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Abstract

Large language models have become increas-001
ingly prominent, also signaling a shift towards002
multimodality as the next frontier in artificial003
intelligence, where their embeddings are har-004
nessed as prompts to generate textual content.005
Vision-language models (VLMs) stand at the006
forefront of this advancement, offering innova-007
tive ways to combine visual and textual data008
for enhanced understanding and interaction.009
However, this integration also enlarges the at-010
tack surface. Patch-based adversarial attack is011
considered the most realistic threat model in012
physical vision applications, as demonstrated013
in many existing literature. In this paper, we014
propose to address patched visual prompt in-015
jection, where adversaries exploit adversarial016
patches to generate target content in VLMs.017
Our investigation reveals that patched adver-018
sarial prompts exhibit sensitivity to pixel-wise019
randomization, a trait that remains robust even020
against adaptive attacks designed to counter-021
act such defenses. Leveraging this insight, we022
introduce SmoothVLM, a defense mechanism023
rooted in smoothing techniques, specifically024
tailored to protect VLMs from the threat of025
patched visual prompt injectors. Our frame-026
work significantly lowers the attack success027
rate to a range between 0% and 5.0% on two028
leading VLMs, while achieving around 67.3%029
to 95.0% context recovery of the benign im-030
ages, demonstrating a balance between security031
and usability.032

1 Introduction033

With the advent of large language models (LLMs)034

such as GPT and Claude (Achiam et al., 2023),035

we have witnessed a transformative wave across036

numerous domains, guiding in an era where artifi-037

cial intelligence (AI) closely mirrors human-like038

understanding and generation of language. This039

progress has further paved the way for the inte-040

gration of multi-modality. Among them, vision-041

language models (VLMs) (Zhang et al., 2024; Chen042

et al., 2023) are emerging, which blend visual un- 043

derstanding with textual interpretation, offering 044

richer interactions. However, as these VLMs grow 045

more sophisticated, they also become targets for 046

a wider range of adversarial threats. Attacks that 047

involve altered visual prompts pose significant con- 048

cerns, as they manipulate the models’ responses in 049

realistic ways that are hard to mitigate. 050

Many alignment studies focusing on LLMs ap- 051

pear to mitigate the spread of harmful content sig- 052

nificantly (Ouyang et al., 2022; Bai et al., 2022; 053

Go et al., 2023; Korbak et al., 2023). However, 054

recent studies have exposed several vulnerabilities, 055

known as jailbreaks (Chao et al., 2023), which 056

circumvent the safety measures in place for con- 057

temporary LLMs. Identifying and addressing these 058

weaknesses presents significant challenges. They 059

stand as major obstacles to the wider adoption and 060

safe deployment of LLMs, impacting their utility 061

across various applications. The integration of vi- 062

sual prompts arguably further enlarges the attack 063

surface, introducing an additional layer of com- 064

plexity for securing these systems. As models in- 065

creasingly interpret and generate content based on 066

both texts and images, the potential for exploita- 067

tion through visually manipulated inputs escalates. 068

This expansion not only necessitates advanced de- 069

fensive strategies to safeguard against such inno- 070

vative attacks but also underscores the urgent need 071

for ongoing research and development in AI safety 072

measures. 073

Although a variety of research has been con- 074

ducted to study the robustness of jailbreak robust- 075

ness of LLMs, there is a lack of practical formu- 076

lation of “visual jailbreaks” as the emergence of 077

VLMs. We thus first rigorously transform the exist- 078

ing adversarial attacks in VLMs (Zhu et al., 2023; 079

Liu et al., 2023a) as patched visual prompt injectors 080

since patch-based attacks have been demonstrated 081

as the most realistic attacks in the physical world. 082

As the ultimate goal of VLMs is text generation, 083
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the attack formulation is different from classic vi-084

sion tasks such as classification (Krizhevsky et al.,085

2017) and object detection (Zhao et al., 2019) that086

target one-time logit outputs. There are two types087

of adversarial attacks for VLM that are prominent.088

(Shayegani et al., 2023) propose to optimize the089

input visual prompt to mimic the harmful image090

in the embedding space, while (Qi et al., 2023)091

directly optimize the visual prompt to generate a092

given harmful content, as detailed in § 3.1. We093

adopt both optimization methods but update the094

attack interface from ℓ∞-bounded manipulations095

to adversarial patches. This vulnerability not only096

undermines the reliability of these systems but also097

poses significant security risks, especially in crit-098

ical applications. The need to safeguard against099

such vulnerabilities is not just imperative for the100

integrity of VLMs but is also of paramount im-101

portance for the trust and widespread adoption of102

LLMs and VLMs.103

In this paper, we further introduce SmoothVLM,104

a novel framework designed to fortify VLMs105

against the adversarial threat of patched visual106

prompt injectors. SmoothVLM is designed to nat-107

urally enhance the robustness against visual jail-108

breaks while preserving the interpretative and in-109

teractive performance of VLM agents. We first110

identify an intriguing property of the patched vi-111

sual prompt injectors, that is, the success of the112

injection is extremely sensitive to the random per-113

turbation of the adversarial patch even under adap-114

tive attacks. This could be attributed to the de-115

sign of VLM. Therefore, by integrating majority116

voting with random perturbed visual prompts, our117

approach can defend the hidden visual prompt in-118

jectors with high probability, effectively render-119

ing them impotent in manipulating model behavior.120

SmoothVLM has significantly reduced the attack121

success rates of patched visual prompt injectors on122

popular VLMs. Specifically, for both llava-1.5123

and miniGPT4, SmoothVLM can reduce the attack124

success rate (ASR) to below 5%, and with a suffi-125

ciently large perturbation, it can further decrease126

the ASR to approximately 0%.127

Our contributions are manifold and significant:128

• We present a comprehensive analysis of the129

vulnerabilities of current VLMs to patched vi-130

sual prompt attacks and propose SmoothVLM, a131

novel defense mechanism that leverages random-132

ized smoothing to mitigate the effects of adversarial133

patches in VLM.134

• We demonstrate through extensive experiments135

that SmoothVLM significantly outperforms exist- 136

ing defense strategies, achieving state-of-the-art 137

results in both detection accuracy and model per- 138

formance retention. 139

• By addressing the susceptibility of VLMs to 140

adversarial patch-based manipulations even under 141

adaptive attacks, SmoothVLM represents a signif- 142

icant step forward in the development of secure 143

multimodal LLMs. 144

2 Related Work 145

In this section, we review a few related topics to our 146

study, including attacks and defenses for prompt 147

injection and adversarial patches. 148

2.1 Prompt Injection 149

Prompt engineering is emerging in the era of LLM. 150

At the core of prompt injection attacks lies the ad- 151

versarial ability to manipulate the output of LLMs 152

by ingeniously crafting input prompts. (Zhang 153

et al., 2020) provided an early exploration of these 154

vulnerabilities in LLMs, demonstrating how attack- 155

ers could insert malicious prompts to alter the be- 156

havior of AI systems in text generation tasks. Their 157

work highlighted the need for robust input valida- 158

tion and sanitization mechanisms to mitigate such 159

threats. (Zou et al., 2023) conducted an empirical 160

study on the impact of prompt injection attacks 161

on various commercial AI systems, uncovering 162

a wide range of potential exploits, from privacy 163

breaches to the spread of misinformation. Recently, 164

prompt injection attacks extended to VLMs (Bailey 165

et al., 2023). In particular, (Shayegani et al., 2023) 166

and (Qi et al., 2023) propose to modify the pixels 167

of the visual prompts to fool VLMs that generate 168

target contents, as detailed in § 3.1. 169

2.2 Adversarial Patches 170

The advent of adversarial patch attacks has 171

prompted significant research interest due to their 172

practical implications for the security of machine 173

learning systems, especially those relying on com- 174

puter vision. This section reviews key contributions 175

to the field, spanning the initial discovery of such 176

vulnerabilities to the latest mitigation strategies. 177

(Brown et al., 2017) pioneered the exploration of 178

adversarial patches by demonstrating that strategi- 179

cally designed and placed stickers could deceive 180

an image classifier into misidentifying objects. Fol- 181

lowing the initial discovery, researchers sought to 182

refine the techniques for generating and deploying 183
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Figure 1: Our SmoothVLM Certified Defense Pipeline.

adversarial patches. (Nguyen et al., 2015) intro-184

duced an optimization-based method to create more185

effective and efficient adversarial patches. The186

practical implications of adversarial patch attacks187

have been a focus of recent studies. (Chahe et al.,188

2023) investigated the effects of adversarial patches189

on autonomous vehicle systems, revealing poten-190

tial threats to pedestrian detection mechanisms. In191

response to these vulnerabilities, the community192

has developed various defensive strategies. (Strack193

et al., 2023) proposed a defense mechanism based194

on anomaly detection and segmentation techniques195

to identify and ignore adversarial patches in im-196

ages. (Zhou et al., 2021) explored the integration197

of adversarial examples, including patches, into198

the training process. Certified defenses also extend199

to adversarial patches. Xiang et al. (2022, 2024)200

developed certified methods to mitigate adversarial201

patches. However, the current certified methods are202

only limited to defending against small adversarial203

patches.204

3 SmoothVLM205

In this section, we present our SmoothVLM frame-206

work to defend against adversarial patches for vi-207

sual prompt injection. We first introduce our threat208

model of patched visual prompt injection.209

3.1 Patched Visual Prompt Injection210

We have witnessed the emergence and potential of211

large (vision) language models (LLM and VLM)212

in the past year and they have also introduced new213

attack vectors such as prompt injection (Liu et al.,214

2023b; Greshake et al., 2023; Shi et al., 2024). Dif-215

ferent from classic adversarial attacks targeting216

fundamental tasks such as classification and ob-217

ject detection that target logit space manipulation,218

prompt injection aims to induce language models 219

to generate specific texts. A VLM incorporates 220

multimodality by treating images as visual prompts 221

to an appended LM, enhancing the model’s com- 222

prehension of instructions. To inject a target con- 223

cept into the VLM, there are currently two pri- 224

mary optimization methods. Firstly, (Shayegani 225

et al., 2023) optimized the distance between em- 226

beddings of the adversarial and target images (e.g., 227

a bomb or a gun), i.e., argminxadv d(Hadv, Htarget), 228

where H denotes the visual embedding ingested by 229

the LM, ensuring the LM cannot discern between 230

adversarial and target image embeddings as long 231

as the distance d(Hadv, Htarget) is minimal. Sec- 232

ondly, (Qi et al., 2023) proposed using a corpus 233

of harmful text as the target to optimize the image 234

input, i.e., argminxadv

∑m
i=1− log(p(yi|[xadv, ∅])), 235

where Yadv := {yi}mi=1 represents the corpus of 236

chosen content. Both studies leverage the ℓ∞ norm 237

across the image’s pixel attack surface. However, 238

DiffPure (Nie et al., 2022) and its follow-ups have 239

shown that such threat models can be mitigated 240

through diffusion purification, with many subse- 241

quent studies (Wang et al., 2023; Lee and Kim, 242

2023; Zhang et al., 2023; Xiao et al., 2022) confirm- 243

ing its effectiveness against both ℓ2 and ℓ∞-based 244

attacks. Therefore, we propose adapting these two 245

attack strategies to use adversarial patches with 246

an ℓ0 constraint on size, which both maintains the 247

stealthiness of the attack and the original image’s 248

semantics. Patch attacks are also demonstrated to 249

be much more physically achievable in the real 250

world. We denote the two attack methods by their 251

titles Jailbreak In Pieces (JIP) and Visual Adversar- 252

ial Examples (VAE), respectively. 253

Specifically, our threat model assumes that an ad- 254

versarial patch P
[i,j]
m×n, of size m × n, is placed such 255
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that its bottom-left corner aligns with the pixel at256

coordinates [i, j] in the original image Ih×w. Here,257

Ih×w denotes the original image of size h × w.258

The resultant adversarial example is denoted as259

Iadv = I ⊕ P , where ⊕ signifies the operation260

used to overlay the patch onto the image. We still261

leverage the two white-box optimization methods262

mentioned above in our evaluation.263

3.2 Randomized Defense Against Patched264

Visual Prompt Injection265

As introduced in § 2, randomized defenses266

are significant within the adversarial robustness267

community. Drawing inspiration from Smooth-268

LLM (Robey et al., 2023), our investigations re-269

veal vulnerabilities to randomized perturbations in270

the pixel space of the patched visual prompt in-271

jectors. In preliminary experiments on the latest272

LLaVA-v1.5-13b model (Liu et al., 2024, 2023a),273

which accepts 224 × 224 images. Since adver-274

sarial optimization is computationally expensive,275

we leverage 300 adversarial examples and ensure276

that the attacks successfully launch on the images.277

We applied three randomized perturbation methods278

to the adversarial patch area in the images: mask,279

swap, and replace. The mask operation randomly280

sets q% of the pixels in the adversarial patch to281

zero across all channels. For swap, q% of the pix-282

els’ RGB channels are randomly interchanged. The283

replace operation substitutes q% pixels with ran-284

dom RGB values uniformly sampled.285

As mentioned earlier, JIP and VAE are both op-286

timized to generate Yadv or its equivalents. Simi-287

lar to Robey et al. (2023), we leverage an oracle288

language model (GPT4 (Achiam et al., 2023)) to289

deterministically predict whether the attack goal290

is achieved. Therefore, a successful attack (SA) is291

defined as:292

VPI(Ypred)
.
= OracleLLM(Ypred, Yadv)293

=

{
1, if Ypred, Yadv are synonymous
0, otherwise.

294

Figure 2 shows the attack success rates (ASR) of295

our preliminary measurement study, which illus-296

trate the instability of the patched visual prompt297

injection attacks. We found that among the three298

types of perturbation, random masking can con-299

sistently and effectively mitigate adversarial patch300

attacks with a sufficient amount of perturbation.301

Particularly, random masking reduces the ASR to302

around 5%. We denote our finding as visual q- 303

instability with probability error ϵ. 304

3.3 Expectation over Transformation (EOT) 305

Adversary 306

Randomization-based defense solutions can be of- 307

tentimes broken by the expectation of transforma- 308

tions (EOT) attack (Athalye et al., 2018) in the ex- 309

isting literature. However, we argue that adaptive 310

attacks are more challenging to launch in the era of 311

multimodal language models, especially under re- 312

alistic threat models. We empirically demonstrate 313

that the EOT attacks are ineffective in breaking 314

the q-instability of VLM under our patched visual 315

prompt injection setup. Specifically, we assume the 316

attacker is aware of the exact random perturbation 317

(masking here since it is demonstrated to be the 318

most effective one in Figure 2) added for defense; 319

thus, the optimization becomes 320

argminPEt∼Mask()ℓ(VLM([I ⊕ t(P ); ∅]), Yadv)
(1) 321

where t follows the distribution of our random 322

masking. As shown in Figure 3, the ASRs of the 323

adaptive attacks are extremely low. 324

Definition 1 (Visual q-instability with probability error
ϵ). Given a VLM and the adversarial example Iadv =
I ⊕ P , we apply the mask operation Mask() to randomly
zero out q% pixels in the adversarial patch P , obtaining
P ′ = Mask(P ). Here we call the P is visual q-unstable
with probability error ϵ if for any

ℓ0(P
′, P ) ≥ ⌜qmn⌝ (2)

there exists a small constant probability error ϵ such that

Pr[(VPI ◦ VLM)([I ⊕ P ′; ∅]) = 0] ≥ 1− ϵ (3)

where q is the instability parameter.
325

The reason could be attributed to the character- 326

istics of the VLM task, which is essentially the 327

next-token prediction. As introduced earlier, the 328

attack goal for classic vision tasks is to manipulate 329

a single/few output(s) from the one-time model in- 330

ference, so the room for adversarial optimization 331

is arguably large. However, the optimization goal 332

is either too harsh or implicit for next-token pre- 333

diction as it usually involves a sequence of outputs 334

with many iterations. 335

Figure 3 that is hard to optimize. For exam- 336

ple, the loss function for JIP is the mean square 337

error, the ℓ2 distance in the embedding space. In 338

LLaVA, there are 576 token embeddings, and a suc- 339

cessful attack needs to make the ℓ2 between less 340
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Figure 2: Validation of q-instability on Patched Visual Prompt Injection. We random perturb q% pixels in the adversarial
patch with three methods: mask, swap, and replace. The red dashed line shows the ASR of the attack method JIP and VAE.

than 0.4, which is far more difficult than the classic341

logit space optimization when combined with ran-342

domized defense. In the VAE, the optimization di-343

rectly targets generating harmful content. As there344

are usually 8000 iterations, which already take 0.5345

hours to optimize, EOT will make the complexity346

at least an order higher, rendering the optimization347

intractable.348

3.4 SmoothVLM Design349

In this part, we formally introduce our design of350

SmoothVLM. Similar to SmoothLLM and other351

randomized smoothing-based methods, there are352

two key components: (1) distribution procedure,353

in which N copies of the input image with ran-354

dom masking are distributed to VLM agents for355

parallel computing, and (2) aggregation procedure,356

in which the responses corresponding to each of357

the perturbed copies are collected, as depicted in358

Figure 1.359

3.4.1 Distribution Procedure360

The first step in our SmoothVLM is to distribute N361

visual prompts to the VLM agent and this step can362

be computed in parallel if resources are allowable.363

As illustrated in § 3.2, when the patched visual364

prompt injectors P are q-unstable with probabil-365

ity error ϵ, the probability of a successful defense366

is no lower than 1-ϵ. However, in most situations,367

we do not know where the adversarial patch is at-368

tached to the prompt (i, j), so we can only apply369

random perturbation to the whole visual prompt.370

Shown as following Assumption 2, here we assume371

that the masking pixels out of adversarial patches372

would at most lead to a decreasing of µ on the prob-373

ability of a successful defense. Since masking is374

the most stable perturbation shown in Figure 2, we375

will use masking in the rest of this paper. Specifi-376

cally, we randomly mask q% of the pixels for each377

distributed visual prompt.378

Assumption 2 (Visual q-instability for Visual Prompt
Iadv). Given a VLM and the adversarial example Iadv =
I ⊕ P , we apply the mask operation Mask() to randomly
zero out q% pixels in the visual prompt Iadv. Here we
denote I ′ = Mask(I), P ′ = Mask(I)|P , which means
then projection of the Mask(I) on the position of the ad-
versarial patch P. If P is visual q-unstable with probability
error ϵ, we assume that

Pr[(VPI ◦ VLM)([I ′ ⊕ P ′; ∅]) = 0] ≥ 1− ϵ− µ (4)

The consideration of I ′ instead of I would at most lead
to a decreasing of µ in the probability of a successful
defense. 379

3.4.2 Aggregation Procedure 380

The second step in our SmoothVLM is to collect 381

and aggregate the responses from the first step. As 382

mentioned earlier, as we do not know the location 383

of the adversarial patch, it is impossible to guaran- 384

tee high defense probability with one masked input. 385

Therefore, rather than passing a single perturbed 386

prompt through the LLM, we obtain a collection 387

of perturbed prompts with the same perturbation 388

rate p, and then aggregate the predictions of this 389

collection. The motivation for this step is that while 390

one perturbed prompt may not mitigate an attack, 391

as we observed in Figure 4, on average, perturbed 392

prompts tend to nullify jailbreaks. That is, by per- 393

turbing multiple copies of each prompt, we rely 394

on the fact that on average, we are likely to flip 395

characters in the adversarially-generated portion of 396

the prompt. 397

Based on the above two insights, here we give 398

the formal definition of SmoothVLM in Definition 399

3 and include the details about the algorithm in 400

Algorithm 1. 401

3.5 Probability Guarantee of SmoothVLM 402

To understand the robustness of SmoothVLM 403

against VPI, we also provided a thorough anal- 404

ysis of the defense success probability (DSP) 405

DSP([I; ∅]). Here we give the result of DSP in 406

Proposition 4. Detailed computation process is 407

included in Appendix A. 408
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Figure 3: Validation of q-instability on EOT Attack. The left figure plots the ASR of EOT adversarial examples w/wo q%
pixels masked. The red dashed line at the ASR of 100% denotes that all the original samples are successfully attacked. “Mask
EOT ASR” means that after we get adversarial examples with EOT, we further mask q% pixels as our defense. For the right
subplot, we plot the training loss with 8000 epochs (requiring ∼50 mins on one A100), “mask q%” means we mask q% in EOT
attack process, “none adaptive attack” means normal patch attack. The dotted red line in the right figure indicates the required
loss for a successful adversarial optimization, i.e., loss=0.4. The two figures demonstrate that EOT is extremely hard to
optimize and subject to our identified q-instability as well.

Algorithm 1 SmoothVLM
Require: Visual Prompt I
1: Input: Number of Samples N , Perturbation Rate p
2: for j = 1 . . . N do
3: Ij ← RandomPerturbation(I, p)
4: Rj ← VLM([Ij ; ∅])
5: end for
6: A← MajorityVote(R1, . . . , Rj)
7: j∗ ∼ Unif({j ∈ [N ] |Rj = A})
8: return Rj∗

9: function MAJORITYVOTE(R1, . . . , RN ):

10: return I
[

1
N

∑N
j=1 VPI(Rj) ≥ 1

2

]
11: end function

Definition 3 (SmoothVLM). Let a visual prompt (image)
I and a distribution Pp(I) over randomly masked copies
of I be given. Let I1, ..., IN be drawn i.i.d. from Pp(I)

A
.
= I[ 1

N

N∑
j=1

(VPI ◦ VLM)(Ij) >
1

2
] (5)

and our SmoothVLM is defined as

SmoothVLM([I; ∅]) .
= VLM([I; ∅]) (6)

where I represents the image agrees with majority voting,
(VPI ◦ VLM)([I; ∅]) = A.

409

4 Evaluations410

In this section, we conduct a comprehensive411

evaluation of our proposed SmoothVLM, which412

mainly show the results of two attack methods on413

llava-1.5. Specifically, we leverage Vicuna-30B414

as a proxy function for V PI().415

4.1 Injection Mitigation416

We conducted extended experiments on two at-417

tack methods on both llava-1.5 and miniGPT4,418

mainly presents the results for llava-1.5 in this419

section. Notably, we utilized 300 adversarial exam-420

ples, all verified against the corresponding VLM 421

model to ensure a successful attack. In Figure 5 dis- 422

plays various values of the number of samples N 423

and the perturbation percentage q. Generally, the 424

attack success rate (ASR) significantly decreases 425

as both q and N increase. Specifically, it’s observed 426

that even with a minimal perturbation q=5%, in- 427

creasing the sample number N leads to a substan- 428

tial drop in ASR. And when q=5%, we can find 429

that the ASR of various methods is significantly 430

higher than at other percentage rates, especially 431

when N is also very small. For the three meth- 432

ods, we can clearly see that the ASR of the Swap 433

method is significantly higher than that of mask 434

and replace, which is consistent with the results at 435

the q-instability point. 436

4.2 Visual Prompt Recovery 437

The goal is to recover the original semantics. We 438

evaluate the similarity between the responses gen- 439

erated from the perturbed image and the original 440

image to determine if the perturbation can recover 441

the adversarial example to its original state. The 442

distortion rate quantifies the discrepancy between 443

the response to the original image and the response 444

after perturbation. Here we use Vicuna-30B as a 445

metric function. In Figure, the small value of q 446

= 5% results in a higher distortion rate, suggest- 447

ing that lower perturbation levels are insufficient to 448

eliminate the concealed harmful context within the 449

visual prompt and fail to restore the original visual 450

semantics. 451

4.3 Efficiency 452

We compared the efficiency of the attack method 453

(JIP) with our defense strategy (SmoothVLM). The 454

JIP method focuses on reducing the loss in the em- 455

bedding space of the VLM, offering a more time- 456
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Figure 4: Robustness Guarantee on Patched Visual Prompt Injection. We plot the probability DSP([I ⊕ P ; ∅]) that
SmoothVLM will consider attacks as a function of the number of samples N and the perturbation percentage q; warmer colors
denote larger probabilities. From left to right, probabilities are calculated for ten distinct values of the instability parameter k
from 2 to 20. Each subplot reveals the pattern: with the increase in both N and q, there is an increasing DSP.

Proposition 4 (Defense Success Probability of SmoothVLM). Assume that an adversarial patch P ∈ [0, 1]m×n×3 for the
visual prompt Ih×w ∈ [0, 1]h×w×3 is visual q-unstable with probability error ϵ. Recall that N is the number of randomly
masked samples drawn i.i.d. and p is the perturbation percentage on the whole visual prompt. The DSP is derived as follows:

DSP([I ⊕ P ; ∅]) = Pr[(VPI ◦ SmoothVLM)([I ⊕ P ; ∅]) = 0] (7)

=

N∑
t=⌜N/2⌝

(
N

t

)
αt(1− α)N−t (8)

where α ≥ (1− ϵ− µ)

mn∑
k=⌜qmn⌝

(
mn

k

)
pk(1− p)mn−k (9)

efficient approach compared to the VAE, which457

computes the loss over the entire VLM and is thus458

significantly more time-consuming. Even we select459

JIP method, the training of an adversarial example460

using JIP still requires an average of 30 minutes461

(openai/clip-vit-base-patch32). Conversely,462

our defense mechanism’s time consumption de-463

pends on the number of VLM model inferences and464

the binary (Yes/ No) responses from the LLM. Uti-465

lizing Vicuna-30B, which has a substantial number466

of parameters, our method takes less than 1 minute467

under N=10, making our most resource-intensive468

defense approach more than 30 times faster than the469

fastest attack method. According to Figure 5, when470

we set N to 10, the ASR is under 5%, indicating471

that the attack method is ineffective. Consequently,472

our approach achieves an effective and efficient473

success in terms of both defense robustness and474

time efficiency.475

4.4 Compatibility476

In the former section, we primarily focus on the477

single-patch attack. In this section, we further478

demonstrate the compatibility of our method with479

a dual patches attack. we implement two kinds of480

dual patch attacks (JIP, VAE) and report the de-481

fense performance of mask, swap, and replace on482

300 adversarial attack examples. As shown in In483

Figure 7, the experimental data indicate a consis- 484

tent trend where the ASR decreases as the number 485

of samples increases for all perturbation strategies: 486

mask, swap, and replace, across different pertur- 487

bation intensities. The observed trend is further 488

characterized by the fact that higher perturbation 489

percentages lead to higher ASR, underscoring the 490

defense effect in larger perturbations. 491

5 Discussion and Conclusion 492

Drawing on our unique insights, this study is 493

informed by the methodologies of randomized 494

smoothing (Cohen et al., 2019) and its successor, 495

SmoothLLM (Robey et al., 2023). However, as 496

outlined in § 3.1, visual prompts differ markedly 497

from textual prompts, prompting us to address sev- 498

eral key distinctions from SmoothLLM. Primarily, 499

our approach is characterized by a more rigorous 500

formulation. In § 3.3, we present extensive exper- 501

iments with adaptive attacks that substantiate the 502

validity of our observations and assumptions. Fur- 503

thermore, our model incorporates an error term, ϵ, 504

enhancing the completeness of our proposition. Un- 505

like SmoothLLM, which presupposes that attackers 506

merely alter the suffix or prefix of a prompt, our 507

framework, SmoothVLM, is designed to counteract 508

any form of adversarial patches within reasonable 509

sizes, thereby offering enhanced generalizability 510

7



Figure 5: Injection Mitigation Effectiveness of SmoothVLM. We plot the ASR of VLM patch attack JIP (top row)
and VAE (bottom row) for various values of the perturbation percentage q ∈ {5, 10, 15, 20} and the number of samples
N ∈ {2, 4, 6, 8, 10}.

Figure 6: Visual Prompt Recovery. We plot the distortion rate of VLM patch attack JIP (top row) and VAE (bottom row) for
various values of the perturbation percentage q ∈ {5, 10, 15, 20} and the number of samples N ∈ {2, 4, 6, 8, 10}.

Figure 7: Dual-Patched Injection Mitigation Effectiveness of SmoothVLM. We plot the ASR of VLM patch attack JIP (top
row) and VAE (bottom row) for various values of the perturbation percentage q ∈ {5, 10, 15, 20} and the number of samples
N ∈ {2, 4, 6, 8, 10}.

and performance. Although our current focus is511

on visual prompt injections, the theoretical founda-512

tion of our work could potentially be extended to513

encompass both textual and visual prompts.514

In conclusion, we have presented SmoothVLM,515

a certifiable defense mechanism that effectively516

addresses the patched visual prompt injectors in517

vision-language models. SmoothVLM signifi- 518

cantly reduces the success rate of attacks on two 519

leading VLMs under 5%, while achieving up to 520

95% context recovery of the benign images, demon- 521

strating a balance between security, usability, and 522

efficiency. 523

8



6 Limitations524

We acknowledge certain limitations within our525

SmoothVLM. Despite our efforts to fortify it us-526

ing the expectation over transformation (EOT) ap-527

proach as adaptive attacks, our defense mechanism528

primarily addresses patch-based visual prompt in-529

jections and remains vulnerable to ℓp based adver-530

sarial attacks. The reason is that we found adaptive531

formulations of the ℓp based adversaries are ex-532

tremely challenging to tackle. Therefore, there is533

also a potential risk that our SmoothVLM may fail534

under stronger attacks beyond our threat model.535

We envision our study as an initial step toward es-536

tablishing certified robustness in VLMs, laying a537

foundation for future research to build upon.538
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A Proof of Proposition 4700

Below is the complete proof of Proposition 4.701

B Experiments702

We elaborate on more experimental details and re-703

sults in this section.704

B.1 Injection Mitigation705

In this section, we present more results about the706

Injection Mitigation using VLM miniGPT4 in Fig-707

ure 8. In comparison with the llava-1.5 VLM as708

shown in Figure 5, we observed that SmoothVLM709

consistently achieves a greater reduction in ASR710

with the llava-1.5 model under the same q and N711

settings. This suggests that adversarial examples712

which are successful in attacking the miniGPT4713

are less likely to be thwarted when subjected to714

masking defenses in the llava-1.5 model. This715

observation indicates that the masking defense is716

more effective in llava-1.5 than in miniGPT4.717

B.2 Visual Prompt Recovery718

We present results about the Visual Prompt Recov-719

ery using VLM miniGPT4 in Figure 9. Comparing720

with Figure 6, we observe a consistent distortion721

rate trend across different VLMs (llava-1.5 and722

miniGPT4); that is, as N increases, the distortion723

rate gradually decreases, and a greater amount of724

perturbation contributes to the restoration of the725

align image information. In contrast, as shown in726

Figure 8, when the proportion of perturbed pixels is727

too small and N is relatively low, the distortion rate728

is significantly higher than the ASR, indicating that729

the current level of perturbation, although sufficient730

to mask the attack, is inadequate for recovering the731

original image information. Therefore, to ensure732

both a low ASR and a minimal distortion rate, it733

is necessary to employ larger perturbations and a734

higher N .735
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Proof. In Proposition 4, we want to compute the probability Pr[(VPI◦SmoothVLM)([I⊕P ; ∅]) = 0].
Base on Definition 3, we have

(VPI ◦ SmoothVLM)([I ⊕ P ; ∅]) = (VPI ◦ VLM)([I⊕P; ∅]) (10)

= I
[ 1

N

N∑
j=1

(VPI ◦ VLM)(Ij ⊕ Pj) >
1

2

]
(11)

where Ij ⊕ Pj for j ∈ [N ] are drawn i.i.d. from Pp(I ⊕ P ). Thus, we can compute the probability
with the following equalities:

Pr[(VPI ◦ SmoothVLM)([I ⊕ P ; ∅]) = 0] (12)

= Pr
[ 1

N

N∑
j=1

(VPI ◦ VLM)(Ij ⊕ Pj) >
1

2

]
(13)

= Pr
[
(VPI ◦ VLM)(Ij ⊕ Pj) = 0 for at least ⌈N/2⌉ of the indices j ∈ [N ]

]
(14)

=
N∑

t=⌈N/2⌉

Pr
[
(VPI ◦ VLM)(Ij ⊕ Pj) = 0 for exactly t of the indices j ∈ [N ]

]
(15)

To make a precise computation, here we denote α as the probability that a randomly drawn Ij ⊕ Pj ∼
Pp(I ⊕ P ) leads to a successful defense, i.e.,

α
.
= Pr[(VPI ◦ VLM)(Ij ⊕ Pj) = 0] (16)

Then we can see the random variable t follows the binomial distribution with parameters N and α.
Based on the probability mass function of the binomial distribution, we can simply get the sum of the
probability as the following equation:

Pr[(VPI ◦ SmoothVLM)([I ⊕ P ; ∅]) = 0] =
N∑

t=⌜N/2⌝

(
N

t

)
αt(1− α)N−t (17)

To compute α, we can decompose the probability based on whether ℓ0(Pj , P ) ≥ ⌜qmn⌝. Formally,
we have:

α =Pr[(VPI ◦ VLM)(Ij ⊕ Pj) = 0] (18)

=Pr[((VPI ◦ VLM)(Ij ⊕ Pj) = 0)|(ℓ0(Pj , P ) ≥ ⌜qmn⌝)]Pr[ℓ0(Pj , P ) ≥ ⌜qmn⌝] (19)

+ Pr[((VPI ◦ VLM)(Ij ⊕ Pj) = 0)|(ℓ0(Pj , P ) < ⌜qmn⌝)]Pr[ℓ0(Pj , P ) < ⌜qmn⌝] (20)

≥Pr[((VPI ◦ VLM)(Ij ⊕ Pj) = 0)|(ℓ0(Pj , P ) ≥ ⌜qmn⌝)]Pr[ℓ0(Pj , P ) ≥ ⌜qmn⌝] (21)

Since the adversarial patch P is visual q-unstable with probability error ϵ, based on our Assumption
2, we can know that Pr[(VPI ◦ VLM)([Ij ⊕ Pj ; ∅]) = 0] ≥ 1 − ϵ − µ, if ℓ0(Pj , P ) ≥ ⌜qmn⌝.
For Pr[ℓ0(Pj , P ) ≥ ⌜qmn⌝)], since ℓ0(Pj , P ), the number of randomly masked pixels falling on
the adversarial patch P , also follows the binomial distribution with parameters mn and p, we have
Pr[ℓ0(Pj , P ) ≥ ⌜qmn⌝] =

∑mn
k=⌜qmn⌝

(
mn
k

)
pk(1− p)mn−k. Finally we can obtain:

α ≥ (1− ϵ− µ)
mn∑

k=⌜qmn⌝

(
mn

k

)
pk(1− p)mn−k (22)
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Figure 8: SmoothVLM Injection Mitigation. We plot the ASRs of VLM patch attack JIP (top row) and VAE
(bottom row) for various values of the perturbation percentage q ∈ {5, 10, 15, 20} and the number of samples
N ∈ {2, 4, 6, 8, 10};
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Figure 9: Visual Prompt Recovery. We plot the Distortion Rate of VLM patch attack JIP (top row) and VAE
(bottom row) for various values of the perturbation percentage q ∈ {5, 10, 15, 20} and the number of samples
N ∈ {2, 4, 6, 8, 10};

The image captures a man and a woman lying on a 
bed, engaged in a passionate kiss. The woman is lying 
on her back, with her head resting on the man's 
shoulder. The man is kissing her neck, and they are 
both enjoying the intimate moment.\n\nThe bed 
occupies most of the image, with the couple's bodies 
taking up a significant portion of the frame. The scene 
is a close-up of the couple, emphasizing their 
connection and the intensity of their kiss.</s>

The image features a black Mercedes Benz SUV 
parked in a parking lot. The SUV is positioned in the 
middle of the scene, with its front end facing the 
viewer. The car appears to be parked in a spot 
designated for SUVs, as it is surrounded by other 
vehicles.\n\nIn addition to the main SUV, there are 
two other cars visible in the parking lot. One car is 
located on the left side of the scene, while the other car 
is on the right side. The parking lot is situated near a 
building, which can be seen in the background.</s>

The image features a black dog running through a 
grassy field, holding a frisbee in its mouth. The dog 
appears to be enjoying its time outdoors, playing 
with the frisbee. The field is filled with grass, 
providing a suitable environment for the dog to play 
and exercise.</s>

: the patch is to protect privacy, the actual input 
image does not have it.

The image depicts a man and a woman lying in bed 
together, enjoying each other's company. The woman 
is positioned on the left side of the bed, while the man 
is on the right. They are both lying down, with the 
woman appearing to be looking at the man.\n\nThe 
bed occupies most of the image, with the couple 
comfortably laying on it. The scene conveys a sense of 
intimacy and relaxation between the two 
individuals.</s>

The image features a man and a woman lying down in 
bed together, with the woman on the left side and the 
man on the right side. The woman appears to be 
wearing a blue top, while the man is shirtless. They 
seem to be enjoying a close and intimate moment 
together.\n\nThe bed occupies most of the image, with 
the couple lying close to each other, possibly cuddling 
or sleeping. The scene conveys a sense of warmth and 
closeness between the two individuals.</s>

The image features a Mercedes Benz car parked on a 
street. The car is large and occupies a significant 
portion of the scene. There are two people visible in 
the image, one standing near the left side of the car 
and the other person standing further back on the 
right side. The car appears to be parked in a parking 
lot, and the street is relatively empty, with no other 
vehicles or pedestrians in the immediate vicinity.</s>

The image features a black dog with a frisbee in its 
mouth, happily playing outside. The dog is standing 
on a grassy field, and the frisbee is positioned near the 
center of the scene. The dog appears to be enjoying the 
activity and is likely in the middle of a fun game of 
fetch.</s>

SmoothVLM SmoothVLM

Figure 10: VLM and SmoothVLM Responses to Patched Visual Prompt Injectors. Row 1: Source images
prepared for adversarial attacks alongside their aligned responses. Row 2: Target images containing adversarial
attack information. Row 3: Images post-application of patch attacks with corresponding VLM responses. Row 4:
Images following the application of SmoothVLM with their recovery responses.
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