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Abstract

Pixel-wise image attribution analysis seeks to highlight a subset of the semantic features from in-
puts and such a subset can reflect the interactions between the features and their inferences. The
gradient maps of decision risk values with respect to the inputs can highlight a fraction of the in-
teractive features relevant to inferences. Gradient integration is a pixel-wise attribution approach
by sampling multiple samples from the given inputs and then summing the derived gradient maps
from the samples as explanations. Our theoretical analysis demonstrate that the alignment of the
sampling distribution can delimit the upper bound of explanation certainty. Prior works leverage
some normal or uniform distribution for sampling and the misalignment of their distributions can
thus lead to low explanation certainty. Furthermore, their explanations can fail if models are trained
with data augmentation due to the skewed distribution. We present a semi-ideal sampling approach
to improve the explanation certainty by simply suppressing features. Such an approach can align
with the natural image feature distribution and preserve intuition-aligned features without adding
agnostic information. Further theoretical analysis from the perspective of cooperative game theory
also shows that our approach is in fact equivalent to an estimation of Shapley values. The exten-
sive quantitative evaluation on ImageNet can further affirm that our approach is able to yield more
satisfactory explanations by preserving more information against state-of-the-art baselines.

1 Introduction

Image semantic features are the ordered pixel combinations with specific patterns agreeing with human intuitions. We
use the term ‘feature’ as ‘semantic feature’ hereafter. Neural networks can summarize the features from inputs (being
plural due to the emphasis on multiple piece-wise inputs) and combine the feature summaries to make decisions.
Human-annotated datasets can establish the correlations between features and categories (also known as ‘labels’) by
using human prior knowledge (Wang et al., |2018bj [Vapnikl, [1999). Such prior knowledge implied in training dataset
is known as the prior supervision signal for guiding the learning process of neural networks (known as the ‘training’
process) (Mohri et al.l 2018} [Vapnik, |1999). The knowledge between data and categories can be statistically measured
by consulting the information bottleneck principle (Tishby et al.l [2000; Tishby & Zaslavskyl |2015). It is notable
that the supervision signal emphasizes intuition-aligned features due to the prior knowledge comes from humans.
Consequently, neural networks supervised by human-annotated datasets also underscore intuition-aligned features.
This is the first intuition in this work but we will theoretically demonstrate that this statement is true in Section

Pixel-wise attribution analysis — we use ‘explanations’ or ‘pixel-wise explanations’ hereafter — seeks a subset of the in-
teractive features from inputs in which the features are relevant to decisions (See Figure[2)). Highlighting the intuition-
aligned features relevant to decisions is crucial for robust explanations. Yet, the non-linearity of neural networks
impedes the explicit analyses regarding its complicated inference behaviours and the interactions between features
and decisions. Fortunately, gradients provide an indirect device to observe the interactive features relevant to deci-
sions. The first-order gradients of decision risk values with respect to its inputs can reflect the piece-wise importance
of the inputs (Simonyan et al.| 2013} Baehrens et al., 2010). High absolute gradient values indicate that the small
changes at input end can lead large variations to decision scores.

In a single inference, the single derived gradient map can merely highlight a small fraction of interactive features due
to the non-linearity of neural networks. This also links to the neural network saturation effect (Sundararajan et al.,
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Figure 1: The figure is a performance showcase. The performances are qualitatively compared from two aspects: (1)
The semantic alignment with respect to intuitions and (2) the object discriminativity with the presence of multiple
objects. The evaluation model is a pre-trained ResNet50 on ImageNet. The algorithm iteration numbers are set to
50. The pixel dropping probability of our algorithm is set to 0.7. The noise level of Smoothgrad is set to 0.15 as
suggested in the original paper. The explanations are normalized to [0, 1] by using min-max normalization and we use
the quantitative color map “bwr” ([blue = 0, white = 0.5, red = 1]).

2017 [Krizhevsky et al., [2017; [Rakitianskaia & Engelbrecht, 2015 [Amit et al., [1987). Such a phenomenon does not

exclude the importance of non-highlighted features — they do participate into decisions. Gradient integration is an
approach to tackle this problem by integrating multiple gradient maps in which each gradient map highlights a small
portion of the overall interactive features.

Prior landmark state-of-the-art works integrate multiple gradients and sample from some distributions to tackle the
aforementioned feature highlighting issues. Their works usually lack further theoretical analyses. claim
that adding noise can eliminate the ‘noise’ with agnostic origins in gradients and thus propose an approach (we cite
their work as ‘Smoothgrad’) to create explanations by adding random noise to remove gradient noise (Smilkov et al.,
[2017). Nevertheless, we hold a critical view towards this approach which is not well-aligned with the feature per-
ception mechanism of neural networks learned from supervision signals. Such a misalignment can yield implausible
explanations with low certainty (See the fourth and the eighth columns in Figure[T)) and lead to the sensitivity on the
training perturbations (See Figure [3). Inspired by the Aumann—Shapley theory (Shapley| [1953]; [Rothl 988 [Aumann|
[& Shapley|, 2015)), [Sundararajan et al| attempt to tackle the neuron saturating problem by globally scaling inputs to
create multiple samples from inputs. The derived multiple gradient maps from the samples are then integrated to create
ultimate explanations (Sundararajan et al.,2017). In the remaining part of this paper, we cite their work as ‘IG’. Such
an approach can preserve intuition-aligned features from inputs but suffer from the lack of feature diversity. Thus, the
explanations using IG remain unsatisfactory (See the fifth and the ninth columns in Figure[T).

Moreover, the aforementioned sampling approaches can also suffer from sampling saturating effect due to the lack of
feature diversity through the perception lens of neural networks. Neural networks learn to extract the features relevant

Features in inputs  Features in explanations

Figure 2: This example shows the notation of explanations. The left figure shows that the semantic features from
inputs in which the features are denoted by six shapes. The right figure shows the corresponding explanation which
accounts four features. The explanation is a subset of the features from inputs.
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Figure 3: This experiment exhibits the failures and the sensitivity of the explanations with a fine-tuned ResNet50 on
ImageNet. The model is fine-tuned with data augmentation by two transforms: (1) Randomly adding Gaussian with
o in [0.1,0.3] and (2) randomly adjusting the luminance within [0.1,0.9]. We train 5000 batches with batch-size by
8, learning rate 10~2 and SGD optimizer. The quality of explanations degrades due to the model learns to ignore the
irrelevant perturbations from sampling.

to categories and to suppress irrelevant categories. From the perspective of information bottleneck principle (Tishby
letall[2000; Tishby & Zaslavskyl 2013), at the embedding space through the perception of neural networks, the feature
diversity in embedding space accounts the amount of relevant information perceived by neural networks after filtering
out irrelevant features. Experiment in Figure [5(a)] shows the sample projections for various sampling approaches in
which neural networks perceive them disparately. Our sampling approach aligns with IG — both are considered of
well preserving intuition features. The experiment in Figure [5(b)] shows the samples from a normal distribution can
collapse in embedding space due to the lack of diversity through the perception lens of neural networks. The samples
from normal distribution suffer either the lacking of diversity or overwhelming useful signals.

Furthermore, neural networks can learn to neglect the perturbations in the samples from the distributions not aligned
with semantic feature distribution in nature images. The optimization processes drive the perception mechanism of
neural networks to align with the semantic feature distribution such that the neural networks can extract the most
relevant features from inputs and neglect irrelevant features. Our experiments show that fine-tuning with data aug-
mentation can degrade and even fail explanations as models can learn to ignore the sampling perturbations while
such perturbations are crucial to induce gradients. Figure [3]is a showcase of the degradation and failures of explana-
tions with and without the presence of data augmentation (marked as “fine-tuned” versus “clean” respectively). This
phenomenon corroborates the difficulty and challenges of explaining inferences. Such a phenomenon needs further
holistic investigation to study the behind mechanisms. We do not unfold the discussions due to the research scope.

The above concerns in tandem with ethical concerns (See Section 8] urge us to devise an ideal and robust explanation
approach with robust sampling. The content is organized in the following fashion. We first theoretically and empiri-
cally revisit the sampling problem in the context of gradient integration and derive the explanation certainty inequality
from the perspectives of information theory and statistical inference. We then seeks to mitigate the sampling misalign-
ment problem towards robust explanations by devising a semi-ideal sampling approach through simply dropping some
pixels with some distribution. Our experiments suggest that our sampling approach aligns with the feature distribution
in inputs. There are two theoretical paths leading to our approach — from statistical inference theory and cooperative
game theory. The later theoretical analysis in Section[6|affirms that our approach is also equivalent to an estimation of

Shapley value — which is the unique solution in cooperative game theory (Shapley, [1953} [Roth| [T988).

2 Contributions

The insights in this research are not only to demonstrate an algorithm for enhancing explanation certainty but also
revisit a fundamental yet crucial problem for all algorithms falling into the scope of gradient integration: Sampling
matters in explanations. Our contributions are thus in three aspects: (1) The extensive revisiting of the sampling
problem in the context of gradient integration with theoretical analysis and empirical study — such a delving can
push the advance of the explanation research, (2) the derived quantitative approach for the assessment of explanation
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certainty, and (3) the complete theoretical analysis from the perspective cooperative game theory which links our
approach to an estimation of Shapley value.

3 Motivation

This work is largely motivated from four aspects: (1) The explanation certainty is bounded above by the alignment
of sampling distribution with respect to the semantic feature distribution, (2) the form of the natural image feature
distribution, (3) the low feature diversity of samples through the perception of neural networks can further delimit the
explanation certainty and (4) the failures of sampling distributions with the presence of data augmentation.

3.1 Revisiting sampling distribution
3.1.1  An upper bound of explanation certainty

Let Pr(x|z) be the probability by observing some explanations z to indirectly infer some ground truth inputs . Such
a probability can reflect the explanation certainty. It is not difficult to informally show that the mutual information
(Kullback, |1997;|Cover, [1999) between inputs and its explanations can delimit an upper bound of Pr(x|z). Let p(z|x)
be the p.d.f. of some pixel x in « for given some pixel z in z. We simplify the analysis by further assuming random
variables x and z are i.i.d. Hence the Pr(x|z) can be approximately rewritten as;

Pr(z|z) = HHPT x|z) —exp(ZZlogPr x|z ) A exp fflogp x|z)dzdz |. (1)

Considering:
JJ dxdz = J.fp(ac, z)dxdz (2)
and
I(x;z) = ij(x,z) log (%)dzdz 3)
and
H(x) = —f p(x)log p(z)da. €y

Combining the above results in equations (I 2L 3]and @) and applying the Cauchy-Schwarz inequality:

Jf log p(z|2)dxdz = dexdz Jflogp z|z)dxdz = Jf x, z)dxdz - Jf log p(x|z)dxzdz
H - 1og( (|)) (az))dazdz

= ff x,2 1og( ) )d dz +L(J.zp(as,z)dz) log p(x)dz

=I(xz;2) + J p(z) log p(x)dx

x

=1I(x;z) — H(x) = —H(x|z). 5)
Hence the mutual information links to the explanation certainty by:

exp(I(z;z))

Pr(@lz) < o))

= exp(—H(al|2)). O ©)
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Figure 4: This example showcase the intuition regarding semantic redundancy in nature images. Such redundancy is
explained by the feature distribution in this paper. The leftmost is the reference. The four images right to the reference
are with random pixel sampling ratio by 0.7, 0.6, 0.5, 0.4, 0.3 and 0.2 respectively.

This inequality associates the explanation certainty with its mutual information. In fact mutual information has more
profound implications which can also be leveraged as self-supervision signals due to such a statistical connection
(Hjelm et al., 2018} [Kumar et al., |2019). Mutual information also sheds light on tackling the difficulty of assessing
explanation quality by providing a potential faithful measure.

3.1.2 Gradient integration

Prior to derive the optimal sampling distribution of gradient integration. We first formulate the algorithm of gradi-
ent integration. Formally, a general gradient integration algorithm without the technique of ‘inputs x gradients’
(Shrikumar et al.| [2017; |Sundararajan et al.,|2017) can be formulated as:

1%

z

E [abs{Vsf(Z)}] )

2~q(x)

where x denotes some inputs, z denotes some explanations, & denotes some sample from some sampling distribution
q(x), f(-) defines a neural network and abs{-} is a piece-wise absolute-value operator. From the aforementioned
analysis in Section I(x; z) is determined by both the sampling distribution ¢(x) and the property of f(-) — the
perception lens of neural networks.

‘We pinpoint two factors relevant to explanation quality: (1) The alignment of the sampling distribution with respect to
feature distribution, and, (2) the embedding diversity of samples from the perception mechanism of neural networks —
which determines how neural networks extract features.

3.1.3 The optimal sampling distribution

We have shown that the mutual information determines an upper bound of the explanation certainty in equation ( [6))
and also known that the general gradient integration can be formulated as equation ([7). Further given the fact that
mutual information function I(x, 2) is convex for given @, by applying Jensen’s inequality:

(@, z) = I(x; E [abs{Vaf(2)}])

~qx

< @E [I(z; abs{Vgf(Z)})]

= E [I(=;2(2))] ®

T~

4

where 2(&) := abs{Vf(&)}, = denotes some inputs, z denotes some explanation, & denotes some sample and ¢y,
denotes some sampling distribution for given some input x.

The ideal sampling distribution ¢* is an optimization problem over all inputs from some p and all sampling distribu-
tions q:

¢t =g B { & (102001 ©)

q LT~Pg :iZqu

with the optimal solution ¢* = p. The difficulty is that the distribution p is usually unknown. We overcome this
problem by using a heuristic approach to derive the ¢*.
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3.2 Natural image feature distribution

We simplify the feature distribution problem into a Bernoulli trial problem. Each pixel from  can present in some
features with some constant probability p for . In fact, a better approach is to use a neural network to predict
the probabilities for images — parameterizing the sampling approach and making it learnable. But training such a
neural network is difficult. We do not cover this approach in this paper. Approximately, for an image with n pixels,
the probability of k pixels are accounted in some features — the features contain k pixels — is given by a binomial
distribution:

Pr(k,n;p) = (Z)pk(l —p)" (10)

We leverage the approximation of this distribution to perform the sampling. This is a semi-ideal sampling approach
currently since we have no knowledge to sample semantic signals directly. Figure [d] show the intuitions behind this
sampling approach by dropping a portion of the pixels. Numerical experiment in Figure [6] further corroborates this
distribution by measuring the gradient Lo which reflects the importance sum of features from the perspective of
cooperative game theory.

3.3 The diversity of samples

The equations (8and [J) also imply that sampling diversity from the perception lens of neural networks can determine
the explanation certainty. This is because of the learning process. The training supervision signals guides neural
network to align the feature extraction with the semantic feature distribution — reinforcing the relevant features while
suppressing the irrelevant features (Tishby et al.l 2000; Tishby & Zaslavskyl, 2015).

Consequently, one approach to evaluate the sampling quality is to project the samples from the penultimate layer of
image classifiers and apply PCA projections with cosine kernel. The reason we use cosine kernel for PCA projections
at the penultimate layer is because both theoretical and empirical research suggests that the Softmax layer at neural
networks measures the angles rather than L,, distances for inferences.

It is not difficult to show that the statement is true. Let z be the inputs at Softmax layer — also be the outputs from
the penultimate layer, w; be the weights with respect to the i-th class, s; be the i-th class score and assume vectors
are normalized with L. The score for the i-th class before the exponential operation is given by s; = z7w; = cos
where 6 is the intersection angle between z and w;. This suggests image classifiers with Softmax layer learns to align
the embedding vectors with respect to class weight vectors. This fact also motivates state-of-the-art works in facial
recognition models based on metric learning (Kulis et al.| 2013)) such as CosFace (Wang et al., [2018a) and ArcFace
(Deng et al.,2019).

In the experiments of Figure [5(a)] we measure feature diversities by computing cosine similarities at the penultimate
layer and visualize the projections using PCA with cosine kernel. The results show that our samples align with the
samples from IG and disalign with samples from noise subspace. Samples from IG can be used as reference to
measure the deviation of samples from intuitions. The results imply that the sampling distribution by Smoothgrad
does not align well with the feature distribution in semantic feature signals. Neural networks can fail to extract useful
features from samples if samples come from a narrow state space or do not align with the semantic feature distribution.
The experiments in Figure [5(b)|show such a feature collapse phenomenon.

3.4 The failures of explanations

Neural networks learn to align its perception mechanism with the semantic feature distribution due the training super-
vision signals are from humans. The training and fine-tuning processes can learn to account the perturbations from
non-aligned distributions — e.g. normal distribution — as irrelevant noise and ignore them. But it is notable that neural
networks can not learn to ignore the samples from the distributions aligned with semantic feature distributions since
the signals are relevant to labels. Figure [3] show the example that the explanations can degrade and fail with a fine-
tuned pre-trained ResNet50 on ImageNet. This phenomenon urges us to seek a robust sampling approach which can
align with the semantic feature distribution and the perception mechanism of neural networks.
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(a) The 2D feature projections at the penultimate layer of a pre- (b) The feature perception collapse for normal-sampling at the
trained ResNet50. penultimate layer of a pre-trained ResNet50.

Figure 5: In the left figure, we project the feature vectors from the penultimate layer of a pre-trained ResNet50 on
ImageNet using PCA with cosine kernel. We collect 1000 samples for each sampling approach. We vary the noise level
of normal-sampling (used in Smoothgrad) from 0.1 to 0.9. We vary the pixel dropping probability of our-sampling
approach from 0.1 to 0.9 as well. We use “+” to indicate the projection centers. In the right figure, we project the
feature vectors for the samples from normal-sampling with 1000 samples. We vary the noise level from 0.1 to 0.9.
The trajectory shows the feature space collapse effect that noises ultimately overwhelm signals and neural networks
fail to extract patterns as the noise levels increase.

4 Sampling with feature suppression

Natural images contain considerable redundant information. The semantic signals in images are not susceptible to
the absence of some pixels. Figure [ shows that when a majority of the pixels are absent the features in the samples
remain discernible to humans for making faithful inferences by using the remaining signals. Our theoretical analysis
in Section [3.2] regarding the feature distribution can further confirm this fact. In fact, the later empirical study (See
Figure|[6) further confirms our sampling approach aligns with semantic feature distribution by measuring the L, norm
with respect to the ratio of the absence of pixels.

Feature suppression refers to randomly replace some pixels with a constant C' (C' ~ 0) at a sampling process. The
C plays the role to suppress some piece-wise inputs. The amount of the presence of pixels follows some binomial
distribution in equation (T0). The sampling can thus be broken down into two phases: (1) Sampling the amount of
pixels k from some binomial distribution and (2) randomly choosing k pixels from images as a sample, and, the absent
pixels will be replaced with the constant C'. For the sake of numerical stability in some cases, the constant C' is set
to a small value (C' = 10~®) instead of zero. Otherwise, the explanations may have checkerboard patterns for some
models.

4.1 The optimal sampling probability p

Yet, there is a final question to answer: The optimal sampling p in the devised distribution. We conduct empirical
experiments to measure the coalition (a set of pixels) contribution distribution for answering this question. The Lo
norm of gradients of samples can indirectly reflect the importance of the coalition contributions on some decision risk
function if we vary the coalition sizes. Let f(x) be the decision risk function and x be inputs. The decision risk
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perturbations due to the variations at inputs are approximated by using Taylor expansion for f(x + Ax) at x:
1/ (@ + Az) - f(2)l]2 = ||Az" Vo f(z) + O(Az)|2 ~ || Ve f(2)Azllz < [|Vaf(@)l2 - [[Az|l2. (1)

where the Lo norm of gradients can reflect the decision risk variations with respect to inputs.

In the experiment (as shown in Figure[6]), we measure the L, norms of the gradients from multiple images by varying
the coalition sizes at a pre-trained ResNet50. Each light pink line is corresponding to an image and the blue line is the
averaged Lo norm. The result shows that the feature contributions from the perception lens of neural networks reach
to large values when the pixel dropping probability varies from 0.5 to 0.8. In our experiments, the explanation quality
achieves best performance when this probability is between 0.5 and 0.8.

5 Related works

We have revisited the gradient integration based approaches (Smoothgrad and IG) from the perspective of sampling
aspect in Section [T]and Section [3] We conduct a brief literature review herein to further introduce indirectly relevant
works from the following two categories.

Local approximation based approach. LIME (Local Interpretable Model-Agnostic Explanations) is a model-
agnostic but local explanation approach which assumes a linear model is more understandable and uses a linear model
to approximate the study model for understanding the decision behaviours (Mishra et al., 2017). SHAP (SHapley
Additive exPlanations) is also a model-agnostic explanation approach and decomposes predictions on the basis of the
inner product of Shapley value vector and coalition vector (Lundberg & Leel [2017). The Shapley values can thus be
approximately estimated by learning. Their approach is fundamentally different from our approach in that our work
approximately derives Shapley values by using gradients as a proxy from study model directly and integrating the
collected gradients as explanations.

Activation decomposition based approach. DeepLIFT (Deep Learning Important FeaTures) compares the activation
of each neurons to their references and assign values accordingly for deriving explanations (Shrikumar et al., 2017)).
LRP (Layer-wise Relevance Propagation) decomposes outputs backwards according to their weights to input end as
explanations (Montavon et al.| 2019). CAM (Class Activation Map) leverages the spatial correlation between inputs
and activation maps in CNN networks, sums the activation maps from chosen layers — e.g., the ultimate layer before
classification network — with the weights with respect to class scores as explanations. (Li et al., 2018). Grad-CAM
incorporates activation map approach with gradient information to further improve explanation quality as opposed to
CAM (Selvaraju et al., 2017).
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Figure 6: The experiment shows the coalition (feature) contributions on the decisions with respect to coalition sizes
(controlled by the pixel dropping probability). We measure the gradient Lo for multiple images by varying the coalition
sizes at a pre-trained ResNet50. Each light pink line is corresponding to an image. The blue line is the average over
all images. The result agrees with our theoretical results in both statistical analysis and cooperative game theory.
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6 Theoretical analysis

In this section, we conduct a holistic theoretical analysis from the perspective of cooperative game theory (Winter,
2002; |Shapleyl 1953} |Rothl [1988)) to justify our algorithm: The gradient integration with feature suppression. We
show that such an algorithm is equivalent to an estimation of Shapley values. In an image classifier, each image pixel
can be viewed as a pixel player in a cooperative game which is set by such an image classifier. All pixel players play
the cooperative game and their cooperations lead to decision scores (known as payoffs). Such a setting naturally falls
into the scope of cooperative game theory.

We revisit the discrete version of Shapley value theory and link the theory to our approach for laying a solid theoretical
guarantee to the fairness of our algorithm. The fairness is crucial for coherent explanations. Shapley value theory aims
to address the fair payoff distribution problem in cooperative games (Branzei et al., |2008; [Davis & Maschler, |1965;
Driessen| [2013). It is notable that Shapley value is the unique solution in cooperative game theory.

6.1 Fair distribution in Shapley value theory

Suppose a cooperative game with some player set N and some characterization function v. The characterization
function v maps a group of players (known as coalitions) from the power set P(IN) of N to a real number (known as
payoff). A Shapley value function ¢;(v) gives the fair distribution — which satisfies with a set of desirable axioms
— from some payoff to some player j by summing the marginal contributions over all coalitions from the power set
P(N):

1 .
60 = Y, e V(S U ) — ()] (12)
serangy INT (Fs)
where S is a subset of the power set P(IV) without the presence of some player j and the | - | operator gives set

cardinality.

6.2 Coalition distribution

In fact, a coalition can be viewed as a semantic feature. The coalition distribution agrees with the analysis of feature
distribution of natural images in Section[3.2]

For some coalition S from P(N)\{j} without the presence of some player j, the number of the coalitions with the size

|S] is thus given by (“\‘7 51) The number of all possible coalition sizes is | N|. The probability of some coalition S is
given by:
PrS} = (13)
r{S} = N
IN]-( ||S\ )

The Shapley value equation (12) can be rewritten into the form of statistical expectation by using the coalition distri-
bution in equation (I3):

o) = Y PrisHu(s v () - v(s)]
ScP(N)\{s}
= E_lu(s v ) —v(s)]. (14)
Pr{S}

6.3 Linking Shapley value to gradients

The loss values in an image classifier can be accounted as the payoffs of the cooperative game set by the image
classifier. The loss function is a candidate of the characterization function of such cooperative game. However, the
loss function does not satisfy with the zero-payoff principle for empty coalition such that the empty coalition set &
shall give value 0.

Instead, we construct a characterization function f(-) from the loss function IL(, -) by:

f(x) == L(z,y) — L(J,y) (15)
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where x denotes some pixel coalition, y denotes some ground truth label and (f denotes zero vector. In practice, zero
denotes the absence of pixel players and non-zero indicate the presence of pixel players.

Set v := f and plug the equation into the equation (14), the Shapley value function ¢;(f) for the j-th player with
some characterization function v := f can be approximated by applying Taylor expansion:

6() =, E_[f@w) - @)
of 19/
@~ Priz) [9@- 20%%,

of
: L 16
7 Pro) [a@j] 1o

Ai‘j +

(a2, + 08|

where & denotes some sample from Pr{z} for some x, & ; denotes the sample with the presence of the j-th pixel in
Z (set x := & ;), £_; denotes the sample with the absence of the j-th pixel in &, and x; denotes the j-th pixel value
in sample &. Let AZ; be the delta of the j-th pixel value in & and know AZ; = x;. We collect all piece-wise Shapley
values and write the equation (I6) into the form of matrix:

bx(f)rx® E [Vafl=20 E [Vzl] (17)

&~Pr{xz} &~Pr{z}

where the operator ® denotes Hadamard product (Horn, [1990).

This approximation links Shapley value theory with gradient integration. Shapley value adheres to a set of desirable
properties: ‘Efficiency’, ‘Symmetry’, ‘Linearity’ and ‘Null player’ (Shapley, |1953} Roth, |1988) and guarantees the
fair distribution in cooperative game theoretically.

The equation underscores the prerequisite for robust explanations from the perspective of cooperative game: If
and only if (iff) the samples are sampled from the feature distribution (coalition distribution). This result echos
our simplified analysis in Section[3.2}

6.4 Estimating Shapley values

Using Monte Carlo method (James, |1980; [Metropolis & Ulam,|1949; |Hammersley}, 2013)), the Shapley value function
¢+ (v) can be estimated by:

K
bo(f) ~ = ® ) Va,L. (18)
k=1

|8

The assumption for such numerical estimation is that sampling distribution aligns with the coalition distribution. In
practice, we estimate an upper boundary of the ¢, (f) instead. Since abs{-} is convex and use Jensen’s inequality
piece-wisely:

K
ba(f) < abs {9o(F)} < = © Y] abs {Va, L} (19)

k=1
7 Information leakage in batch inference

From the perspective of cooperative game, the inferences with batch sizes larger than one can have unintended feature
interactions from other images in the batches. This phenomenon is known as the information leakage problem in batch
inferences and relevant algorithms such as batch-ed normalization (Wu & Johnson, 2021} |loffe & Szegedy,[2015). This
problem affects explanation qualities due to the information leakage. We advise small batch sizes or single instance in
inferences for deriving high quality explanations.

We give the error bound of the explanation certainty with batch inferences. Let z; be some explanation for some inputs
x;, x; be other inputs in the same batch where j # 7 and K be the batch size. The explanation certainty is bounded

10
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Figure 7: We extensively evaluate our algorithm against the gradient integration baselines over ImageNet dataset. Due
to computation resource, we only choose landmark works as baselines — Smoothgrad and IG. All random seeds are set
to 1860867 to guarantee the reproducibility. We choose the prevailing models which are pre-trained on ImageNet. We
assess the semantic alignment between explanations and semantic annotations by measuring the mutual information
with bins set to 20. For each run, we use 100 epochs and 100 images. The results can show two insights: (1) Our
algorithm can outperform state-of-the-art landmarks and (2) the results can also indicate the robustness of models.

above by:

Pr(x;|z;, 1, %2, -+ ,®i—1,%iq1, -, LK) < €XP (I(wz‘;zi) — H(x;) — Z I(fﬂj;zi)> (20)
J#i
< exp(I(x;;z;) — H(x;)). 21
This inequality shows that batch inference can also degrade explanation certainty. It is not difficult to show that the
relative explanation certainty error is bounded above by:

| Pr(®milzi) = Pr(zziz, @, i, @i, 2K
IS
Pr(z;|z;)
=1- exp{z I(zy; zi)}. (22)
J#i

Ideally, a single instance inference will have higher explanation certainty.

8 Ethical Impact

The great success of the implementations of neural networks from a variety of applications has been beheld and heralds
a new era. However, the ethical issues caused by the failures of sampling misalignment in explanations are neglected.
Such a sampling misalignment in the explanations of inferences can lead ethical issues if explanations are no longer
faithful. We conduct this research to tentatively understand such an impact and tackle this problem. We hope our
research can urge the concerns and shed light on the ethical issues.

9 Evaluation

We use both qualitative evaluation approach to compare the performance against baselines. We choose three baselines:
Smoothgrad, IG and vanilla due the research scope and computation resource. We only choose the landmark works
in gradient integration. We do not choose the variants of gradient integration such as Grad-CAM for this sake. The
implementation is available at|github.

The performances are evaluated from two aspects: (1) Semantic alignment with single object and (2) object discrim-
inativity amid the presence of two objects. The semantic alignment evaluation aims to verify if algorithms can yield
explanations agreeing with intuitions. The object discriminativity aims to examine if algorithms can highlight correct
objects agreeing with ground truth when multiple objects present.

9.1 AQualitative showcase

In Figure[I] we showcase the results with and without the ‘Gradient x Input’ technique. We choose ResNet50 (pre-
trained on ImageNet) as the showcase evaluation model. The showcase shows that the results from our algorithm can
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align with intuitions for all reference images. However, the baselines fail to highlight objects agreeing with intuitions
for some cases. We do not show large-scale qualitative results as its subjectivity and difficulty.

9.2 AQuantitative evaluation

We also an extensive quantitative evaluation regarding semantic alignment by measuring the mutual information as we
derive from theoretical analysis. The mutual information can be used to compute explanation confidences theoretically
by using the equation (6). We choose landmark models from AlexNet, VGG, ResNet to Visual Transformer (ViT) to
perform an extensive evaluation. The mutual information unit is in nats and the results are also normalized with respect
to the IG on the model basis. The images are randomly chosen by fixing random seed for reproducibility on ImageNet.

The evaluation results show that our algorithm can achieve higher confidences against baselines. There are two insights
from the results: (1) Sampling matters in explanations and (2) some state-of-the-art models such as ResNet and ViT
are more robust compared with prior models.

10 Conclusions and further work

This work theoretically and empirically revisits the sampling problem in the context of gradient integration and links
our approach to cooperative game theory. The analyses and experiments justify and echo our claims: (1) Sampling mat-
ters in explanations and (2) robust explanations need robust sampling. Yet, further questions remain open to answer:
(1) Seeking the ideal sampling, (2) the failures of explanations, and (3) the impact on explanations from information
leakage in inferences. We hope to conduct further research to answer the relevant intriguing open questions.

References

Daniel J Amit, Hanoch Gutfreund, and Haim Sompolinsky. Statistical mechanics of neural networks near saturation.
Annals of physics, 173(1):30-67, 1987.

Robert J Aumann and Lloyd S Shapley. Values of non-atomic games. Princeton University Press, 2015.

David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe, Katja Hansen, and Klaus-Robert Miiller.
How to explain individual classification decisions. The Journal of Machine Learning Research, 11:1803-1831,
2010.

Rodica Branzei, Dinko Dimitrov, and Stef Tijs. Models in cooperative game theory, volume 556. Springer Science &
Business Media, 2008.

Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

Morton Davis and Michael Maschler. The kernel of a cooperative game. Naval Research Logistics Quarterly, 12(3):
223-259, 1965.

Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface: Additive angular margin loss for deep face
recognition. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 4690-
4699, 2019.

Theo SH Driessen. Cooperative games, solutions and applications, volume 3. Springer Science & Business Media,
2013.

John Hammersley. Monte carlo methods. Springer Science & Business Media, 2013.

R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam Trischler, and
Yoshua Bengio. Learning deep representations by mutual information estimation and maximization. arXiv preprint
arXiv:1808.06670, 2018.

Roger A Horn. The hadamard product. In Proc. Symp. Appl. Math, volume 40, pp. 87-169, 1990.
Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal

covariate shift. In International conference on machine learning, pp. 448-456. PMLR, 2015.

12



Under review as submission to TMLR

Frederick James. Monte carlo theory and practice. Reports on progress in Physics, 43(9):1145, 1980.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural
networks. Communications of the ACM, 60(6):84-90, 2017.

Brian Kulis et al. Metric learning: A survey. Foundations and Trends® in Machine Learning, 5(4):287-364, 2013.
Solomon Kullback. Information theory and statistics. Courier Corporation, 1997.

Rithesh Kumar, Sherjil Ozair, Anirudh Goyal, Aaron Courville, and Yoshua Bengio. Maximum entropy generators for
energy-based models. arXiv preprint arXiv:1901.08508, 2019.

Kunpeng Li, Ziyan Wu, Kuan-Chuan Peng, Jan Ernst, and Yun Fu. Tell me where to look: Guided attention inference
network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9215-9223,
2018.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. Advances in neural informa-
tion processing systems, 30, 2017.

Nicholas Metropolis and Stanislaw Ulam. The monte carlo method. Journal of the American statistical association,
44(247):335-341, 1949.

Saumitra Mishra, Bob L Sturm, and Simon Dixon. Local interpretable model-agnostic explanations for music content
analysis. In ISMIR, volume 53, pp. 537-543, 2017.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning. MIT press, 2018.

Grégoire Montavon, Alexander Binder, Sebastian Lapuschkin, Wojciech Samek, and Klaus-Robert Miiller. Layer-
wise relevance propagation: an overview. Explainable Al: interpreting, explaining and visualizing deep learning,
pp- 193-209, 2019.

Anna Rakitianskaia and Andries Engelbrecht. Measuring saturation in neural networks. In 2015 IEEE symposium
series on computational intelligence, pp. 1423-1430. IEEE, 2015.

Alvin E Roth. The Shapley value: essays in honor of Lloyd S. Shapley. Cambridge University Press, 1988.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.
Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE
international conference on computer vision, pp. 618626, 2017.

Lloyd S Shapley. Stochastic games. Proceedings of the national academy of sciences, 39(10):1095-1100, 1953.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through propagating activation
differences. In International conference on machine learning, pp. 3145-3153. PMLR, 2017.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Visualising image
classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013.

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. Smoothgrad: removing noise by
adding noise. arXiv preprint arXiv:1706.03825, 2017.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In International confer-
ence on machine learning, pp. 3319-3328. PMLR, 2017.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In 2015 ieee information
theory workshop (itw), pp. 1-5. IEEE, 2015.

Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. arXiv preprint
physics/0004057, 2000.

Vladimir N Vapnik. An overview of statistical learning theory. IEEE transactions on neural networks, 10(5):988-999,
1999.

13



Under review as submission to TMLR

Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou, Zhifeng Li, and Wei Liu. Cosface:
Large margin cosine loss for deep face recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 5265-5274, 2018a.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation. arXiv preprint
arXiv:1811.10959, 2018b.

Eyal Winter. The shapley value. Handbook of game theory with economic applications, 3:2025-2054, 2002.

Yuxin Wu and Justin Johnson. Rethinking "batch" in batchnorm. arXiv preprint arXiv:2105.07576, 2021.

14



Under review as submission to TMLR

A Appendix

B Algorithm

The devised algorithm using information suppression sampling approach is shown as in Algorithm [, We use a
truncated Poisson distribution as the approximation of the feature binomial distribution.

Algorithm 1: The proposed algorithm using information suppression sampling approach.

Input : model, input, label, criterion, prob=0.6, and K=200

Qutput: explanation

explanation < 0

N « the number of pixels in input

C <1078

for k = 1to K do

/* Sampling a coalition size */
A= N -prob

num = truncated_poisson_sampling(A, N)

/+ Randomly setting pixels to constant C */
& = random_set_pizels(input, num, C)

pred = model ()

loss = criterion(pred, label)

loss.backward)()

explanation+ = loss.grad.abs()

end
explanation = (%) - explanation
explanation = min_max_norm(explanation)
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