Imitation Game is Not Optimal: Alleviating Autoregressive Bias in
Non-Autoregressive Transformers

Anonymous ACL submission

Abstract

Non-autoregressive Transformer (NART) mod-
els predict tokens independently, which
presents challenges in capturing token depen-
dencies. Previous approaches have incorpo-
rated the Autoregressive (AR) token depen-
dency into the NART models, leading to a dis-
crepancy known as AR exposure bias during
the training and decoding processes of NART
models, adversely affecting generation quality.
We propose two novel approaches that facili-
tate the recovery of future context information,
thereby mitigating AR exposure bias. First,
Bidirectional Contextual Knowledge Distilla-
tion (BCKD) leverages AR teacher models to
distill bidirectional token correlation informa-
tion, enhancing via data augmentation. Second,
the Bidirectional Contextual Transformer (BC-
Transformer) captures global contextual infor-
mation through its innovative graph architec-
ture. Experiments demonstrate that our BC-
Transformer achieves translation quality com-
parable to that of the Autoregressive Trans-
former (ART) while maintaining the supe-
rior generation speed of the DA-Transformer.
When both proposed methods are incorporated,
NART models significantly outperform ART
models (p < 0.03). Further analysis reveals
that the BC-Transformer surpasses AR baseline
models in the translation of long sentences. '

1 Introduction

The Autoregressive Transformer (ART, Vaswani
et al., 2017) model has shown remarkable effective-
ness across multiple NLP tasks, including Machine
Translation (Bao et al., 2021), Question Answer-
ing (Nassiri and Akhloufi, 2023), and Pre-trained
language models (Lewis et al., 2019). Despite
their advantages, ART models face inherent chal-
lenges, such as high inference latency and exposure
bias (Ranzato et al., 2015). Non-Autoregressive
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Transformer (NART, Gu et al., 2017) models ad-
dress some of these limitations by offering accel-
erated generation speeds through their parallel de-
coding mechanism. However, the conditional inde-
pendence assumption (Gu and Kong, 2020) under-
mines their ability to capture token dependencies
effectively (Zhou et al., 2019a), which is crucial
for maintaining the high generation quality of ART
models. Efforts to break these limitations have
led to strategies that leverage AR information to
guide NART models (Wei et al., 2019; Liu et al.,
2020; Guo et al., 2020; Li et al., 2019). The Gu
et al.’s (2017) applied conventional sequence-level
knowledge distillation (CKD, Kim and Rush, 2016)
to NART models, and the Directed Acyclic Trans-
former (DA-Transformer, Huang et al., 2022b) in-
troduced a Directed Acyclic Graph (DAG) into the
NART framework.

Nevertheless, directly mimicking ART models
may propagate AR exposure bias into the NAR
decoder, limiting the potential of NART models
to excel beyond ART models. We refer to this
phenomenon as “Autoregressive Bias” (AR Bias).
Through theoretical and empirical analyses, we
demonstrate that AR Bias originates from CKD
and AR Structure Coordination.

To address the shortcomings associated with AR
Bias and to boost the generation quality of NART
models, we introduce Bidirectional Contextual
Knowledge Distillation (BCKD) and the Bidirec-
tional Contextual Transformer (BC-Transformer),
which incorporate future context information into
both CKD and the DA-Transformer framework.
The BCKD approach mitigates AR Bias using bidi-
rectional teacher models to harness token depen-
dencies from both left-to-right (L2R) and right-
to-left (R2L) orientations. In contrast, the BC-
Transformer employs a Bidirectional Contextual
Graph (BCG) rather than a DAG, capturing bidi-
rectional token dependencies and enhancing the
model’s search and aggregation capabilities. Em-



pirical results demonstrate that the BC-Transformer
achieves translation results comparable to ART
models. Additionally, BCKD enhances the gener-
ation quality of the BC-Transformer, significantly
outperforming ART models (P < 0.03) while
maintaining the rapid inference speed of fully-
NART models. In this paper, we delineate our
primary contributions as follows:

* We pinpoint and empirically validate the phe-
nomenon of “Autoregressive Bias” (AR Bias)
within NART models, which can be trans-
ferred from ART models through CKD and
AR structure coordination.

* To counteract AR Bias, we introduce future
context information to NART models using
BCKD and the BC-Transformer, superseding
traditional CKD and the state-of-the-art DA-
Transformer.

* Our experimental results confirm the effective-
ness of our methods, indicating that NART
models can surpass ART models by lever-
aging bidirectional contextual information.
Analysis proves the significant reduction of
AR Bias afforded by our proposed methods.

2 Tracking “Autoregressive Bias” in
Non-Autoregressive Transformers

A variety of methodologies have been advanced for
integrating the AR Factor (far) into NART models
to elevate generation quality. The relationship can
be formalized as:

Onart = F(Y, X, far) (1)

One such approach, the CKD utilizes the NART
student model to assimilate knowledge from an AR
teacher model. Alternatively, AR structure coor-
dination incorporates the far by melding the AR
structure directly into the NART model framework
to capture the conditional relationship R between
token Y; and its preceding tokens Ye(q;_1):

far = R(Yi|X, Yje(1,i-1),0) (2)

This section is devoted to the theoretical exami-
nation and the conception of analytical experiments
aimed at discerning the extent of “AR Bias” within
NART models.

2.1 Model-Induced Autoregressive Bias

The DA-Transformer (Huang et al., 2022b) em-
ploys a directed acyclic graph (DAG) G = {E,V'}
to model the sentence probability. Given a target
sentence Y = {Y7,Y,...,Y,}, each path in the
graph A = {ay,as, ..., a, } composes a candidate
sentence. The edges e € E represent the transition
probability between vertices V, capturing the corre-
lation between adjacent target tokens Y;_; and Y.
Throughout the DAG’s training and inference pro-
cess, the model simultaneously generates candidate
tokens Y and transition probabilities F, exploring
multiple paths to estimate sentence probability.

The DAG formalizes sentence prob-
ability by intermediate searching states
S = {5,5,..,5.,-1}, where each state

corresponds to the determination of all tokens and
transitions preceding Y.

P(S;) = P(Y1) H E;_1;x P(Y;)
=2

=P(Si1) x Ei_1; x P(Y;)  (3)

Here, The S;_1 takes the role of “previous output
tokens” as in an ART model, Y; represents word-
level generation probability, and E signifies the AR
correlation between target tokens:

P(Si-1) = P(Yje1,i-1))
P(Y;) = P(X;,0)
Ei1;=PY;-1,Y;,0) = P(X,0) (4

We then reformulate the sentence probability as:

b

Poac(Y) = | | P(Si|X, Si-1,0)
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P(Yi|X, Y} jeq1,i-1),0) (5

From the derivation above, we conclude that the
L2R edges enable the DAG to capture directional
dependencies relationship R among adjacent target
tokens, resulting in the DA-Transformer learning
AR token dependency information:

far = R(Yi| X, Y} je,i-1),0) =E  (6)

This approach introduces the AR factor far into
the DA-Transformer, introducing AR Bias into
model edge confidence. To substantiate our hy-
pothesis, we train two DA-Transformers with di-
verse edge directions—the forward DA (lﬁ) and



the backward DA (ﬁ), and find a clear correlation
between transition probability £’ and edge direction
through visualization (see Figure 3).

2.2 Data-Induced Autoregressive Bias

ART models captures the dependency relationship
between adjacent target tokens via next-token pre-
diction tasks. However, they inherently lack future
context information. The CKD facilitates NART
models to assimilate from ART models by minimiz-
ing the Kullback-Leibler (KL) divergence (Kim
and Rush, 2016) between ART and NART models.

Oart = P(Yi| X, Y] je1,i-1),0)
far = KL(0arr|ONaRT) @)

Ding et al. (2020) demonstrated that NART models
acquire the ART lexical distribution through CKD.
However, due to the inherent AR exposure bias,
NART models are typically unable to learn future
context dependencies directly from raw data.

To investigate the perpetuation of AR Bias
through CKD, we adopted the methodology out-
lined by Zhou et al. (2019b) to scrutinize the corre-
lation between the decoding direction of the ART
teacher model, the quality of CKD data, and the
generative quality of the NART student model. For
a parallel corpus C, we trained two teacher mod-
els with opposite decoding directions: the forward
M~y (]\_4> 7) and backward M (M T) which gen-
erate two versions of the KD corpus respectively.
Subsequently, we trained two student models in-
dependently on these corpora—the L2R student
model (]\—/[> s) and the R2L student model (M S).

Through the analysis to evaluate the CKD data
accuracy and the student model’s translation qual-
ity, it was observed that the L2R data exhibits
higher correctness at the beginning of the sentences.
Conversely, the R2L data demonstrated increased
correctness towards the sentence endings (see Fig-
ure 4). This phenomenon is mirrored in the student
models, resulting in an imbalanced performance en-
hancement through CKD (refer to Table 2). These
findings confirm the transmission of AR Bias from
ART models to NART models via the CKD.

3 Alleviation of Autoregressive Bias

Drawing on the insights from Zhou et al. (2019b),
regarding AR Bias, we introduce the “Bidirectional
Contextual Factor” fgc as a substitute for the “AR
Factor” fagr to mitigate AR Bias. The fgc encapsu-
lates the interdependence between the token y; and

all other tokens y;, where j # 7 thereby endowing
NART models with future contextual information.

Onart = F(Y, X, fac)
fec = R(Yi| X, Y] (j2i), 0) 3

3.1 Bidirectional Contextual Transformer

The BC-Transformer (Shown in Figure 1) employs
the BCG Ggc = {F,

DAG Gpa = {E, V'}, to extract contextual infor-
mation for NART models. The BC-Transformer
formulates the sentence probability as follows:

,V'} as opposed to the

Pc(Y) =) Po(AIX)Py(Y A, X)
Aer

A={4, 1) )

where X denotes paths interconnected via L2R
directional edges F', and A signifies directional
paths linked through R2L edges
all potential bidirectional paths composed of A and

. I" encompasses

<_
A. The Gc comprises two sets of edges: the L2R
edges @ € F and the R2L edge e %

Gpe = {E,EV)
E = P(Yi_1,Y))

B = P(Yi11, V) (10)

The edges E delineate the directional transition
probabilities between adjacent target tokens, calcu-
lated via the attention mechenism. Where d is the
hidden size, W and W are learnable weights.

Vd
Q=VWo K =VWg

E = softmax(
(1D

For a candidate token Yi, the BCG facilitates the
model in acquiring the comprehension of sentence
construction through two directional search states.

P(?i) = P(giq) X ﬁz‘fl,i x P(Y;)

P(<§Z) = P(<§i+1) X %i—i—l,i X P(Yz)

(12)
The L2R state ?z embeds the antecedent contex-
tual information, while the R2L state S ; embeds
the subsequent contextual information.
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i+1) = P(Yje(ig1,n),0) (13)
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Figure 1: Overview of BC-Transformer. The model utilizes the BCG G = {ﬁ, %, V'} to establish candidate paths
from both directions, enhancing contextual information acquisition. Output candidates encompass search results
from both directions, facilitating improved generation quality.

This configuration aids the model in acquiring
bidirectional contextual information.

PBc(Y) =
= [[L P(Yi|X, Y] 24, 0)

H?zlp(}/l’Xv )/j,j<ia Yk,k>i7 9)
(14)

The BC-Transformer employs edges in both di-
rections to search for candidate sentences during
model inference, namely Bidirectional Ensemble
Search (BES), and use the directed paths to formal-
ize the candidate probabilities. The beam-search
candidate list is partitioned into two identical seg-
ments to accommodate two sets of candidates, with
the most probable one selected as the model output.

Py(Y |4, X) =H & s 0 X P(Y)
2

,_n

e
PG(Y|A7X) = ?ai-&-l,(li X P(Yl)

Y = BeamSearch((V, £)| J(V, E)) (1)

Since the token prediction and edge probabilities
are calculated simultaneously, the BC-Transformer
maintains a high degree of decoding parallelism
akin to the DA-Transformer.

3.2 Bidirectional Contextual Knowledge
Distillation
The BCKD (see Figure 2) introduces the bidirec-
tional context information through the integration
of two directional AR teacher models: the L2R
model M learns and generates the target tokens
from left to right, and the R2L model M learns and
generates the target tokens from right to left.

>
fec = KL( 6 arr|ONarT)

fsc =KL (16)
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Conventional KD Bidirectional Contextual KD

Figure 2: Comparison between Conventional KD (CKD)
and Bidirectional Contextual KD (BCKD). The BCKD
incorporates two AR teachers, the L2R and R2L. mod-
els, which enables the NART student model to acquire
contextual information from both directions.

For a sentence pair {?, ﬁ}, the R2L model
can be effectively implemented via training and
inference on the reversed corpus { S, R}. After
model training, the L2R and R2L models M and M

enerate the corresponding KD corpus,
Ckp. We aggregate them and maintain consistency
in word order for the NART model training.

KD and

ROYGIX,Y,
ROVX.Y,

%
0 ART = ie(1,i-1),0)

%
0 ArT = e z+1 ) 0)

fec = KL( % ART; 7 ART; |ONART) (17)

The L2R and R2L models contain the token
correlation information R between token Y; and
its preceding and successor tokens. The combina-
tion of both corpora effectively complements each
other, yielding sufficient bidirectional contextual
information within the BCKD Corpus Cgcxp =
MIX(BKD, C'xp). We use the Cpckp to replace
the CKD corpus Cckp for NART model training.



Model Iter WMTI14 WMTI6 ABLEU  Speedup
En-De De-En En-Ro Ro-En

Transformer (base)* M 27.27 31.75 33.74 3396 - 1.0x
Transformer (big) (Vaswani et al., 2017)* M 28.62 32.29 - - - 0.84x
GLAT (wo/KD) (Qian et al., 2021)* 1 19.16  26.86  28.59 29.04 -5.77 15.3x
DA-T (wo/KD) (Huang et al., 2022b)* 1 27.16 30.76  32.83 33.73  -0.56 7.1x
PCFG-NART (wo/KD) (Gui et al., 2023) 1 27.02  31.29 3272 33.07 -0.66 14.2x
CMLM (w/KD) (Ghazvininejad et al., 2019) 10 27.03 30.53 33.08 33.31  -0.69 2.2x
GLAT (w/KD) (Qian et al., 2021)* 1 2508 29.82 3132 3206 -2.11 15.3x
DA-T (w/KD) (Huang et al., 2022b)* 1 27.65 32.09 33.33 34.00 +0.08 7.1x
BC-T (wo/KD)* 1 27.33 31.61 33.66 3429 +0.04 7.0x
GLAT (w/BCKD)* 1 25.93 30.75 32.43 33.26 -1.08 15.3x
BC-T (w/BCKD)* 1 28.60 3259 3441 35.00 +0.97 7.0x

Table 1: Results on WMT14 En-De/De-En and WMT16 En-Ro/Ro-En benchmarks. The ABLEU shows the
difference between the models and the Transformer (base) baseline. The * represents our implementation. BC-T
achieves comparable performance with ART; BCKD enhances the translation quality of both BC-T and GLAT.

4 Experiment

4.1 Experiment Setup

We analyze performance on two language pairs:
the WMT14 English-German (En-De) (4.5M),
and the WMTI16 English-Romanian (En-Ro)
datasets (610K).> We evaluate both translation di-
rections for each dataset. To guarantee the com-
parability of our results, we adopt the preprocess-
ing methodologies used for the WMT14 En-De
from (Huang et al., 2022b) and for WMT16 En-
Ro from (Huang et al., 2022a). We employ the
DA-Transformer (Huang et al., 2022b) and Glanc-
ing Transformer (GLAT, Qian et al., 2021) as our
baseline model to evaluate the effectiveness of the
BC-Transformer and BCKD. We maintain the same
parameter settings for the BC-Transformer as re-
ported in (Huang et al., 2022b), including an up-
sampling scale of 8, a batch size of 64K tokens, a
dropout rate of 0.1, and a maximum update of 30K.
For the WMT16 En-Ro experiments, we adjust the
dropout rate to 0.3. During model inference, we
configure the beam size 200 and set 5 to 1.1, with
« from 1.0 to 1.4.

For KD in the WMT16 En-Ro setting, we em-
ploy the Transformer (base) model. In the WMT14
En-De context, we use the Transformer (big) as
the teacher model, for both the DA-Transformer
and BC-Transformer, in line with the approach de-
scribed by Huang et al. (2022b). For the GLAT, we
adhere to the guidelines of Qian et al. (2021) and
use the Transformer (base) model as the teacher
model. We select the tokenized BLEU score (Pa-
pineni et al., 2002) and the COMET Score (Rei

>We provide WMT17 experiment results in section A.3.

et al., 2020) as our evaluation metrics.’

4.2 Main Results

Our principal findings are summarized in Table 1.
The BC-Transformer consistently outperforms the
DA-Transformer across all four translation direc-
tions, thereby emphasizing the significance of in-
corporating future context information into NART
models. Moreover, our proposed BCKD method
significantly enhances the translation quality of
both the BC-Transformer and the GLAT, achieving
an increase of 1 BLEU point, which establishes its
superiority over existing CKD approaches.

We highlight the advantages of our methodolo-
gies in two key areas: first, a uniform enhance-
ment in generation quality across distinct transla-
tion directions and second, the attainment of this
improvement without sacrificing generation speed.
Furthermore, according to the BLEU score assess-
ment, the BC-Transformer attains a translation
quality comparable to ART models without KD,
evidenced by a marginal increase of 0.03 BLEU
points. When integrating the BC-Transformer with
BCKD, the NART model significantly outstrips
the performance of the ART model (p < 0.03),
which underscores the efficacy of NART models in
leveraging bidirectional contextual information.

5 Analysis of Autoregressive Bias
Alleviation

5.1 Model-Induced Bias Alleviation

To validate the mitigation of AR Bias through BCG
training, we compare the performance of the DA-

3The COMET Scores are presented in the section A.6.
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Figure 3: Comparison of AR Bias between DA-
Transformer and BC-Transformer. The figure shows
a clear correlation between link confidence and rela-
tive positions in the DA-Transformer, while the BC-
Transformer decreases the AR Bias, demonstrating an
almost horizontal line.

Transformer and the BC-Transformer. We train
two DA-Transformers with distinct link directions
L2R and R2L and implement lookahead decoding
for the three models (Iﬁ , m , BCT). For each
target token y;, we visualize the L2R and R2L link
transition probability P; and ?Z We quantify the
AR Bias B, through the disparity between these
transition probabilities.

<_
P;= %HM
?i - E>7,’—1,7,’
<_
Poias = B; — P, (18)

Figure 3 exhibits the visualization of AR Bias
PBixs in each relative positions observed in DAT
and BCT. The figure substantiates the reduction of
AR Bias by BCG training. The BC-Transformer
demonstrates an almost horizontal line in the visu-
alization, indicating negligible differences in link
transition probabilities between the two search di-
rections across all relative positions, which sug-
gests a significant decrease in AR Bias.

5.2 Data-Induced Bias Mitigation

We conducted a two-stage analysis involving data
quality assessment and model output evaluation
to quantify the AR Bias present in the WMT16
Ro-En KD data. To quantify the data-induced AR
Bias, token accuracy at each relative position was
measured. In the KD dataset, each token Yj is
considered correctly translated if it is found in the
reference sentence Yiaw.

Following the approach of Huang et al. (2023)
we present the translation accuracy A(Y;) within
20 relative position buckets. In an effort to control

9 2R
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—e— BCKD
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o

0.2 0.4 0.6 0.8
Relative Position

Figure 4: AR Bias visualization of the L2ZR/R2L/BCKD
data on WMT16 Ro-En dataset. Teacher models with
diverse inference directions generate biased KD data
with imbalanced quality in different relative positions.

Teacher Models  Left ACC Right ACC
Raw (W/o KD) 68.3% 72.4%
L2R (M) 69.7% 73.2%
R2L (M) 68.9% 73.5%
BCKD (Mp.Mp)  69.7% 73.7%

Table 2: First & last 4 token precggtion accuracy of
GLAT models with ART teachers (M and ﬂ 7).

for the variation in translation difficulty, we average
the token accuracy from two directional KD corpus
; and Y'; as the translation difficulty D(Y;). We
quantify the AR Bias as the difference between the
token accuracy A and translation difficulty D.

A(Y;) = count(Y; € Yiaw)/count(Y;)

D(Y;) = Average(A(Y3), A(Y 1)

Bias(Y;) = A(Y;) — D(Y)) (19)

The Figure 4 led to two principal observations:
1) The accuracy of the KD data is influenced by the
decoding direction used by the teacher model; 2)
BCKD effectively mitigates the AR Bias found in
conventional KD data.

To determine the impact of BCKD on the student
model’s capabilities, we employed the method set
forth by Zhou et al. (2019b) to compute the token
prediction accuracy for the GLAT model enhanced
with BCKD (refer to Table 2). Our findings indi-
cate that KD results in an uneven enhancement of
token prediction accuracy across the student model.
The L2R student model shows a 1.4% increase in
accuracy for prefix tokens and a 0.8% increase for
suffix tokens, while the R2L student model exhibits
a 0.6% improvement for prefix tokens and a 1.1%
improvement for suffix tokens. Notably, BCKD,
which integrates insights from both teacher models,



Stretegy Ro-En En-Ro
DA-T BC-T DA-T BC-T
L2R 3373 3423 32.83 33.55
R2L 3390 3420 3346 33.56
Bidir - 34.29 - 33.66

Table 3: Translation Quality of WMT16 Ro-En / En-
Ro with three inference strategies. The BCG training
constructs a better-quality graph, and the BES utilizes
search results from both directions.

Teacher Model En-Ro Ro-En ABLEU
Raw (W/o KD) 2859  29.04 -
Single (M) 3132 3206 2.87
Dual My MY 3221 3275 3.66
Bidir (M. Myp) 3243 3326 4.03

Table 4: Translation Quality of GLAT distilled from
multiple teacher models on WMT16 En-Ro and Ro-En,
ABLEU denotes the improvement over the Raw model.

enables the student models to demonstrate superior
performance across all token types.

6 Ablation Study

6.1 Search Direction in BC-Transformer

Our proposed BC-Transformer supports two search
directions: L2R and R2L. Additionally, the BES
strategy combines the search hypotheses from both
directions. To evaluate the effectiveness of our BES
approach, we compare the BLEU scores of model’s
outputs with the two individual search directions as
well as the ensemble search strategy. We also pro-
vide results from the DA-Transformer. The results
are detailed in Table 3.

BC-Training Substantially Enhances Graph
Quality. By employing directional search on a
BCQG, there is a notable improvement in translation
quality over the DAG, which accentuates the value
of BC-Training and the pivotal role that future con-
textual information plays in NART training.

Bidirectional Ensemble Inference Elevates
Generation Quality. The bidirectional ensemble
inference surpasses unidirectional inference, which
underscores the benefits of combining bidirectional
hypotheses. This demonstrates the significance of
contextual consideration in enhancing the robust-
ness and accuracy of translation results.

6.2 Teacher Model Inference Direction

The BCKD approach utilizes a pair of models as
teacher models. To isolate and understand the ef-

fect of the number of teacher models employed, we
conduct a controlled experiment, which deviates
from the standard practice of training two teachers
with opposite inference directions, the L2R (M 1)
and R2L (M 7). Instead, we train two AR teachers
with identical inference directig)ls but initiated gith
different random seeds: L2R (M 1) and L2R (M/).
Following this setup, we deploy the GLAT to eval-
uate the impact of these two KD strategies on the
translation tasks of WMT16 En-Ro and Ro-En.

The results, as shown in Table 4, indicate that
while increasing the number of teacher models does
improve the translation performance of the student
model, the BCKD strategy significantly enhances
the NART model even more. This enhancement
is indicative of the added value that bidirectional
contextual knowledge imparts to the distillation
process, bolstering the student model’s translation
capabilities beyond the contribution of additional
teacher model guidance alone.

6.3 Quality and Latency Tradeoff

In the realm of fully NART models, the BC-
Transformer does not bring additional inference
overhead than the DA-Transformer. Moreover, the
BC-Transformer, with its multiple search direc-
tions, yields enhanced translation outcomes utiliz-
ing a larger beam size. To explore the efficiency
and quality tradeoff, we conducted an ablation
study on the BC-Transformer using the WMT14
De-En dataset (Figure 5).

Larger Beam Size for Improved Performance.
Our study reveals that the DA-Transformer reaches
peak performance at a beam size of 100, it experi-
ences a subsequent decline in generation quality as
the beam size further increases. In contrast, the BC-
Transformer exhibits improved performance as the
beam size grows, displaying a more scalable rela-
tionship between beam size and translation quality.

Superior Quality at Equivalent Beam Sizes.
Remarkably, the BC-Transformer surpasses the
DA-Transformer by a significant margin at a min-
imal beam size of 2. At this size, the BC-
Transformer performs a bidirectional ensemble
lookahead generation, emphasizing its ability to
achieve enhanced translation performance without
compromising on latency.

BCKD Boosts Performance Across Beam
Sizes. The BC-Transformer outshines the ART
baseline for beam sizes from 2 to 400 with the
BCKD. Demonstrating consistent superiority, even
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Figure 5: BLEU Score comparison of BC-T, DA-T
under different beam size in WMT14 De-En. BC-T
acquires comparable result with ART, while BC-T +
BCKD outperforms ART under low beam size.
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Figure 6: BLEU Score under Sentence Length Buckets.
BC-T acquires significant improvements over DA-T and
even outperforms ARTS in long sentences (Len>50).

at the lowest beam size where bidirectional looka-
head decoding is employed, the BC-Transformer
systematically exceeds the performance of the AR
baseline. This underlines the effectiveness of
BCKD in bolstering the BC-Transformer’s transla-
tion accuracy irrespective of beam size.

6.4 Translation Quality Analysis

In this section, we delve into a comprehen-
sive analysis of translation quality concern-
ing our methodologies: the BC-Transformer
and the BC-Transformer enhanced with BCKD.
These approaches are compared against the DA-
Transformer at the sentence level, and the following
are the observed outcomes:

Superiority in Lengthy Sentences. Upon eval-
uating sentence-level BLEU scores across differ-
ent sentence length buckets, our analysis uncovers
that the BC-Transformer consistently outperforms
the DA-Transformer across all length categories.
Noteworthy, the BC-Transformer demonstrates sig-
nificant improvements, especially with longer sen-
tences. This highlights the superior ability of the

BC-Transformer to handle complex sentences and
maintain quality in lengthier text passages.

Reduction in Error Accumulation. Through
a detailed case study”®, we observe that the DA-
Transformer, akin to ART models, is prone to error
accumulation. In this common pitfall, an error in
the initial token generation cascades, deteriorating
the quality of the entire sentence. However, the BC-
Transformer shows resilience against error propa-
gation, thereby showcasing its robust generation
capabilities and ensuring more reliable translations
even faced with challenging inputs.

7 Related Work

Exposure Bias in ART The concept of exposure
bias (Ranzato et al., 2015) poses a fundamental
challenge for ART models. Several strategies have
been proposed to mitigate this issue in ART mod-
els. For example, Zhou et al. (2019b) and Tan
et al. (2019) have explored the integration of future
context information into the translation process.
Despite the potential of these modifications to en-
hance translation quality, there is a trade-off: such
adjustments to AR models typically result in in-
creased inference overhead (Tan et al., 2019) or
doubled inference latency (Zhou et al., 2019b).
AR-Assisted NART Models. A different line
of research has focused on enhancing NART mod-
els by utilizing knowledge from their AR coun-
terparts. Li et al. (2019) have promoted the con-
cept of NART models learning from the interior
parameters of ART models. Guo et al. (2020) have
introduced a curriculum learning approach to re-
fine NAR fine-tuning processes. Further, Hao et al.
(2020) and Wang et al. (2022) have presented mul-
titask learning methods for both AR and NAR gen-
eration tasks to effectively transfer knowledge and
reduce the gap between the two paradigms.

8 Conclusion

This paper introduces the BC-Transformer and
BCKD to mitigate AR Bias in NART models.
The BC-Transformer enriches the DA-Transformer
with a bidirectional structure for improved context
capture, while BCKD incorporates a reverse KD
model to enhance context awareness further. Our
experiments show that these methods significantly
elevate NART model performance, outpacing ART
baselines and indicating a promising avenue for
future quality enhancements in NART systems.

*We show translation cases in Appendix (Table 5).



9 Limitations

Our proposed BC-Transformer shares the na-
ture of fully-NART and Mask-Predict models.
In this work, we follow the framework of the
DA-Transformer to propose the fully-NART BC-
Transformer model and verifies the BCKD is ef-
fective for the CMLM model (see Section A.4).
However, we did not expand the BC-Transformer
to the iterative refinement model to further increase
the generation quality. We leave it to the future
work.

Although the NART model acquires better trans-
lation quality on our BCKD dataset, our proposed
BCKD still increases the data quantity. In future
work, we suggest better data argumentation meth-
ods to generate high-quality and unbiased training
data within the data quantity budget.

Our proposed methods remain on the scale of
the Transformer model for NAR Machine Trans-
lation tasks. Previous work has shown the poten-
tial of the large-scale NART models (Wang et al.,
2023), or NART models with pretraining, such as
BANG (Qi et al., 2021), MIST (Jiang et al., 2021)
and PreDAT (Huang et al., 2023). We are excited
to expand the BC-Transformer to larger-scale pre-
trained or large language models (Ye et al., 2023)
to boost the NAR generation models in the future.
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A Appendix

A.1 Calculation Detail of Bidirectional
Contextual Transformer

This section describes the calculation detail of the
BC-Transformer.

The BC-Decoder receives the graph positional
embeddings G = {¢1, g2, ..., g} as input, calcu-
lates the vertex states V' through the Transformer
Blocks, then predicts target token candidate Y;,
with the vertex state V' and the learnable weight
Wp.

[v1, ..., vz ] = Transformer-Blocks(g1, ..., 1)
(20)

Y = softmax(Wpv;)

Equation 11 refers to the self-attention mech-
anism for the transition probability construction.
The transition matrix is obtained by:

KT

\/g>
Q=VWy K =VWg

E = softmax (
2D

where d is the hidden size, to enable bidirectional
contextual information sharing, we employ the
same set of learnable weights W and Wi on tran-
sition probability calculation of both directions.

A.2 Experiment Settings

We train the BC-Transformer on 4 x A100 (40G)
GPUs. We follow the parameter settings of (Huang
et al., 2022b), and show all our parameters on Ta-
ble 6. For WMT16 En-Ro and Ro-En, we set the
dropout rate 0.3. We select the checkpoint via the
BES decoding of the validation set, and average
the best five checkpoint for model generation.

We employ the ensemble beam search for the
model generation with beam size 200, decode beta
f = 1.1 and alpha o = {1.0,1.1,1.2,1.3,1.4}.

A.3 Experiment Result on WMT17

To evaluate the capability of our proposed method
in the large-scale corpus, we conduct the supple-
ment experiment on WMT17 Zh-En/En-Zh. We
compare the quality of the translation of the DA-
Transformer (Huang et al., 2022b) with CKD and
our proposed BC-Transformer with BCKD.

We follow Huang et al. (2022b) to use the same
parameter setting as WMT14 En-De in Table 6
for model training. For BCKD and CKD, we set
the update steps for 40k. We use tokenized BLEU
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for the Zh-En and sacreBLEU for En-Zh language
pairs for model evaluation. The experiment results
are shown in Table 7. BC-Transformer and BCKD
consistently outperform the baseline model DA-
Transformer and CKD.

A.4 Effect of BCKD on Iterative Refinement
Models

To further explore the effect of BCKD on iter-
ative refinement models, we train the CMLM
model (Ghazvininejad et al., 2019) on our CKD
and BCKD dataset, including WMT14 En-De, De-
En, WMT16 En-Ro, and Ro-En. Due to the in-
creased data quantity, the CMLM did not converge
on the BCKD corpus with the original settings. We
set the maximum update to 60k steps for CKD
and BCKD on En-De and De-En translation pairs,
follow the other settings of Ghazvininejad et al.
(2019). Experiment results are shown in Table
8. The proposed BCKD consistently boosts the
CMLM model’s translation quality in all four di-
rections.

A.5 Link Probability Visualization of BC-T
and DA-T

0.08 q
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Figure 7: Link transition probability DA-Transformer.
The figure clearly shows the decline of model confi-
dence with the increase of previous output tokens.

In this section, we describe the calculation detail
of link visualization to compare the DA-T and BC-
T for AR Bias alleviation verification. We train two
DA-Transformers with diverse link directions (L2R
and R2L) and perform lookahead decoding on the
three models ( AT,m,BCT).

For each target token y;, we visualize the link
transition probability e. We average the transition
probability of two transition directions to model



WMT14 De-En Translation Case

Source: Schmucklose Nebenzimmer sind nicht optimal , das Ambiente sollte besonders sein .
Reference: Plain adjoining rooms are not ideal , the ambience should be special .

DA-T: Sorless side rooms is not good and the room should be good .

BC-T: Jewellous side rooms are not optimal , the ambience should be special .

Table 5: Translation Cases Generated by BC-Transformer and DA-Transformer. BC-Transformer shows more
advantages in the prevention of error accumulation and grammar coherence.

Parameter De-En/En-De  Ro-En/En-Ro
upsample scale 8.0 8.0
glat probability 0.5:0.1 0.5:0.1
optimizer adam adam
adam betas 0.9,0.999 0.9,0.999
label smoothing 0.01 0.01
weight decay 0.01 0.01
dropout 0.1 0.3

Ir scheduler inverse-sqrt inverse-sqrt
warmup updates 10000 10000
clip norm 0.1 0.1
learning rate 0.0005 0.0005
warmup init Ir le-07 le-07
stop min Ir le-09 1le-09
max tokens 64k 64k
max update 300000 300000

Table 6: BC-T Training Parameters for WMT14 De-En /
En-De & WMT16 Ro-En/En-Ro. We follow the settings
as DA-Transformer (Huang et al., 2022b). For WMT16
Ro-En/En-Ro, we set the dropout rate to 0.3.

Model o WMTI7
ZhEn EnZh
DA-T (wo/KD) 2422 3421
BC-T (wo/KD) 2499  34.30
DA-T (w/KD) 2490 3435
BC-T (W/BCKD) 2518 34.70

Table 7: Experiment result on WMT17 Zh-En/En-Zh
corpus. We compare the translation quality with DA-
T (Huang et al., 2022b). The BC-T with BCKD shows
consistent improvement over DA-T and CKD.

the translation difficulty factor 7;.

€itl,i

€i—1,

(P + P2

We visualize the normalized link transition proba-

(22)

bility ?; as:

<

<_
P;=P;~T,

?;:?i_Ti

For ensemble inference of BC-Transformer, we

(23)
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Model WMT14 WMT16
En-De De-En En-Ro Ro-En

CMLM (w/KD) 27.58 30.78 32.52 33.17

CMLM (w/BCKD) 27.68 31.27 33.55 34.15

Table 8: Experiment result of CMLM model on WMT14
En-De/De-En and WMT16 En-Ro/Ro-En corpus. The
BCKD consistently boosts the translation quality of the
CMLM model..

—— BCT(L2R)
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BC-T (Bi)
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Figure 8: Link Transition probability of BC-
Transformer. There is no apparent difference between
L2R and R2L confidence, showing the alleviation of
AR Bias.

model the normalized transition probability P ; as:

, <]3Z — T;,where ¢; € %
V2l

L= (24)
’ ?Z — T;,where e¢; € ﬁ

We show the normalized transition probability of
W,m in figure 7, BC-T in figure 8. Figure 7
validates the existence of AR Bias in DAT, while
Figure 8 shows that the BCG training significantly
mitigates the AR Bias of the DAG.

A.6 Supplement of Experiment Result:
COMET Score

We also used the COMET score (Rei et al., 2020) to
evaluate the effectiveness of our proposed methods:
BC-Transformer and BCKD. We use the “wmt22-
comet-da” as the evaluation model. The experi-
ment results are shown in Table 9. Our proposed
BC-Transformer shows superiority over the DA-



Transformer on WMT14 De-En and WMT16 Ro-
En/ En-Ro. Moreover, our proposed BCKD signifi-
cantly boosts the generation quality of GLAT and
BC-Transformer.

A.7 Supplement of Experiment Result:
Significance Test

We provide the significance test comparing our
proposed BC-Transformer, the baseline model DA-
Transformer, and the ART model (see Table 10).
We use the CompareMT (Neubig et al., 2019) as
the evaluation tool; we set bootstrap 1000 and prob-
ability threshold 0.05.

Our proposed BC-Transformer significantly out-
performs the DA-Transformer on De-En, En-Ro,
and Ro-En. The proposed BC-Transformer has no
significant difference with ART in En-De, De-En,
and En-Ro, and outperforms ART in Ro-En. More-
over, with BCKD, the BC-Transformer ourper-
forms ART significantly in all translation direc-
tions.

A.8 Elaboration of the Exposure Bias

The term of Exposure Bias was initially proposed
by (Bengio et al., 2015), which refers to the discrep-
ancy between training and inference of the Recur-
rent Neural Networks (RNN). Serdyuk et al. (2017)
pinpointed that the RNN trained with teacher forc-
ing struggles with long-range dependency and in-
troduced future context information via a reverse
RNN network. Liu et al. (2016) further pinpointed
that RNN suffers from a fundamental issue of gen-
erating unbalanced tokens, resulting in the suffixes
of its outputs being typically worse than the pre-
fixes, which is due to the fact that later predictions
directly depend on the previous predictions. Zhang
et al. (2019) used the term ’exposure bias’ to de-
scribe this problem, pinpointing the reason for the
bias because of the AR structure of current Neural
Machine Translation systems. In this paper, we use
the term exposure bias from Zhang et al. (2019) to
clearly describe the bias.

A.9 More Cases Comparing BC-Transformer
and ART Model

In this section, we provide more cases to show
the potential of NAR models on generation qual-
ity utilizing the removal of AR Bias. To make a
fair comparison, we compare the BC-Transformer
and ART models without KD. Table 11 shows that
even without KD, the BC-Transformer can still
overcome the error accumulation of ART.
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WMT14 WMTI16

Model

En-De De-En En-Ro Ro-En
GLAT (wo/KD) (Qian et al., 2021)* 0.606 0.709 0.694 0.717
DA-T (wo/KD) (Huang et al., 2022b)*  0.683 0.758 0.754 0.761
GLAT (w/KD) (Qian et al., 2021)* 0.680 0.754 0.732 0.745
DA-T (w/KD) (Huang et al., 2022b)* 0.716 0.780 0.760 0.763
BC-T (wo/KD) 0.679 0.762 0.764 0.765
GLAT (w/BCKD) 0.694 0.763 0.742 0.757
BC-T (w/BCKD) 0.723 0.783 0.77 0.775

Table 9: COMET Scores on WMT14 En-De/De-En and WMT16 En-Ro/Ro-En benchmarks. Our Proposed BC-
Transformer achieves an observable margin over the baseline DA-Transformer on WMT14 De-En and WMT16
En-Ro/Ro-En; BCKD significantly improves the generation quality of both GLAT and BC-Transformer.

WMT14 WMT16
Model
En-De De-En En-Ro Ro-En
Result p Result p Result P Result P

BC-T vs ART - 0.489 - 0.332 - 0.134 > 0.049
BC-T (BCKD) vs ART > 0.000 > 0.003 > 0.031 > 0.012
DA-T vs ART - 0.338 < 0.001 < 0.000 - 0.497
BC-T vs DA-T - 0.391 > 0.002 > 0.000 > 0.029

Table 10: Significant test with BC-T, DA-T, and ART. > indicates the left system wins, < indicates the right system
wins. - indicates that the two systems have no significant difference. The BC-T has no significant difference with
ART in En-De, De-En, and En-Ro, and outperforms ART in Ro-En. BC-T (BCKD) outperforms ART significantly.

WMT14 De-En Case 1

Source: Nach diesen verschiedenen Ausfiithrungen teilten Revierleiter Christoph Wehle und
Life @-@ Projektmanagerin Cornelia Bischoff die Helfer in Gruppen ein .

Reference: After the various statements , forest ranger Christoph Wehle and Life Project manager
Cornelia Bischoff divided the helpers into groups .

AT: After these various presentations , the relief workers were divided into groups by
Christoph Wehle , head of the district and life project manager Cornelia Bischoff .

BC-T: After these various statements , district manager Christoph Wehle and Life project
manager Cornelia Bischoff divided helpers into groups .

WMT14 De-En Case 2

Source: Aus jedem Clan beziehungsweise Team diirfen dann zwei am Einzelwettbewerb
teilnehmen .

Reference: Two members of each "clan" or team can then take part in the individual competition .

AT: Two from each clan and team are allowed to participate in the competition .

BC-T: From each " clan " or team , two can then take part in the individual competition .

Table 11: Translation Cases Generated by BC-T and ART. BC-T can overcome the translation error accumulation of
ART models, especially in long sentences.
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