
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEARNING LOCAL SEARCH WITH THEORETICAL
INDICATORS FOR JOB SHOP SCHEDULING

Anonymous authors
Paper under double-blind review

ABSTRACT

Job shop scheduling problem (JSSP), where job sequences must be assigned across
multiple machines to minimize makespan under fixed routes and varying process-
ing times, is one of the most challenging combinatorial optimization problems.
To improve search efficiency, we propose LSI, Local Search with Indicators, a
learning-based local search method for JSSP. LSI integrates scheduling-theoretic
conditions as indicators into the action evaluation, enabling the policy to focus on
swaps that guarantee makespan reduction. By incorporating theoretically proven
conditions into the action evaluation, LSI prioritizes promising swaps rather than
treating all moves equally, representing a principled improvement of makespan.
Despite relying only on a lightweight multilayer perceptron (MLP) policy network,
LSI achieves competitive or superior performance compared to strong state-of-the-
art approaches on diverse JSSP benchmarks, offering faster inference and robust
scalability without retraining. These results demonstrate the effectiveness of embed-
ding problem-structured theoretical principles into learning-based combinatorial
optimization.

1 INTRODUCTION

The Job Shop Scheduling Problem (JSSP) is one of the most challenging combinatorial optimization
problems (COPs), known to be NP-hard (Garey et al. (1976)). Unlike routing problems—e.g., the
Traveling Salesman Problem (TSP), Vehicle Routing Problem (VRP), and its capacitated variant
(CVRP)—JSSP requires each job to follow a fixed machine route with predetermined processing
times. Each job consists of a sequence of operations, each of which must be processed on a designated
machine for a specified duration.

Although recent methods have used reinforcement learning (RL) or imitation learning (IL) to learn
complex encoder architectures such as convolutional neural networks (CNNs) (Liu et al. (2020);
Han & Yang (2020)), recurrent neural networks (RNNs) including long short-term memory (LSTM)
networks (Monaci et al. (2024); Iklassov et al. (2023)) and Transformer models (Zhao et al. (2022);
Chen et al. (2022)), and graph neural networks (GNNs) (Zhang et al. (2020); Park et al. (2021b);
Liu & Huang (2023); Park et al. (2021a); Lee & Kim (2022; 2024)) for JSSPs, no learning-based
approach has yet reported optimal solutions for instances involving more than 15 machines and 15
jobs, indicating substantial room for further improvement.

This paper is motivated by two core research questions: (1) Can theoretical insights into the JSSP
guide the learning of better policies in learning-based optimization? (2) How can such theoretical
knowledge be effectively incorporated into the policy network? To address these questions, we
focus on local search frameworks and propose a novel method that integrates theoretical makespan
reduction conditions into the policy design.

There are three primary approaches to solving JSSPs: exact methods, improvement methods, and
constructive methods. Exact methods, such as the branch-and-bound method, guarantee optimal
solutions but often require excessive computational time, making them impractical for large-scale
problems (Brucker et al. (1994)). Improvement methods iteratively enhance complete solutions
through various search strategies, while constructive methods sequentially build solutions by assigning
operations step by step. Given the prohibitive runtime of exact methods, most practical solvers rely
on heuristics, either constructive or improvement. Constructive methods have attracted significant
attention in time-critical scenarios due to their rapid sequential decision-making capabilities. Recent

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Problem instance Best known scheduleSwap action
selection

Sequence change

Job
Machine route

(processing time)

1 2(2) → 3(1) → 1(1)

2 2(1) → 3(1) → 1(1)

3 3(1) → 2(1) → 1(3)

Initial schedule

Repeat L times

Policy

network

𝑂32, 𝑂21
𝑂21, 𝑂11
𝑂13, 𝑂23

𝑂11
𝑂12
𝑂13
𝑂21
𝑂22
𝑂23
𝑂31
𝑂32
𝑂33

Selected

pair

(𝑂13, 𝑂23)

Theoretical
properties

M
L

P

M
L

P
Time

M1

M2

M3

1 2 3 4 5 6 7 80

𝑂12

𝑂33 𝑂13

𝑂11𝑂21

𝑂22𝑂31

𝑂32

𝑂23

M1

M2

M3

1 2 3 4 5 6 70

𝑂12

𝑂33 𝑂13

𝑂11𝑂21

𝑂22𝑂31

Time

𝑂32

𝑂23M1

M2

M3

1 2 3 4 5 6 70

𝑂12

𝑂33 𝑂13

𝑂11𝑂21

𝑂22𝑂31

Time

𝑂32

𝑂23

Time

M1

M2

M3

1 2 3 4 5 6 7 80

𝑂12

𝑂33 𝑂13

𝑂11𝑂21

𝑂22𝑂31

𝑂32

𝑂23

Candidate
pairs

Recently
swapped pairs

Current
schedule

Condition
indicators

Revisit
indicator

Figure 1: Overview of Local Search with Indicators (LSI), our proposed learning-based local search
method for JSSPs. It begins with a given initial schedule, then iteratively swaps a pair of operations.
To select a promising swap action, the policy network concatenates the embedding vectors, the
theoretically derived condition indicators, and the tabu indicator of each candidate operation pair,
then evaluates it. Oij denotes the j-th operation of job i.

studies (Zhang et al. (2020); Park et al. (2021b); Liu & Huang (2023); Park et al. (2021a); Lee &
Kim (2022; 2024)) have applied GNNs combined with RL or IL to assign operations in real time.
Although these methods generate feasible assignments immediately, they generally yield lower-
quality solutions compared to improvement methods, which refine entire schedules through iterative
adjustments. While constructive methods excel in speed, their solution quality still lags behind
that of improvement methods, motivating a closer look at improvement methods. Improvement
methods, such as population-based approaches including Genetic Algorithms (GA) and Particle
Swarm Optimization (PSO), and local search approaches including Simulated Annealing (SA), Tabu
Search (TS), and Variable Neighborhood Search (VNS), are known to produce high-quality solutions,
although they tend to consume more computational time than constructive methods. Recently,
learning-based local search methods have emerged, leveraging GNN-based encoders trained via RL
to identify promising pairs of consecutive operations on the same machine (Falkner et al. (2022);
Zhang et al. (2024a;b)).

Several studies have attempted to incorporate theoretical insights into learning-based approaches for
solving JSSPs. Lee & Kim (2024) proposed a learning-based constructive method with a compact
action space by ensuring reachability to an optimal schedule. Additionally, recent learning-based
local search methods (Falkner et al. (2022); Zhang et al. (2024a;b)) adopt the critical path-based N5
neighborhood structure similar to a traditional local search approach (Nowicki & Smutnicki (1996)).
This structure considers all consecutive operation swaps that could potentially reduce the makespan
of the current schedule as candidate moves to generate neighbor solutions (Kuhpfahl & Bierwirth
(2016)). Although the policies learn to select promising moves from the N5 neighbors, they treat all
candidates as equally likely. They do not incorporate theoretical criteria that can distinguish which
candidate moves are more likely to reduce the makespan, leaving room for further improvement.

Novelty. In contrast to previous learning-based local searches that rely on complex GNN architec-
tures and treat N5 neighbors as a black-box, we propose a lightweight approach that incorporates
theoretically grounded indicators into the policy network using only multilayer perceptrons (MLPs),
as illustrated in Figure 1. We identify three novel necessary conditions for makespan reduction in
JSSP and encode them as binary indicators to guide action selection. This principled integration of
problem-specific knowledge enables our method to achieve superior performance on standard JSSP
benchmarks, while offering faster inference and improved scalability.

2 PRELIMINARIES

Job shop scheduling problem (JSSP). JSSP is a classical NP-hard combinatorial optimization
problem, proven to be NP-hard (Garey et al. (1976)). It is frequently encountered in complex manu-
facturing environments, such as semiconductors (Gupta & Sivakumar (2006)) or battery production

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

systems (Liu et al. (2021)). A JSSP instance comprises a set of N jobs and M machines. Each job is
composed of a sequence of operations with predefined processing orders and machine assignments.
Each operation must be processed on a specified machine for a given processing time. There is a
precedence constraint between successive operations within each job, and machines can process only
one operation at a time. Among the various objective functions considered for JSSPs, minimizing
the maximum completion time, also known as makespan, is the most prevalent, as it leads to better
system utilization and overall productivity (Xiong et al. (2022)). Consequently, this study aims to
minimize the makespan Cmax.

Critical path. In a feasible schedule, a path is a directed chain of consecutive operations induced by
job–route precedence and machine–processing order, from the earliest start to the latest completion.
The critical path is any longest path whose length (sum of processing times) equals the makespan
(Kuhpfahl & Bierwirth (2016)). For example, the sequence O31–O32–O21–O11–O12–O13–O23 is
the critical path of the initial schedule illustrated in Figure 1, where Oij denotes the j-th operation of
job i. There is no idle time between consecutive operations on the critical path, and each operation
on the path satisfies EST = LST, where EST (earliest start time) is the earliest possible time to start
the operation in the current schedule, and LST (latest start time) is the latest possible time to start it
without delaying the makespan.

Optimal solution
for makespan Current

solution

N1
N2

N5
Makespan-
improved
solutions

Figure 2: Schedule groups that can be moved
by each neighborhood structure from the current
schedule.

Neighborhood structures. A key factor in the
effectiveness of local search approaches is the
choice of neighbors to explore. In the context
of JSSPs, critical path-based neighborhood struc-
tures, denoted N1 (Van Laarhoven et al. (1992)),
N2 (Dell’Amico & Trubian (1993)), and N5
(Nowicki & Smutnicki (1996)), are proposed to
solve JSSPs and generate neighbor schedules by
swapping consecutive operations on the same ma-
chine along the critical path. The inclusion rela-
tionships among N1, N2, and N5 are illustrated
in Figure 2. The N1 neighborhood structure con-
siders all such adjacent swaps and is complete,
meaning that any optimal schedule can be reached from any arbitrary initial solution through only
N1 moves Van Laarhoven et al. (1992). The N2 structure reduces the number of candidate swaps by
pruning less promising ones Dell’Amico & Trubian (1993), and N5 prunes even further by keeping
only those swaps that may reduce the makespan Nowicki & Smutnicki (1996). Empirical studies
have shown that N5 captures most of the improvement benefits of N1 at a fraction of the evaluation
overhead (Nowicki & Smutnicki (1996); Kuhpfahl & Bierwirth (2016)). Further explanations and
illustrative examples of these neighborhood structures are provided in Appendix B.

3 RELATED WORKS

Classical local search for solving JSSPs. Local search methods have been widely used to solve
JSSPs due to their ability to effectively explore the solution space (Nowicki & Smutnicki (1996);
Van Laarhoven et al. (1992); Dell’Amico & Trubian (1993); Glover (1986); Mladenović & Hansen
(1997); Zhang et al. (2007)). These approaches typically begin with a given solution and iteratively
refine it until a stopping criterion such as a time limit or convergence threshold is met. Each local
search method employs a strategy to escape local optima by occasionally accepting worse solutions.
SA probabilistically accepts worse solutions, with an adaptable acceptance probability as the search
progresses (Van Laarhoven et al. (1992)). TS maintains a tabu list of recent explored moves to prevent
revisiting of solutions and focuses exploration on unexplored neighborhoods (Glover (1986)), and
VNS perturbs the current solution if no improvement is found in a predefined number of iterations
(Mladenović & Hansen (1997)). Although highly effective on small instances, their reliance on fixed
neighborhood structure and manually tuned rules, such as acceptance probability, tabu list size, and
perturbation method, can limit adaptability and performance in more diverse or large-scale settings.

Learning-based local search for solving JSSPs. Building on these classical ideas, recent learning-
based methods employ RL to learn the promising selection of moves among candidates based on

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

critical paths using GNN-based policy networks (Falkner et al. (2022); Zhang et al. (2024a;b)). Neu-
roLS integrates an Implicit Quantile Network (IQN) within a VNS framework: when the makespan
has not improved for two consecutive moves, the policy perturbs the schedule by randomly sampling
from the larger N1 neighbors (Falkner et al. (2022)). Its state representation includes features
such as the current and best makespans, and counts of non-improving steps and perturbations. L2S
adopts a TS framework with an adaptive tabu list size, inspired by Zhang et al. (2007), and trains its
GNN-based policy using n-step REINFORCE. Each operation is represented by features including
its EST, LST, and processing time (Zhang et al. (2024a)). TBGAT further enriches this approach
with a bidirectional topological Graph Attention Network (bi-GAT): one pass encodes the forward
topological rank, EST, and processing time, while the other pass uses the backward topological rank
and LST (Zhang et al. (2024b)). The combined embeddings enhance the model’s ability to capture
structural awareness. Although recent learning-based approaches have driven significant advances in
JSSP performance, they share three notable limitations: (1) they treat all candidate swaps as equally
probable, without leveraging theoretical distinctions in their potential to reduce makespan, (2) rely
on computationally intensive GNN encoders, which slow down inference and hinder scalability to
larger instances, and (3) only incorporate hand-engineered features that are not explicitly aligned
with makespan reduction conditions.

To address these issues, we propose a novel framework that explicitly incorporates theoretical insights
into the policy network. We derive three novel necessary conditions for makespan reduction in
JSSP and prove that their joint satisfaction provides a sufficient condition in the special case of a
single critical path. These theoretically grounded conditions are integrated as binary indicators into
a lightweight policy network composed solely of MLPs. By avoiding complex GNN architectures,
our approach significantly reduces model complexity and accelerates inference, thereby enhancing
scalability. Despite the simplicity of the architecture, our method achieves state-of-the-art (SOTA)
performance across JSSP benchmarks. These results highlight the effectiveness of integrating
theoretical insights into the design of learning-based combinatorial optimization methods.

4 PROPOSED METHOD

We propose Local Search with Indicators (LSI), a learning-based local search framework that
integrates three theoretically derived conditions for makespan reduction as binary indicators within
the policy network. These indicators help guide the selection of promising swap actions at each
step of the local search. LSI operates under the standard local search framework. Starting from an
initial schedule generated by a simple dispatching rule, it iteratively updates the schedule by selecting
and applying a swap action between consecutive operations on the same machine, as illustrated in
Figure 1. At each iteration, the N5 neighborhood structure is used to generate candidate swaps, each
candidate is evaluated by the policy network based on the embedding vector concatenated with the
embeddings of involved operations, binary indicators corresponding to the theoretical conditions, and
a revisit status indicator. The action with the highest selection probability is applied to update the
current schedule and is then added to the recently visiting list. This process repeats until a termination
condition is met, and the best schedule found so far is returned as the final output. LSI emphasizes
the use of theoretical indicators to guide decisions, improving efficiency while remaining awareness
of both search history and problem structure. To train the policy network through RL, we employ the
n-step REINFORCE. To enable this, we formulate the local search process as the MDP used by L2S
(Zhang et al. (2024a)).

4.1 MARKOV DECISION PROCESS (MDP)

State. The state st at time step t represents the current schedule, including the features of the
operations. For each operation u, we consider three features: (1) processing time pu, (2) EST estu,
and (3) LST lstu. estu denotes the earliest possible time to start operation u in the current schedule,
and lstu denotes the latest possible time to start it without delaying the makespan of the schedule.
Note that operations with equal estu and lstu are on the critical path.

Action. An action at is defined as a swap between two consecutive operations on the same machine.
The candidate action set At at time t comprises all feasible swaps.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

State transition. When action at is selected, the corresponding swap updates the current schedule,
resulting in the next state st+1. The EST and LST for all operations are recomputed accordingly. The
episode ends either when no further candidate actions remain (At = ∅) or when a predefined step
limit is reached.

Reward. The reward function r(st, at) is designed to improve the best solution found so far. It
is defined as: r(st, at) = max(Cmax(s

∗
t) − Cmax(st+1), 0), where s∗t denotes the best solution

found up to step t, and s∗0 = s0. The cumulative reward up to step t becomes:
∑t

t′=0 r(st′ , at′) =
Cmax(s0) − Cmax(s

∗
t). By maximizing this cumulative reward, the policy network can directly

optimize the performance of the solution that will be returned.

𝑥

M
L

P

M
L

P

so
ft

m
ax

𝜋(𝑎)

DecoderEncoder

+

Condition
indicators

ℎ

mean

Current solution

Merged ℎ

Candidate pairs

Revisit
indicator

Recently swapped pairs

Figure 3: The architecture of the policy network.

4.2 ENCODER

The encoder in our model is a simple MLP. As shown in Figure 3, this MLP takes state features
x as input and produces a high-dimensional embedding hu for each operation u. We chose this
architecture over complex GNN because our decoder’s theoretical indicators capture the essential
relational information. Ablation studies show that our simple MLP encoder enables much faster
inference without losing solution quality compared to relying on complex GNN architectures.

4.3 DECODER

The decoder computes the action selection probabilities for each candidate action. Its key innovation
is the use of three theoretically derived condition indicators whose joint satisfaction provides a
sufficient condition under the restricted case of a single critical path, embedded as binary features.
For every candidate swap, three binary indicators are computed, each reflecting whether the move
satisfies a corresponding theoretical condition. These indicators inject problem-specific knowledge
into the network, enabling more informed action selection.

Unlike L2S, LSI retains all candidates and encodes their revisit status as a binary feature in the policy
network, as illustrated in Figure 1, where traditional tabu search excludes recent left moves. Also like
TBGAT, the selected action at is added to the list of recently swapped pairs, removing the oldest pair
to maintain the list capacity, as described in Appendix E.

Time

M1

M2

M3

1 2 3 4 5 6 7 80

MS[u]

JP[u]

uMP[u]

JS[u]

Figure 4: The directly connected opera-
tions with job or machine precedence rela-
tions for operation u in a schedule, where
the operations with the same color denotes
the same job.

Makespan reduction conditions in JSSP. We present
three novel propositions that describe when swapping
two consecutive operations on the same machine can
reduce the makespan. Unlike prior works Nowicki &
Smutnicki (1996); Zhang et al. (2007); Xie et al. (2023),
which define neighborhoods such as N5 that include all
improving moves, shown as Figure 2, our propositions
identify a smaller subset of N5 and provide a formal nec-
essary and sufficient condition for makespan reduction
when the schedule contains a single critical path.

To state these precisely, we first introduce four relation-
ships for any operation u. The job-predecessor of u, denoted JP [u], is the operation immediately
before u in its job sequence, and the job-successor, JS[u], is the operation immediately after u in its
job. Similarly, the machine-predecessor, MP [u], is the operation scheduled just before u on the same

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

machine, and the machine-successor, MS[u], is the operation scheduled immediately after u on that
machine. The prime notation (e.g., est′u) indicates the value after the swap, and ectu = estu + pu
denotes the earliest completion time (ECT) of operation u. With these definitions in place, the proofs
of the three necessary conditions are given in Appendix C.

Proposition 1. When consecutive operations u and v are swapped on a machine of a given schedule,
the makespan cannot decrease if lstJS[v] ≤ ect′v .

Proposition 2. When consecutive operations u and v are swapped on a machine of a given schedule,
the makespan cannot decrease if lstJS[u] ≤ ect′u.

Proposition 3. When consecutive operations u and v are swapped on a machine of a given schedule,
the makespan cannot decrease if lstMS[v] ≤ ect′u.

In the case of a schedule with only one critical path, the makespan is reduced if and only if the swap
of operations u and v violates both Propositions 2 and 3. This case is covered by Theorem 1, proven
in Appendix D, although we do not explicitly use this theorem in our policy network. In schedules
with multiple critical paths, the swap of operations u and v that violates all three Propositions 1,
2, and 3 either reduces the makespan or the number of critical paths, as proven in Theorem 2 and
Theorem 3 (Appendix D).
Theorem 1. For a schedule with only one critical path, the makespan of a given schedule decreases
when consecutive operations u and v are swapped on a machine if and only if lstJS[u] > ect′u and
lstMS[v] > ect′u.
Theorem 2. For a schedule with multiple critical paths, the makespan of a given schedule decreases
when consecutive operations u and v are swapped on a machine if and only if lstJS[u] > ect′u,
lstMS[v] > ect′u, and all critical paths include consecutive operations u and v.
Theorem 3. For a schedule with multiple critical paths, the makespan or the number of critical
paths of the schedule decreases when consecutive operations u and v on a machine are swapped, if
lstJS[v] ≤ ect′v , lstJS[u] > ect′u, and lstMS[v] > ect′u.

Embedding structure. For a candidate action involving the swap of operations u and v, the decoder
generates a joint embedding vector huv defined as [hu∥xu∥hv∥xv∥hG∥1P (u,v)∥1T (u,v)], where ∥
represents concatenation, hu is the embedding vector of operation u, xu is the state feature of
operation u, hG is the average embedding vector across all operations, 1P (u,v) denotes a set of binary
indicators representing whether the swap of (u, v) satisfies the conditions of three propositions we
have developed, and 1T (u,v) indicates whether the swap action is in the list of recently swapped pairs.
huv is fed into an MLP, whose outputs are normalized via softmax to yield selection probabilities
over all candidate swaps. At each step, the swap with the highest probability is selected as the next
move.

Adaptive list size of recently swapped pairs. LSI adopts an adaptive tabu strategy (Zhang et al.
(2007)), which is also used in TBGAT. In contrast to conventional tabu search that excludes recently
swapped pairs, LSI retains all candidate actions even though be recently swapped, and encodes
their revisit status as a binary feature, allowing the policy to learn when revisiting such moves is
beneficial. This approach is implemented in TBGAT’s publicly available code, although it is not
explicitly documented in the original paper. The size of the list is adaptively determined based on
the ratio of the number of jobs to the number of machines in each JSSP instance, with additional
stochastic variation, as detailed in Appendix E.

5 LEARNING PROCESS

Our model is trained via RL, specifically an entropy-regularized n-step REINFORCE algorithm, as
adopted in TBGAT (Zhang et al. (2024b)). The entropy term promotes generalization and encourages
exploration of the action space. At each time step t, we compute the normalized, discounted
cumulative reward R̄t and use it to weight the log-likelihood of the chosen action under our policy
πθ(at|st). We add an entropy H(πθ) = −Ea∼πθ

log(πθ(a)), scaled by a factor β which controls the
strength of entropy regularization, to encourage exploration. Concretely, we minimize the loss:

L(θ) = −
∑
t

[R̄t log πθ(at|st) + βH(πθ(·|st))]. (1)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356

U
nderreview

as
a

conference
paperatIC

L
R

2026

Table 1: Mean optimality gap for each JSSP benchmark group across different methods.

Method
TA ABZ FT

15x15 20x15 20x20 30x15 30x20 50x15 50x20 100x20 10x10 20x15 6x6 10x10 20x5
Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time

CP (10 sec) 0.3% 9.4s 3.2% 9.3s 3.8% 10.1s 8.5% 9.2s 13.2% 10.0s 10.2% 9.8s 15.7% 9.8s 12.5% 9.1s 0.0% 0.5s 3.1% 10.1s 0.0% 3.1s 0.0% 0.6s 0.0% 0.0s
CP (1 min) 0.2% 42.4s 1.4% 50.9s 1.8% 1.0m 4.2% 54.4s 6.0% 1.0m 3.6% 1.0m 6.9% 1.0m 8.8% 59.1s 0.0% 0.7s 1.9% 1.0m 0.0% 3.2s 0.0% 0.5s 0.0% 0.0s
CP (5 min) 0.0% 2.2m 1.2% 4.3m 1.6% 5.0m 2.4% 4.5m 4.0% 5.0m 0.2% 3.3m 2.1% 4.8m 4.9% 5.0m 0.0% 0.8s 0.8% 5.0m 0.0% 7.2s 0.0% 0.5s 0.0% 0.0s
CP (30 min) 0.0% 5.2m 0.7% 24.1m 0.7% 30.0m 1.1% 21.6m 2.6% 30.0m 0.0% 2.0m 0.3% 16.8m 0.0% 12.5m 0.0% 0.5s 0.4% 21.0m 0.0% 2.0s 0.0% 0.3s 0.0% 0.0s
MOR 16.7% 0.2s 23.4% 0.3s 19.5% 0.3s 21.5% 0.4s 24.0% 0.7s 15.6% 0.9s 16.2% 1.3s 7.7% 3.2s 7.6% 0.1s 17.5% 0.3s 23.6% 0.1s 26.1% 0.1s 34.3% 0.0s
LTT 19.5% 0.2s 20.0% 0.3s 18.4% 0.3s 20.3% 0.4s 23.7% 0.7s 14.3% 0.9s 15.2% 1.3s 6.5% 3.2s 6.5% 0.1s 19.5% 0.3s 9.1% 0.1s 17.2% 0.1s 24.8% 0.0s
FDD/MWKR 17.7% 0.2s 21.3% 0.3s 19.9% 0.3s 21.7% 0.4s 24.0% 0.7s 15.3% 0.9s 16.3% 1.3s 7.7% 3.2s 9.7% 0.1s 17.9% 0.3s 21.8% 0.1s 18.0% 0.1s 27.0% 0.0s
SN 15.3% 3.5s 19.4% 6.6s 17.2% 11.0s 19.1% 17.1s 23.7% 28.3s 13.9% 52.5s 13.5% 1.6m 6.7% 7.4m 6.1% 0.7s 20.5% 6.6s 7.3% 0.8s 19.5% 1.6s 28.6% 0.2s
IRD 8.9% 2.5s 11.7% 3.8s 12.5% 4.4s 11.6% 7.2s 14.4% 8.7s 4.9% 15.7s 9.5% 20.3s 2.3% 1.3m 4.8% 1.0s 10.7% 3.5s 5.5% 1.0s 7.1% 1.5s 3.3% 0.4s
NeuroLS-500 6.2% 6.8s 9.9% 8.7s 9.8% 10.9s 12.0% 12.9s 14.6% 16.3s 9.5% 21.9s 9.9% 27.9s 5.0% 1.0m 1.5% 4.1s 10.5% 9.0s 0.0% 2.8s 2.4% 4.2s 9.6% 4.7s
NeuroLS-1000 4.9% 13.7s 8.5% 17.4s 8.5% 21.7s 10.9% 25.8s 13.0% 32.6s 8.1% 43.9s 8.9% 55.8s 4.3% 2.0m 1.5% 8.2s 9.6% 18.1s 0.0% 5.5s 2.4% 8.3s 3.4% 9.4s
NeuroLS-5000 3.1% 1.1m 5.7% 1.5m 5.3% 1.8m 6.8% 2.1m 8.9% 2.7m 3.4% 3.7m 5.2% 4.7m 2.0% 10.0m 1.1% 40.8s 5.1% 1.5m 0.0% 27.6s 2.3% 41.5s 2.2% 47.2s
L2S-500 8.8% 9.3s 11.9% 10.1s 12.0% 10.9s 15.4% 12.7s 18.7% 14.0s 11.1% 16.2s 13.7% 22.8s 8.0% 50.2s 2.8% 7.4s 13.5% 10.2s 3.6% 6.8s 9.9% 7.5s 7.0% 7.4s
L2S-1000 6.3% 18.7s 10.5% 20.3s 11.2% 22.2s 13.4% 24.7s 16.7% 28.4s 8.9% 32.9s 11.6% 45.4s 6.2% 1.7m 2.8% 15.0s 11.9% 19.9s 0.0% 13.5s 8.0% 15.1s 7.0% 15.0s
L2S-5000 5.5% 1.5m 8.6% 1.7m 8.8% 1.9m 9.5% 2.0m 12.7% 2.4m 4.5% 2.8m 7.1% 3.8m 2.3% 8.4m 1.4% 1.3m 8.9% 1.7m 0.0% 1.1m 5.7% 1.2m 3.9% 1.2m
TBGAT-500 7.9% 12.6s 10.4% 14.6s 11.3% 17.5s 15.7% 17.2s 18.1% 19.3s 11.0% 23.9s 12.3% 24.4s 7.1% 42.0s 1.1% 9.2s 10.0% 12.8s 0.0% 7.4s 5.2% 10.3s 9.5% 11.7s
TBGAT-1000 6.5% 24.9s 8.8% 28.7s 9.8% 34.1s 13.7% 33.7s 15.5% 37.3s 8.9% 46.9s 10.4% 47.5s 5.6% 1.4m 1.1% 17.9s 9.7% 25.3s 0.0% 14.2s 4.8% 20.5s 6.7% 23.2s
TBGAT-5000 4.8% 2.1m 7.1% 2.3m 7.4% 2.7m 10.3% 2.7m 11.2% 2.9m 5.0% 3.9m 6.1% 3.9m 2.0% 6.7m 0.8% 1.5m 6.5% 2.1m 0.0% 1.2m 2.9% 1.7m 4.0% 1.9m
LSI-500 6.3% 16.5s 8.6% 16.1s 9.4% 17.5s 12.1% 19.5s 14.8% 22.8s 8.4% 24.9s 10.1% 28.1s 5.7% 46.0s 2.5% 8.2s 9.8% 18.0s 5.5% 6.0s 9.5% 9.1s 2.2% 10.4s
LSI-1000 5.2% 33.9s 7.4% 32.1s 8.0% 35.3s 9.9% 37.9s 12.2% 45.9s 6.3% 49.8s 8.1% 54.3s 3.9% 1.5m 1.4% 16.6s 8.8% 36.5s 0.0% 11.7s 6.0% 18.2s 2.2% 20.5s
LSI-5000 3.6% 2.7m 5.0% 2.6m 5.0% 2.9m 6.1% 3.4m 8.4% 3.6m 2.0% 4.2m 4.8% 4.6m 0.9% 7.7m 0.8% 1.4m 5.4% 2.4m 0.0% 58.0s 2.0% 1.5m 2.2% 1.8m

Method
LA SWV ORB YN

10x5 15x5 20x5 10x10 15x10 20x10 30x10 15x15 20x10 20x15 50x10 10x10 20x20
Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time

CP (10 sec) 0.0% 0.2s 0.0% 0.0s 0.0% 6.2s 0.4% 4.6s 0.0% 0.1s 0.5% 4.9s 0.0% 0.1s 0.0% 2.3s 2.4% 10.0s 7.0% 10.0s 6.1% 6.8s 0.0% 2.6s 4.3% 10.0s
CP (1 min) 0.0% 0.2s 0.0% 0.0s 0.0% 17.5s 0.0% 14.6s 0.0% 0.1s 0.3% 18.7s 0.0% 0.1s 0.0% 2.0s 2.0% 50.2s 3.4% 1.0m 3.8% 32.4s 0.0% 2.8s 1.7% 1.0m
CP (5 min) 0.0% 0.5s 0.0% 0.0s 0.0% 28.9s 0.0% 56.8s 0.0% 0.1s 0.4% 1.1m 0.0% 0.2s 0.0% 3.4s 1.8% 4.5m 4.2% 5.0m 2.2% 2.6m 0.0% 4.4s 1.8% 5.0m
CP (30 min) 0.0% 0.2s 0.0% 0.1s 0.0% 14.6s 0.0% 22.5s 0.0% 0.1s 0.0% 6.0m 0.0% 0.1s 0.0% 1.9s 0.8% 19.8m 3.1% 30.0m 0.6% 7.8m 0.0% 2.4s 1.3% 30.0m
MOR 13.0% 0.1s 2.4% 0.0s 2.9% 0.1s 13.3% 0.2s 21.0% 0.1s 17.4% 0.2s 6.3% 0.1s 18.2% 0.3s 40.9% 0.2s 35.0% 0.3s 29.1% 0.5s 26.6% 0.1s 18.1% 0.4s
LTT 12.6% 0.1s 2.3% 0.0s 3.5% 0.1s 13.0% 0.2s 15.3% 0.1s 16.5% 0.2s 4.1% 0.1s 15.1% 0.3s 29.3% 0.2s 29.3% 0.3s 21.5% 0.5s 19.8% 0.1s 19.7% 0.4s
FDD/MWKR 13.2% 0.1s 4.6% 0.0s 2.8% 0.1s 14.9% 0.2s 13.1% 0.1s 19.3% 0.2s 7.8% 0.1s 16.6% 0.3s 38.3% 0.2s 34.5% 0.3s 23.5% 0.5s 19.8% 0.1s 20.9% 0.4s
SN 12.1% 0.6s 2.7% 1.2s 3.6% 1.9s 11.9% 0.8s 14.6% 2.0s 15.7% 4.1s 3.1% 9.3s 16.1% 3.5s 34.4% 3.9s 30.6% 6.7s 25.4% 25.1s 20.0% 0.8s 18.4% 11.2s
IRD 4.6% 0.9s 0.1% 0.6s 0.1% 1.8s 4.1% 2.2s 8.5% 1.1s 5.9% 2.8s 0.9% 1.6s 10.8% 4.9s 11.8% 2.8s 13.0% 3.8s 4.2% 9.7s 9.0% 1.0s 13.9% 4.3s
NeuroLS-500 0.9% 3.0s 0.0% 4.0s 0.0% 5.0s 2.8% 3.9s 3.9% 5.6s 5.4% 7.3s 0.1% 10.8s 5.7% 7.1s 24.3% 7.4s 22.3% 8.7s 20.6% 16.3s 5.3% 3.8s 9.4% 10.7s
NeuroLS-1000 0.9% 6.0s 0.0% 8.1s 0.0% 10.0s 2.4% 7.8s 3.7% 11.2s 4.0% 14.5s 0.1% 21.6s 4.9% 14.3s 22.1% 14.8s 20.2% 17.5s 19.6% 32.7s 3.9% 7.6s 7.8% 21.3s
NeuroLS-5000 0.0% 29.8s 0.0% 40.4s 0.0% 50.2s 1.1% 39.2s 2.3% 55.9s 2.2% 1.2m 0.0% 1.8m 2.7% 1.2m 12.5% 1.2m 14.9% 1.5m 16.4% 2.7m 1.9% 38.0s 5.2% 1.8m
L2S-500 2.1% 6.9s 0.0% 6.8s 0.0% 7.1s 4.4% 7.5s 5.4% 8.0s 6.9% 8.9s 0.1% 10.2s 7.4% 9.0s 27.7% 8.8s 26.5% 9.7s 21.4% 12.5s 8.2% 7.4s 13.9% 11.7s
L2S-1000 1.8% 14.0s 0.0% 13.9s 0.0% 14.5s 2.3% 15.0s 4.8% 16.0s 6.4% 17.5s 0.0% 20.4s 7.2% 18.2s 25.1% 17.6s 24.2% 19.0s 19.9% 25.4s 6.6% 15.0s 11.5% 23.4s
L2S-5000 1.8% 1.2m 0.0% 1.2m 0.0% 1.2m 0.9% 1.3m 3.7% 1.3m 4.2% 1.4m 0.0% 1.7m 5.4% 1.5m 19.9% 1.4m 18.2% 1.7m 17.3% 2.1m 3.8% 1.3m 8.8% 1.9m
TBGAT-500 3.5% 2.3s 1.1% 0.9s 0.1% 1.7s 1.8% 9.1s 5.8% 10.8s 6.7% 11.4s 1.5% 4.9s 7.0% 12.1s 31.0% 15.6s 24.3% 17.0s 21.1% 29.8s 7.0% 10.4s 10.4% 14.3s
TBGAT-1000 3.5% 3.1s 1.1% 1.9s 0.0% 3.3s 1.8% 18.2s 5.4% 21.4s 5.4% 22.8s 1.4% 6.3s 4.8% 24.5s 29.8% 31.2s 23.0% 34.3s 20.1% 59.5s 5.7% 20.8s 8.5% 28.1s
TBGAT-5000 3.5% 9.8s 0.0% 9.2s 0.0% 16.1s 1.4% 1.6m 2.8% 1.8m 4.9% 52.0s 1.1% 16.9s 3.8% 2.0m 27.7% 2.5m 17.0% 2.7m 17.6% 4.9m 4.5% 1.7m 5.6% 2.3m
LSI-500 2.9% 9.0s 0.0% 9.1s 0.0% 3.8s 2.0% 12.1s 4.9% 11.5s 5.6% 13.4s 0.0% 10.5s 5.1% 14.0s 25.4% 21.6s 21.4% 19.7s 20.7% 42.2s 5.3% 13.5s 9.2% 15.4s
LSI-1000 2.3% 18.1s 0.0% 17.9s 0.0% 5.3s 1.9% 23.5s 4.4% 22.7s 3.9% 26.0s 0.0% 11.8s 3.8% 27.8s 21.8% 41.3s 18.6% 37.8s 20.4% 1.2m 4.6% 26.1s 7.3% 30.4s
LSI-5000 1.1% 1.4m 0.0% 1.5m 0.0% 17.7s 0.9% 1.9m 3.2% 2.0m 1.8% 2.1m 0.0% 22.1s 2.4% 2.2m 11.2% 2.8m 13.5% 3.1m 18.9% 5.4m 2.2% 2.3m 5.0% 2.5m

7

357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410

Under review as a conference paper at ICLR 2026

Policy parameters are updated periodically based on gradient estimates gathered from sample trajec-
tories. The entire learning process, which includes trajectory collection, gradient computation, and
parameter updates, is provided in Algorithm 1 in Appendix F.

6 EXPERIMENTS

Baselines and test datasets. We compared the performance of our method with dispatching rule-
based constructive heuristic methods (largest tail time (LTT) rule (Lee & Kim (2024)), most operations
remaining (MOR) rule, minimum ratio of flow due date to most work remaining (FDD/MWKR)
rule (Sels et al. (2012))), learning-based constructive heuristics (SN (Park et al. (2021a)) and IRD
(Lee & Kim (2024))), local search methods (TS Zhang et al. (2007), NeuroLS (Falkner et al. (2022)),
L2S (Zhang et al. (2024a)), and TBGAT (Zhang et al. (2024b))), and an exact method (constraint
programming (CP) (Zhou (1996))). We evaluated all methods on JSSP benchmark datasets: TA
(Taillard (1993)), LA (Lawrence (1984)), ABZ (Adams et al. (1988)), FT (Muth & Thompson (1963)),
ORB (Applegate & Cook (1991)), SWV (Storer et al. (1992)), and YN (Yamada & Nakano (1992)).
An instance denoted as ‘benchmark NxM ’ contains N jobs and M machines. Performance is
measured by the optimality gap, defined as C

C∗ − 1, where C is the makespan of a schedule obtained
by each method and C∗ is the optimal or best-known makespan.

Performance for JSSP benchmark datasets. We initialized the schedules using the FDD/MWKR
rule and computed EST and LST using the topological linear-time algorithm proposed by Zhang et
al. Zhang et al. (2024a). L2S, TBGAT, and LSI were trained and validated on JSSP instances with
10 jobs and 10 machines, while NeuroLS used instances with 15 jobs and 15 machines. Details of
implementation and configuration are provided in Appendix G.

Table 1 reports the results grouped by benchmark type, problem size, and method. The number
following each learning-based local search method (NeuroLS, L2S, TBGAT, and LSI) in the table
denotes the number of search iterations, and the reported running time is derived by batching
computations across instances within each instance group. Although LSI is trained only on 10x10
instances, it generalizes well to significantly larger instances, highlighting its strong scalability. LSI
also demonstrates superior performance compared to other learning-based methods while requiring
similar computational resources. In particular, LSI outperforms both L2S and TBGAT across nearly
all benchmark groups with the same search iterations. Figure 5 also shows the performance and
computational time of large-scale JSSP benchmarks. In terms of both the solution quality (optimality
gap) and the computational efficiency (end-to-end running time), LSI outperforms all learning-based
methods, classical dispatchers, and the CP solver.

100 101 102 103

End-to-end Running Time (second, log scale)

0.00

0.05

0.10

0.15

0.20

O
pt

im
al

ity
 G

ap

Instances: TA 50x20

MOR
FDD/MWKR
LTT
SN
IRD

CP
NeuroLS
TBGAT
LSI

101 102

End-to-end Running Time (second, log scale)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

O
pt

im
al

ity
 G

ap

Instances: TA 100x20

MOR
FDD/MWKR
LTT
SN
IRD

CP
NeuroLS
TBGAT
LSI

Figure 5: Mean optimality gap and mean end-to-end running time for large-scale benchmarks.

Ablation studies. Table 2 reports the performance of different policy network architectures. In the
table, ‘Gap’ denotes the average optimality gap across all 162 JSSP benchmark instances, ‘Rank’
indicates the average rank among the four compared methods within each iteration, and ‘Diff’
represents the average difference in optimality gap from the best-performing method for each instance
with the same number of iterations. A ‘Diff’ of 0% indicates that the method consistently achieved
the best performance across all instances under its iteration setting. The inclusion of condition
indicators significantly improves performance for both encoder types, a simple MLP and TBGAT’s

8

411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464

Under review as a conference paper at ICLR 2026

Table 2: Evaluation of different policy network architecture under varying search iterations.
of iterations 500 1000 5000

Method Gap Rank Diff Gap Rank Diff Gap Rank Diff

None + MLP 12.7% 3.60 4.3% 11.2% 3.50 4.3% 8.2% 3.35 3.9%
None + bi-GAT (TBGAT) 10.7% 2.78 2.4% 9.4% 2.78 2.5% 7.0% 2.81 2.6%
Indicators + MLP (LSI) 9.0% 1.86 0.7% 7.6% 1.86 0.6% 5.0% 1.85 0.6%
Indicators + bi-GAT 8.9% 1.76 0.6% 7.6% 1.86 0.6% 5.2% 1.99 0.8%

LA 10
x5

LA 15
x5

ABZ 10
x1

0

LA 10
x1

0

ORB 10
x1

0

LA 20
x5

LA 15
x1

0

LA 20
x1

0

SW
V 20

x1
0

LA 15
x1

5

TA 15
x1

5

ABZ 20
x1

5

SW
V 20

x1
5

TA 20
x1

5

LA 30
x1

0

TA 20
x2

0

YN 20
x2

0

TA 30
x1

5

SW
V 50

x1
0

TA 30
x2

0

TA 50
x1

5

TA 50
x2

0

TA 10
0x

20

Benchmark Group

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

O
pt

im
al

ity
 G

ap

Number of iterations: 500

None + MLP
None + bi-GAT (TBGAT)
Indicators + MLP (LSI)
Indicators + bi-GAT

Figure 6: Mean optimality gap for benchmark groups with different policy network structures.

bi-GAT. ‘Indicators’ in Table 2 refers to the use of our proposed condition indicators in the decoder,
while ‘None’ indicates that no theoretical insights are incorporated into the policy network. Both
encoders with condition indicators achieve nearly identical performance, differing by less than
0.2%. This suggests that our theoretically derived indicators can serve as an effective substitute for
complex neural architectures designed to capture problem-specific features. Figure 6 also shows the
effectiveness of the condition indicators across different benchmark groups. As shown in the figure,
within each benchmark group of the same size, the performance difference between using a simple
MLP and a bi-GAT encoder remains negligible when the condition indicators are used. The other
results of ablation studies across other four components are presented in Appendix I: the effectiveness
of (1) different ways to incorporate the propositions into the local search method, (2) different state
features, (3) different critical-based neighborhood structures, and (4) different training instance sizes.

7 CONCLUSION

We propose LSI (Local Search with Indicators), a novel learning-based local search method for
makespan minimization in Job Shop Scheduling Problems (JSSPs). LSI replaces complex GNN
architectures with a lightweight MLP policy network that incorporates three binary indicators derived
from newly identified necessary conditions for makespan reduction. These conditions, which we
define through a theoretical analysis of schedule improvement under consecutive operation swaps,
are used to guide the policy network toward selecting only the most promising moves within the N5
neighbors. By embedding these problem-specific theoretical insights into the policy, LSI achieves
superior performance and scalability across JSSP benchmarks while significantly reducing inference
time. Experimental results across diverse JSSP benchmarks demonstrate that our proposed indicators
not only enhance the solution quality but also enable the use of a lightweight MLP-based encoder,
outperforming prior methods that rely on complex neural architectures such as Graph Attention
Network (GAT). This result highlights that problem-specific insights related to the objective function
can serve as an effective substitute for architectural complexity.

Limitations and future works. While the approach shows strong performance, it has some
limitations. The theoretical indicators we propose are problem-specific and must be manually derived
for each combinatorial optimization problem (COP), which may limit generalizability and automation
of this approach. Future work will focus on two directions. One is to generalize our method to
other COPs, such as vehicle routing problems or scheduling problems with additional constraints, by
deriving analogous theoretical indicators. The other is to develop representation learning techniques
that can autonomously discover and learn such objective-aligned features, reducing reliance on
hand-crafted indicators.

9

465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518

Under review as a conference paper at ICLR 2026

REFERENCES

Joseph Adams, Egon Balas, and Daniel Zawack. The shifting bottleneck procedure for job shop
scheduling. Management Science, 34(3):391–401, 1988.

David Applegate and William Cook. A computational study of the job-shop scheduling problem.
ORSA Journal on Computing, 3(2):149–156, 1991.

Jacek Błażewicz, Erwin Pesch, and Małgorzata Sterna. The disjunctive graph machine representation
of the job shop scheduling problem. European Journal of Operational Research, 127(2):317–331,
2000.

Peter Brucker, Bernd Jurisch, and Bernd Sievers. A branch and bound algorithm for the job-shop
scheduling problem. Discrete Applied Mathematics, 49:107–127, 1994.

Ruiqi Chen, Wenxin Li, and Hongbing Yang. A deep reinforcement learning framework based on an
attention mechanism and disjunctive graph embedding for the job-shop scheduling problem. IEEE
Transactions on Industrial Informatics, 19(2):1322–1331, 2022.

Mauro Dell’Amico and Marco Trubian. Applying tabu search to the job-shop scheduling problem.
Annals of Operations research, 41(3):231–252, 1993.

Jonas K Falkner, Daniela Thyssens, Ahmad Bdeir, and Lars Schmidt-Thieme. Learning to control
local search for combinatorial optimization. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pp. 361–376. Springer, 2022.

Michael R Garey, David S Johnson, and Ravi Sethi. The complexity of flowshop and jobshop
scheduling. Mathematics of Operations Research, 1(2):117–129, 1976.

Fred Glover. Future paths for integer programming and links to artificial intelligence. Computers &
Operations Research, 13(5):533–549, 1986.

Amit Kumar Gupta and Appa Iyer Sivakumar. Job shop scheduling techniques in semiconductor
manufacturing. The International Journal of Advanced Manufacturing Technology, 27(11):1163–
1169, 2006.

Bao-An Han and Jian-Jun Yang. Research on adaptive job shop scheduling problems based on
dueling double dqn. IEEE Access, 8:186474–186495, 2020.

Zangir Iklassov, Dmitrii Medvedev, Ruben Solozabal Ochoa De Retana, and Martin Takac. On the
study of curriculum learning for inferring dispatching policies on the job shop scheduling. In
International Joint Conference on Artificial Intelligence, pp. 5350–5358, 2023.

Jens Kuhpfahl and Christian Bierwirth. A study on local search neighborhoods for the job shop
scheduling problem with total weighted tardiness objective. Computers & Operations Research,
66:44–57, 2016.

Stephen Lawrence. Resource constrained project scheduling: An experimental investigation of
heuristic scheduling techniques (supplement). Graduate School of Industrial Administration,
Carnegie-Mellon University, 1984.

Je-Hun Lee and Hyun-Jung Kim. Imitation learning for real-time job shop scheduling using graph-
based representation. In 2022 Winter Simulation Conference (WSC), pp. 3285–3296. IEEE, 2022.

Je-Hun Lee and Hyun-Jung Kim. Graph-based imitation learning for real-time job shop dispatcher.
IEEE Transactions on Automation Science and Engineering, 2024.

Chien-Liang Liu and Tzu-Hsuan Huang. Dynamic job-shop scheduling problems using graph neural
network and deep reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 53(11), 2023.

Chien-Liang Liu, Chuan-Chin Chang, and Chun-Jan Tseng. Actor-critic deep reinforcement learning
for solving job shop scheduling problems. Ieee Access, 8:71752–71762, 2020.

10

519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572

Under review as a conference paper at ICLR 2026

Yangtao Liu, Ruihan Zhang, Jun Wang, and Yan Wang. Current and future lithium-ion battery
manufacturing. IScience, 24(4):1–17, 2021.

Nenad Mladenović and Pierre Hansen. Variable neighborhood search. Computers & Operations
Research, 24(11):1097–1100, 1997.

Marta Monaci, Valerio Agasucci, and Giorgio Grani. An actor-critic algorithm with policy gradients
to solve the job shop scheduling problem using deep double recurrent agents. European Journal of
Operational Research, 312(3):910–926, 2024.

John F Muth and Gerald L Thompson. Industrial Scheduling. Prentice-Hall, 1963.

Eugeniusz Nowicki and Czeslaw Smutnicki. A fast taboo search algorithm for the job shop problem.
Management Science, 42(6):797–813, 1996.

Junyoung Park, Sanjar Bakhtiyar, and Jinkyoo Park. Schedulenet: Learn to solve multi-agent
scheduling problems with reinforcement learning. arXiv preprint arXiv:2106.03051, 2021a.

Junyoung Park, Jaehyeong Chun, Sang Hun Kim, Youngkook Kim, and Jinkyoo Park. Learning to
schedule job-shop problems: Representation and policy learning using graph neural network and
reinforcement learning. International Journal of Production Research, 59(11):3360–3377, 2021b.

Veronique Sels, Nele Gheysen, and Mario Vanhoucke. A comparison of priority rules for the
job shop scheduling problem under different flow time-and tardiness-related objective functions.
International Journal of Production Research, 50(15):4255–4270, 2012.

Robert H Storer, S David Wu, and Renzo Vaccari. New search spaces for sequencing problems with
application to job shop scheduling. Management Science, 38(10):1495–1509, 1992.

Eric Taillard. Benchmarks for basic scheduling problems. European Journal of Operational Research,
64(2):278–285, 1993.

Peter JM Van Laarhoven, Emile HL Aarts, and Jan Karel Lenstra. Job shop scheduling by simulated
annealing. Operations Research, 40(1):113–125, 1992.

Jin Xie, Xinyu Li, Liang Gao, and Lin Gui. A new neighbourhood structure for job shop scheduling
problems. International Journal of Production Research, 61(7):2147–2161, 2023.

Hegen Xiong, Shuangyuan Shi, Danni Ren, and Jinjin Hu. A survey of job shop scheduling problem:
The types and models. Computers & Operations Research, 142:105731, 2022.

Takeshi Yamada and Ryohei Nakano. A genetic algorithm applicable to large-scale job-shop problems.
In PPSN, volume 2, pp. 281–290, 1992.

ChaoYong Zhang, PeiGen Li, ZaiLin Guan, and YunQing Rao. A tabu search algorithm with a new
neighborhood structure for the job shop scheduling problem. Computers & Operations Research,
34(11):3229–3242, 2007.

Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and Xu Chi. Learning to
dispatch for job shop scheduling via deep reinforcement learning. Advances in Neural Information
Processing Systems, 33:1621–1632, 2020.

Cong Zhang, Zhiguang Cao, Wen Song, Yaoxin Wu, and Jie Zhang. Deep reinforcement learning
guided improvement heuristic for job shop scheduling. In The Twelfth International Conference on
Learning Representations, 2024a.

Cong Zhang, Zhiguang Cao, Yaoxin Wu, Wen Song, and Jing Sun. Learning topological representa-
tions with bidirectional graph attention network for solving job shop scheduling problem. In The
40th Conference on Uncertainty in Artificial Intelligence, 2024b.

Linlin Zhao, Weiming Shen, Chunjiang Zhang, and Kunkun Peng. An end-to-end deep reinforcement
learning approach for job shop scheduling. In IEEE International Conference on Computer
Supported Cooperative Work in Design (CSCWD), pp. 841–846. IEEE, 2022.

Jianyang Zhou. A constraint program for solving the job-shop problem. In Principles and Practice
of Constraint Programming—CP96: Second International Conference, pp. 510–524, Cambridge,
MA, USA, August 1996. Springer.

11

573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626

Under review as a conference paper at ICLR 2026

ACKNOWLEDGMENTS

This work was supported by (We will add a funding program after accept), and this paper have edited
by using several LLM services.

APPENDIX

We provide further details of our paper in the appendix. Our code implementation can be found in
https://github.com/***/*** (Code will be made publicly available upon acceptance).

A DISJUNCTIVE GRAPH TO REPRESENT JSSP INSTANCE

Although our proposed method, LSI, does not directly employ a disjunctive graph-based representa-
tion, we introduce it here to provide context for comparison with prior works that have utilized this
structure to learn architectural information implied in the JSSP.

The JSSP can be modeled as a disjunctive graph (Błażewicz et al. (2000)), as illustrated in Figure 7.
In this representation, each operation—including dummy operations—is represented as a node.
Specifically, each node Oij denotes the j-th operation of job i, which must be processed on a
specified machine for a given processing time. Dummy nodes OS and OT represent the artificial start
and terminal operations with zero processing time. Nodes with the same color belong to the same
job, indicating their precedence relationship.

There are two types of arcs in the disjunctive graph: conjunctive (directed) arcs represent precedence
constraints between successive operations within a job, while disjunctive (undirected) arcs connect
operations assigned to the same machine. Once the processing sequence between operations assigned
to the same machine is determined, the corresponding disjunctive arc becomes directed.

M

M

M

1 2 3 4 5 6 7 80

Time

(a) (b)

Figure 7: (a) A schedule of a JSSP instance with three jobs and three machines and (b) the disjunctive
graph of the schedule.

Several prior studies have adopted GNN architectures based on the disjunctive graph-based represen-
tation to encode operations’ features (Zhang et al. (2020); Park et al. (2021b); Liu & Huang (2023);
Park et al. (2021a); Lee & Kim (2022; 2024); Falkner et al. (2022); Zhang et al. (2024a;b)). This
representation captures both the precedence relations across operations within a job and the operation
sequence on each machine under the current schedule. Such structural encoding enhances the model’s
capacity to capture scheduling-specific characteristics and the underlying topological information of
the current schedule.

B CRITICAL PATH-BASED NEIGHBORHOOD STRUCTURES

As described in Section 2, a critical path is defined as the longest path from the operation with
the earliest start time to the operation with the latest completion time, where the total path length
equals the sum of processing times of the operations along the path. No idle time exists between
consecutive operations on the critical path, and its length is equal to the schedule’s makespan. For

12

https://github.com/***/***

627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680

Under review as a conference paper at ICLR 2026

instance, Figure 8 shows all critical paths that can be found in the schedule illustrated in Figure 7. The
critical block is a subset of the operations on the critical path and is defined as maximal sequences of
consecutive operations processed on the same machine within the critical path. For example, there
are three critical blocks {O31}, {O32}, and {O33, O23, O13} on the critical path of Figure 8 (a), and
four critical blocks {O31}, {O32, O21, O11}, {O12}, and {O13} on the critical path of Figure 8 (b).

A critical block

with two more

operations
A critical block

with two more

operations

(a) (b)

Figure 8: Two critical paths of the schedule illustrated in Figure 7.

A neighborhood structure generates neighbor schedules from the current schedule in local search
methods. The N1 neighborhood structure considers all possible swaps of consecutive operations
in critical blocks (Van Laarhoven et al. (1992)). N2 narrows these to pairs at the beginning or end
of critical blocks (Dell’Amico & Trubian (1993)). N5 further refines N2 by excluding pairs at the
beginning of the first critical block or the end of the last, except when these are at the end of the first
block or the beginning of the last, respectively (Nowicki & Smutnicki (1996)). For example, in the
critical paths shown in Figures 8 (a) and (b), N5 considers the pairs (O33, O23), (O23, O21), and
(O21, O11) as candidates. The pair (O23, O13) is excluded because O13 is the last operation in the
critical path and O23 is not at the beginning of its block.

All three neighborhood structures ensure feasibility by generating acyclic disjunctive graphs only
(Van Laarhoven et al. (1992)). While N1 can theoretically reach the optimal schedule from any initial
solution (Van Laarhoven et al. (1992)), N5 is widely adopted for its efficiency. It considers fewer
operation pairs than N1 and N2 while including all pairs whose swaps can potentially improve the
makespan Nowicki & Smutnicki (1996), as shown in Figure 2. This makes N5 effective in practice.

C PROOFS OF NECESSARY CONDITIONS FOR MAKESPAN REDUCTION

The proofs of three propositions proposed in Section 4.3 are as follows. JP [u] and JS[u] denote the
job-predecessor and job-successor operations of operation u, respectively, while MP [u] and MS[u]
represent its machine-predecessor and machine-successor operations, respectively. Note that ect′v can
be calculated as max(ectMP [u], ectJP [v]) + pv and ect′u can be calculated as max(estu, ect

′
v) + pu.

The propositions hold for all consecutive operations on the same machine, not just those on critical
paths.

Proposition 1. When consecutive operations u and v are swapped on a machine of a given schedule,
the makespan cannot decrease if lstJS[v] ≤ ect′v .

Proof. By definition, LST is the latest time an operation can start without delaying the makespan.
Therefore, increasing the LST of any job’s last operation increases the makespan. If lstJS[v] ≤ ect′v ,
then lstJS[v] ≤ ect′v ≤ est′JS[v] ≤ lst′JS[v] due to the precedence constraint of v and the definitions
of EST and LST. From the perspective of the job of v, the LST of its subsequent operations, including
JS[v], will remain the same or be delayed. This implies that the LST of the last operation of the job
of v will also remain the same or be delayed. Consequently, the makespan will either remain the
same or increase.

Proposition 2. When consecutive operations u and v are swapped on a machine of a given schedule,
the makespan cannot decrease if lstJS[u] ≤ ect′u.

13

681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734

Under review as a conference paper at ICLR 2026

Proof. The proof follows the same logic as Proposition 1. The condition lstJS[u] ≤ ect′u implies
lstJS[u] ≤ lst′JS[u], which ensures that the makespan cannot decrease.

Proposition 3. When consecutive operations u and v are swapped on a machine of a given schedule,
the makespan cannot decrease if lstMS[v] ≤ ect′u.

Proof. We consider determined operation orders for all machines except for operations u and v. By
the definition of LST, increasing the LST of the last operation processed on any machine increases
the makespan. If lstMS[v] ≤ ect′u, then lstMS[v] ≤ ect′u ≤ est′MS[v] ≤ lst′MS[v] since operation u

precedes MS[v] on their compatible machine. From the machine’s perspective, the LST of subsequent
operations including MS[v] will either remain the same or be delayed. This implies that the LST of
the last operation on the machine will also either remain the same or be delayed. Consequently, the
makespan will either remain the same or increase.

D PROOF OF SUFFICIENT CONDITION FOR MAKESPAN REDUCTION

Definitnion: Downstream-affected operations. Given a swap of consecutive operations (u, v) on
a machine, let F+(u, v) denote the set of operations reachable from u or v by repeatedly taking a job
successor or a machine successor. We call elements of F+(u, v) downstream-affected operations.
Note that u and v are not in F+(u, v).

Lemma 1. Locality of perturbation. Swapping (u, v) can change EST and ECT only for
downstream-affected operations: for any operation w /∈ F+(u, v), est′w = estw and ect′w = ectw.

Proof. Suppose est′w ̸= estw for some w /∈ F+(u, v). Since estw = max{ectJP [w],ectMP [w]}, a
change at w implies ect′x ̸= ectx for some immediate predecessor x ∈ {JP [w],MP [w]}. Iterating
the same reasoning on x (and so on) produces a finite backward chain of nodes with changed est/ect
that must originate at u or v, the only place where the schedule was modified. Hence, there exists
a successor sequence from u or v to w. This is in contradiction with w /∈ F+(u, v). Therefore,
est′w = estw and thus ect′w = ectw for all w /∈ F+(u, v).

Lemma 2. LST monotonicity for downstream-affected operations. Let OT denote the terminal
dummy operation. If lst′OT

≥ lstOT
(the makespan is the same or increasing), then we have

lst′w ≥ lstw for any w ∈ F+(u, v).

Proof. For each operation x, lstx = min{lstJS[x], lstMS[x]} − px. Order the nodes of F+(u, v) by
their successor distance to OT and proceed by induction.

If w’s only successor is OT , then lst′w = lst′OT
− pw ≥ lstOT

− pw = lstw. If lst′JS[w] ≥
lstJS[w] and lst′MS[w] ≥ lstMS[w], then lst′w = min{lst′JS[x], lst

′
MS[x]} − pw ≥ lstw =

min{lstJS[x], lstMS[x]} − pw. Therefore, lst′w ≥ lstw for all w ∈ F+(u, v) by induction.

Theorem 1 For a schedule with only one critical path, the makespan of the schedule decreases
when consecutive operations u and v on a machine are swapped if and only if lstJS[u] > ect′u and
lstMS[v] > ect′u.

Proof. (⇒) Necessity via contrapositive. If LSTJS[u] ≤ ECT ′
u or LSTMS[v] ≤ ECT ′

u, then by
Propositions 2 and 3 the swap cannot reduce the makespan, independently of how many critical paths
exist.

(⇐) Sufficiency by contradiction. Since a decrease in makespan means the LST of the dummy terminal
operation OT decreases, we assume, for contradiction, that lst′OT

≥ lstOT
while lstJS[u] > ect′u

and lstMS[v] > ect′u both hold. When operations u and v are swapped, all operations on the
paths from either u or v to OT are affected. We call these paths affected paths, excluding the
path containing both u and v. Since OT is at the end of all affected paths and lstw is defined as
min(lstJS[w], lstMS[w])−pw, for any operation w on an affected path (except u and v), lst′w ≥ lstw
must hold.

14

735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788

Under review as a conference paper at ICLR 2026

The new critical path in the new schedule must include one of the affected paths, since any increase
in path length must result from EST adjustments due to the swap. Note that operations before u on
the original critical path remain unchanged and must be part of any new critical path. Therefore, we
only need to investigate the paths after the swap. All affected paths begin with one of three operation
pairs: (v, JS[v]), (u, JS[u]), or (u,MS[v]). We investigate these cases:

(1) Let an affected path starting with (v, JS[v]) be the new critical path. We know that ectv ≤
estJS[v] ≤ lstJS[v] ≤ lst′JS[v] = est′JS[v] = ect′v by definition of EST and the characteristic of
critical path. However, est′v < estv must hold. By definition, est′v = max(ectJP [v], ectMP [u]) since
ect′JP [v] = ectJP [v] and ect′MP [u] = ectMP [u] as these operations are not affected by the swap. Also,
since u is on the unique critical path while JP [v] is not, we have estv = max(ectJP [v], ectu) = ectu
and ectMP [u] < ectu. Therefore, est′v = max(ectJP [v], ectMP [u]) < ectu = estv . This contradicts
ectv ≤ ect′v .

(2) Let an affected path starting with (u, JS[u]) be the new critical path. Then lstJS[u] ≤ lst′JS[u] =

est′JS[u] = ect′u would hold, contradicting lstJS[u] > ect′u.

(3) Let an affected path starting with (u,MS[v]) be the new critical path. Then lstMS[v] ≤
lst′MS[v] = est′MS[v] = ect′u would hold, contradicting lstMS[v] > ect′u.

Since all possible cases lead to contradictions, our assumption lst′OT
≥ lstOT

must be false. There-
fore, the makespan decreases when lstJS[u] > ect′u and lstMS[v] > ect′u.

Theorem 2 For a schedule with multiple critical paths, the makespan strictly decreases when
consecutive operations u and v on a machine are swapped iff

LSTJS[u] > ECT ′
u, LSTMS[v] > ECT ′

u, and every critical path contains v.

Proof. (⇒) Necessity via contrapositive. If LSTJS[u] ≤ ECT ′
u or LSTMS[v] ≤ ECT ′

u, Proposi-
tions 2–3 preclude any decrease. Moreover, if some critical path omits v, then by Lemma 1 it can
remain unchanged by the swap, preserving the old makespan—contradiction.

(⇐) Sufficiency by contradiction. Assume the three conditions and suppose LST ′
OT

≥ LSTOT
. Every

critical path contains v, so after the swap any critical suffix must start at one of (v, JS[v]), (u, JS[u]),
(u,MS[v]). Using Lemma 2 and the same calculations as in Theorem 1: case (v, JS[v]) is impossible
because ECT ′

v < ECTv; cases (u, JS[u]) and (u,MS[v]) contradict LSTJS[u] > ECT ′
u and

LSTMS[v] > ECT ′
u, respectively. Thus LST ′

OT
< LSTOT

and the makespan decreases.

Theorem 3. For a schedule with multiple critical paths, if

LSTJS[v] > ECT ′
v, LSTJS[u] > ECT ′

u, LSTMS[v] > ECT ′
u,

then swapping the consecutive pair (u, v) either (i) strictly reduces the makespan or (ii) keeps the
makespan but strictly reduces the number of critical paths.

Proof. Setup. The three strict inequalities ensure that, after swapping, there is no blocking at JS[v]
with respect to ECT ′

v, nor at JS[u] or MS[v] with respect to ECT ′
u. Since pu > 0 and MP [u]

immediately precedes u on the same machine, we have ECTMP [u] < ECTu; hence

EST ′
v = max{ECTJP [v], ECTMP [u]} < max{ECTJP [v], ECTu} = ESTv ⇒ ECT ′

v < ECTv

By Lemma 11, only paths intersecting F+(u, v) may change. By Lemma 2, if the makespan does not
decrease (LST ′

OT
≥LSTOT

), then LST ′
w ≥ LSTw for any w ∈ F+(u, v) \ {u, v}.

Consider any original critical path P and classify its relation to (u, v) into six exhaustive, mutually
exclusive cases:

(1) Independent: P shares no operation with {u, v}.
(2) Both: P contains both u and v.

15

789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842

Under review as a conference paper at ICLR 2026

(3) Share-before-u: P shares some operations before u but excludes v.
(4) Share-all-before-u but exclude v: P shares all operations up to u but excludes v.
(5) Share-after-v: P shares some operations after v.
(6) Share-all-after-v but exclude u: P shares all operations after v but excludes u.

Case (2) After the swap, any critical suffix must start at one of (v, JS[v]), (u, JS[u]), or (u,MS[v]).
However, (v, JS[v]) is impossible because ECT ′

v < ECTv; starting at (u, JS[u]) would force
LSTJS[u] ≤ ECT ′

u; starting at (u,MS[v]) would force LSTMS[v] ≤ ECT ′
u. Each contradicts the

assumptions. Hence P is no longer critical. If all critical paths are of this type, the makespan strictly
decreases; otherwise the number of critical paths strictly decreases.

Case (5: Share-after-v. Then any critical suffix must start at (v, JS[v]), which is impossible because
ECT ′

v < ECTv. By Lemma 22, LST ′
JS[v] ≥ LSTJS[v] ≥ ECTv > ECT ′

v, so EST ′
JS[v] =

LST ′
JS[v] = ECT ′

v cannot hold. Thus P is no longer critical; the same conclusion as in Case (2)
follows.

Case (3) If P remains critical, its critical suffix must start at (u, JS[u]), which requires LST ′
JS[u] =

EST ′
JS[u] = ECT ′

u. By Lemma 2, LST ′
JS[u] ≥ LSTJS[u], hence LSTJS[u] ≤ ECT ′

u, contradict-
ing LSTJS[u] > ECT ′

u. Thus P is not critical; the same conclusion as above holds.

Cases (4) and (6) For Case (4), a critical suffix from (u, JS[u]) would enforce LSTJS[u] ≤ ECT ′
u,

contradicting LSTJS[u] > ECT ′
u. For Case (6), a critical suffix via (u,MS[v]) would enforce

LSTMS[v] ≤ ECT ′
u, contradicting LSTMS[v] > ECT ′

u.

Case (1) Such paths can keep their length (Lemma 1). However, by the strict advance at v and the
absence of blocking at JS[v], JS[u], and MS[v], at least one of the other cases occurs and drops
from criticality.

Therefore either the makespan decreases (if all critical paths fall) or the number of critical paths
strictly decreases.

E ADAPTIVE REVISITING CRITERIA

The length of list that saves recently swapped operation pairs is randomly selected between the given
minimal and maximal values Lmin and Lmax simply for each instance, following the adaptive tabu
strategy proposed by Zhang et al. (2007). The Lmin and Lmax are computed as follows:

L = 10 +
N

M

Lmin =

⌊
L+

1

2

⌋
Lmax =

{⌊
1.4L+ 1

2

⌋
, if N ≤ 2M⌊

1.5L+ 1
2

⌋
, otherwise

F DETAILED LEARNING PROCESS

Training loop including trajectory collection, gradient computation, and parameter updates is de-
scribed in Algorithm 1.

G CONFIGURATIONS OF EXPERIMENTS

Configurations including activation functions, hyperparameters, and hardware settings are shown in
Table 3.

16

843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896

Under review as a conference paper at ICLR 2026

Algorithm 1 Entropy Regularized n-step REINFORCE
Input: training problem size N ×M , validation instances Ival
Parameter: batch size B, # of epochs Nepoch, # of steps per epoch T , learning period dlearn, validation period
dval, learning rate α, strength of entropy regularization β
Output: best parameter set θbest

1: Initialize θ, θbest = θ, C̄best =∞
2: for epoch = 1 to Nepoch do
3: Generate B instances with N jobs and M machines
4: Initialize schedules {s10, ..., sB0 } by using FDD/MWKR rule
5: for t = 0 to T do
6: for sbt ∈ s10, ..., s

B
0 do

7: Sample an action ab
t ∼ πθ(a

b
t |sbt)

8: Derive sbt+1, r(ab
t , s

b
t), andH(πθ(·|sbt)) by ab

t

9: end for
10: if t mod dlearn = 0 then
11: Compute R̄ by normalizing cumulative rewards
12: L(θ) = −

∑B
b=1

∑dlearn

j=0 [R̄b
t−j log πθ(a

b
t−j |sbt−j) + βH(πθ(·|sbt−j))]

13: θ ← Adam(θ,∇θL(θ))
14: end if
15: end for
16: if epoch mod dval = 0 then
17: C̄ = mean of objectives for Ival with πθ

18: if C̄ < C̄best then
19: C̄best = C̄, θbest = θ
20: end if
21: end if
22: end for

Table 3: Model and Training Configuration.
Component Setting
Encoder activation function LeakyReLU
Decoder activation function tanh
Optimizer Adam
MLP architecture 4 layers, 512 hidden units
Encoder output dimension 128
Batch size (B) 64
Epochs (N epoch) 2000
Steps per epoch (T) 500
Learning period (dlearn) 10
Validation period (dval) 10
Learning rate (α) 1e–5
Entropy regularization strength (β) 1e–5

CPU Intel Core i7-7700K @ 4.20GHz
GPU NVIDIA GeForce RTX 4090

H ACTION SELECTION ANALYSIS

I ABLATION STUDIES

Table 5 shows the results of five different ablation studies: the effectiveness of (1) condition indicators
with different encoders, (2) different types of proposition identifiers, (3) different state features, (4)
different neighborhood structures, and (5) different sizes of training instances. In the table, ‘Gap’
represents the average optimality gap for 162 JSSP instances, and ‘Diff’ represents the average
difference in optimality gap from the best-performing method of each instance in each block. A ‘Diff’
of 0% indicates that the method consistently achieved the best performance across all instances.

17

897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950

Under review as a conference paper at ICLR 2026

Table 4: Satisfaction ratio (%) of proposition conditions and tabu across iterations and JSSP instance
groups.

Condition # of
iterations

JSSP Instance Group
TA 15×15 TA 20×15 TA 20×20 TA 30×15 TA 30×20

including tabu list 500 23.3 22.5 14.9 25.6 19.2
1000 25.1 27.8 16.2 29.4 22.5
5000 24.6 33.1 21.9 39.2 27.4

lstJS[v] > ect′v . 500 99.8 99.8 99.6 99.7 99.7
1000 99.8 99.8 99.6 99.7 99.7
5000 99.7 99.8 99.6 99.7 99.7

lstJS[u] > ect′u 500 91.0 89.5 91.1 87.3 90.0
1000 90.4 90.0 91.1 87.3 90.0
5000 90.9 87.7 89.6 88.9 88.6

lstMS[v] > ect′u 500 84.6 85.7 89.0 92.9 88.0
1000 83.9 82.9 88.1 91.3 87.4
5000 84.0 83.8 87.5 89.3 85.8

Table 5: Results of Ablation Studies.

Method
of iterations

500 1000 5000
Gap Diff Gap Diff Gap Diff

None + MLP 12.5% 4.3% 11.1% 4.2% 8.1% 3.8%
None + bi-GAT (TBGAT) 10.6% 2.4% 9.3% 2.5% 6.9% 2.6%
indicators + MLP (LSI) 8.9% 0.7% 7.5% 0.6% 4.9% 0.6%
indicators + bi-GAT 8.9% 0.7% 7.5% 0.6% 5.1% 0.8%
intersection indicator 9.1% 0.8% 7.7% 0.8% 5.1% 0.7%
indicators (LSI) 8.9% 0.6% 7.5% 0.6% 4.9% 0.6%
values 10.1% 1.7% 9.0% 2.1% 6.9% 2.6%
normalized values 9.8% 1.5% 8.8% 2.0% 6.5% 2.2%
simple (LSI) 8.9% 1.1% 7.5% 1.0% 4.9% 0.9%
simple + topological order 8.6% 0.7% 7.2% 0.8% 4.8% 0.8%
simple + instance-dependent 8.8% 1.0% 7.4% 1.0% 4.8% 0.8%
N1 multiple 9.5% 1.5% 8.1% 1.5% 5.4% 1.2%
N1 9.6% 1.6% 8.3% 1.7% 5.4% 1.3%
N5 multiple (LSI) 8.9% 0.9% 7.5% 0.8% 4.9% 0.8%
N5 8.9% 0.9% 7.5% 0.9% 4.9% 0.8%
N5 + action masking 17.6% 9.5% 17.6% 10.9% 17.6% 13.4%
LSI 10x10 8.9% 1.0% 7.5% 0.7% 4.9% 0.6%
LSI 15x15 9.3% 1.4% 8.2% 1.4% 5.8% 1.5%
LSI 20x20 9.6% 1.7% 8.5% 1.7% 6.0% 1.7%
LSI 30x20 9.4% 1.5% 8.2% 1.4% 6.2% 1.9%
TBGAT 10x10 10.6% 2.7% 9.3% 2.6% 6.9% 2.6%
TBGAT 15x15 10.7% 2.8% 9.6% 2.9% 7.3% 3.0%
TBGAT 20x20 11.0% 3.1% 10.2% 3.5% 8.7% 4.4%
TBGAT 30x20 10.2% 2.3% 9.1% 2.4% 6.9% 2.7%

The inclusion of condition indicators significantly improves performance for both encoder types, a
simple MLP and TBGAT’s bidirectional topological GAT (bi-GAT). Both encoders with indicators
achieve almost identical performance, differing by less than 0.2%. This suggests that our theoretically-
derived indicators can effectively replace complex neural structures designed to learn problem
characteristics.

For indicator types, we compared our approach with three alternatives: (1) intersection indicator,
which denotes satisfying all three propositions’ conditions simultaneously, (2) values, which represent
the differences between the left and right sides of propositions’ conditions, and (3) normalized values,

18

951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004

Under review as a conference paper at ICLR 2026

where each difference is normalized by the maximal processing time of operations. Both our approach
and intersection indicator outperform value-based approaches, showing nearly identical performance,
differing by less than 0.2%.

The impact of state features was examined by comparing variants with additional features: the
topological order of operations used in TBGAT and instance-dependent features, including features
used in SN or IRD. In contrast, LSI uses three simple state features: processing time, EST, and LST
of operations. These additional features provided only minor improvements with 0.1–0.3% lower
Gap, suggesting that simple features are sufficient.

For neighborhood structures, while N1 theoretically guarantees optimal solution reachability, N5
showed better empirical performance with 0.5–0.8% lower Gap, probably due to its more focused
search space. Considering multiple critical paths (N5 multiple) performed similarly to considering a
single critical path randomly chosen (N5). However, using intersection indicator for action masking
led to premature convergence to local optima, resulting in worse performance.

Training with instances of different sizes (10x10 to 30x20) showed that larger training instances did
not necessarily lead to better performance. Interestingly, training LSI with the smallest instances
(10x10) demonstrates the best performance.

J EXTENDED EXPERIMENTAL ANALYSIS

We conducted an ablation study to assess the individual effects of the components of our approach.
We first test for the effectiveness of condition indicators and the encoder’s structure. The results are
shown in Figures 9. In these figures, the x-axis represents benchmark groups, while the y-axis shows
the optimality gap. Results are shown with different iteration numbers. The performance remains
consistent whether using a simple MLP or TBGAT’s bidirectional topological GAT (bi-GAT) as
an encoder structure when condition indicators are incorporated. Without condition indicators, the
bi-GAT structure performs better than MLP, yet still underperforms compared to approaches using
condition indicators.

We further examined various indicator types, with the results presented in Figures 10. The ‘la-
bel_v’ represents the numerical difference between the left and right-hand sides of the propositions’
conditions, while ‘label_v_norm’ denotes this value normalized by maximal processing time. ‘la-
bel_intersection’ sets the indicator to 1 only when the conditions of all three propositions are
simultaneously satisfied, while ‘label_l’ denotes our proposed approach that considers the condi-
tions individually. Although the performance difference between ‘label_intersection’ and individual
condition consideration was not substantial, considering conditions independently generally showed
slightly better performance.

TBGAT utilized not only processing time, EST, and LST but also topological order of each operation
as operation features. We investigated the effectiveness of incorporating this topological information
and the operation features used in the dispatcher from Section 4.3. As illustrated in Figures 11, the
inclusion of these additional features demonstrated negligible impact on performance enhancement.

We also investigated the impact of neighborhood structures used in generating candidate moves.
Finally, we examined the effectiveness of different neighborhood structures in generating candidate
moves. While N5 neighborhood structure contains all makespan-improving moves, it lacks the
theoretical guarantee of optimal solution reachability that N1 neighborhood structure possesses
with its broader action space. However, as shown in Figures 12, using N5 neighborhood structure
experimentally outperformed using N1 neighborhood structure. Furthermore, considering multiple
critical paths simultaneously with N5 neighborhood structure (‘N5_multi’) showed slightly better
performance than randomly selecting a single critical path (‘N5’). Additionally, the case where
condition indicators from the decoder were used for action masking is denoted as ‘N5_improve’ in
the figure. This approach appears to have converged prematurely to local optima before reaching 500
iterations.

Finally, we test for different training problem sizes. We conducted experiments with increasing
problem sizes from 10x10 to 20x20, and the results are shown in Figures 13, which include the
ranges of optimal gaps across three replications for our proposed approach. Counter to intuition, we
observed performance degradation in some JSSP instances even when the training problem size was

19

1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

Under review as a conference paper at ICLR 2026

LA 10
x5

LA 15
x5

ABZ 10
x1

0

LA 10
x1

0

ORB 10
x1

0

LA 20
x5

LA 15
x1

0

LA 20
x1

0

SW
V 20

x1
0

LA 15
x1

5

TA 15
x1

5

ABZ 20
x1

5

SW
V 20

x1
5

TA 20
x1

5

LA 30
x1

0

TA 20
x2

0

YN 20
x2

0

TA 30
x1

5

SW
V 50

x1
0

TA 30
x2

0

TA 50
x1

5

TA 50
x2

0

TA 10
0x

20

Benchmark Group

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

O
pt

im
al

ity
 G

ap

Number of iterations: 500

None + MLP
None + bi-GAT (TBGAT)
Indicators + MLP (LSI)
Indicators + bi-GAT

LA 10
x5

LA 15
x5

ABZ 10
x1

0

LA 10
x1

0

ORB 10
x1

0

LA 20
x5

LA 15
x1

0

LA 20
x1

0

SW
V 20

x1
0

LA 15
x1

5

TA 15
x1

5

ABZ 20
x1

5

SW
V 20

x1
5

TA 20
x1

5

LA 30
x1

0

TA 20
x2

0

YN 20
x2

0

TA 30
x1

5

SW
V 50

x1
0

TA 30
x2

0

TA 50
x1

5

TA 50
x2

0

TA 10
0x

20

Benchmark Group

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

O
pt

im
al

ity
 G

ap

Number of iterations: 1000

None + MLP
None + bi-GAT (TBGAT)
Indicators + MLP (LSI)
Indicators + bi-GAT

LA 10
x5

LA 15
x5

ABZ 10
x1

0

LA 10
x1

0

ORB 10
x1

0

LA 20
x5

LA 15
x1

0

LA 20
x1

0

SW
V 20

x1
0

LA 15
x1

5

TA 15
x1

5

ABZ 20
x1

5

SW
V 20

x1
5

TA 20
x1

5

LA 30
x1

0

TA 20
x2

0

YN 20
x2

0

TA 30
x1

5

SW
V 50

x1
0

TA 30
x2

0

TA 50
x1

5

TA 50
x2

0

TA 10
0x

20

Benchmark Group

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

O
pt

im
al

ity
 G

ap

Number of iterations: 2000

None + MLP
None + bi-GAT (TBGAT)
Indicators + MLP (LSI)
Indicators + bi-GAT

LA 10
x5

LA 15
x5

ABZ 10
x1

0

LA 10
x1

0

ORB 10
x1

0

LA 20
x5

LA 15
x1

0

LA 20
x1

0

SW
V 20

x1
0

LA 15
x1

5

TA 15
x1

5

ABZ 20
x1

5

SW
V 20

x1
5

TA 20
x1

5

LA 30
x1

0

TA 20
x2

0

YN 20
x2

0

TA 30
x1

5

SW
V 50

x1
0

TA 30
x2

0

TA 50
x1

5

TA 50
x2

0

TA 10
0x

20

Benchmark Group

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

O
pt

im
al

ity
 G

ap

Number of iterations: 5000

None + MLP
None + bi-GAT (TBGAT)
Indicators + MLP (LSI)
Indicators + bi-GAT

Figure 9: Mean optimality gap for benchmarks groups with different policy network structures and
different iteration numbers.

closer to the size of the target instances. This suggests that broader solution spaces in the training
process might hinder convergence to effective policies.

20

1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112

Under review as a conference paper at ICLR 2026

LA 10
x5

LA 15
x5

ABZ 10
x1

0

LA 10
x1

0

ORB 10
x1

0

LA 20
x5

LA 15
x1

0

LA 20
x1

0

SW
V 20

x1
0

LA 15
x1

5

TA 15
x1

5

ABZ 20
x1

5

SW
V 20

x1
5

TA 20
x1

5

LA 30
x1

0

TA 20
x2

0

YN 20
x2

0

TA 30
x1

5

SW
V 50

x1
0

TA 30
x2

0

TA 50
x1

5

TA 50
x2

0

TA 10
0x

20

Benchmark Group

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

O
pt

im
al

ity
 G

ap

Number of iterations: 500

TBGAT
NeuroLS
LSI + individual indicators
LSI + intersection indicator
LSI + difference value

LA 10
x5

LA 15
x5

ABZ 10
x1

0

LA 10
x1

0

ORB 10
x1

0

LA 20
x5

LA 15
x1

0

LA 20
x1

0

SW
V 20

x1
0

LA 15
x1

5

TA 15
x1

5

ABZ 20
x1

5

SW
V 20

x1
5

TA 20
x1

5

LA 30
x1

0

TA 20
x2

0

YN 20
x2

0

TA 30
x1

5

SW
V 50

x1
0

TA 30
x2

0

TA 50
x1

5

TA 50
x2

0

TA 10
0x

20

Benchmark Group

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

O
pt

im
al

ity
 G

ap

Number of iterations: 1000

TBGAT
NeuroLS
LSI + individual indicators
LSI + intersection indicator
LSI + difference value

LA 10
x5

LA 15
x5

ABZ 10
x1

0

LA 10
x1

0

ORB 10
x1

0

LA 20
x5

LA 15
x1

0

LA 20
x1

0

SW
V 20

x1
0

LA 15
x1

5

TA 15
x1

5

ABZ 20
x1

5

SW
V 20

x1
5

TA 20
x1

5

LA 30
x1

0

TA 20
x2

0

YN 20
x2

0

TA 30
x1

5

SW
V 50

x1
0

TA 30
x2

0

TA 50
x1

5

TA 50
x2

0

TA 10
0x

20

Benchmark Group

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

O
pt

im
al

ity
 G

ap

Number of iterations: 2000

TBGAT
NeuroLS
LSI + individual indicators
LSI + intersection indicator
LSI + difference value

LA 10
x5

LA 15
x5

ABZ 10
x1

0

LA 10
x1

0

ORB 10
x1

0

LA 20
x5

LA 15
x1

0

LA 20
x1

0

SW
V 20

x1
0

LA 15
x1

5

TA 15
x1

5

ABZ 20
x1

5

SW
V 20

x1
5

TA 20
x1

5

LA 30
x1

0

TA 20
x2

0

YN 20
x2

0

TA 30
x1

5

SW
V 50

x1
0

TA 30
x2

0

TA 50
x1

5

TA 50
x2

0

TA 10
0x

20

Benchmark Group

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

O
pt

im
al

ity
 G

ap

Number of iterations: 5000

TBGAT
NeuroLS
LSI + individual indicators
LSI + intersection indicator
LSI + difference value

Figure 10: Mean optimality gap for benchmarks groups with different ways to corporate the theoreti-
cally derived conditions for makespan reduction and different iteration numbers.

21

1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166

Under review as a conference paper at ICLR 2026

LA 10
x5

LA 15
x5

ABZ 10
x1

0

LA 10
x1

0

ORB 10
x1

0

LA 20
x5

LA 15
x1

0

LA 20
x1

0

SW
V 20

x1
0

LA 15
x1

5

TA 15
x1

5

ABZ 20
x1

5

SW
V 20

x1
5

TA 20
x1

5

LA 30
x1

0

TA 20
x2

0

YN 20
x2

0

TA 30
x1

5

SW
V 50

x1
0

TA 30
x2

0

TA 50
x1

5

TA 50
x2

0

TA 10
0x

20

Benchmark Group

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

O
pt

im
al

ity
 G

ap

Number of iterations: 500

TBGAT
NeuroLS
LSI
LSI + topological order

LA 10
x5

LA 15
x5

ABZ 10
x1

0

LA 10
x1

0

ORB 10
x1

0

LA 20
x5

LA 15
x1

0

LA 20
x1

0

SW
V 20

x1
0

LA 15
x1

5

TA 15
x1

5

ABZ 20
x1

5

SW
V 20

x1
5

TA 20
x1

5

LA 30
x1

0

TA 20
x2

0

YN 20
x2

0

TA 30
x1

5

SW
V 50

x1
0

TA 30
x2

0

TA 50
x1

5

TA 50
x2

0

TA 10
0x

20

Benchmark Group

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

O
pt

im
al

ity
 G

ap

Number of iterations: 1000

TBGAT
NeuroLS
LSI
LSI + topological order

LA 10
x5

LA 15
x5

ABZ 10
x1

0

LA 10
x1

0

ORB 10
x1

0

LA 20
x5

LA 15
x1

0

LA 20
x1

0

SW
V 20

x1
0

LA 15
x1

5

TA 15
x1

5

ABZ 20
x1

5

SW
V 20

x1
5

TA 20
x1

5

LA 30
x1

0

TA 20
x2

0

YN 20
x2

0

TA 30
x1

5

SW
V 50

x1
0

TA 30
x2

0

TA 50
x1

5

TA 50
x2

0

TA 10
0x

20

Benchmark Group

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

O
pt

im
al

ity
 G

ap

Number of iterations: 2000

TBGAT
NeuroLS
LSI
LSI + topological order

LA 10
x5

LA 15
x5

ABZ 10
x1

0

LA 10
x1

0

ORB 10
x1

0

LA 20
x5

LA 15
x1

0

LA 20
x1

0

SW
V 20

x1
0

LA 15
x1

5

TA 15
x1

5

ABZ 20
x1

5

SW
V 20

x1
5

TA 20
x1

5

LA 30
x1

0

TA 20
x2

0

YN 20
x2

0

TA 30
x1

5

SW
V 50

x1
0

TA 30
x2

0

TA 50
x1

5

TA 50
x2

0

TA 10
0x

20

Benchmark Group

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

O
pt

im
al

ity
 G

ap

Number of iterations: 5000

TBGAT
NeuroLS
LSI
LSI + topological order

Figure 11: Mean optimality gap for benchmarks groups with different input features and different
iteration numbers.

22

1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220

Under review as a conference paper at ICLR 2026

LA 10
x5

LA 15
x5

ABZ 10
x1

0

LA 10
x1

0

ORB 10
x1

0

LA 20
x5

LA 15
x1

0

LA 20
x1

0

SW
V 20

x1
0

LA 15
x1

5

TA 15
x1

5

ABZ 20
x1

5

SW
V 20

x1
5

TA 20
x1

5

LA 30
x1

0

TA 20
x2

0

YN 20
x2

0

TA 30
x1

5

SW
V 50

x1
0

TA 30
x2

0

TA 50
x1

5

TA 50
x2

0

TA 10
0x

20

Benchmark Group

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

O
pt

im
al

ity
 G

ap

Number of iterations: 500

TBGAT
LSI + N1_multi
LSI + N1
LSI + N5_multi
LSI + N5
LSI + N5_improve

LA 10
x5

LA 15
x5

ABZ 10
x1

0

LA 10
x1

0

ORB 10
x1

0

LA 20
x5

LA 15
x1

0

LA 20
x1

0

SW
V 20

x1
0

LA 15
x1

5

TA 15
x1

5

ABZ 20
x1

5

SW
V 20

x1
5

TA 20
x1

5

LA 30
x1

0

TA 20
x2

0

YN 20
x2

0

TA 30
x1

5

SW
V 50

x1
0

TA 30
x2

0

TA 50
x1

5

TA 50
x2

0

TA 10
0x

20

Benchmark Group

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

O
pt

im
al

ity
 G

ap

Number of iterations: 1000

TBGAT
LSI + N1_multi
LSI + N1
LSI + N5_multi
LSI + N5
LSI + N5_improve

LA 10
x5

LA 15
x5

ABZ 10
x1

0

LA 10
x1

0

ORB 10
x1

0

LA 20
x5

LA 15
x1

0

LA 20
x1

0

SW
V 20

x1
0

LA 15
x1

5

TA 15
x1

5

ABZ 20
x1

5

SW
V 20

x1
5

TA 20
x1

5

LA 30
x1

0

TA 20
x2

0

YN 20
x2

0

TA 30
x1

5

SW
V 50

x1
0

TA 30
x2

0

TA 50
x1

5

TA 50
x2

0

TA 10
0x

20

Benchmark Group

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

O
pt

im
al

ity
 G

ap

Number of iterations: 2000

TBGAT
LSI + N1_multi
LSI + N1
LSI + N5_multi
LSI + N5
LSI + N5_improve

LA 10
x5

LA 15
x5

ABZ 10
x1

0

LA 10
x1

0

ORB 10
x1

0

LA 20
x5

LA 15
x1

0

LA 20
x1

0

SW
V 20

x1
0

LA 15
x1

5

TA 15
x1

5

ABZ 20
x1

5

SW
V 20

x1
5

TA 20
x1

5

LA 30
x1

0

TA 20
x2

0

YN 20
x2

0

TA 30
x1

5

SW
V 50

x1
0

TA 30
x2

0

TA 50
x1

5

TA 50
x2

0

TA 10
0x

20

Benchmark Group

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

O
pt

im
al

ity
 G

ap

Number of iterations: 5000

TBGAT
LSI + N1_multi
LSI + N1
LSI + N5_multi
LSI + N5
LSI + N5_improve

Figure 12: Mean optimality gap for benchmarks groups with different neighborhood structures and
different iteration numbers.

23

1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274

Under review as a conference paper at ICLR 2026

LA 10
x5

LA 15
x5

ABZ 10
x1

0

LA 10
x1

0

ORB 10
x1

0

LA 20
x5

LA 15
x1

0

LA 20
x1

0

SW
V 20

x1
0

LA 15
x1

5

TA 15
x1

5

ABZ 20
x1

5

SW
V 20

x1
5

TA 20
x1

5

LA 30
x1

0

TA 20
x2

0

YN 20
x2

0

TA 30
x1

5

SW
V 50

x1
0

TA 30
x2

0

TA 50
x1

5

TA 50
x2

0

TA 10
0x

20

Benchmark Group

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

O
pt

im
al

ity
 G

ap

Number of iterations: 500

TBGAT 10x10
TBGAT 15x15
TBGAT 20x20
TBGAT 30x20
LSI 10x10
LSI 15x15
LSI 20x20
LSI 30x20

LA 10
x5

LA 15
x5

ABZ 10
x1

0

LA 10
x1

0

ORB 10
x1

0

LA 20
x5

LA 15
x1

0

LA 20
x1

0

SW
V 20

x1
0

LA 15
x1

5

TA 15
x1

5

ABZ 20
x1

5

SW
V 20

x1
5

TA 20
x1

5

LA 30
x1

0

TA 20
x2

0

YN 20
x2

0

TA 30
x1

5

SW
V 50

x1
0

TA 30
x2

0

TA 50
x1

5

TA 50
x2

0

TA 10
0x

20

Benchmark Group

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

O
pt

im
al

ity
 G

ap

Number of iterations: 1000

TBGAT 10x10
TBGAT 15x15
TBGAT 20x20
TBGAT 30x20
LSI 10x10
LSI 15x15
LSI 20x20
LSI 30x20

LA 10
x5

LA 15
x5

ABZ 10
x1

0

LA 10
x1

0

ORB 10
x1

0

LA 20
x5

LA 15
x1

0

LA 20
x1

0

SW
V 20

x1
0

LA 15
x1

5

TA 15
x1

5

ABZ 20
x1

5

SW
V 20

x1
5

TA 20
x1

5

LA 30
x1

0

TA 20
x2

0

YN 20
x2

0

TA 30
x1

5

SW
V 50

x1
0

TA 30
x2

0

TA 50
x1

5

TA 50
x2

0

TA 10
0x

20

Benchmark Group

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

O
pt

im
al

ity
 G

ap

Number of iterations: 2000

TBGAT 10x10
TBGAT 15x15
TBGAT 20x20
TBGAT 30x20
LSI 10x10
LSI 15x15
LSI 20x20
LSI 30x20

LA 10
x5

LA 15
x5

ABZ 10
x1

0

LA 10
x1

0

ORB 10
x1

0

LA 20
x5

LA 15
x1

0

LA 20
x1

0

SW
V 20

x1
0

LA 15
x1

5

TA 15
x1

5

ABZ 20
x1

5

SW
V 20

x1
5

TA 20
x1

5

LA 30
x1

0

TA 20
x2

0

YN 20
x2

0

TA 30
x1

5

SW
V 50

x1
0

TA 30
x2

0

TA 50
x1

5

TA 50
x2

0

TA 10
0x

20

Benchmark Group

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

O
pt

im
al

ity
 G

ap

Number of iterations: 5000

TBGAT 10x10
TBGAT 15x15
TBGAT 20x20
TBGAT 30x20
LSI 10x10
LSI 15x15
LSI 20x20
LSI 30x20

Figure 13: Mean optimality gap for benchmarks groups with different training instance sizes and
different iteration numbers.

24

	Introduction
	Preliminaries
	Related Works
	Proposed Method
	Markov decision process (MDP)
	Encoder
	Decoder

	Learning Process
	Experiments
	Conclusion
	Disjunctive Graph to Represent JSSP Instance
	Critical Path-based Neighborhood Structures
	Proofs of Necessary Conditions for Makespan Reduction
	Proof of Sufficient Condition for Makespan Reduction
	Adaptive Revisiting Criteria
	Detailed Learning Process
	Configurations of Experiments
	Action Selection Analysis
	Ablation Studies
	Extended Experimental Analysis

