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Abstract

The transformative impact of large language models (LLMs) like LLaMA and GPT
on natural language processing is countered by their prohibitive computational
demands. Pruning has emerged as a pivotal compression strategy, introducing
sparsity to enhance both memory and computational efficiency. Yet, traditional
global pruning is impractical for LLMs due to scalability issues, while local pruning,
despite its efficiency, leads to suboptimal solutions. Addressing these challenges,
we propose SparseLLM, a novel framework that redefines the global pruning
process into manageable, coordinated subproblems, allowing for resource-efficient
optimization with global optimality. SparseLLM’s approach, which conceptualizes
LLMs as a chain of modular functions and leverages auxiliary variables for problem
decomposition, not only facilitates a pragmatic application on LLMs but also
demonstrates significant performance improvements, particularly in high-sparsity
regimes, surpassing current state-of-the-art methods. Our source code is publicly
available at https://github.com/BaiTheBest/SparseLLM.

1 Introduction
Large language models (LLMs) [1, 2] have recently transformed the field of natural language process-
ing (NLP) by delivering exceptional results across a variety of intricate language benchmarks [3, 4, 5].
Nonetheless, these models, with billions of parameters, generally necessitate significant computa-
tional resources. To make LLMs more accessible, extensive efforts have been devoted to model
compression of LLMs [6, 7], including pruning, quantization, knowledge distillation, and low-rank
factorization. Pruning, by introducing sparsity, jointly enhances memory and computational effi-
ciency and offers unparalleled flexibility, seamlessly integrating with any LLMs, thus standing out as
a highly effective and widely adopted compression strategy.

Model pruning has a long history [8] and has proven effective in applications related to vision and
smaller language models [9]. However, conventional pruning techniques, which rely on global
pruning and require loading the entire model into the same GPU [10, 11], become impractical for
today’s LLMs due to their vast size. Recently, several local pruning methods have been proposed
for billion-scale LLMs. These methods compress each layer separately, and the overall compressed
model is then obtained by “stitching together” the individually compressed layers. SparseGPT [12],
an efficient unstructured pruning method for LLMs with hundreds of billions of parameters, achieves
parameter reduction of up to 60% with minimal performance loss. Another approach, Wanda [13],
introduces a novel pruning criterion that evaluates weights by considering both magnitude and related
input activations. Despite its efficiency gains, local pruning only aims to minimize the local error for
each specific layer under sparsity constraints, resulting in a suboptimal solution for the overall model.
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This is because local pruning over-aligns the intermediate layers’ activations, leading to suboptimal
performance, especially in high-sparsity regimes [11, 14].
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Figure 1: SparseLLM decomposes the global
pruning of LLMs into manageable subproblems
by leveraging the chain of modules and auxil-
iary variables while maintaining dependencies.

To address these challenges and achieve global
pruning with low memory consumption, we pro-
pose SparseLLM that decomposes the global prun-
ing objective into multiple subproblems, each of
which can be solved with low resources and coordi-
nate to achieve the global pruning objective. More
specifically, we first formulate LLMs as a compos-
ite function where the output of one module is the
input of the next. Based on this formulation, we re-
formulate the global pruning goal into an equivalent
form with auxiliary variables that facilitate its de-
composition and coordination of the subproblems.
Then we propose an alternating optimization algo-
rithm to efficiently solve the subproblems, achiev-
ing computational resource efficiency and global
optimality, due to the close-form solution of each
subproblem. Empirically, we find that SparseLLM
can consistently improve the performance of lo-
cal pruning methods, particularly in high sparsity
regimes (> 60%), where the perplexity can be sig-
nificantly decreased by up to around 80% as compared to the state-of-the-art methods.

Furthermore, our SparseLLM framework can be readily applicable to enhance the performance
of most existing local pruning solvers, such as SparseGPT and Wanda, with marginal additional
computational overhead. This adaptability ensures that our framework can be seamlessly integrated
into a wide range of LLMs and pruning methods, making it a versatile tool and useful baseline for
future research exploiting the sparsity of LLMs.

2 Related work
Pruning, a pivotal concept in machine learning that introduces sparsity into neural networks, dates
back to the 1980s [8]. It gained renewed attention in the late 2010s, especially for deep neural
networks, under the banner of reducing inference costs [15]. LLM pruning techniques can broadly be
categorized into structured and unstructured prunings.

Unstructured pruning [16, 17] looks at simplifying the complexity of LLMs by removing certain
parameters regardless of the model’s inherent structure. This approach typically involves setting
a threshold to nullify parameters below it, leading to a model with a non-uniform sparse structure.
SparseGPT [12], an efficient unstructured pruning method for LLMs with hundreds of billions of
parameters, achieves up to 60% parameter reduction with minimal performance loss. A novel pruning
criterion is introduced in Wanda [13], which evaluates weights by considering both magnitude and
related input activations. This approach is beneficial in linear layers of LLMs, helping to identify and
remove less significant weights. Tuli and Jha [18] proposed DynaTran, a dynamic inference scheme
for pruning activations at runtime, supported by a specially designed ASIC architecture, AccelTran,
to enhance transformer inference throughput.

On the other hand, structured pruning involves the selective removal of groups of weights, where
“group” might mean blocks of weights, filters, attention heads, or other structures conducive to
hardware acceleration. Ma et al. [19] introduced the LLM-Pruner, a framework designed for structured
pruning of LLMs, which utilizes a combination of first-order data and Hessian information for
effective importance estimation. This aids in identifying crucial groups for pruning. Li et al. [20]
proposed LoSparse, a novel approach combining low-rank and sparse matrix approximations to
balance pruning and expressive power. Tao et al. [21] extended this concept to pruning hidden
dimensions in LLMs, including embedding layers and attention heads. ZipLM [22], a structured
pruning method for LLMs, is proposed to optimize for compression and accuracy while considering
specific hardware constraints. More recently, Xia et al introduced LLM-shearing [23], a structured
pruning method that scales down LLaMA models by selectively pruning layers, heads, and dimensions.
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This approach, combined with dynamic data batching, reduces pre-training compute costs while
maintaining competitive performance, outperforming similar open-source models on key tasks.

Our work falls in the category of unstructured pruning of LLMs, where existing methods such as
SparseGPT and Wanda only consider an entirely local pruning algorithm and suffer from suboptimal
performance. We discuss the limitations and challenges of entirely local pruning in Sec. 3.

3 Background and notation
3.1 Global pruning

Given a pre-trained neural network f with parameter W and inputs X, global pruning aims to find a
global sparsity mask M and possibly updated weights Ŵ to minimize the global loss L between the
final outputs of the uncompressed and compressed model:

min
M,”W L

(
f(X;M⊙ Ŵ), f(X;W)

)
, (1)

where ⊙ denotes the element-wise multiplication. In addition to NP-hardness [24], however, a critical
challenge in solving Eq. 1 is the huge memory cost, as one needs to store the entire model in a single
GPU, rendering this method impractical for modern billion-scale LLMs.

3.2 Local pruning

Local pruning circumvents the memory issue mentioned above by dividing the full model compression
into subproblems for each layer and constructing a local loss to measure the ℓ2-error between the
outputs of the uncompressed and compressed layers. Hence, the local pruning can be formulated by

min
Mℓ,”Wℓ

∥Wℓ ·Xℓ − (Mℓ ⊙ Ŵℓ) ·Xℓ∥22. (2)

Although smaller than the global pruning, the local pruning still needs to optimize both the mask Mℓ

and the remaining weights Ŵℓ and thus remains NP-hard. Therefore, exactly solving it for larger
layers is unrealistic, leading all existing methods to resort to approximations.

Mask selection & weight reconstruction. A particularly popular approach is to separate the
problem into mask selection and weight reconstruction [25, 26]. Concretely, this means first choosing
a pruning mask M according to some salient criterion, like the weight magnitude [27], and then
optimizing the remaining unpruned weights while keeping the mask unchanged. Importantly, once
the mask is fixed, Eq. 2 turns into a linear regression problem that can be easily optimized.

Existing solvers. Early work [28] applied iterated linear regression to small networks. Recently, the
AdaPrune approach [25] has shown good results for this problem on modern models via magnitude-
based weight selection, followed by applying SGD steps to reconstruct the remaining weights. Follow-
up works demonstrate that pruning accuracy can be further improved by removing the strict separation
between mask selection and weight reconstruction. More recently, [12] developed SparseGPT, an
efficient unstructured pruning method for LLMs with hundreds of billions of parameters, achieving up
to 60% parameter reduction with minimal performance loss. [13] introduced a novel pruning criterion
in Wanda, which evaluates weights by considering both magnitude and related input activations.

3.3 What is wrong with local pruning?

As shown in Eq. 2, local pruning focuses on minimizing the error for each specific layer ℓ subject to
sparsity constraints. This results in a suboptimal solution with respect to the global pruning problem.
While the primary goal of pruning is to ensure that the input and output of the pruned model align
closely with those of the original models, the local pruning overly constrains the activations of all the
intermediate layers between the two models, leading to performance degradation.

4 SparseLLM: Towards global pruning for LLMs
We present our proposed method SparseLLM that can address the drawbacks of existing pruning
methods by achieving a global pruning with low memory consumption. SparseLLM decomposes the
global pruning objective into many subproblems, each of which can be solved using low resources
and can coordinate each other toward the global pruning objective. An overview of SparseLLM on
the OPT and LlaMA configurations are shown in Figure 2.
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4.1 Motivation

The development of SparseLLM is motivated by the observation: LLMs can be formulated as a
composite function such that the output of one module is the input of the next. This allows us to
reformulate the global pruning goal into its equivalent form with auxiliary variables that enable the
decomposition into multiple subproblems, as detailed in Sec. 4.2. Then we develop a resource-efficient
algorithm that achieves the alternating optimization of the subproblems with global optimality, thanks
to the close-form solution of each subproblem, as illustrated in Sec. 4.3.

4.2 A unified formulation of pruning

In this section, we present the reformulation of the global pruning problem into an equivalent one by
introducing auxiliary variables. This reformulation provides a more flexible form and enables the
decomposition of the problem into many manageable subproblems.

The key idea behind our formulation is to decouple the densely parametric parts (linear layers) from
non-parametric parts (activation function, self-attention, layer norm, etc) using a splitting technique.
Rather than feeding the output of the dense linear layer Wℓ directly into the non-parametric and
potentially nonlinear layer ϕℓ, we store the output of layer ℓ in a new variable zℓ = Wℓaℓ−1

1. We
also represent the output of the non-parametric layer as a vector of activations aℓ = ϕℓ(zℓ). We then
solve the following problem:

min
{”Wℓ},{Mℓ},{aℓ},{zℓ}

L(zL,y),

s.t. zℓ = (Mℓ ⊙ Ŵℓ)aℓ−1, ∀ ℓ ∈ [L],

aℓ = ϕℓ(zℓ), ∀ ℓ ∈ Ω,

aℓ, zℓ = apre
ℓ , zpreℓ , ∀ ℓ ∈ [L− 1]\Ω,

(3)

where L represents the total number of dense (linear) layers and [L] = {1, 2, · · · , L}. [L − 1]\Ω
denotes the complement set of Ω. We use apre

ℓ , zpreℓ to denote the corresponding intermediate
variables’ values of the original dense (i.e., without pruning) pre-trained model. y denotes the
ground-truth final output of the dense pre-trained model.

In our proposed formulation above, its unified nature lies in the interpretation and application of the
set Ω, which denotes the indices of layers subject to the pruning process. Intuitively, Ω measures
how “global” the pruning is. The bigger the set of Ω is, the more layers are connected via the second
constraint, and the pruning is more towards the global extreme, and vice versa. The generality and
versatility of our formulation is illustrated in the following remark:
Remark 4.1 (Generality and flexibility of Eq. 3). Given an LLM formulated as a composite function
with dense layers l ∈ {1, 2, . . . , L− 1}, where L is the total number of dense layers and Ω denotes
the set of layers subject to the pruning process. Our formulation can seamlessly treat both global and
local pruning as special cases under certain conditions. Specifically:

• When Ω = {1, 2, . . . , L − 1}, solving our pruning formulation is equivalent to global pruning,
accounting for inter-layer dependencies across the entire network.

• When Ω = ∅, the formulation simplifies to local pruning, considering each layer independently
(the last constraint dominates and “cuts” all layer dependencies with pre-trained values.)

The ability to shift between these two extremes, and potentially any intermediate configurations,
demonstrates the flexibility and comprehensiveness of our formulation. By adjusting Ω, one can
seamlessly transition from a global perspective to a local perspective. This flexibility not only caters
to a wide range of pruning strategies but also provides a unified framework to compare and contrast
the effectiveness of different pruning methods under a consistent mathematical lens.

4.3 Algorithm design

In this section, we introduce the algorithm design of SparseLLM, which alternatively optimizes the
subproblems associated with the corresponding variables. This approach is resource-efficient and
achieves global optimality, attributed to the closed-form solutions that each subproblem yields.

1For the sake of simplicity and clearer presentation, the bias term is omitted in the following equations where
its exclusion does not lead to confusion.
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Figure 2: Illustration of SparseLLM on OPT and LlaMA. The auxiliary variables and soft constraints
(i.e., ≈) allow SparseLLM to decompose the global pruning into manageable subproblems while
maintaining the dependencies. Subproblems are analytically solvable and enjoy fast convergence.

The key idea of our algorithm lies behind the flexibility of Ω in our Eq. 3, as we want to find a
better trade-off between completely global (memory bottleneck) and completely local (suboptimal
performance) pruning. Naively applying SparseLLM to prune all layers globally is impractical. On
the other hand, recent work shows that the feed-forward network (FFN) module in each decoder layer
accounts for more than two-thirds of the total parameters in an LLM [29]. Therefore, our SparseLLM
prioritizes the global pruning of the FFN module, while still adhering to a local pruning strategy for
the multi-head attention (MHA) module (see Figure 2). This strategy strikes a balance between the
computational feasibility of pruning large-scale models and the effectiveness of the pruning process,
adhering to the limitations and practices of state-of-the-art LLM pruning frameworks.

Formally speaking, rather than trying to solve Eq. 3 directly, we first relax the constraints by adding
an ℓ2-penalty function to the objective and attack the unconstrained problem:

L(zL,y) + α
∑

ℓ∈[L]
∥zℓ − (Mℓ ⊙ Ŵℓ)aℓ−1∥22 + β

∑
ℓ∈ΩFFN

∥aℓ − ϕℓ(zℓ)∥22, (4)

where α, β are hyperparameters for controlling the weight of each constraint. ΩFFN denotes the set
of indexes for the linear layers in the FFN module of each decoder layer, i.e., linear layers from
the same FFN module are pruned globally. For simplicity, the superscript “pre” of aℓ and zℓ in the
third constraint in Eq. 3 is omitted here, i.e., for ℓ ̸∈ ΩFFN the aℓ and zℓ are fixed and equal to the
pre-trained model’s intermediate value in the second term of Eq. 4. In the following subsections, we
illustrate how we approach the pruning of FFN and MHA modules, respectively.

4.3.1 SparseLLM on OPT models

For each decoder layer in a pre-trained LLM, our Eq. 4 instantly simplifies to globally pruning the
corresponding FFN module within that decoder layer as:

α∥zpreℓ+1 − (Mℓ+1 ⊙ Ŵℓ+1)aℓ∥22 + β∥aℓ − ϕℓ(zℓ)∥22 + α∥zℓ − (Mℓ ⊙ Ŵℓ)a
pre
ℓ−1∥

2
2, (5)

where layers ℓ and ℓ+ 1 correspond to the up-projection and down-projection linear layers.

In this work, we consider the alternating method to optimize our Eq. 5, i.e., optimize each variable
while keeping the rest fixed. The careful and elaborate design of our Eq. 5 allows us to derive a
closed-form solution to every subproblem as shown below.

Pruning weight. First consider optimizing Eq. 5 with respect to Mℓ and Ŵℓ. For each linear layer ℓ
in a FFN module, the optimal solution minimizes ∥zℓ − (Mℓ ⊙ Ŵℓ)aℓ−1∥22. To solve it, the first
step is to decompose zℓ to Wℓaℓ−1, where Wℓ = zℓa

†
ℓ−1 († denotes the pseudo-inverse.) Plug

decomposed zℓ back in original loss and we get ∥Wℓaℓ−1 − (Mℓ ⊙ Ŵℓ)aℓ−1∥22, which aligns
with the pruning objective of Eq. 2 and can be analytically solved by existing pruning solver e.g.,
SparseGPT. The superscript of “pre” for aℓ−1 is omitted in this section for simpler notation.
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Updating activation. Minimization for aℓ is a simple least-squares problem similar to weight
pruning. However, in this case, the matrix aℓ−1 appears in two penalty terms in Eq. 5, so we must
minimize α∥zpreℓ+1 − (Mℓ+1 ⊙ Ŵℓ+1)aℓ∥22 + β∥aℓ − ϕℓ(zℓ)∥22 for aℓ, holding all other variables
fixed. By following a very similar idea to Ridge regression, the new value of aℓ is given by:

(αW⊺
ℓ+1Wℓ+1 + βI)−1(αW⊺

ℓ+1z
pre
ℓ+1 + β · ReLU(zℓ)), (6)

where Wℓ denotes the updated weight matrix after pruning, i.e., Wℓ := Mℓ ⊙ Ŵℓ.

Updating output. The update for zℓ requires minimizing the following loss:

β∥aℓ − ReLU(zℓ)∥22 + α∥zℓ − (Mℓ ⊙ Ŵℓ)a
pre
ℓ−1∥

2
2. (7)

This problem is non-convex and non-quadratic (because of the non-linear function ReLU). Fortunately,
because the ReLU function works entry-wise on its argument, the entries in zℓ are de-coupled. Solving
Eq. 7 is particularly easy for the case of ReLU, as it can be solved in closed form followed by a
simple if-then logic. Specifically, one only needs to compute two solutions of a quadratic equation:

z
(1)
ℓ = (Mℓ ⊙ Ŵℓ)a

pre
ℓ−1, z

(2)
ℓ = (α+ β)−1 ·

(
βaℓ + αz

(1)
ℓ

)
, (8)

where the first solution corresponds to those entries of zℓ that are negative (reduced to zero by ReLU),
and the second solution corresponds to those entries of zℓ that are non-negative.

4.3.2 SparseLLM on LlaMA models

In this section, we introduce how SparseLLM decomposes global pruning into subproblems and
solves them iteratively on LlaMA model families. The model architecture of LlaMA can be found in
Figure 2. Overall, SparseLLM operates similarly on both LlaMA and OPT models, with the main
difference being that LlaMA includes an additional dense linear layer, known as the gate projection
layer, and uses the SiLU activation function instead of ReLU.

Pruning weight. In this part, SparseLLM functions almost identically to its operation on OPTs.

Updating activation aℓ. Similarly, for updating aℓ, SparseLLM works nearly the same as on OPT.
The minimization for aℓ is a simple least-squares problem, akin to weight pruning. However, in this
case, the matrix aℓ−1 appears in two penalty terms in Eq. 5, necessitating the minimization of:

α∥zpreℓ+1 − (Mℓ+1 ⊙ Ŵℓ+1)aℓ∥22 + β∥aℓ − SiLU(sℓ)⊙ zℓ∥22, (9)

for aℓ, with all other variables held fixed. Following a concept similar to Ridge regression, the
updated value of aℓ is:(

αW⊺
ℓ+1Wℓ+1 + βI

)−1(
αW⊺

ℓ+1z
pre
ℓ+1 + β · SiLU(sℓ)⊙ zℓ

)
, (10)

where Wℓ denotes the updated weight matrix after pruning, i.e., Wℓ := Mℓ ⊙ Ŵℓ.

Updating output zℓ. Updating zℓ is somewhat simpler in LlaMA since the activation function
applies over the gate projection layer. The update requires minimizing the loss:

β∥aℓ − SiLU(sℓ)⊙ zℓ∥22 + α∥zℓ − (Mℓ ⊙ Ŵℓ)a
pre
ℓ−1∥

2
2. (11)

This problem is quadratic when solving for zℓ with other variables fixed. Through mathematical
manipulations, the analytical solution for zℓ is found by solving a quadratic equation:

z∗ℓ =
(Mℓ ⊙ Ŵℓ)a

pre
ℓ−1 + SiLU(sℓ)⊙ aℓ

SiLU(sℓ)2 + 1
, (12)

where the division is element-wise and 1 denotes the all-one matrix.

Updating gate projection output sℓ. Updating sℓ involves minimizing:

β∥aℓ − SiLU(sℓ)⊙ zℓ∥22 + α∥sℓ − (Ms ⊙ Ŵs)a
pre
ℓ−1∥

2
2, (13)

where Ms and Ŵs denote the mask and layer weights for the gate projection layer. This problem is
non-convex and non-quadratic due to the non-linear SiLU function. However, since SiLU operates
entry-wise, the entries in sℓ are decoupled. Despite LlaMA lacking a simple closed-form solution as
in OPT (which uses ReLU), the problem can still be solved quickly and analytically using a lookup
table of pre-computed solutions, since each element in sℓ depends on only three variables.
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Remark 4.2 (Global convergence of SparseLLM). Consider the objective function given by Eq. 5,
under the condition that the activation function ϕ is ReLU. Notice that (1) the objective function
is convex with respect to each variable when all others are fixed, and (2) given that closed-form
solutions exist for the subproblems in the alternating optimization scheme, the proposed algorithm
resembles multiblock ADMM which has been shown to converge to in many applications.

4.3.3 Pruning of MHAs

SparseLLM also prunes other linear layers besides those in FFNs. By following Eq. 4, for each linear
layer out of FFN modules, the pruning objective simplifies to α∥zpreℓ+1 − (Mℓ+1 ⊙ Ŵℓ+1)a

pre
ℓ ∥22,

which is equivalent (with some simple math) to that of completely local pruning as shown in Eq. 2.
Existing LLM pruning solvers such as SparseGPT and Wanda are applicable here.

4.4 Time complexity analyses

The proposed SparseLLM consists of three main steps, with the overall time complexity being the sum
of the complexities of these steps. In the weights pruning step, the complexity is dominated by the
pseudo-inverse computation of matrix aℓ (dimensions n×h), which is O(nh2). Using SparseGPT as
the solver, the exact pruning step has a complexity of O(h3). The second step, updating activations,
involves matrix inversion of the weight matrix Wℓ (size h×h) with a complexity of O(h3). The third
step, updating outputs, has a lower complexity. Thus, the overall algorithm complexity is bounded by
O(h3), therefore making our method’s per-epoch time complexity comparable to SparseGPT.

5 Experiments
Experiments setup. We implemented SparseLLM in PyTorch [30] and use the HuggingFace
Transformers library [31] for handling models and datasets. All pruning experiments are conducted
on NVIDIA A100 GPUs. For calibration data, we follow [12] and use 128 2048-token segments,
randomly chosen from the first shard of the C4 [32] dataset. This represents generic text data crawled
from the internet and ensures our experiments are zero-shot as no task-specific data is seen during
pruning. We followed existing work [12, 13] and pruned all linear layers (in FFN and MHA) to the
target sparsity.

Models, datasets & evaluation. We consider the OPT model family [33] and LlaMA-2 model
family [1] in our experiments as well as the most recent LlaMA-3 model. We show results on
different sizes of models to provide a broader picture for the performances of SparseLLM. In terms of
metrics, we mainly focus on perplexity, which is known to be a challenging and stable metric that is
well-suited for evaluating the accuracy of compression methods [34, 35]. We consider the test sets of
raw-WikiText2 [36] (WT2) and PTB [37] as well as a subset of the C4 validation data, all popular
benchmarks in LLM compression literature [34, 38, 12, 13]. For additional interpretability, we also
provide zero-shot accuracy results following the same setup of [13], which is based on the popular
EleutherAI-eval harness [39].

Comparison methods. We compare against three baselines, magnitude pruning [27] applied locally,
and two other state-of-the-art local pruning methods, SparseGPT [12] and Wanda [13].

5.1 Results and analyses

Pruning vs. model sizes. We begin by exploring the pruning capabilities of SparseLLM across
various model sizes in comparison to baseline methods. For each model, we consider unstructured
sparsity ranging from 70% to 90% with a 10% increment, as well as a 3:4 semi-structured sparsity.
The 3:4 semi-structured sparsity is inspired by our preliminary results that suggest good performance
SparseLLM at high sparsity regimes. However, note that two of our baselines, Magnitude and
Wanda, are unable to be configured to this sparsity out-of-box. We conduct a sensitivity study on the
calibration sample sizes (see Appendix A.3) and use calibration sample sizes between 32 and 64 for
all experiments. Moreover, we prune the first 50% of the Transformer decoder layers in each model
to achieve a balance between the computation resources and the performances. Detailed results can
be found in Table 1 and Table 2 as well as Table 8 in Appendix A.5. Note that in Table 2 for LlaMA-3
model, we only compare SparseGPT to the proposed SparseLLM. The perplexity results of the dense
models are reported next to the names of the models.

From the tables, it shows a general trend of increasing perplexity with increasing sparsity. Moreover,
we observe a trend of decreasing perplexity for SparseGPT and SparseLLM at the same sparsity
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Table 1: Perplexity of OPT models for sparsity ≥ 70%; the lower the perplexity, the better.

OPT-1.3b (WikiText2 (WT2): 14.62; PTB: 20.29; C4: 16.07)

Sparsity 70% 80% 90% 3:4

Dataset WT2 PTB C4 WT2 PTB C4 WT2 PTB C4 WT2 PTB C4

Magnitude 6420.80 4828.13 3435.99 9998.71 1.1e4 5347.89 8209.13 1.0e4 4917.02 - - -
Wanda 21.56 34.77 25.78 142.20 146.76 142.24 5692.65 4751.69 4501.73 - - -
SparseGPT 18.04 28.19 21.45 69.67 93.36 60.83 2596.70 2361.86 1363.08 252.81 238.41 146.21
SparseLLM 17.82 27.72 20.99 58.92 85.33 58.36 1350.31 1192.36 655.76 128.83 144.48 106.01

OPT-2.7b (WikiText2 (WT2): 12.47; PTB: 17.97; C4: 14.32)

Sparsity 70% 80% 90% 3:4

Dataset WT2 PTB C4 WT2 PTB C4 WT2 PTB C4 WT2 PTB C4

Magnitude 1691.74 1237.08 1415.02 1.0e4 7916.69 6050.07 7.9e5 5.3e5 4.7e5 - - -
Wanda 88.61 140.09 90.06 6140.81 4746.96 5678.66 3.0e4 3.5e4 2.4e4 - - -
SparseGPT 13.79 21.18 16.18 24.32 37.82 25.92 2662.74 2285.01 1776.08 91.02 91.79 64.95
SparseLLM 13.82 21.07 16.14 23.87 37.09 24.90 1200.12 759.11 527.70 56.90 77.14 52.77

OPT-13b (WikiText2 (WT2): 10.13; PTB: 14.52; C4: 12.06)

Sparsity 70% 80% 85% 3:4

Dataset WT2 PTB C4 WT2 PTB C4 WT2 PTB C4 WT2 PTB C4

Magnitude 9037.12 7734.58 5909.47 1.1e4 9140.88 6340.22 1.3e4 1.3e4 9087.50 - - -
Wanda 30.94 39.26 33.31 4216.04 2894.77 2450.57 1.1e4 1.1e4 7244.96 - - -
SparseGPT 10.89 16.35 13.39 21.42 33.62 21.01 8408.03 6380.30 3416.23 4715.16 7454.37 2.11e4
SparseLLM 10.96 16.57 13.38 19.07 28.77 19.29 2052.27 1536.51 538.61 289.17 687.48 677.13

OPT-30b (WikiText2 (WT2): 9.56; PTB: 14.04; C4: 11.45)

Sparsity 70% 80% 90% 3:4

Dataset WT2 PTB C4 WT2 PTB C4 WT2 PTB C4 WT2 PTB C4

Magnitude 8691.40 4769.89 4732.66 8941.81 5292.98 5092.26 3.8e7 3.0e7 1.4e7 - - -
Wanda 7766.61 5547.45 5741.74 8770.33 6020.70 7132.20 6354.15 4296.37 4654.27 - - -
SparseGPT 9.58 14.41 11.93 16.49 22.01 17.67 5747.87 5169.50 3555.24 441.35 464.73 209.44
SparseLLM 9.56 14.40 11.94 15.61 19.64 16.61 3050.63 2712.39 1758.63 51.28 73.61 37.99

OPT-66b (WikiText2 (WT2): 9.34; PTB: 13.36; C4: 10.99)

Sparsity 70% 80% 90% 3:4

Dataset WT2 PTB C4 WT2 PTB C4 WT2 PTB C4 WT2 PTB C4

Magnitude OOM OOM OOM OOM OOM OOM OOM OOM OOM - - -
Wanda OOM OOM OOM OOM OOM OOM OOM OOM OOM - - -
SparseGPT 9.45 13.64 11.37 28.27 57.41 26.26 7803.10 6594.88 4433.35 6594.37 6329.59 3799.87
SparseLLM 9.37 13.66 11.37 16.45 21.00 17.70 7504.17 5644.65 3683.91 4641.8 5296.93 1618.43

Table 2: Perplexity of LlaMA models for sparsity ≥ 70%; the lower the perplexity, the better.
LlaMA-2 7b (WikiText2 (WT2): 5.47; PTB: 37.91; C4: 7.26)

Sparsity 70% 80% 90% 3:4

Dataset WT2 PTB C4 WT2 PTB C4 WT2 PTB C4 WT2 PTB C4

Magnitude 1058.00 544.43 889.46 6380.27 NaN 4162.92 9498.91 1.02e4 7539.65 - - -
Wanda 2644.22 4040.95 1630.09 1814.01 3376.35 1124.26 5206.93 4607.30 2780.45 - - -
SparseGPT 15.98 302.15 18.58 53.20 803.02 52.57 344.97 2503.82 279.77 68.28 784.79 60.45
SparseLLM 16.15 274.35 18.23 49.96 664.39 47.39 225.23 2233.52 181.56 64.17 667.27 54.56

LlaMA-2 13b (WikiText2 (WT2): 4.88; PTB: 50.94; C4: 6.73)

Sparsity 70% 80% 90% 3:4

Dataset WT2 PTB C4 WT2 PTB C4 WT2 PTB C4 WT2 PTB C4

Magnitude 30.34 2317.39 28.48 4133.98 4706.65 4112.69 5580.71 5514.22 5090.63 - - -
Wanda 23.42 502.53 32.65 295.29 2340.13 261.15 3003.49 3804.69 1738.73 - - -
SparseGPT 12.98 267.63 15.95 45.59 550.59 45.20 825.99 1410.46 673.33 63.48 660.70 56.29
SparseLLM 12.95 277.76 15.77 36.36 578.35 38.63 646.15 1078.94 466.98 53.71 632.11 50.40

LlaMA-3 8b (WikiText2 (WT2): 6.14; PTB: 11.18; C4: 9.45)

Sparsity 70% 80% 90% 3:4

Dataset WT2 PTB C4 WT2 PTB C4 WT2 PTB C4 WT2 PTB C4

SparseGPT 22.37 36.56 30.53 72.87 113.95 79.86 214.68 261.18 198.34 96.75 107.52 102.11
SparseLLM 20.98 33.78 28.94 57.83 85.98 72.18 197.47 241.68 181.69 76.33 99.54 93.68
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Table 3: Perplexity of 2:4 sparsity; the lower the perplexity, the better.
OPT-1.3b OPT-2.7b OPT-6.7b OPT-13b

Dataset WT2 PTB C4 WT2 PTB C4 WT2 PTB C4 WT2 PTB C4

Magnitude 96.68 133.92 48.08 272.34 308.55 267.70 64.11 92.23 82.67 67.07 110.77 52.61
Wanda 15.63 24.04 18.23 13.66 21.67 16.10 11.86 18.54 14.77 10.33 15.35 12.54
SparseGPT 15.11 23.71 17.88 12.62 19.28 15.12 11.30 16.90 13.51 10.20 15.14 12.48
SparseLLM 14.97 23.40 17.67 12.62 19.28 15.12 11.07 16.73 13.42 10.20 15.14 12.41

with increasing model sizes. However, such a trend is not obvious for Magnitude and Wanda. We
also observe that SparseGPT and SparseLLM consistently outperform Magnitude and Wanda by a
significant margin. For smaller sparsity, SparseLLM achieves comparable perplexity to SparseGPT. As
we increase the sparsity, SparseLLM starts to demonstrate noticeable improvements over SparseGPT.
In numerous instances for the OPT model family, SparseLLM achieves perplexity reductions of more
than 50% compared to SparseGPT. We also see that performance improvements from SparseLLM
over SparseGPT are more significant for the OPT model family than the LlaMA-2 model family.

We provide additional set of perplexity results for a 2:4 semi-structured sparsity for a few OPT models
in Table 3. We see that SparseLLM and SparseGPT generally outperform Magnitude and Wanda
while SparseLLM has comparable if not slightly better performances compared to SparseGPT with
the 2:4 semi-structured sparsity. Note that a 2:4 semi-structure sparsity is considered to be in low
sparsity regime.

Figure 3: Fast convergence of SparseLLM. Training loss
per epoch for pruning layer 3 of OPT-125m at 80% sparsity
(Left) and layer 6 of LlaMA-2 13b at 70% sparsity (Right).

Zero-shot experiments. To further
conclude the evaluations and discus-
sions, we show results for several zero-
shot tasks in Table 4 and Table 5 as
well as Table 9 in Appendix A.5, com-
paring SparseGPT and SparseLLM.
These evaluations are known to be
relatively noisy [40], but more inter-
pretable. We also report the results for
zero-shot tasks from the dense models
in the “Dense" row. We see that the
accuracy of both methods decreases
with increasing sparsity, which is ex-
pected, as more parameters are pruned.
A similar trend of increasing accuracy
with increasing model size is observed too. Across all the tasks, OBQA and ARC-c remain the most
challenging ones as the accuracy for both methods is 30% or below 30% while both methods perform
well for BoolQ, RTE, WinoGrande, and ARC-e. In general, SparseLLM is able to achieve higher
accuracy in the majority of tasks across the models of different sizes in both OPT and LlaMA-2
model families.

Training loss vs. epochs in SparseLLM. Figure 3 illustrates the change in training loss over epochs
for SparseLLM, with the training loss plotted on a scale of 103 for clarity. We observe that the
training loss decreases rapidly during the initial epochs, highlighting the efficiency of SparseLLM
in achieving effective global pruning within a short period. This rapid convergence is largely due
to the closed-form solutions employed by SparseLLM for various subproblems, which streamline
the pruning process and ensure optimal layer-wise pruning without extensive iterative computations.
These analytical solutions enable SparseLLM to perform precise pruning operations quickly, making
it a powerful tool for optimizing large-scale models like LlaMA, significantly reducing model size
while maintaining high accuracy.

6 Conclusion
Our work presents SparseLLM, a cutting-edge framework poised to redefine the compression of LLMs
through sparsity. By adeptly circumventing the scalability issues of global pruning and optimizing
the local suboptimality of existing methods, SparseLLM stands as a significant advancement in
the field. Our empirical results affirm its efficacy, particularly in high-sparsity environments. It
achieves a notable reduction in perplexity, thereby setting a new precedent for model compression.
The versatility and minimal computational overhead of SparseLLM complement its integration
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Table 4: Accuracy (%) of zero-shot tasks for OPT models; the higher the accuracy, the better.
OPT-13b

Sparsity Method BoolQ RTE HellaSwag WinoGrandeARC-e ARC-c OBQA Mean

Dense 65.87 57.76 52.44 66.02 67.82 33.46 28.62 53.14

70% SparseGPT 63.03 54.87 50.89 65.43 67.47 32.85 26.40 51.56
SparseLLM 63.85 55.23 50.73 65.67 66.46 31.83 27.20 51.57

80% SparseGPT 59.72 52.35 46.82 61.48 62.50 31.23 21.80 47.99
SparseLLM 60.89 53.07 46.19 62.12 62.21 30.38 23.00 48.27

90% SparseGPT 47.49 52.71 33.17 51.54 39.98 21.33 17.80 37.72
SparseLLM 53.43 52.71 38.19 52.96 46.68 25.26 17.40 40.95

3:4 SparseGPT 47.55 53.43 31.30 50.20 37.63 22.53 17.60 37.18
SparseLLM 51.13 52.35 38.51 55.96 49.24 24.83 21.40 41.92

OPT-30b

Sparsity Method BoolQ RTE HellaSwag WinoGrandeARC-e ARC-c OBQA Mean

Dense 70.46 61.82 54.27 69.02 70.47 35.49 30.20 55.96

70% SparseGPT 68.78 58.48 53.83 67.64 69.15 34.30 29.60 54.54
SparseLLM 69.11 61.73 53.97 68.43 69.78 34.73 29.80 55.36

80% SparseGPT 64.86 60.65 49.73 61.40 61.91 31.74 24.20 50.64
SparseLLM 65.41 59.57 50.65 61.96 62.71 32.25 26.50 51.29

90% SparseGPT 37.83 53.79 25.96 49.88 26.47 20.22 12.60 32.39
SparseLLM 43.55 52.35 26.32 50.04 27.31 20.56 14.00 33.45

3:4 SparseGPT 55.81 51.26 33.64 54.54 42.05 21.33 21.00 39.95
SparseLLM 60.83 54.15 39.35 55.41 45.24 24.06 22.20 43.03

Table 5: Accuracy (%) of zero-shot tasks for LlaMA models; the higher the accuracy, the better.
LlaMA-2 7b

Sparsity Method BoolQ RTE HellaSwag WinoGrandeARC-e ARC-c OBQA Mean

Dense 75.05 66.43 56.92 69.93 75.34 41.89 34.40 59.99

70% SparseGPT 68.26 57.04 39.67 59.04 60.9 28.58 20.60 47.73
SparseLLM 67.61 57.31 40.12 61.39 59.39 28.76 21.40 48.13

80% SparseGPT 59.36 52.71 28.83 48.7 34.22 18.34 14.40 36.65
SparseLLM 60.12 53.07 28.62 50.59 34.55 18.69 14.30 37.13

90% SparseGPT 39.02 52.34 26.66 47.80 28.32 17.37 12.40 31.99
SparseLLM 39.45 52.71 26.79 51.17 28.32 19.52 12.50 32.92

3:4 SparseGPT 53.94 54.15 28.09 49.17 31.57 17.41 14.80 35.59
SparseLLM 57.34 53.43 28.26 48.86 32.45 18.17 14.4 36.13

LlaMA-2 13b

Sparsity Method BoolQ RTE HellaSwag WinoGrandeARC-e ARC-c OBQA Mean

Dense 77.89 70.40 59.94 72.77 77.40 46.50 33.20 62.59

70% SparseGPT 70.03 53.43 42.20 66.54 64.94 31.66 25.40 50.60
SparseLLM 69.87 54.15 42.50 68.64 64.97 31.40 25.80 51.05

80% SparseGPT 62.69 52.71 28.94 50.91 36.24 18.17 14.00 37.67
SparseLLM 64.39 52.86 29.19 51.46 35.69 18.77 14.20 38.08

90% SparseGPT 50.21 51.35 26.71 49.14 26.68 19.71 13.2 33.86
SparseLLM 55.35 52.05 26.89 51.34 27.35 19.62 14.20 35.26

3:4 SparseGPT 61.28 53.71 28.40 47.99 33.21 18.26 14.00 36.69
SparseLLM 61.71 55.71 28.56 51.62 32.11 18.49 13.8 37.43

with current pruning technologies, underscoring its potential as a universal tool for enhancing the
performance and accessibility of LLMs.
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A Appendix
This section includes supplemental materials (pseudo-code, additional experiments, and plots).

A.1 Pseudo-code of SparseLLM

Algorithm 1 SparseLLM Pruning of OPT Models.
Input: An OPT decoder layer containing FFN and MHA modules. FFN’s up-scaling linear layer pre-trained

weight matrix Wℓ, FFN’s down-scaling linear layer pre-trained weight matrix Wℓ+1, input of the
up-scaling linear layer apre

ℓ−1, output of the down-scaling linear layer zpreℓ+1, target sparsity ρ, constraint
weight hyperparameters α, β.

1 SparseLLM on FFN():
2 Initialize zℓ = zpreℓ , aℓ = apre

ℓ ▷ Initialize slack variables
Pre-compute and cache a†

ℓ−1 = pseudo-inverse(apre
ℓ−1)

for step i = 1, · · · ,K do
3 Wℓ = zℓa

†
ℓ−1, Wℓ+1 = zℓ+1a

†
ℓ

Mℓ,”Wℓ = argmin ∥Wℓa
pre
ℓ−1 − (Mℓ ⊙”Wℓ)a

pre
ℓ−1∥

2
2 ▷ Prune layer ℓ by SparseGPT solver

Mℓ+1,”Wℓ+1 = argmin ∥Wℓ+1aℓ − (Mℓ+1 ⊙”Wℓ+1)aℓ∥22 ▷ Prune layer ℓ+ 1 by SparseGPT
solver
Wℓ+1 = Mℓ+1 ⊙”Wℓ+1, Wℓ = Mℓ ⊙”Wℓ

aℓ = (αW⊺
ℓ+1Wℓ+1 + βI)−1(αW⊺

ℓ+1z
pre
ℓ+1 + βϕℓ(zℓ)) ▷ Update activations

z
(1)
ℓ = Wℓa

pre
ℓ−1, z

(2)
ℓ = (α+ β)−1 ·

(
βaℓ + αz

(1)
ℓ

)
,

for j = 1, · · · , n in parallel do
4 if (zℓ)j < 0 then
5 (zℓ)j = (z

(1)
ℓ )

j
▷ Update outputs

6 else
7 (zℓ)j = (z

(2)
ℓ )

j
▷ Update outputs

8 return Wℓ, Wℓ+1

9 SparseLLM on MHA():
10 for each linear layer ℓ in MHA module do
11 Fix zℓ = zpreℓ , aℓ = apre

ℓ ▷ Fix intermediate variables
Mℓ,”Wℓ = argmin ∥Wℓa

pre
ℓ−1 − (Mℓ ⊙”Wℓ)a

pre
ℓ−1∥

2
2 ▷ Prune layer ℓ by SparseGPT solver

12 return {Wℓ} for all linear layers in MHA

The SparseLLM algorithm presented in Algorithm 1 demonstrates how SparseLLM works on an OPT
decoder layer. The key inputs to the algorithm include the pre-trained weight matrices for both the
up-scaling and down-scaling linear layers of the FFN, along with a set of hyperparameters and a
sparsity constraint. The goal of SparseLLM is to achieve a targeted level of sparsity in the linear
layers without significantly compromising the model’s performance.

Initiating with the pre-trained weights, SparseLLM employs a series of pruning and activation
update steps across K iterations. In each iteration, it solves optimization problems to prune the
current and subsequent layer weights, followed by updating the activation variables. The utilization
of SparseGPT solvers for pruning and the strategic update of activations ensures that the pruned
network approximates the original network’s behavior as closely as possible. The final output of the
algorithm is a pair of pruned weight matrices for the consecutive layers, which are expected to deliver
comparable or improved performance with a reduced number of parameters.

A.2 Two-layer Demo on the Details behind our Global Pruning

Figure 4 illustrates the SparseLLM pruning method compared to conventional global pruning and
local pruning, using a two-layer neural network as an abstraction for simplicity. The figure is divided
into three main parts:

On the left, conventional global pruning is depicted. This method applies a global mask to the entire
network, resulting in significant memory costs due to poor scalability. Both functions f1 and f2 are
pruned using the same mask across all layers, leading to high memory usage.
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Figure 4: Illustration of SparseLLM pruning method compared to conventional global pruning
and local pruning. We consider a two-layer neural network as an abstraction for simplicity. Global
pruning (left) is memory prohibitive due to poor scalability. Local pruning (mid) considers pruning
each layer independently, while inevitably sacrificing performance due to the ignorance of global
supervision. Our adaptive global pruning (right) achieves global pruning with low memory cost by
leveraging auxiliary variables and soft constraints.

In the middle, local pruning is shown, where each layer is pruned independently. This approach
reduces memory costs by applying separate masks to each layer. However, it inevitably sacrifices
performance because it ignores global supervision, which can lead to suboptimal pruning decisions
that do not consider the network as a whole.

On the right, the adaptive global pruning method of SparseLLM is presented. This method achieves
global pruning with low memory cost by leveraging auxiliary variables and soft constraints. It
combines the benefits of global pruning—considering the entire network structure—with efficient
memory usage. The introduction of auxiliary variables allows for flexible and adaptive pruning,
ensuring that the overall performance of the network is maintained while keeping memory costs low.

Thus, the figure highlights the trade-offs between different pruning strategies. Conventional global
pruning incurs high memory costs, local pruning reduces memory usage at the expense of performance,
and the adaptive global pruning of SparseLLM strikes a balance by maintaining performance with
lower memory requirements through the use of auxiliary variables and soft constraints.

A.3 Calibration Samples

Figure 5 and Figure 6 present how perplexity changes with the calibration sample sizes on the
datasets PTB and C4 for OPT-2.7b and LlaMA-2 7b, respectively. In both figures, as the number of
calibration samples increases, the perplexity decreases for both SparseGPT and SparseLLM. This
indicates that having more calibration samples can be beneficial in the pruning process. Perplexity
decreases more rapidly from 8 samples to 32 samples. Beyond 32 samples, the rate at which perplexity
decreases starts to slow down. In addition, increasing the number of calibration samples requires more
computational resources, e.g., memory and computation time, in the overall pruning process. This
suggests that the calibration sample sizes should be between 32 and 64 to ensure good performance
while maintaining computational efficiency. Lastly, the figures show that SparseLLM achieves better
perplexity than SparseGPT does with 32 or larger sample sizes for both OPT and LlaMA-2 models.

A.4 Computation Time vs. Model Sizes

We study how the computation time per layer of SparseGPT and SparseLLM varies with different
model sizes, as illustrated in Table 6 and Table 7 for OPT models and LlaMA-2 models. The rate
at which the time taken increases is comparable for SparseGPT and SparseLLM as the model size
increases. Additionally, computation time for SparseLLM are reported for a configuration of 4 to 10
epochs. As we have reported in Section 5, SparseLLM can reduce the training loss in as few as 2 to 3
epochs. This suggests that the proposed SparseLLM remains computationally efficient.
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Figure 5: Sensitivity of OPT-2.7b on the calibration sample sizes for datasets PTB and C4.

Figure 6: Sensitivity of LlaMA-2 7b models on the calibration sample sizes for datasets PTB and C4.

Table 6: Computation time in seconds of OPT models.

Method OPT-
125m

OPT-
1.3b

OPT-
2.7b

OPT-
6.7b

OPT-
13b

OPT-
30b

OPT-
66b

SparseGPT 2.30 10.18 18.35 24.40 28.65 48.91 103.19
SparseLLM 16.34 22.79 42.86 174.08 85.62 174.07 284.59

Table 7: Computation time in seconds of LlaMA-2 models.

Method Llama-2
7b

Llama-2
13b

SparseGPT 11.94 16.58
SparseLLM 146.80 252.48

A.5 Experiment Results for Additional Models

Detailed results on perplexity and zero-shot task accuracy for additional models are reported in
Table 8 and Table 9. Similar to other models, we report the perplexity results for the dense model
next to the name of the model in the table. In particular, we see that SparseGPT and SparseLLM
outperform Magnitude and Wanda with a significant margin across different sparsity. SparseLLM
shares similar perplexity with SparseGPT for smaller sparsity but demonstrates much better perplexity
for larger sparsity. Similar perplexity trends are observed across all three datasets, although, PTB,
having the highest perplexity for each sparsity and method, is likely the most challenging dataset
among the three. For the zero-shot taks accuracy, we see that SparseLLM achieves comparable
results to SparseGPT for smaller perplexity and the performance improvements are more obvious and
significant with higher sparsity.
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Table 8: Perplexity in high sparsity regimes (≥ 70%); the lower the perplexity, the better.
OPT-125m (WikiText2 (WT2): 27.66; PTB: 38.99; C4: 26.56)

Sparsity 70% 80% 90% 3:4

Dataset WT2 PTB C4 WT2 PTB C4 WT2 PTB C4 WT2 PTB C4

Magnitude 3806.96 3429.35 2263.37 4890.96 4121.49 3213.85 6613.18 5380.80 4475.29 - - -
Wanda 351.83 412.52 248.94 1912.45 2512.93 1066.86 4940.89 4337.27 3126.02 - - -
SparseGPT 239.26 265.83 156.33 2072.12 1952.85 1050.83 6131.57 6963.27 2443.33 1482.61 2215.44 657.26
SparseLLM 208.46 255.75 137.72 1358.10 1418.09 654.54 5291.64 5067.41 2003.09 914.87 1210.84 450.01

OPT-6.7b (WikiText2 (WT2): 10.86; PTB: 15.77; C4: 12.71)

Sparsity 70% 80% 90% 3:4

Dataset WT2 PTB C4 WT2 PTB C4 WT2 PTB C4 WT2 PTB C4

Magnitude 7054.21 5437.44 4850.25 7937.49 5971.86 6031.54 2.4e4 2.5e4 2.1e4 - - -
Wanda 54.95 129.73 116.67 1493.58 1196.93 996.00 2.1e4 2.0e4 1.8e4 - - -
SparseGPT 12.27 18.90 15.28 31.04 51.26 29.42 8871.24 5713.57 3797.20 570.08 361.81 328.18
SparseLLM 12.16 18.39 14.93 23.96 39.32 26.97 2095.85 1842.48 953.44 83.36 128.99 62.11

Table 9: Accuracy (%) of zero-shot tasks; the higher the accuracy, the better.
OPT-6.7b

Sparsity Method BoolQ RTE HellaSwag WinoGrandeARC-e ARC-c OBQA Mean

Dense 66.12 56.03 50.49 65.27 65.72 30.63 27.60 51.69

70% SparseGPT 61.74 54.87 48.46 63.85 64.31 29.27 25.40 49.70
SparseLLM 60.61 54.51 48.8 62.9 64.14 30.03 26.60 49.66

80% SparseGPT 55.08 48.38 42.22 59.43 57.79 25.85 21.40 44.31
SparseLLM 58.69 51.26 43.78 59.67 58.38 26.88 22.00 45.81

90% SparseGPT 38.53 53.07 26.00 48.07 26.81 21.67 14.40 32.65
SparseLLM 46.48 52.71 26.21 51.70 27.44 19.71 13.40 33.95

3:4 SparseGPT 46.70 54.15 28.82 51.07 32.45 18.17 15.40 35.25
SparseLLM 53.49 53.42 36.24 53.51 43.94 22.61 17.40 40.09

A.6 Hyperparameter α and β Selection

Hyperparameters α and β are used in Eq. 5. We select α and β from the set {0.01, 0.1, 1, 5, 10, 100}
and perform a study on models to understand the impact of the hyperparameters. Results for OPT-1.3b
with 70% sparsity is shown in Table 10.

Table 10: Ablations of the hyperparameters α and β on OPT-1.3b with 70% sparsity (in perplexity)
α / β 0.01 0.1 1 5 10 100

0.01 18.01 17.97 17.97 - - -
0.1 18.04 17.82 17.96 18.04 18.40 -
1 18.20 18.02 18.11 17.87 17.96 18.22
5 18.06 18.02 18.03 17.92 17.96 18.04
10 18.03 18.01 17.96 17.96 17.96 18.03
100 18.04 18.04 17.98 18.01 18.01 18.03

A.7 Limitations and Future Work

While SparseLLM marks a significant step forward in the efficient pruning of large language models, it
is important to acknowledge the inherent trade-offs associated with any model compression technique.
Firstly, while our method reduces the complexity of LLMs and enhances computational efficiency,
there is an inevitable balance between sparsity and performance that requires careful calibration.
Additionally, in this work, we still assume homogeneous sparsity, i.e., the pruning sparsity for
each layer is the same and equal to the global sparsity. How to achieve heterogeneous sparsity
under our framework and fully fulfill the potential of global pruning is of great interest. Lastly, the
effectiveness of SparseLLM, like any pruning method, may vary across different models and tasks,
and its generalizability to all scenarios remains an area for further exploration.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect our
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have included a section to discuss our paper’s limitation in Sec. A.7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provided all assumptions and proofs for theories in our paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provided comprehensive information as well as the source code of our
method.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provided open-access data and code to reproduce our experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provided the necessary details to run our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We are closely following existing literature in reporting the experimental
results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provided necessary details on the compute resources we used in our
experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our paper conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our paper has no societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credited and cited licenses of existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provided proper documents for our released code and data.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our research does not involve these.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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