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Abstract

Non-autoregressive Transformer (NART) mod-001
els predict tokens independently, which002
presents challenges in capturing token depen-003
dencies. Previous approaches have incorpo-004
rated the Autoregressive (AR) token depen-005
dency into the NART models, leading to a dis-006
crepancy known as AR exposure bias during007
the training and decoding processes of NART008
models, adversely affecting generation quality.009
We propose two novel approaches that facili-010
tate the recovery of future context information,011
thereby mitigating AR exposure bias. First,012
Bidirectional Contextual Knowledge Distilla-013
tion (BCKD) leverages AR teacher models to014
distill bidirectional token correlation informa-015
tion, enhancing via data augmentation. Second,016
the Bidirectional Contextual Transformer (BC-017
Transformer) captures global contextual infor-018
mation through its innovative graph architec-019
ture. Experiments demonstrate that our BC-020
Transformer achieves translation quality com-021
parable to that of the Autoregressive Trans-022
former (ART) while maintaining the supe-023
rior generation speed of the DA-Transformer.024
When both proposed methods are incorporated,025
NART models significantly outperform ART026
models (p < 0.03). Further analysis reveals027
that the BC-Transformer surpasses AR baseline028
models in the translation of long sentences.1029

1 Introduction030

The Autoregressive Transformer (ART, Vaswani031

et al., 2017) model has shown remarkable effective-032

ness across multiple NLP tasks, including Machine033

Translation (Bao et al., 2021), Question Answer-034

ing (Nassiri and Akhloufi, 2023), and Pre-trained035

language models (Lewis et al., 2019). Despite036

their advantages, ART models face inherent chal-037

lenges, such as high inference latency and exposure038

bias (Ranzato et al., 2015). Non-Autoregressive039

1Codes will be released upon the acceptance of this paper.

Transformer (NART, Gu et al., 2017) models ad- 040

dress some of these limitations by offering accel- 041

erated generation speeds through their parallel de- 042

coding mechanism. However, the conditional inde- 043

pendence assumption (Gu and Kong, 2020) under- 044

mines their ability to capture token dependencies 045

effectively (Zhou et al., 2019a), which is crucial 046

for maintaining the high generation quality of ART 047

models. Efforts to break these limitations have 048

led to strategies that leverage AR information to 049

guide NART models (Wei et al., 2019; Liu et al., 050

2020; Guo et al., 2020; Li et al., 2019). The Gu 051

et al.’s (2017) applied conventional sequence-level 052

knowledge distillation (CKD, Kim and Rush, 2016) 053

to NART models, and the Directed Acyclic Trans- 054

former (DA-Transformer, Huang et al., 2022b) in- 055

troduced a Directed Acyclic Graph (DAG) into the 056

NART framework. 057

Nevertheless, directly mimicking ART models 058

may propagate AR exposure bias into the NAR 059

decoder, limiting the potential of NART models 060

to excel beyond ART models. We refer to this 061

phenomenon as “Autoregressive Bias” (AR Bias). 062

Through theoretical and empirical analyses, we 063

demonstrate that AR Bias originates from CKD 064

and AR Structure Coordination. 065

To address the shortcomings associated with AR 066

Bias and to boost the generation quality of NART 067

models, we introduce Bidirectional Contextual 068

Knowledge Distillation (BCKD) and the Bidirec- 069

tional Contextual Transformer (BC-Transformer), 070

which incorporate future context information into 071

both CKD and the DA-Transformer framework. 072

The BCKD approach mitigates AR Bias using bidi- 073

rectional teacher models to harness token depen- 074

dencies from both left-to-right (L2R) and right- 075

to-left (R2L) orientations. In contrast, the BC- 076

Transformer employs a Bidirectional Contextual 077

Graph (BCG) rather than a DAG, capturing bidi- 078

rectional token dependencies and enhancing the 079

model’s search and aggregation capabilities. Em- 080

1



pirical results demonstrate that the BC-Transformer081

achieves translation results comparable to ART082

models. Additionally, BCKD enhances the gener-083

ation quality of the BC-Transformer, significantly084

outperforming ART models (P < 0.03) while085

maintaining the rapid inference speed of fully-086

NART models. In this paper, we delineate our087

primary contributions as follows:088

• We pinpoint and empirically validate the phe-089

nomenon of “Autoregressive Bias” (AR Bias)090

within NART models, which can be trans-091

ferred from ART models through CKD and092

AR structure coordination.093

• To counteract AR Bias, we introduce future094

context information to NART models using095

BCKD and the BC-Transformer, superseding096

traditional CKD and the state-of-the-art DA-097

Transformer.098

• Our experimental results confirm the effective-099

ness of our methods, indicating that NART100

models can surpass ART models by lever-101

aging bidirectional contextual information.102

Analysis proves the significant reduction of103

AR Bias afforded by our proposed methods.104

2 Tracking “Autoregressive Bias” in105

Non-Autoregressive Transformers106

A variety of methodologies have been advanced for107

integrating the AR Factor (fAR) into NART models108

to elevate generation quality. The relationship can109

be formalized as:110

θNART = F (Y,X, fAR) (1)111

One such approach, the CKD utilizes the NART112

student model to assimilate knowledge from an AR113

teacher model. Alternatively, AR structure coor-114

dination incorporates the fAR by melding the AR115

structure directly into the NART model framework116

to capture the conditional relationship R between117

token Yi and its preceding tokens Yj∈(1,i−1):118

fAR = R(Yi|X,Yj∈(1,i−1), θ) (2)119

This section is devoted to the theoretical exami-120

nation and the conception of analytical experiments121

aimed at discerning the extent of “AR Bias” within122

NART models.123

2.1 Model-Induced Autoregressive Bias 124

The DA-Transformer (Huang et al., 2022b) em- 125

ploys a directed acyclic graph (DAG) G = {E, V } 126

to model the sentence probability. Given a target 127

sentence Y = {Y1, Y2, ..., Yn}, each path in the 128

graph A = {a1, a2, ..., an} composes a candidate 129

sentence. The edges e ∈ E represent the transition 130

probability between vertices V , capturing the corre- 131

lation between adjacent target tokens Yi−1 and Yi. 132

Throughout the DAG’s training and inference pro- 133

cess, the model simultaneously generates candidate 134

tokens Ẏ and transition probabilities E, exploring 135

multiple paths to estimate sentence probability. 136

The DAG formalizes sentence prob- 137

ability by intermediate searching states 138

S = {S1, S2, ..., Sn−1}, where each state 139

corresponds to the determination of all tokens and 140

transitions preceding Yi. 141

P (Si) = P (Ẏ1)

i∏
j=2

Ei−1,i × P (Ẏi) 142

= P (Si−1)× Ei−1,i × P (Ẏi) (3) 143

Here, The Si−1 takes the role of “previous output 144

tokens” as in an ART model, Ẏi represents word- 145

level generation probability, and E signifies the AR 146

correlation between target tokens: 147

P (Si−1) = P (Yj∈(1,i−1)) 148

P (Ẏi) = P (Xi, θ) 149

Ei−1,i = P (Yi−1, Yi, θ) = P (X, θ) (4) 150

We then reformulate the sentence probability as: 151

PDAG(Y ) =

n∏
i=1

P (Si|X,Si−1, θ) 152

=

n∏
i=1

P (Yi|X,Yj,j∈(1,i−1), θ) (5) 153

From the derivation above, we conclude that the 154

L2R edges enable the DAG to capture directional 155

dependencies relationship R among adjacent target 156

tokens, resulting in the DA-Transformer learning 157

AR token dependency information: 158

fAR = R(Yi|X,Yj,j∈(1,i−1), θ) = E (6) 159

This approach introduces the AR factor fAR into 160

the DA-Transformer, introducing AR Bias into 161

model edge confidence. To substantiate our hy- 162

pothesis, we train two DA-Transformers with di- 163

verse edge directions—the forward DA (
−→
DA) and 164
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the backward DA (
←−
DA), and find a clear correlation165

between transition probability E and edge direction166

through visualization (see Figure 3).167

2.2 Data-Induced Autoregressive Bias168

ART models captures the dependency relationship169

between adjacent target tokens via next-token pre-170

diction tasks. However, they inherently lack future171

context information. The CKD facilitates NART172

models to assimilate from ART models by minimiz-173

ing the Kullback–Leibler (KL) divergence (Kim174

and Rush, 2016) between ART and NART models.175

θART = P (Yi|X,Yj,j∈(1,i−1), θ)176

fAR = KL(θART|θNART) (7)177

Ding et al. (2020) demonstrated that NART models178

acquire the ART lexical distribution through CKD.179

However, due to the inherent AR exposure bias,180

NART models are typically unable to learn future181

context dependencies directly from raw data.182

To investigate the perpetuation of AR Bias183

through CKD, we adopted the methodology out-184

lined by Zhou et al. (2019b) to scrutinize the corre-185

lation between the decoding direction of the ART186

teacher model, the quality of CKD data, and the187

generative quality of the NART student model. For188

a parallel corpus C, we trained two teacher mod-189

els with opposite decoding directions: the forward190

MT (
−→
MT ) and backward MT (

←−
MT ) which gen-191

erate two versions of the KD corpus respectively.192

Subsequently, we trained two student models in-193

dependently on these corpora—the L2R student194

model (
−→
MS) and the R2L student model (

←−
MS).195

Through the analysis to evaluate the CKD data196

accuracy and the student model’s translation qual-197

ity, it was observed that the L2R data exhibits198

higher correctness at the beginning of the sentences.199

Conversely, the R2L data demonstrated increased200

correctness towards the sentence endings (see Fig-201

ure 4). This phenomenon is mirrored in the student202

models, resulting in an imbalanced performance en-203

hancement through CKD (refer to Table 2). These204

findings confirm the transmission of AR Bias from205

ART models to NART models via the CKD.206

3 Alleviation of Autoregressive Bias207

Drawing on the insights from Zhou et al. (2019b),208

regarding AR Bias, we introduce the “Bidirectional209

Contextual Factor” fBC as a substitute for the “AR210

Factor” fAR to mitigate AR Bias. The fBC encapsu-211

lates the interdependence between the token yi and212

all other tokens yj , where j ̸= i thereby endowing 213

NART models with future contextual information. 214

θNART = F (Y,X, fBC) 215

fBC = R(Yi|X,Yj,(j ̸=i), θ) (8) 216

3.1 Bidirectional Contextual Transformer 217

The BC-Transformer (Shown in Figure 1) employs 218

the BCG GBC = {
−→
E ,
←−
E , V } as opposed to the 219

DAG GDA = {
−→
E , V }, to extract contextual infor- 220

mation for NART models. The BC-Transformer 221

formulates the sentence probability as follows: 222

PBC(Y ) =
∑
A∈Γ

Pθ(A|X)Pθ(Y |A,X) 223

A = {
−→
A,
←−
A} (9) 224

where
−→
A denotes paths interconnected via L2R 225

directional edges
−→
E , and

←−
A signifies directional 226

paths linked through R2L edges
←−
E . Γ encompasses 227

all potential bidirectional paths composed of
−→
A and 228←−

A . The GBC comprises two sets of edges: the L2R 229

edges −→e ∈
−→
E and the R2L edge←−e ∈

←−
E . 230

GBC = {
−→
E ,
←−
E V } 231

−→
E = P (Yi−1, Yi) 232
←−
E = P (Yi+1, Yi) (10) 233

The edges E delineate the directional transition 234

probabilities between adjacent target tokens, calcu- 235

lated via the attention mechenism. Where d is the 236

hidden size, WQ and WK are learnable weights. 237

E = softmax(
QKT

√
d

) 238

Q = VWQ, K = VWK (11) 239

For a candidate token Ẏi, the BCG facilitates the 240

model in acquiring the comprehension of sentence 241

construction through two directional search states. 242

P (
−→
S i) = P (

−→
S i−1)×

−→
E i−1,i × P (Ẏi) 243

P (
←−
S i) = P (

←−
S i+1)×

←−
E i+1,i × P (Ẏi) (12) 244

The L2R state
−→
S i embeds the antecedent contex- 245

tual information, while the R2L state
←−
S i embeds 246

the subsequent contextual information. 247

P (
−→
S i−1) = P (Yj∈(1,i−1), θ) 248

P (
←−
S i+1) = P (Yj∈(i+1,n), θ) (13) 249
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Figure 1: Overview of BC-Transformer. The model utilizes the BCG G = {
−→
E ,
←−
E , V } to establish candidate paths

from both directions, enhancing contextual information acquisition. Output candidates encompass search results
from both directions, facilitating improved generation quality.

This configuration aids the model in acquiring250

bidirectional contextual information.251

PBC(Y ) =
∏n

i=1P (Yi|X,Yj,j<i, Yk,k>i, θ)252

=
∏n

i=1P (Yi|X,Yj,j ̸=i, θ) (14)253

The BC-Transformer employs edges in both di-254

rections to search for candidate sentences during255

model inference, namely Bidirectional Ensemble256

Search (BES), and use the directed paths to formal-257

ize the candidate probabilities. The beam-search258

candidate list is partitioned into two identical seg-259

ments to accommodate two sets of candidates, with260

the most probable one selected as the model output.261

Pθ(Y |
−→
A,X) =

n∏
i=2

−→e ai−1,ai × P (Yi)262

Pθ(Y |
←−
A,X) =

n−1∏
i=1

←−e ai+1,ai × P (Yi)263

Y = BeamSearch((V,
←−
E )

⋃
(V,
−→
E )) (15)264

Since the token prediction and edge probabilities265

are calculated simultaneously, the BC-Transformer266

maintains a high degree of decoding parallelism267

akin to the DA-Transformer.268

3.2 Bidirectional Contextual Knowledge269

Distillation270

The BCKD (see Figure 2) introduces the bidirec-271

tional context information through the integration272

of two directional AR teacher models: the L2R273

model
−→
M learns and generates the target tokens274

from left to right, and the R2L model
←−
M learns and275

generates the target tokens from right to left.276

fBC = KL(
←→
θ ART|θNART)277

fBC = KL(
←−
θ ART,

−→
θ ART, |θNART) (16)278

Figure 2: Comparison between Conventional KD (CKD)
and Bidirectional Contextual KD (BCKD). The BCKD
incorporates two AR teachers, the L2R and R2L mod-
els, which enables the NART student model to acquire
contextual information from both directions.

For a sentence pair {
−→
S ,
−→
R}, the R2L model 279

can be effectively implemented via training and 280

inference on the reversed corpus {
←−
S ,
←−
R}. After 281

model training, the L2R and R2L models
−→
M and

←−
M 282

generate the corresponding KD corpus,
−→
C KD and 283←−

C KD. We aggregate them and maintain consistency 284

in word order for the NART model training. 285

−→
θ ART = R(Yi|X,Yj∈(1,i−1), θ) 286
←−
θ ART = R(Yi|X,Yj∈(i+1,n), θ) 287

fBC = KL(
←−
θ ART,

−→
θ ART, |θNART) (17) 288

The L2R and R2L models contain the token 289

correlation information R between token Yi and 290

its preceding and successor tokens. The combina- 291

tion of both corpora effectively complements each 292

other, yielding sufficient bidirectional contextual 293

information within the BCKD Corpus CBCKD = 294

Mix(
−→
C KD,

←−
C KD). We use the CBCKD to replace 295

the CKD corpus CCKD for NART model training. 296
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Model Iter WMT14 WMT16
∆BLEU Speedup

En-De De-En En-Ro Ro-En

Transformer (base)* M 27.27 31.75 33.74 33.96 - 1.0x
Transformer (big) (Vaswani et al., 2017)* M 28.62 32.29 - - - 0.84x

GLAT (wo/KD) (Qian et al., 2021)* 1 19.16 26.86 28.59 29.04 -5.77 15.3x
DA-T (wo/KD) (Huang et al., 2022b)* 1 27.16 30.76 32.83 33.73 -0.56 7.1x
PCFG-NART (wo/KD) (Gui et al., 2023) 1 27.02 31.29 32.72 33.07 -0.66 14.2x

CMLM (w/KD) (Ghazvininejad et al., 2019) 10 27.03 30.53 33.08 33.31 -0.69 2.2x
GLAT (w/KD) (Qian et al., 2021)* 1 25.08 29.82 31.32 32.06 -2.11 15.3x
DA-T (w/KD) (Huang et al., 2022b)* 1 27.65 32.09 33.33 34.00 +0.08 7.1x

BC-T (wo/KD)* 1 27.33 31.61 33.66 34.29 +0.04 7.0x
GLAT (w/BCKD)* 1 25.93 30.75 32.43 33.26 -1.08 15.3x
BC-T (w/BCKD)* 1 28.60 32.59 34.41 35.00 +0.97 7.0x

Table 1: Results on WMT14 En-De/De-En and WMT16 En-Ro/Ro-En benchmarks. The ∆BLEU shows the
difference between the models and the Transformer (base) baseline. The ∗ represents our implementation. BC-T
achieves comparable performance with ART; BCKD enhances the translation quality of both BC-T and GLAT.

4 Experiment297

4.1 Experiment Setup298

We analyze performance on two language pairs:299

the WMT14 English-German (En-De) (4.5M),300

and the WMT16 English-Romanian (En-Ro)301

datasets (610K).2 We evaluate both translation di-302

rections for each dataset. To guarantee the com-303

parability of our results, we adopt the preprocess-304

ing methodologies used for the WMT14 En-De305

from (Huang et al., 2022b) and for WMT16 En-306

Ro from (Huang et al., 2022a). We employ the307

DA-Transformer (Huang et al., 2022b) and Glanc-308

ing Transformer (GLAT, Qian et al., 2021) as our309

baseline model to evaluate the effectiveness of the310

BC-Transformer and BCKD. We maintain the same311

parameter settings for the BC-Transformer as re-312

ported in (Huang et al., 2022b), including an up-313

sampling scale of 8, a batch size of 64K tokens, a314

dropout rate of 0.1, and a maximum update of 30K.315

For the WMT16 En-Ro experiments, we adjust the316

dropout rate to 0.3. During model inference, we317

configure the beam size 200 and set β to 1.1, with318

α from 1.0 to 1.4.319

For KD in the WMT16 En-Ro setting, we em-320

ploy the Transformer (base) model. In the WMT14321

En-De context, we use the Transformer (big) as322

the teacher model, for both the DA-Transformer323

and BC-Transformer, in line with the approach de-324

scribed by Huang et al. (2022b). For the GLAT, we325

adhere to the guidelines of Qian et al. (2021) and326

use the Transformer (base) model as the teacher327

model. We select the tokenized BLEU score (Pa-328

pineni et al., 2002) and the COMET Score (Rei329

2We provide WMT17 experiment results in section A.3.

et al., 2020) as our evaluation metrics.3 330

4.2 Main Results 331

Our principal findings are summarized in Table 1. 332

The BC-Transformer consistently outperforms the 333

DA-Transformer across all four translation direc- 334

tions, thereby emphasizing the significance of in- 335

corporating future context information into NART 336

models. Moreover, our proposed BCKD method 337

significantly enhances the translation quality of 338

both the BC-Transformer and the GLAT, achieving 339

an increase of 1 BLEU point, which establishes its 340

superiority over existing CKD approaches. 341

We highlight the advantages of our methodolo- 342

gies in two key areas: first, a uniform enhance- 343

ment in generation quality across distinct transla- 344

tion directions and second, the attainment of this 345

improvement without sacrificing generation speed. 346

Furthermore, according to the BLEU score assess- 347

ment, the BC-Transformer attains a translation 348

quality comparable to ART models without KD, 349

evidenced by a marginal increase of 0.03 BLEU 350

points. When integrating the BC-Transformer with 351

BCKD, the NART model significantly outstrips 352

the performance of the ART model (p < 0.03), 353

which underscores the efficacy of NART models in 354

leveraging bidirectional contextual information. 355

5 Analysis of Autoregressive Bias 356

Alleviation 357

5.1 Model-Induced Bias Alleviation 358

To validate the mitigation of AR Bias through BCG 359

training, we compare the performance of the DA- 360

3The COMET Scores are presented in the section A.6.
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Figure 3: Comparison of AR Bias between DA-
Transformer and BC-Transformer. The figure shows
a clear correlation between link confidence and rela-
tive positions in the DA-Transformer, while the BC-
Transformer decreases the AR Bias, demonstrating an
almost horizontal line.

Transformer and the BC-Transformer. We train361

two DA-Transformers with distinct link directions362

L2R and R2L and implement lookahead decoding363

for the three models (
−−→
DAT ,

←−−
DAT , BCT). For each364

target token yi, we visualize the L2R and R2L link365

transition probability
−→
P i and

←−
P i. We quantify the366

AR Bias Pbias through the disparity between these367

transition probabilities.368

←−
P i =

←−e i+1,i369
−→
P i =

−→e i−1,i370

Pbias =
−→
P i −

←−
P i (18)371

Figure 3 exhibits the visualization of AR Bias372

Pbias in each relative positions observed in DAT373

and BCT. The figure substantiates the reduction of374

AR Bias by BCG training. The BC-Transformer375

demonstrates an almost horizontal line in the visu-376

alization, indicating negligible differences in link377

transition probabilities between the two search di-378

rections across all relative positions, which sug-379

gests a significant decrease in AR Bias.380

5.2 Data-Induced Bias Mitigation381

We conducted a two-stage analysis involving data382

quality assessment and model output evaluation383

to quantify the AR Bias present in the WMT16384

Ro-En KD data. To quantify the data-induced AR385

Bias, token accuracy at each relative position was386

measured. In the KD dataset, each token Yi is387

considered correctly translated if it is found in the388

reference sentence Yraw.389

Following the approach of Huang et al. (2023)390

we present the translation accuracy A(Yi) within391

20 relative position buckets. In an effort to control392

Figure 4: AR Bias visualization of the L2R/R2L/BCKD
data on WMT16 Ro-En dataset. Teacher models with
diverse inference directions generate biased KD data
with imbalanced quality in different relative positions.

Teacher Models Left ACC Right ACC
Raw (W/o KD) 68.3% 72.4%
L2R (

−→
MT ) 69.7% 73.2%

R2L (
←−
MT ) 68.9% 73.5%

BCKD (
←−
MT ,
−→
MT ) 69.7% 73.7%

Table 2: First & last 4 token prediction accuracy of
GLAT models with ART teachers (

−→
MT and

←−
MT ).

for the variation in translation difficulty, we average 393

the token accuracy from two directional KD corpus 394−→
Y i and

←−
Y i as the translation difficulty D(Yi). We 395

quantify the AR Bias as the difference between the 396

token accuracy A and translation difficulty D. 397

A(Yi) = count(Yi ∈ Yraw)/count(Yi) 398

D(Yi) = Average(A(
−→
Y i),A(

←−
Y i)) 399

Bias(Yi) = A(Yi)− D(Yi) (19) 400

The Figure 4 led to two principal observations: 401

1) The accuracy of the KD data is influenced by the 402

decoding direction used by the teacher model; 2) 403

BCKD effectively mitigates the AR Bias found in 404

conventional KD data. 405

To determine the impact of BCKD on the student 406

model’s capabilities, we employed the method set 407

forth by Zhou et al. (2019b) to compute the token 408

prediction accuracy for the GLAT model enhanced 409

with BCKD (refer to Table 2). Our findings indi- 410

cate that KD results in an uneven enhancement of 411

token prediction accuracy across the student model. 412

The L2R student model shows a 1.4% increase in 413

accuracy for prefix tokens and a 0.8% increase for 414

suffix tokens, while the R2L student model exhibits 415

a 0.6% improvement for prefix tokens and a 1.1% 416

improvement for suffix tokens. Notably, BCKD, 417

which integrates insights from both teacher models, 418
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Stretegy
Ro-En En-Ro

DA-T BC-T DA-T BC-T
L2R 33.73 34.23 32.83 33.55
R2L 33.90 34.20 33.46 33.56
Bidir - 34.29 - 33.66

Table 3: Translation Quality of WMT16 Ro-En / En-
Ro with three inference strategies. The BCG training
constructs a better-quality graph, and the BES utilizes
search results from both directions.

Teacher Model En-Ro Ro-En ∆BLEU
Raw (W/o KD) 28.59 29.04 -
Single (

−→
MT ) 31.32 32.06 2.87

Dual (
−→
MT ,
−→
M ′

T ) 32.21 32.75 3.66
Bidir (

←−
MT ,
−→
MT ) 32.43 33.26 4.03

Table 4: Translation Quality of GLAT distilled from
multiple teacher models on WMT16 En-Ro and Ro-En,
∆BLEU denotes the improvement over the Raw model.

enables the student models to demonstrate superior419

performance across all token types.420

6 Ablation Study421

6.1 Search Direction in BC-Transformer422

Our proposed BC-Transformer supports two search423

directions: L2R and R2L. Additionally, the BES424

strategy combines the search hypotheses from both425

directions. To evaluate the effectiveness of our BES426

approach, we compare the BLEU scores of model’s427

outputs with the two individual search directions as428

well as the ensemble search strategy. We also pro-429

vide results from the DA-Transformer. The results430

are detailed in Table 3.431

BC-Training Substantially Enhances Graph432

Quality. By employing directional search on a433

BCG, there is a notable improvement in translation434

quality over the DAG, which accentuates the value435

of BC-Training and the pivotal role that future con-436

textual information plays in NART training.437

Bidirectional Ensemble Inference Elevates438

Generation Quality. The bidirectional ensemble439

inference surpasses unidirectional inference, which440

underscores the benefits of combining bidirectional441

hypotheses. This demonstrates the significance of442

contextual consideration in enhancing the robust-443

ness and accuracy of translation results.444

6.2 Teacher Model Inference Direction445

The BCKD approach utilizes a pair of models as446

teacher models. To isolate and understand the ef-447

fect of the number of teacher models employed, we 448

conduct a controlled experiment, which deviates 449

from the standard practice of training two teachers 450

with opposite inference directions, the L2R (
−→
MT ) 451

and R2L (
←−
MT ). Instead, we train two AR teachers 452

with identical inference directions but initiated with 453

different random seeds: L2R (
−→
MT ) and L2R (

−→
M ′

T ). 454

Following this setup, we deploy the GLAT to eval- 455

uate the impact of these two KD strategies on the 456

translation tasks of WMT16 En-Ro and Ro-En. 457

The results, as shown in Table 4, indicate that 458

while increasing the number of teacher models does 459

improve the translation performance of the student 460

model, the BCKD strategy significantly enhances 461

the NART model even more. This enhancement 462

is indicative of the added value that bidirectional 463

contextual knowledge imparts to the distillation 464

process, bolstering the student model’s translation 465

capabilities beyond the contribution of additional 466

teacher model guidance alone. 467

6.3 Quality and Latency Tradeoff 468

In the realm of fully NART models, the BC- 469

Transformer does not bring additional inference 470

overhead than the DA-Transformer. Moreover, the 471

BC-Transformer, with its multiple search direc- 472

tions, yields enhanced translation outcomes utiliz- 473

ing a larger beam size. To explore the efficiency 474

and quality tradeoff, we conducted an ablation 475

study on the BC-Transformer using the WMT14 476

De-En dataset (Figure 5). 477

Larger Beam Size for Improved Performance. 478

Our study reveals that the DA-Transformer reaches 479

peak performance at a beam size of 100, it experi- 480

ences a subsequent decline in generation quality as 481

the beam size further increases. In contrast, the BC- 482

Transformer exhibits improved performance as the 483

beam size grows, displaying a more scalable rela- 484

tionship between beam size and translation quality. 485

Superior Quality at Equivalent Beam Sizes. 486

Remarkably, the BC-Transformer surpasses the 487

DA-Transformer by a significant margin at a min- 488

imal beam size of 2. At this size, the BC- 489

Transformer performs a bidirectional ensemble 490

lookahead generation, emphasizing its ability to 491

achieve enhanced translation performance without 492

compromising on latency. 493

BCKD Boosts Performance Across Beam 494

Sizes. The BC-Transformer outshines the ART 495

baseline for beam sizes from 2 to 400 with the 496

BCKD. Demonstrating consistent superiority, even 497
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Figure 5: BLEU Score comparison of BC-T, DA-T
under different beam size in WMT14 De-En. BC-T
acquires comparable result with ART, while BC-T +
BCKD outperforms ART under low beam size.

Figure 6: BLEU Score under Sentence Length Buckets.
BC-T acquires significant improvements over DA-T and
even outperforms ARTs in long sentences (Len>50).

at the lowest beam size where bidirectional looka-498

head decoding is employed, the BC-Transformer499

systematically exceeds the performance of the AR500

baseline. This underlines the effectiveness of501

BCKD in bolstering the BC-Transformer’s transla-502

tion accuracy irrespective of beam size.503

6.4 Translation Quality Analysis504

In this section, we delve into a comprehen-505

sive analysis of translation quality concern-506

ing our methodologies: the BC-Transformer507

and the BC-Transformer enhanced with BCKD.508

These approaches are compared against the DA-509

Transformer at the sentence level, and the following510

are the observed outcomes:511

Superiority in Lengthy Sentences. Upon eval-512

uating sentence-level BLEU scores across differ-513

ent sentence length buckets, our analysis uncovers514

that the BC-Transformer consistently outperforms515

the DA-Transformer across all length categories.516

Noteworthy, the BC-Transformer demonstrates sig-517

nificant improvements, especially with longer sen-518

tences. This highlights the superior ability of the519

BC-Transformer to handle complex sentences and 520

maintain quality in lengthier text passages. 521

Reduction in Error Accumulation. Through 522

a detailed case study4, we observe that the DA- 523

Transformer, akin to ART models, is prone to error 524

accumulation. In this common pitfall, an error in 525

the initial token generation cascades, deteriorating 526

the quality of the entire sentence. However, the BC- 527

Transformer shows resilience against error propa- 528

gation, thereby showcasing its robust generation 529

capabilities and ensuring more reliable translations 530

even faced with challenging inputs. 531

7 Related Work 532

Exposure Bias in ART The concept of exposure 533

bias (Ranzato et al., 2015) poses a fundamental 534

challenge for ART models. Several strategies have 535

been proposed to mitigate this issue in ART mod- 536

els. For example, Zhou et al. (2019b) and Tan 537

et al. (2019) have explored the integration of future 538

context information into the translation process. 539

Despite the potential of these modifications to en- 540

hance translation quality, there is a trade-off: such 541

adjustments to AR models typically result in in- 542

creased inference overhead (Tan et al., 2019) or 543

doubled inference latency (Zhou et al., 2019b). 544

AR-Assisted NART Models. A different line 545

of research has focused on enhancing NART mod- 546

els by utilizing knowledge from their AR coun- 547

terparts. Li et al. (2019) have promoted the con- 548

cept of NART models learning from the interior 549

parameters of ART models. Guo et al. (2020) have 550

introduced a curriculum learning approach to re- 551

fine NAR fine-tuning processes. Further, Hao et al. 552

(2020) and Wang et al. (2022) have presented mul- 553

titask learning methods for both AR and NAR gen- 554

eration tasks to effectively transfer knowledge and 555

reduce the gap between the two paradigms. 556

8 Conclusion 557

This paper introduces the BC-Transformer and 558

BCKD to mitigate AR Bias in NART models. 559

The BC-Transformer enriches the DA-Transformer 560

with a bidirectional structure for improved context 561

capture, while BCKD incorporates a reverse KD 562

model to enhance context awareness further. Our 563

experiments show that these methods significantly 564

elevate NART model performance, outpacing ART 565

baselines and indicating a promising avenue for 566

future quality enhancements in NART systems. 567

4We show translation cases in Appendix (Table 5).
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9 Limitations568

Our proposed BC-Transformer shares the na-569

ture of fully-NART and Mask-Predict models.570

In this work, we follow the framework of the571

DA-Transformer to propose the fully-NART BC-572

Transformer model and verifies the BCKD is ef-573

fective for the CMLM model (see Section A.4).574

However, we did not expand the BC-Transformer575

to the iterative refinement model to further increase576

the generation quality. We leave it to the future577

work.578

Although the NART model acquires better trans-579

lation quality on our BCKD dataset, our proposed580

BCKD still increases the data quantity. In future581

work, we suggest better data argumentation meth-582

ods to generate high-quality and unbiased training583

data within the data quantity budget.584

Our proposed methods remain on the scale of585

the Transformer model for NAR Machine Trans-586

lation tasks. Previous work has shown the poten-587

tial of the large-scale NART models (Wang et al.,588

2023), or NART models with pretraining, such as589

BANG (Qi et al., 2021), MIST (Jiang et al., 2021)590

and PreDAT (Huang et al., 2023). We are excited591

to expand the BC-Transformer to larger-scale pre-592

trained or large language models (Ye et al., 2023)593

to boost the NAR generation models in the future.594
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A Appendix760

A.1 Calculation Detail of Bidirectional761

Contextual Transformer762

This section describes the calculation detail of the763

BC-Transformer.764

The BC-Decoder receives the graph positional765

embeddings G = {g1, g2, ..., gL} as input, calcu-766

lates the vertex states V through the Transformer767

Blocks, then predicts target token candidate Ẏi,768

with the vertex state V and the learnable weight769

WP .770

[v1, ..., vL] = Transformer-Blocks(g1, ..., gL)771

Ẏ = softmax(WP vi) (20)772

Equation 11 refers to the self-attention mech-773

anism for the transition probability construction.774

The transition matrix is obtained by:775

E = softmax(
QKT

√
d

)776

Q = VWQ, K = VWK (21)777

where d is the hidden size, to enable bidirectional778

contextual information sharing, we employ the779

same set of learnable weights WQ and WK on tran-780

sition probability calculation of both directions.781

A.2 Experiment Settings782

We train the BC-Transformer on 4 × A100 (40G)783

GPUs. We follow the parameter settings of (Huang784

et al., 2022b), and show all our parameters on Ta-785

ble 6. For WMT16 En-Ro and Ro-En, we set the786

dropout rate 0.3. We select the checkpoint via the787

BES decoding of the validation set, and average788

the best five checkpoint for model generation.789

We employ the ensemble beam search for the790

model generation with beam size 200, decode beta791

β = 1.1 and alpha α = {1.0, 1.1, 1.2, 1.3, 1.4}.792

A.3 Experiment Result on WMT17793

To evaluate the capability of our proposed method794

in the large-scale corpus, we conduct the supple-795

ment experiment on WMT17 Zh-En/En-Zh. We796

compare the quality of the translation of the DA-797

Transformer (Huang et al., 2022b) with CKD and798

our proposed BC-Transformer with BCKD.799

We follow Huang et al. (2022b) to use the same800

parameter setting as WMT14 En-De in Table 6801

for model training. For BCKD and CKD, we set802

the update steps for 40k. We use tokenized BLEU803

for the Zh-En and sacreBLEU for En-Zh language 804

pairs for model evaluation. The experiment results 805

are shown in Table 7. BC-Transformer and BCKD 806

consistently outperform the baseline model DA- 807

Transformer and CKD. 808

A.4 Effect of BCKD on Iterative Refinement 809

Models 810

To further explore the effect of BCKD on iter- 811

ative refinement models, we train the CMLM 812

model (Ghazvininejad et al., 2019) on our CKD 813

and BCKD dataset, including WMT14 En-De, De- 814

En, WMT16 En-Ro, and Ro-En. Due to the in- 815

creased data quantity, the CMLM did not converge 816

on the BCKD corpus with the original settings. We 817

set the maximum update to 60k steps for CKD 818

and BCKD on En-De and De-En translation pairs, 819

follow the other settings of Ghazvininejad et al. 820

(2019). Experiment results are shown in Table 821

8. The proposed BCKD consistently boosts the 822

CMLM model’s translation quality in all four di- 823

rections. 824

A.5 Link Probability Visualization of BC-T 825

and DA-T 826

Figure 7: Link transition probability DA-Transformer.
The figure clearly shows the decline of model confi-
dence with the increase of previous output tokens.

In this section, we describe the calculation detail 827

of link visualization to compare the DA-T and BC- 828

T for AR Bias alleviation verification. We train two 829

DA-Transformers with diverse link directions (L2R 830

and R2L) and perform lookahead decoding on the 831

three models (
←−−−
DAT ,

−−−→
DAT ,BCT). 832

For each target token yi, we visualize the link 833

transition probability e. We average the transition 834

probability of two transition directions to model 835
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WMT14 De-En Translation Case
Source: Schmucklose Nebenzimmer sind nicht optimal , das Ambiente sollte besonders sein .
Reference: Plain adjoining rooms are not ideal , the ambience should be special .
DA-T: Sorless side rooms is not good and the room should be good .
BC-T: Jewellous side rooms are not optimal , the ambience should be special .

Table 5: Translation Cases Generated by BC-Transformer and DA-Transformer. BC-Transformer shows more
advantages in the prevention of error accumulation and grammar coherence.

Parameter De-En/En-De Ro-En/En-Ro

upsample scale 8.0 8.0
glat probability 0.5:0.1 0.5:0.1
optimizer adam adam
adam betas 0.9,0.999 0.9,0.999
label smoothing 0.01 0.01
weight decay 0.01 0.01
dropout 0.1 0.3
lr scheduler inverse-sqrt inverse-sqrt
warmup updates 10000 10000
clip norm 0.1 0.1
learning rate 0.0005 0.0005
warmup init lr 1e-07 1e-07
stop min lr 1e-09 1e-09
max tokens 64k 64k
max update 300000 300000

Table 6: BC-T Training Parameters for WMT14 De-En /
En-De & WMT16 Ro-En/En-Ro. We follow the settings
as DA-Transformer (Huang et al., 2022b). For WMT16
Ro-En/En-Ro, we set the dropout rate to 0.3.

Model WMT17

Zh-En En-Zh

DA-T (wo/KD) 24.22 34.21
BC-T (wo/KD) 24.99 34.30

DA-T (w/KD) 24.90 34.35
BC-T (w/BCKD) 25.18 34.70

Table 7: Experiment result on WMT17 Zh-En/En-Zh
corpus. We compare the translation quality with DA-
T (Huang et al., 2022b). The BC-T with BCKD shows
consistent improvement over DA-T and CKD.

the translation difficulty factor Ti.836

←−
P i = ei+1,i837
−→
P i = ei−1,i838

Ti = (
←−
P i +

−→
P i)/2 (22)839

We visualize the normalized link transition proba-840

bility
−→
P

′
i as:841

←−
P

′
i =
←−
P i − Ti842

−→
P

′
i =
−→
P i − Ti (23)843

For ensemble inference of BC-Transformer, we844

Model WMT14 WMT16

En-De De-En En-Ro Ro-En

CMLM (w/KD) 27.58 30.78 32.52 33.17
CMLM (w/BCKD) 27.68 31.27 33.55 34.15

Table 8: Experiment result of CMLM model on WMT14
En-De/De-En and WMT16 En-Ro/Ro-En corpus. The
BCKD consistently boosts the translation quality of the
CMLM model..

Figure 8: Link Transition probability of BC-
Transformer. There is no apparent difference between
L2R and R2L confidence, showing the alleviation of
AR Bias.

model the normalized transition probability
←→
P

′
i as: 845

←→
P

′
i =

{←−
P i − Ti,where ei ∈

←−
E

−→
P i − Ti,where ei ∈

−→
E

(24) 846

We show the normalized transition probability of 847−−−→
DAT ,

←−−−
DAT in figure 7, BC-T in figure 8. Figure 7 848

validates the existence of AR Bias in DAT, while 849

Figure 8 shows that the BCG training significantly 850

mitigates the AR Bias of the DAG. 851

A.6 Supplement of Experiment Result: 852

COMET Score 853

We also used the COMET score (Rei et al., 2020) to 854

evaluate the effectiveness of our proposed methods: 855

BC-Transformer and BCKD. We use the “wmt22- 856

comet-da” as the evaluation model. The experi- 857

ment results are shown in Table 9. Our proposed 858

BC-Transformer shows superiority over the DA- 859
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Transformer on WMT14 De-En and WMT16 Ro-860

En/ En-Ro. Moreover, our proposed BCKD signifi-861

cantly boosts the generation quality of GLAT and862

BC-Transformer.863

A.7 Supplement of Experiment Result:864

Significance Test865

We provide the significance test comparing our866

proposed BC-Transformer, the baseline model DA-867

Transformer, and the ART model (see Table 10).868

We use the CompareMT (Neubig et al., 2019) as869

the evaluation tool; we set bootstrap 1000 and prob-870

ability threshold 0.05.871

Our proposed BC-Transformer significantly out-872

performs the DA-Transformer on De-En, En-Ro,873

and Ro-En. The proposed BC-Transformer has no874

significant difference with ART in En-De, De-En,875

and En-Ro, and outperforms ART in Ro-En. More-876

over, with BCKD, the BC-Transformer ourper-877

forms ART significantly in all translation direc-878

tions.879

A.8 Elaboration of the Exposure Bias880

The term of Exposure Bias was initially proposed881

by (Bengio et al., 2015), which refers to the discrep-882

ancy between training and inference of the Recur-883

rent Neural Networks (RNN). Serdyuk et al. (2017)884

pinpointed that the RNN trained with teacher forc-885

ing struggles with long-range dependency and in-886

troduced future context information via a reverse887

RNN network. Liu et al. (2016) further pinpointed888

that RNN suffers from a fundamental issue of gen-889

erating unbalanced tokens, resulting in the suffixes890

of its outputs being typically worse than the pre-891

fixes, which is due to the fact that later predictions892

directly depend on the previous predictions. Zhang893

et al. (2019) used the term ’exposure bias’ to de-894

scribe this problem, pinpointing the reason for the895

bias because of the AR structure of current Neural896

Machine Translation systems. In this paper, we use897

the term exposure bias from Zhang et al. (2019) to898

clearly describe the bias.899

A.9 More Cases Comparing BC-Transformer900

and ART Model901

In this section, we provide more cases to show902

the potential of NAR models on generation qual-903

ity utilizing the removal of AR Bias. To make a904

fair comparison, we compare the BC-Transformer905

and ART models without KD. Table 11 shows that906

even without KD, the BC-Transformer can still907

overcome the error accumulation of ART.908
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Model WMT14 WMT16

En-De De-En En-Ro Ro-En

GLAT (wo/KD) (Qian et al., 2021)* 0.606 0.709 0.694 0.717
DA-T (wo/KD) (Huang et al., 2022b)* 0.683 0.758 0.754 0.761

GLAT (w/KD) (Qian et al., 2021)* 0.680 0.754 0.732 0.745
DA-T (w/KD) (Huang et al., 2022b)* 0.716 0.780 0.760 0.763

BC-T (wo/KD) 0.679 0.762 0.764 0.765
GLAT (w/BCKD) 0.694 0.763 0.742 0.757
BC-T (w/BCKD) 0.723 0.783 0.77 0.775

Table 9: COMET Scores on WMT14 En-De/De-En and WMT16 En-Ro/Ro-En benchmarks. Our Proposed BC-
Transformer achieves an observable margin over the baseline DA-Transformer on WMT14 De-En and WMT16
En-Ro/Ro-En; BCKD significantly improves the generation quality of both GLAT and BC-Transformer.

Model
WMT14 WMT16

En-De De-En En-Ro Ro-En

Result p Result p Result p Result p

BC-T vs ART - 0.489 - 0.332 - 0.134 > 0.049
BC-T (BCKD) vs ART > 0.000 > 0.003 > 0.031 > 0.012
DA-T vs ART - 0.338 < 0.001 < 0.000 - 0.497
BC-T vs DA-T - 0.391 > 0.002 > 0.000 > 0.029

Table 10: Significant test with BC-T, DA-T, and ART. > indicates the left system wins, < indicates the right system
wins. - indicates that the two systems have no significant difference. The BC-T has no significant difference with
ART in En-De, De-En, and En-Ro, and outperforms ART in Ro-En. BC-T (BCKD) outperforms ART significantly.

WMT14 De-En Case 1
Source: Nach diesen verschiedenen Ausführungen teilten Revierleiter Christoph Wehle und

Life @-@ Projektmanagerin Cornelia Bischoff die Helfer in Gruppen ein .
Reference: After the various statements , forest ranger Christoph Wehle and Life Project manager

Cornelia Bischoff divided the helpers into groups .
AT: After these various presentations , the relief workers were divided into groups by

Christoph Wehle , head of the district and life project manager Cornelia Bischoff .
BC-T: After these various statements , district manager Christoph Wehle and Life project

manager Cornelia Bischoff divided helpers into groups .
WMT14 De-En Case 2

Source: Aus jedem Clan beziehungsweise Team dürfen dann zwei am Einzelwettbewerb
teilnehmen .

Reference: Two members of each "clan" or team can then take part in the individual competition .
AT: Two from each clan and team are allowed to participate in the competition .
BC-T: From each " clan " or team , two can then take part in the individual competition .

Table 11: Translation Cases Generated by BC-T and ART. BC-T can overcome the translation error accumulation of
ART models, especially in long sentences.
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