intersecting F'* (u, v) may change. By Lemma 2} if the makespan does not
decrease (LSTY, > LSTo,), then LST,, > LST, forany w € F*(u,v)\ {u,v}.

Consider any original critical path P and classify its relation to (u, v) into six exhaustive, mutually
exclusive cases:

(1) Independent: P shares no operation with {u, v}.
(2) Both: P contains both u and v.
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(3) Share-before-u: P shares some operations before u but excludes v.

(4) Share-all-before-u but exclude v: P shares all operations up to u but excludes v.
(5) Share-after-v: P shares some operations after v.

(6) Share-all-after-v but exclude u: P shares all operations after v but excludes .

Case (2) After the swap, any critical suffix must start at one of (v, JS[v]), (u, JS[u]), or (u, M S[v]).
However, (v, JS[v]) is impossible because ECT, < ECT,; starting at (u, JS[u]) would force
LSTysp < ECT); starting at (u, M S[v]) would force LSTy; g7, < ECT),. Each contradicts the
assumptions. Hence P is no longer critical. If all critical paths are of this type, the makespan strictly
decreases; otherwise the number of critical paths strictly decreases.

Case (5: Share-after-v. Then any critical suffix must start at (v, J.S[v]), which is impossible because
ECT) < ECT,. By Lemma LST"IS[U] > LSTysp) > ECT, > ECT), so EST}S@] =
LST} S = ECT], cannot hold. Thus P is no longer critical; the same conclusion as in Case (2)
follows.

Case (3) If P remains critical, its critical suffix must start at (u, JS[u]), which requires LST g/, =
EST}SM = ECT!. By Lemma LST’,S[U] > LSTjgpu, hence LST g, < ECT,, contradict-

ing LST s, > ECT,,. Thus P is not critical; the same conclusion as above holds.

Cases (4) and (6) For Case (4), a critical suffix from (u, .JS[u]) would enforce LST s, < ECT),,
contradicting LSTg,) > ECT),. For Case (6), a critical suffix via (u, M S[v]) would enforce
LSTy s < ECT), contradicting LST g1, > ECT,,.

Case (1) Such paths can keep their length (Lemma I)). However, by the strict advance at v and the
absence of blocking at J.S[v], JS[u], and M S[v], at least one of the other cases occurs and drops
from criticality.

Therefore either the makespan decreases (if all critical paths fall) or the number of critical paths
strictly decreases.

O

E ADAPTIVE REVISITING CRITERIA

The length of list that saves recently swapped operation pairs is randomly selected between the given
minimal and maximal values L,;, and L,.x simply for each instance, following the adaptive tabu
strategy proposed by [Zhang et al.|(2007). The L.y, and Ly, are computed as follows:

N

L=1 —
0+M

1

Lmin: L 5

o _Jl1AL+ 5], ifN <2M
" [1BL+ 5], otherwise

F DETAILED LEARNING PROCESS

Training loop including trajectory collection, gradient computation, and parameter updates is de-
scribed in Algorithm

G CONFIGURATIONS OF EXPERIMENTS

Configurations including activation functions, hyperparameters, and hardware settings are shown in
Table[3]
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Algorithm 1 Entropy Regularized n-step REINFORCE

Input: training problem size N x M, validation instances Z %!
Parameter: batch size B, # of epochs NP # of steps per epoch T, learning period d'¢*"™, validation period

d¥®, learning rate o, strength of entropy regularization 3
Output: best parameter set 0°¢%*

I: Initialize 0, 6°°*" = 0, C***" = 0o

2: for epoch = 1to NP°°" do

3:  Generate B instances with N jobs and M machines
4:  Initialize schedules {sg, ..., s5’ } by using FDD/MWKR rule
5. fort=0to7T do
6: for st € s3,...,s8 do
7: Sample an action a® ~ g (al|s?)
8: Derive 57,1, 7(a?, s%), and H(mg(-|s%)) by a?
9: end for
10: if t mod d'“*™" = 0 then
11: Compute R by normalizing cumulative rewards
12: L) =~ X0, S0 " R log mo(ab_y st ) + BH(mo(-|si_,))]
13: 0 < Adam(0, Vo L(6))
14: end if
15:  end for
16:  if epoch mod d**® = 0 then
17: C = mean of objectives for Z¥*' with g
18: if C < C"**' then
19: ébest — é’ 6best =0
20: end if
21:  endif
22: end for
Table 3: Model and Training Configuration.
Component Setting
Encoder activation function LeakyReLU
Decoder activation function tanh
Optimizer Adam
MLP architecture 4 layers, 512 hidden units
Encoder output dimension 128
Batch size (B) 64
Epochs (IVePoch) 2000
Steps per epoch (1) 500
Learning period (d'®™) 10
Validation period (d**) 10
Learning rate () le-5
Entropy regularization strength (3) 1le-5
CPU Intel Core 17-7700K @ 4.20GHz
GPU NVIDIA GeForce RTX 4090

H ACTION SELECTION ANALYSIS

I ABLATION STUDIES

Table[5]shows the results of five different ablation studies: the effectiveness of (1) condition indicators
with different encoders, (2) different types of proposition identifiers, (3) different state features, (4)
different neighborhood structures, and (5) different sizes of training instances. In the table, ‘Gap’
represents the average optimality gap for 162 JSSP instances, and ‘Diff’ represents the average
difference in optimality gap from the best-performing method of each instance in each block. A ‘Diff’
of 0% indicates that the method consistently achieved the best performance across all instances.
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Table 4: Satisfaction ratio (%) of proposition conditions and tabu across iterations and JSSP instance
groups.

o # of JSSP Instance Group
Condition iterations
TA 15x15 TA20x15 TA20x20 TA30x15 TA 30x20
including tabu list 500 23.3 22.5 14.9 25.6 19.2
1000 25.1 27.8 16.2 29.4 22.5
5000 24.6 33.1 21.9 39.2 27.4
Ist ysp) > ect!. 500 99.8 99.8 99.6 99.7 99.7
1000 99.8 99.8 99.6 99.7 99.7
5000 99.7 99.8 99.6 99.7 99.7
lst yspu) > ect!, 500 91.0 89.5 91.1 87.3 90.0
1000 90.4 90.0 91.1 87.3 90.0
5000 90.9 87.7 89.6 88.9 88.6
Istprsp) > ect!, 500 84.6 85.7 89.0 92.9 88.0
1000 83.9 82.9 88.1 91.3 87.4
5000 84.0 83.8 87.5 89.3 85.8
Table 5: Results of Ablation Studies.
# of iterations
Method 500 1000 5000
Gap Diff Gap Diff Gap Diff
None + MLP 12.5% 43% | 11.1% 4.2% 8.1% 3.8%
None + bi-GAT (TBGAT) 10.6% 2.4% 9.3% 2.5% 6.9% 2.6%
indicators + MLP (LSI) 8.9% 0.7% 7.5% 0.6% 4.9% 0.6%
indicators + bi-GAT 8.9% 0.7% 7.5% 0.6% 5.1% 0.8%
intersection indicator 9.1% 0.8% 7.7% 0.8% 5.1% 0.7%
indicators (LSI) 8.9% 0.6% 7.5% 0.6% 4.9% 0.6%
values 10.1% 1.7% 9.0% 2.1% 6.9% 2.6%
normalized values 9.8% 1.5% 8.8% 2.0% 6.5% 2.2%
simple (LSI) 8.9% 1.1% 7.5% 1.0% 4.9% 0.9%
simple + topological order 8.6% 0.7% 7.2% 0.8% 4.8% 0.8%
simple + instance-dependent 8.8% 1.0% 7.4% 1.0% 4.8% 0.8%
N1 multiple 9.5% 1.5% 8.1% 1.5% 5.4% 1.2%
N1 9.6% 1.6% 8.3% 1.7% 5.4% 1.3%
N5 multiple (LSI) 8.9% 0.9% 7.5% 0.8% 4.9% 0.8%
N5 8.9% 0.9% 7.5% 0.9% 4.9% 0.8%
N5 + action masking 17.6% 95% | 17.6% 109% | 17.6% 13.4%
LSI 10x10 8.9% 1.0% 7.5% 0.7% 4.9% 0.6%
LSI 15x15 9.3% 1.4% 8.2% 1.4% 5.8% 1.5%
LSI 20x20 9.6% 1.7% 8.5% 1.7% 6.0% 1.7%
LSI 30x20 9.4% 1.5% 8.2% 1.4% 6.2% 1.9%
TBGAT 10x10 10.6% 2.7% 9.3% 2.6% 6.9% 2.6%
TBGAT 15x15 10.7% 2.8% 9.6% 2.9% 7.3% 3.0%
TBGAT 20x20 11.0% 31% | 10.2% 3.5% 8.7% 4.4%
TBGAT 30x20 10.2% 2.3% 9.1% 2.4% 6.9% 2.7%

The inclusion of condition indicators significantly improves performance for both encoder types, a
simple MLP and TBGATs bidirectional topological GAT (bi-GAT). Both encoders with indicators
achieve almost identical performance, differing by less than 0.2%. This suggests that our theoretically-
derived indicators can effectively replace complex neural structures designed to learn problem
characteristics.

For indicator types, we compared our approach with three alternatives: (1) intersection indicator,
which denotes satisfying all three propositions’ conditions simultaneously, (2) values, which represent
the differences between the left and right sides of propositions’ conditions, and (3) normalized values,
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where each difference is normalized by the maximal processing time of operations. Both our approach
and intersection indicator outperform value-based approaches, showing nearly identical performance,
differing by less than 0.2%.

The impact of state features was examined by comparing variants with additional features: the
topological order of operations used in TBGAT and instance-dependent features, including features
used in SN or IRD. In contrast, LSI uses three simple state features: processing time, EST, and LST
of operations. These additional features provided only minor improvements with 0.1-0.3% lower
Gap, suggesting that simple features are sufficient.

For neighborhood structures, while N1 theoretically guarantees optimal solution reachability, N5
showed better empirical performance with 0.5-0.8% lower Gap, probably due to its more focused
search space. Considering multiple critical paths (/N5 multiple) performed similarly to considering a
single critical path randomly chosen (/V5). However, using intersection indicator for action masking
led to premature convergence to local optima, resulting in worse performance.

Training with instances of different sizes (10x10 to 30x20) showed that larger training instances did
not necessarily lead to better performance. Interestingly, training LSI with the smallest instances
(10x10) demonstrates the best performance.

J EXTENDED EXPERIMENTAL ANALYSIS

We conducted an ablation study to assess the individual effects of the components of our approach.
We first test for the effectiveness of condition indicators and the encoder’s structure. The results are
shown in Figures 9] In these figures, the x-axis represents benchmark groups, while the y-axis shows
the optimality gap. Results are shown with different iteration numbers. The performance remains
consistent whether using a simple MLP or TBGAT’s bidirectional topological GAT (bi-GAT) as
an encoder structure when condition indicators are incorporated. Without condition indicators, the
bi-GAT structure performs better than MLP, yet still underperforms compared to approaches using
condition indicators.

We further examined various indicator types, with the results presented in Figures The ‘la-
bel_v’ represents the numerical difference between the left and right-hand sides of the propositions’
conditions, while ‘label_v_norm’ denotes this value normalized by maximal processing time. ‘la-
bel_intersection’ sets the indicator to 1 only when the conditions of all three propositions are
simultaneously satisfied, while ‘label_1’ denotes our proposed approach that considers the condi-
tions individually. Although the performance difference between ‘label_intersection” and individual
condition consideration was not substantial, considering conditions independently generally showed
slightly better performance.

TBGAT utilized not only processing time, EST, and LST but also topological order of each operation
as operation features. We investigated the effectiveness of incorporating this topological information
and the operation features used in the dispatcher from Section4.3] As illustrated in Figures|[T1] the
inclusion of these additional features demonstrated negligible impact on performance enhancement.

We also investigated the impact of neighborhood structures used in generating candidate moves.
Finally, we examined the effectiveness of different neighborhood structures in generating candidate
moves. While N5 neighborhood structure contains all makespan-improving moves, it lacks the
theoretical guarantee of optimal solution reachability that N1 neighborhood structure possesses
with its broader action space. However, as shown in Figures [I2] using N5 neighborhood structure
experimentally outperformed using N1 neighborhood structure. Furthermore, considering multiple
critical paths simultaneously with N5 neighborhood structure (‘N5_multi’) showed slightly better
performance than randomly selecting a single critical path (‘N5’). Additionally, the case where
condition indicators from the decoder were used for action masking is denoted as ‘N5_improve’ in
the figure. This approach appears to have converged prematurely to local optima before reaching 500
iterations.

Finally, we test for different training problem sizes. We conducted experiments with increasing
problem sizes from 10x10 to 20x20, and the results are shown in Figures [I3] which include the
ranges of optimal gaps across three replications for our proposed approach. Counter to intuition, we
observed performance degradation in some JSSP instances even when the training problem size was
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Figure 9: Mean optimality gap for benchmarks groups with different policy network structures and
different iteration numbers.

closer to the size of the target instances. This suggests that broader solution spaces in the training
process might hinder convergence to effective policies.
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Figure 10: Mean optimality gap for benchmarks groups with different ways to corporate the theoreti-
cally derived conditions for makespan reduction and different iteration numbers.

21



1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166

Under review as a conference paper at ICLR 2026

Number of iterations: 500

040
WS TBGAT

0351 mwm NeuroLS

0304 == LS

BN LI+ topological order
0.254

Optimality Gap
s o
o8

0.10 4
0.05 4 T T

b el S Q Q o Q S \J & & & S N N & © N S
SR R R I N I O SR

¥ b >
V R ,?g;" N & F N & N <3 CA < » K & < < R
o S ¥ <
Benchmark Group

Number of iterations: 1000
0.40

BN TBGAT
0359 mes NeuroLS
-
-

030 LSk

LSI + topological order

0254

Optimality Gap
s o
8

) ) o S Q ) S Q Q < J J J <) S o o J o » <) o S
N & & & S & o & & & & & & Y & & N & NG &
= ™ N & N N S S > N N S $ 5 S S Q) © s S S S K
N V Yg;\) N o@ N J U g‘@ Fo vfbw é‘q\ PUAN S A < é‘q\ Y
Benchmark Group
040 Number of iterations: 2000
s TBGAT
0357 mmm NeuroLS
030 == LsI )
BN LSI + topological order

0.254

Optimality Gap
s o
o8

0.10 4 T 1T

0054

Benchmark Group
Number of iterations: 5000
0.40
BN TBGAT
0351 mmm NeuwroLS
0.30 4 LSt
B 1S] + topological order

0254

Optimality Gap
s o
8

5 5 e e o 5 o e e s s s 5 S e o o s o o g o o
F ST YN Y S s S N SSSF s SE
¥ oo ¥ ) VN ¥ ¥ v v oy b oS v \ \ \d >
N R v NN J %4\“ J R é‘(‘\\ Q J D < é‘(‘\\ < < RGN
Benchmark Group

Figure 11: Mean optimality gap for benchmarks groups with different input features and different
iteration numbers.
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Figure 12: Mean optimality gap for benchmarks groups with different neighborhood structures and
different iteration numbers.
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Figure 13: Mean optimality gap for benchmarks groups with different training instance sizes and
different iteration numbers.
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