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Abstract

Concept Bottleneck Models (CBMs) have been proposed as a compromise between
white-box and black-box models, aiming to achieve interpretability without sacrific-
ing accuracy. The standard training procedure for CBMs is to predefine a candidate
set of human-interpretable concepts, extract their values from the training data, and
identify a sparse subset as inputs to a transparent prediction model. However, such
approaches are often hampered by the tradeoff between exploring a sufficiently
large set of concepts versus controlling the cost of obtaining concept extractions,
resulting in a large interpretability-accuracy tradeoff. This work investigates a
novel approach that sidesteps these challenges: BC-LLM iteratively searches over
a potentially infinite set of concepts within a Bayesian framework, in which Large
Language Models (LLMs) serve as both a concept extraction mechanism and prior.
Even though LLMs can be miscalibrated and hallucinate, we prove that BC-LLM
can provide rigorous statistical inference and uncertainty quantification. Across
image, text, and tabular datasets, BC-LLM outperforms interpretable baselines and
even black-box models in certain settings, converges more rapidly towards relevant
concepts, and is more robust to out-of-distribution samples.ﬁ]

1 Introduction

Although machine learning (ML) algorithms have demonstrated remarkable predictive performance,
many lack the interpretability and transparency necessary for human experts to audit their accuracy,
fairness, and safety [ [2]. This has limited their adoption in high-stakes applications such as
medicine [3] and settings where regulatory agencies require algorithms to be explainable [4]]. Recent
works have explored Concept Bottleneck Models (CBMs) [5, 6] as a potential solution: these
methods leverage black-box algorithms to extract a small number of interpretable concepts, which
are subsequently processed by a fully transparent tabular model to predict a target label. Thus, in
principle, CBMs are much safer for use in high-stakes applications because humans can audit and, if
necessary, modify the extracted concepts to fix predictions.

Nevertheless, CBMs have yet to fully realize this promise. Early CBM methods were difficult to scale
because they relied on human experts to specify and annotate concepts on training data. Recent works
have proposed using LLMs to suggest and even annotate concepts [7H10|], as LLMs are cheaper,
often have sufficient world knowledge to hypothesize useful concepts, and can provide (relatively)
high-quality concept annotations [9,|10]. This introduces new problems such as LLM hallucinations
and inconsistencies but, more critically, does not resolve the fundamental problem that standard
CBMs sacrifice a significant amount of accuracy to gain interpretability [11]. Recent proposals try
to address this by encoding concepts using “soft” continuous values, such as through embedding
similarity [8]], rather than “hard” binary values. However, “soft” CBMs can leak information about
the label that would otherwise not have been available [[12H16]; this risk is particularly severe when
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concept extraction is jointly trained with the final label predictor [ISJEI Because the definitions of soft
concepts are ambiguous, humans can no longer easily interpret, audit, or intervene on such CBMs.

The aim of this work is to minimize the accuracy gap without sacrificing the interpretability of the
extracted concepts. To this end, we revisit a known pain point of CBMs: Current training procedures
require a pool of candidate concepts to be identified a priori, but ensuring this pool contains all
relevant concepts is difficult, particularly in domains that are yet to be scientifically well-understood
and where there are an infinite number of potentially relevant concepts [17,110]. For instance, for the
task of predicting hospital readmission, there are an infinite number of factors affecting a patient’s
risk. Even a single concept like “smoking status” has an infinite number of refinements, such as the
correlated concept of “whether a patient has quit smoking,” the broader concept of “substance use,”
and more. As shown in prior work, when the candidate pool misses important concepts, the resulting
CBMs may be inaccurate and even mislead users as to which concepts are truly relevant [18].

Rather than specifying concepts upfront, we investigate iferative refinement of concepts in a CBM
with the assistance of an LLM. This updates a classical modeling paradigm for the LLM era:
prediction models were traditionally designed through the collaboration between domain experts and
data scientists, in which they iteratively refine/engineer features for simple tabular models. LLMs can
help significantly accelerate this co-design process and scale up the number of iterations, but they
are also imperfect query engines that can hallucinate, suggest bad candidate concepts, incorrectly
annotate concepts, and may not even be self-consistent in their prior beliefs [19]. To set up guardrails,
we “wrap” the LLM within a Bayesian posterior inference procedure to explore concepts with the
help of an LLM in a statistically principled manner. This approach, which we refer to as Bayesian
Concept bottleneck models with LLM priors (BC-LLM), offers the following benefits:

* BC-LLM finds relevant concepts, even in settings where there is little to no prior knowledge:
Unlike prior works that soley rely on a prespecified set of candidate concepts, BC-LLM explores a
potentially infinite set of concepts data-adaptively and converge towards the true ones.

* BC-LLM substantially improves the interpretability-accuracy tradeoff in real-world datasets: Exper-
iments across multiple datasets and modalities (text, images, and tabular data) show that BC-LLM
selects human-interpretable concepts while outperforming comparator methods, often even black-
box models. Moreover, when assisting a hospital’s data science team to revise an existing tabular
ML model, clinicians found BC-LLM to be substantially more interpretable and actionable.

* BC-LLM corrects LLM mistakes in a statistically rigorous manner to provide calibrated uncer-
tainty quantification: Mistakes in the LLM’s prior are fully allowed and even expected, as they
are corrected in the Metropolis accept/reject step. Moreover, BC-LLM provides uncertainty
quantification of the selected concepts, which improves performance in both in-distribution and
out-of-distribution (OOD) settings. We prove that BC-LLM converges to the correct concepts,
asymptotically, even when the LLM prior is poor or fails to be self-consistent. The Bayesian
framework also naturally protects against overfitting and overconfidence in selected concepts.

* BC-LLM is cost-effective: BC-LLM selectively annotates O(KT') concepts, where K is the
number of concepts in the CBM and 7' is the number of outer loops; we often use only K ~ 5 and
T ~ 5. In contrast, existing methods annotate hundreds or thousands of prespecified concepts [8].

2 Related work

Prior CBM methods train on observations with hand-annotated concepts [3. 16} [20]] and, more recently,
concepts annotated by an LLM or vision language model (VLM) [21, 9} [10]. These methods are
known to be highly sensitive to the selected set of concepts [L8]. More recent works have suggested
using LLMs to prespecify the list of candidate concepts instead [7, 18} 22H26]], but this requires the
LLM to have accurate prior knowledge about the supervised learning task. We note that many of
these works also make use of “soft concepts” and therefore suffer from information leakage [[12H16].

To find relevant concepts in a more data-driven manner, recent works have proposed taking an iterative
approach [17,27529]. These methods employ a boosting-like approach, where the LLM is provided
a set of misclassified examples and asked to add/revise concepts to improve performance. However,

?For instance, a human would fill in 0 when asked “does this bird have a gray breast” if there is no gray
breast, but a “soft” CBMs may extract 0.2 if it sees a blue breast or gray head. This provides additional hints for
downstream prediction.
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Figure 1: BC-LLM is initialized by having the LLM hypothesize the top concepts based on
keyphrases extracted from each observation (Step 0). The concepts are then iteratively refined by
dropping a concept (Step 1), querying the LLM for candidate replacements (Step 2), annotating each
observation with the candidate concepts using the LLM (Step 3), and determining which, if any, of
the candidate concepts to accept (Step 4).

the LLM often struggles to identify relevant patterns from the presented examples, so the resulting
concept proposals are far from optimal.

An alternative strategy is to conduct post-hoc distillation of a black-box model into interpretable
concepts [30434], which can be used to learn an interpretable prediction model. Nevertheless, prior
work has shown that the generated explanations are often not faithful to the black-box model, leading
to poorer performance from the interpretable model [35]].

Another related line of work uses LLMs to describe conceptual differences between pairs of datasets
[36H38]] or to directly describe a black-box function using natural-language concepts [39-42]]. How-
ever, existing methods are primarily suited for simple classification tasks, as they essentially learn a
CBM with a single concept rather than a set of concepts.

Finally, recent works have considered combining LL.Ms with Bayesian techniques [43-45]. Some
have suggested that In-Context Learning (ICL) can be viewed as LLMs conducting Bayesian inference
[46,147], though recent work has proven that ICL is not fully consistent with Bayesian inference [48]].
In contrast, this work studies how we can iteratively discover new concepts to include using LLMs
using a Bayesian inference procedure, accounting for imperfections in LLM reasoning.

3 Method: BC-LLLM

Consider a dataset D = {(z1,%1), - ., (Zn, yn)}, where x; are model inputs and y; are labels. Let
X = (z1,22,...,2,) andy = (y1,...,Yn). A concept c defines a binary- or real-valued function
¢. of a model input, e.g. “Does the doctor note describe an elderly patient?” where 1=yes and O=no.
A CBM selects a fixed number of K concepts ¢ = (c1, ..., cx) and fits a parametric model for y
using the extractions (¢, (), . . ., ¢cx (x)). For simplicity of presentation, our discussion will focus
on logistic regression (LR)-based CBMs, although other choices are possible. In this case, the data

ismodeledby p (Y = 1|X =z,0,c) =0 (Zle Orbe, () + 90) where o is the sigmoid function

and @ = (0, - - - , Ox) are the parameters. We refer to c as the “support” of the model. Throughout,
we use capital and lowercase letters to differentiate between random variables and realized values,
respectively. For instance, C' refers to a random concept whereas c refers to a particular one. We
generally used boldface to denote vectors and regular font to denote scalars, with the exception of the
model input of each example being denoted with regular font.

3.1 Review: Bayesian variable selection

Learning CBMs shares many similarities with the more standard problem of learning sparse models
in high-dimensional settings, where one must select among a finite number of features that have
already been tabulated [49-51]]. Here, we review the Bayesian solution for this more standard setting
and then discuss how it may be extended to the CBM setting.



Given priors on c¢ and 6, the goal of Bayesian inference for sparse models in high-dimensional
settings is to sample from the posterior p(8, c|y, X), which allows for uncertainty quantification
of the true support and coefficients. Posterior samples also describe the uncertainty at a new point
g via the posterior predictive distribution p(yo|zo,y, X, ¢) = [[ p(yo|zo, 0, ¢)p(8, cly, X)dOdc,
which can be viewed as combining the posterior samples into an ensemble model. Factorizing the
posterior per p(6, cly,X) = p(0|c,y, X)p(cly, X), the first term describes the posterior for the
model parameters and the second describes the posterior over selected variables. As the former
can be readily obtained by classical Bayesian inference for low-dimensional settings (e.g., posterior
inference for LR coefficients), our discussion will focus on the latter.

Inference for p(cly, X) is typically achieved through Gibbs sampling. For each outer loop, Gibbs
rotates through indices k = 1, ..., K, during which it replaces the kth concept in the current iterate
c by drawing from the posterior distribution for C} conditional on the other concepts c_;. When
one is unable to sample from the conditional posterior, Metropolis-within-Gibbs can be used instead
[52]. Rather than immediately replacing the kth concept, it proposes a candidate concept ¢, given
the other concepts per some distribution Q(Cy; C_, = c_j) and accepts the candidate concept with
probability a.. This acceptance probability «, delineated in Algorithm [I] depends on the relative
posterior probabilities of the candidate and existing concepts and is carefully designed so that the
posterior distribution is stationary with respect to the sampling procedure.

We extend Bayesian variable selection to learn CBMs,
where the key difference is that the number of poten-
tial concepts is effectively infinite, which makes it dif-
ficult to formulate an appropriate prior over concepts

Algorithm 1 Metropolis-within-Gibbs
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the LLM’s conditional prior distribution p(Cy|c_y). Ck

12: else return cj,

Consequently, the MH acceptance ratio simplifies to

%, which allows us to override proposed

concepts that lead to poor model performance. With-

out access to data however, the LLM is likely to propose many irrelevant concepts from its prior,
resulting in low acceptance probabilities and slow sampling. So while Update 1 may provide valid
inference, it is inefficient and costly.

Update 2: Propose with the LLM’s “posterior.” Leveraging LLMs’ ability to perform ICL [46, 47]],
another idea is to include all the data when prompting the LLM to propose new concepts. That is, we
ask the LLM itself to “conduct posterior inference” and interpret the LLM’s proposal distribution
Q(Ck; C_ = c_j) as sampling from a conditional posterior distribution p(Cy|c_,y, X) for some
implicitly defined concept prior. This approach is risky; while LLMs may be able to approximate
posterior inference for small datasets, this approximation breaks down for larger sample sizes [48]].
Furthermore, we can no longer override poor concepts with data as the MH acceptance ratio simplifies
to 1, i.e. the proposed concept is always accepted. So while Update 2 may generate concepts more
efficiently, the sampling procedure may not converge to a good or even valid posterior distribution.

These update options are at the end of two extremes, trading off between efficient sampling versus
unbiased posterior inference. Our task then is to find a better balance.

31f one believes the LLM’s prior knowledge about the outcome of interest may be misleading, we can mask
this information, e.g. “Propose an additional concept for predicting some label Y, given the already-existing
concepts c_.”



3.2 The Split-sample update: Propose with the LLM’s partial posterior

Rather than relying on the LLM’s prior or posterior, a key idea in BC-LLM is to take the middle road
by sampling from an LLM’s partial posterior, which we will show enjoys the best of both worlds.
The proposal, which we refer to as Split-sample Metropolis update (Algorithm [2), uses the LLM
to propose candidate concepts based on only a portion of the data and fixes mistakes in the LLM’s
proposal using the remaining data in the accept-reject step. This addresses the drawbacks of the two
naive updating procedures in Section[3.] as it simultaneously uses the data to generate more efficient
proposals while overriding the LLM as needed.

More specifically, the split-sample update first randomly splits the data to construct subset .S of size
|wn] and its complement S¢, for some fraction w (e.g. half). The LLM is prompted to generate
candidate concepts by combining its prior knowledge with information from the data in S. We can
then interpret the LLM’s proposal distribution Q(C%; C_j = c_y) as the (conditional) partial poste-
rior distribution p(Ck|c_k,ys, X). Then in the accept reject step, the MH acceptance probability

simplifies to the partial Bayes factor 2 (ys(;lzf‘;cs C‘”; ) [53].. This compares the likelihood of the

held-out data S¢ with respect to the candidate and existing concepts—much like sample-splitting in
frequentist settings—and thus provides an opportunity to correct inconsistencies between the LLM’s
proposal and the actual posterior distribution.

Algorithm 2 Split-sample Metropo-  Algorithm 3 Multiple-try split-sample Metropolis update

lis update 1: function MULTI-SS-MH-UPDATE(c, k)

1: function SS-MH-UPDATE(c, k) 2 Sample subset S of size |wn].

2: Sample subset S of size LUJHJ . 3. Propose C( ) ey C V(IM ~ CQ(C’,C7 C_k, VS, X)

3:  Propose candidate 4 Sample € {1 , M} with probabilities o< wy, +

g T RGemye ) p(yselys, (e—r, &), X)Q(E™s e, ys, X)

: a . .
min{p<ysclys (k) X) 1} 5 wo < plyselys;c, X)Q(Cmc—k,]};svx)
p(ysclys,e,X) 6: o < min VQ(Ckﬁc—k:YS»X) D=1 Wm 1

5: if Accept with probability « ) QU™ ek, ¥5:X) So<m< Mmoo Wi
then return ¢ 7: if Accept with probability o then return égcm)

6: else return c; 8: else return cy,

In practice, rather than sampling a single candidate concept, we use a version of multiple-try
Metropolis-Hastings (Algorithm [3)) [54]. Here, the LLM proposes a batch of candidates. We sample
a candidate from this batch based on their posterior probabilities and consider the sampled candidate
for acceptance. This is more cost-effective as it lets us batch concept annotations, as described later.

Assuming that the LLM’s partial posterior across all iterations is consistent with some prior distribu-
tion p(C), we can prove that the Markov chain defined by this procedure has the posterior p(c|y, X)
as its stationary distribution (see Proposition [H.T]in the Appendix). Since LLMs are known to be
imperfect Bayesian inference engines [48]], this assumption is at best only approximately satisfied.
Nevertheless, we can prove that the procedure still converges to the true concepts even when this
assumption does not hold:

Theorem 3.1. Suppose the data is IID. Let L(c) = maxg E{logp(Y|X,0,¢)} and C* =
argmax, L(c). For sample size n, let I1,, denote the set of stationary distributions of the Markov
chain defined by running Algorithm[Ijwith SS-MH-UPDATE or MULTI-SS-MH-UPDATE instead of
MH-UPDATE. Assuming a Gaussian prior for @ and under regularity conditions (see Assumption
[G.1), then inf{m(C*): 7 € IL,} — 1 in probability as n — .

3.3 Putting it together: BC-LLM

We now put all the pieces together. Mathematically, BC-LLM runs Metropolis-within-Gibbs (Algo-
rithm[T)) with a split-sample update (Algorithm [2)or[3). We translate this into a step-by-step recipe
(Fig|l): After initializing BC-LLM in Step 0, each iteration of Metropolis-within-Gibbs (Steps 1 to 4)
performs a split-sample update to output a CBM. The CBMs form a posterior distribution, as well as
an ensemble prediction model. Example prompts and implementation details are in the Appendix.
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Step 0: Initialization and keyphrase extraction We first use an LLM to extract “keyphrases’
from each observation x, which will be used by the LLM to brainstorm candidate concepts. Here,
“keyphrases” refer to short phrases: keyphrases for images describe what’s in the image (e.g. blue
eyes), while keyphrases for text data can be direct quotes or summarizations (e.g. diabetes) [53]].
Keyphrases can be thought of as rough concepts, as they do not define a function but can help an
LLM come up with a formal concept question (e.g. “diabetes” is a keyphrase whereas “Does the
patient currently have diabetes?” is a concept). This brainstorming phase does not restrict the set of
keyphrases the LLM can extract to allow for a wide exploration of concepts. The tradeoff is that the
extracted keyphrases may be an incomplete summary of each observation. To initialize the CBM
sampling procedure, these keyphrases are used to fit a (penalized) LR model for the target Y, similar
to fitting a bag-of-words (BoW) model. An LLM then analyzes the most predictive keyphrases to
generate an initial set of K concepts and extracts these concepts from each observation.

Step 1: Drop a concept & fit a keyphrase model Each iteration proposes candidate concepts
based on some data subset S to replace the kth concept for & € {1,--- , K'}. Given the context
limits of LLMs, having an LLM review each observation in .S individually is ineffective. Instead,
we generate a summary by highlighting the top keyphrases in S for predicting Y, on top of the
existing K — 1 concepts c_;. For continuous outcomes, this can be accomplished by finding
the top keyphrases associated with the residuals of a model that predicts Y given c_;. For bi-
nary/categorical outcomes, we instead fit a (multinomial) LR model of Y, where the inputs are
keyphrases encoded using BoW and annotated concepts c_j. Let the coefficients in this “keyphrase
model” f for keyphrases and concepts be denoted By, and 3, _, , respectively. We fit it by solving

ming, g, Lyl (yi, ! ($i|ﬂc,k7ﬂw)) + AJ(By ), where £ is the logistic loss, By is pe-
nalized with some penalty function J, and penalty parameter A is selected by cross-validation. We
found the ridge penalty to work well in practice but other penalties may be used instead.

Step 2: Query the LLM for candidate concepts Given the summary of the top keyphrases generated
from Step 1, the LLM is asked to propose M candidates for the k-th concept. In addition, we ask
the LLM to provide the value of the partial posterior probability for each candidate concept. For
instance, if the top keyphrases include “chronic kidney disease” and “acute kidney injury,” the LLM
may propose a concept like “Does the patient have a history of kidney disease?”” with an assigned
partial posterior probability of 0.4.

Step 3: Concept annotation Given candidate concepts, we use the LLM to extract their values using
a zero-shot approach, i.e. ¢.(x) for ¢ € {é,(cl), cey é,(CM) }. Because multiple-try Metropolis-within-
Gibbs proposes a batch of candidate concepts, we can batch their extractions into a single LLM
query for each observation. This makes BC-LLM more cost/query-efficient than ordinary Metropolis-
within-Gibbs, which outputs only a single concept per iteration and thus cannot be batched. Note that
letting the LLM occasionally output probabilities when it is unsure can be helpful, though it is critical
to avoid information leakage (e.g. no joint training of concept extraction and label prediction).

Step 4: Accept/reject step The final step is to compute the sampling probabilities for the candidate
concepts and the acceptance ratio, which involve comparing the proposal probabilities for the
existing and candidate concept sets ¢ as well as their split-sample posteriors p(ys:|ys, ¢, X) =
J p(yse|0,¢,X)p(0lys,c,X)dO. To estimate the integral, one approach is to sample from the
posterior on 6, but this can be computationally expensive since one would need to implement
posterior sampling in inner and outer loops. Alternatively, in the case of LR-based CBMs, one can
use a Laplace-like approximation [S6] (see Appendix). As the posterior distribution of LR parameters
are asymptotically normal, this approximation becomes increasingly accurate as n — co.

Computational cost. BC-LLM performs O(nT K) LLM queries, where T is the number of outer
loops. K is typically chosen to be small, because a large K yields less interpretable CBMs. Although
standard Bayesian procedures typically draw thousands of posterior samples, we found that a small T’
was quite effective in practice when combined with a greedy warm-start procedure; our experiments
all use T' = 5. Generally speaking, a small 7" suffices for achieving high prediction accuracy, a
larger T' (e.g., 10) is helpful for quantifying the uncertainty of relevant concepts. Critically, running
BC-LLM is significantly more cost-effective than standard CBMs, which require O(nW) queries
where W is the number of pre-specified concepts and must be large (typically hundreds or thousands)
to avoid missing relevant concepts [8]]. In our experiments, BC-LLM was quick to run: each iteration
completes within one to two minutes for the experiments in Section 4]



Table 1: Performance of CBMs and black-box models (ResNet) for classifying bird species.

In-distribution 00D
Method Accuracy (1) AUC (1) Brier (]) Entropy (1)
BC-LLM 0.680 (0.614,0.747)  0.874 (0.840,0.907)  0.428 (0.357,0.500) | 0.865 (0.693, 1.036)
LLM+CBM 0.640 (0.573,0.707)  0.810 (0.768,0.853)  0.452 (0.377,0.528) | 0.663 (0.474, 0.852)
Boosting LLM+CBM 0.538 (0.463,0.614)  0.722 (0.673,0.772)  0.577 (0.499,0.654) | 0.842 (0.630, 1.054)
Human+CBM 0.658 (0.591,0.725)  0.835 (0.791,0.879)  0.499 (0.414,0.584) | 0.758 (0.558, 0.959)
LLM+CBM (No keyphrases) | 0.555 (0.488,0.623)  0.759 (0.713,0.805)  0.651 (0.548,0.754) | 0.626 (0.495, 0.757)

ResNet \ 0.664 (0.613,0.716)  0.853 (0.821,0.885)  0.457 (0.398, 0.516) \ 0.914 (0.748, 1.079)

4 Experiments

We evaluated BC-LLM in across three domains and modalities: classifying birds in images (Sec-
tion[4.T)), simulated outcomes from clinical notes (Section4.2)), and readmission risk in real-world
clinical data (Section[4.3). The experiments below used GPT-40-mini [57] and Section[#.3]used a pro-
tected health information-compliant version of GPT-4o for real-world clinical notes. The Appendix
includes results using other LLMs, implementation details, and experimental settings.

Baselines. We compared against CBMs fit using the standard approach where humans select and
annotate concepts (Human+CBM) [5], CBMs where an LLM brainstorms concepts after seeing which
keyphrases are most associated with the label but without any iteration (LLM+CBM) [58,[10], and CBMs
fit using a boosting algorithm that iteratively adds concepts by having an LLM analyze observations
with large residuals (Boosting LLM+CBM) [17, 27]. We include black-box and semi-interpretable
models to assess the tradeoff between interpretability and accuracy. For the bird-classification dataset,
we also compare to a CBM that uses LLM-suggested concepts rather than keyword-based concepts;
we use the 370 LLM-suggested concepts from [8] and extract the values of these concepts with an
LLM (LLM+CBM (No keyphrases)).

Evaluation metrics. Methods were evaluated with respect to predictive performance as measured
by AUC and/or accuracy and uncertainty quantification as measured by Brier score. When true
concepts are known, we also quantify concept selection rates using “concept precision,” as defined by

+ Zszl p(Cr € c* | y,X), and “concept recall,” as defined by + Zszl p(cy € C |y, X), where

C is the posterior distribution over concept sets from BC-LLM or a single set of concepts learned by
a non-Bayesian procedure. Concept matches were verified manually (see Appendix for details).

4.1 CBMs for classifying bird images

We first evaluate how well BC-LLM can learn concepts that differentiate between bird species within
the same family in the standard CUB-birds image dataset [S9]. Grouping the 200 bird species into
their respective families, this resulted in 37 prediction tasks. We considered family-based prediction
tasks because there likely exists a parsimonious CBM within each bird family, in contrast to the
task of predicting between all 200 species. To assess how well BC-LLM performs in settings with
limited prior knowledge, we do not tell the LLM that we are predicting bird species. That is, we
replace the labels with one-hot encodings and simply tell the LLM to find concepts for predicting Y.
Consequently, the LLM must search over a larger space of concepts.

The data is split 50/50 between training and testing. The number of concepts K learned for each
task was set to the number of classes, but no smaller than 4 and no greater than 10. For the black-
box comparator, we fine-tuned the last layer of ResNet50 pre-trained on ImageNetV2 [60, [61]].
Human+CBM was trained on the 312 human-annotated features available in the CUB-birds dataset.

BC-LLM achieved higher accuracy and better calibration on average, compared to all the other fully
interpretable CBMs (Table[I). Notably, soft CBMs no longer performed as well once the concepts
were constrained to be fully interpretable. BC-LLM also outperformed CBMs trained on human
collated and annotated features, potentially because it was able to consider additional concepts. More
critically, BC-LLM outperformed ResNet50 in both accuracy and calibration, as ResNet50 easily
overtrained on the small bird datasets. In contrast, BC-LLM could identify relevant concepts for a
simple parametric model, leading to faster model convergence.
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Figure 2: Example of BC-LLM classifying Bunting birds. (Left) Learned concepts trained on 1/3
versus 3/3 of the training data, respectively. Labels are shortened concept questions, generally of
the form “Does the image depict...?”” Proportion of posterior samples with the concept are shown
in parentheses. Concepts are clustered hierarchically solely for visualization purposes. Highlighted
labels are distinguishing bird features. (Right) Application of BC-LLM to an actual bunting bird (top)
versus a dog pretending to be one (bottom).
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Figure 3: MIMIC results: (Left) Comparison of BC-LLM and existing methods in terms of perfor-
mance and recovery of true concepts with 95% CI. (Right) Dendrograms of concepts learned by
BC-LLM with 100 and 800 observations (left and right, respectively). Labels are shortened concept
questions generally of the form “Does the note mention the patient...?”” Highlighted labels correspond
to the true color-coded concepts in Section[4d.2}

We also assessed BC-LLM’s robustness in OOD settings, as the Bayesian framing should improve
uncertainty quantification (Table [I)). For each model, we used it to classify birds for a species it
was not trained on. Compared to other CBM methods, BC-LLM was more appropriately unsure,
yielding higher entropy across the output classes. We note that ResNet model had the highest entropy,
though it has the advantage of not being limited to extracting a small set of interpretable concepts. To
illustrate the benefit of using fully interpretable CBMs in OOD settings, Figure 2] (right) shows the
difference when applying the Bunting bird CBM to an actual bunting bird versus an OOD sample.
Whereas the CBM extracted zeros and ones for the actual bunting bird, it was unsure how to extract
the concept “Does this image show vibrant feathers?” for the image of a dog wearing rainbow wings.
The LLM thus outputted a probability of 0.5, citing that “the image contains vibrant colors but the
wings do not actually contain feathers.” This shows how having an LLM output its reasoning when
answering concrete concept questions can reveal situations that need human intervention.

Finally, we visualize the posterior distribution over concepts using hierarchical clustering (Fig[2]left).
Continuing with the Bunting bird example, we see that BC-LLM converges towards distinguishing
concepts as training data increases and away from vague or non-specific concepts (e.g. “sharp beaks”
apply to all bunting birds). Moreover, the number of unique concepts decreases with the amount of
training data, because it has converged to concepts that truly distinguish the different species.

4.2 CBMs for classifying clinical notes with simulated outcomes

To objectively measure how well BC-LLM can recover true concepts, we conducted a simulation
study where the true concepts are known. To assess BC-LLM in settings where the LLM has no prior



knowledge about the target, we simulated Y using a LR model with five Social Determinants of
Health as inputs, which were annotated from real-world patient notes in MIMIC-1V [62} 163]:

1. Does the note mention the patient consuming alcohol in the present or the past?

2. Does the note mention the patient smoking in the present or the past?

3. Does the note mention the patient using recreational drugs in the present or the past?
4. Does the note imply the patient is unemployed?

S. Does the note imply the patient is retired?

CBMs with K'=6 were trained on 100 to 800 observations. Human (Oracle)+CBM uses true concepts.

BC-LLM outperforms the comparator methods both in predictive performance and calibration (Fig-
ure3h) and, with only 400 observations, performs as well as Human (Oracle)+CBM. The performance
gap between BC-LLM and the comparator methods widens with more training observations because
BC-LLM can iteratively refine its concepts. Although Boosting LLM+CBM is also an iterative pro-
cedure, it struggles to hypothesize relevant concepts because it reviews only a few misclassified
observations each iteration and cannot revise concepts added in previous iterations. Additionally,
BC-LLM was better at recovering the true concepts compared to existing methods.

Visualizing the posterior distribution using hierarchical clustering (Fig [3|right), the learned posterior
notably contracts towards the true concepts with increasing data as the number of training observations
increases from 100 to 800. Moreover, BC-LLM remains appropriately unsure about certain concepts
that are highly correlated. For instance, it states many variations of the smoking concept that are
essentially impossible to distinguish between, which is both expected and desired.

4.3 Augmenting a tabular model with clinical notes

Here we demonstrate how BC-LLM can help ML developers integrate different data modalities to
improve model performance. The data science team at Zuckerberg San Francisco General Hospital
has both tabular data and unstructured notes from the electronic health record (EHR). The team has
so far fit a model using the tabular data to predict readmission risk for heart failure patients and wants
to assess if clinical notes contain additional concepts that are predictive. To address this, we extend
BC-LLM to take as inputs (i) the risk prediction from the original tabular model and (ii)) K = 4
concepts extracted from the clinical notes, which can be viewed as revising the existing model by
adding features. The CBMs were trained on 1000 patients and evaluated on 500 held-out patients.

The original tabular model, trained on lab and flowsheet values, achieved an AUC of 0.60. BC-LLM
revised this model to perform substantially better, achieving an AUC of 0.64 (Fig[d]left). Moreover, it
outperforms comparator methods with respect to both AUC and brier score.

To assess the interpretability of the learned concepts, five clinicians were asked to rate concepts
in the CBMs as well as top features in the original tabular model by how predictive they were,
from 1=Ilow to 3=high clinical relevanceﬂ Concepts from BC-LLM received an average rating of
2.5, whereas concepts from the other methods were rated <2 (Fig[4]right). When unblinded to the
concepts, clinicians commented on a number of advantages to using BC-LLM. First, many of the
learned concepts were known to be causally relevant but were difficult to engineer solely from tabular
data. For example, information for determining “substance dependence” is rarely documented in
the tabular data but often noted in clinical notes. Second, BC-LLM also suggested new features to
engineer that the data science team had not previously considered. Most interestingly, some of the
learned concepts pointed to interventions that the hospital could try to implement, such as ensuring
follow-up appointments were scheduled and opting for medication regimes that were easier to follow.
In contrast, the top features in the original tabular model were difficult to interpret and not actionable.

5 Discussion

BC-LLM is a new approach to learning CBMs that iteratively proposes concepts using an LLM
within a Bayesian framework, which allows for rigorous uncertainty quantification despite LLMs

“Tabular features were rewritten as questions so they could not be distinguished from learned concepts. See
Appendix for annotation instructions.
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Figure 4: Learning to augment a readmission risk prediction model for heart failure patients. Den-
drogram labels are shortened questions of the format “Does the note mention the patient having...?”.
Highlighted concepts received scores from clinicians as being highly predictive (scores 2.5+). Aver-
age clinician ratings for concepts/features from the different methods are shown on the right.

being prone to error and hallucinations. Because it explores and suggests concepts in a data-adaptive
manner, BC-LLM is particularly well-suited for settings with limited prior knowledge about which
concepts are relevant or where the number of potentially relevant concepts is infinite. The method
is compatible with various data modalities (text, images, and tabular data) and can be extended
beyond the settings of binary and multiclass classification. The empirical results show that BC-LLM
outperforms existing methods, even black-box models in certain settings.

Future work. BC-LLM is currently designed for learning highly interpretable CBMs where the
number of concepts K is typically no more than 20. While BC-LLM can be applied to learn even
more concepts, future directions can consider further speeding up posterior inference, such as through
mini-batching of observations or concepts.

Impact Statement. The interpretability provided by BC-LLM additionally enables better understanding
of the underlying algorithm and facilitates human oversight, which may improve the safety of Al
algorithms and Al-based decision-making. The use of LLMs incurs significant computational cost
and corresponding environmental impacts; however, BC-LLM is much more computationally efficient
than comparable LLM-based CBMs, potentially reducing overall environmental impacts.
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* The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
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» While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a

complete (and correct) proof?

Answer: [Yes]

Justification: Assumptions are stated in Section |3|and full proofs for theorems can be found in the

Appendix

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they appear
in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-

mental results of the paper to the extent that it affects the main claims and/or conclusions of the

paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Justification: Experiment details are found in Section ] and reproducible code is found at our

github.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

» Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either
be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to

faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: A link to the source code is provided, with specification of all data, dependencies,

instructions to reproduce results. The only experiment that cannot be reproduced is Section

due to the use of PHI data.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

* The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions (if

applicable).

Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLS to data and code is permitted.

6. Experimental setting/details
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Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,

how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Experimental details can be found in the Appendix and Section 4]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate

information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Confidence intervals for performance measures are provided in all figures/tables in

Section[d]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer ”Yes” if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer

resources (type of compute workers, memory, time of execution) needed to reproduce the experi-

ments?

Answer: [Yes]

Justification: The main manuscript discusses compute time and resources.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS

Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All ethical guidelines were followed.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.
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* The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal

impacts of the work performed?

Answer: [Yes]

Justification: Broader impacts are discussed in the Discussion section at the end of the paper.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of

data or models that have a high risk for misuse (e.g., pretrained language models, image generators,

or scraped datasets)?

Answer: [NA] .

Justification: Our research does not release any new data or models

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the

paper, properly credited and are the license and terms of use explicitly mentioned and properly

respected?

Answer: [Yes]

Justification: All assests in the paper are cited in the references section.

Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.
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14.
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* If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode. com/datasets|has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

For existing datasets that are re-packaged, both the original license and the license of the derived

asset (if it has changed) should be provided.

If this information is not available online, the authors are encouraged to reach out to the asset’s

creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation

provided alongside the assets?

Answer: [Yes]

Justification: The new method introduced is detailed in Section [3] and is implemented in our

repository with instructions for use.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

» At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper

include the full text of instructions given to participants and screenshots, if applicable, as well as

details about compensation (if any)?

Answer: [Yes]

Justification: Instructions given to clinicians for rating concepts are provided in the Appendix.

Guidelines:

» The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such

risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals

(or an equivalent approval/review based on the requirements of your country or institution) were

obtained?

Answer: [Yes]

Justification: IRB approval was obtained for analyzing real-world clinical notes from the hospital,

as mentioned in the Appendix.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for

their institution.

For initial submissions, do not include any information that would break anonymity (if applica-

ble), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-

standard component of the core methods in this research? Note that if the LLM is used only for
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writing, editing, or formatting purposes and does not impact the core methodology, scientific

rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: Our method detailed in Section [3|uses LLMs to propose and refine concepts for

CBMs.

Guidelines:

* The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.

Appendix

A Multiple-Try Metropolis-Hastings

In this section, we provide intuition for the Multiple-Try Metropolis-Hastings partial posterior method
(Algorithm [3). To draw connections with the original Multiple-Try Metropolis-Hastings method [54]],
we first work in a completely abstract setting.

Given a state space (2, stationary distribution 7, and proposal transition kernel 7'(y; x), define weights
w(x,y) = w(x)T(y;x). Note that under regular Metropolis-Hastings, the acceptance ratio for
proposing the state y given a state = is min{w(y, z) /w(z,y), 1}.

Classical version. We briefly describe [54]’s original method. Suppose the current state is x.

1. Draw 21, 22,...,2m ~ T(Z; x).
2. Sample y from a distribution with probabilities
w(zj, x
P{YZZJ‘}ZM(#' M
>iz1 w(zi, )
Let 7 denote the sampled index.
3. Sample 27,...,2}3,_; ~ T(Z;y), and set 2}, = .
4. Accept y with probability
M
B(z,y; z,2*) = min M,l ) )
Y i .
>z w(z,y)

One can show that this Markov chain satisfies the detailed balance equations when marginalizing out
the intermediate states 21, 22, . .., 2n, 275 - - ., 207 (see Theorem 1 in [54]]). We would like, however,
to minimize the number of proposals necessary, so it is natural to ask whether the algorithm can be
modified such that the proposals needed for the backward transitions, 27, ..., z},_;, can be omitted.
This is indeed possible.

Modified version.

1. Draw z1, 22, ...,2ym ~ T(Z; x).
2. Sample y from a distribution with probabilities
w(zj, x
P{Y=Zj}=%- 3)
> imy W(zi, @)
Let 77 denote the sampled index, z = (21,22, .-, 20), Z° = (21, -+ -5 Zi—15 &, Zt 1y -« - s ZM )s

and set q(y;z) = P{Y = y|z1,...,2m}
3. Accept y with probability

ply — z* — x) }

. {ﬂ(y) 1Y, T(zv)ala: ) 1}. @

m(z) [T, T(25;2)q(y; 2)
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Proposition A.1. The modified Multiple-Try MH sampler is reversible.

Proof. Let ®(y; x) denote the actual transition matrix. We want to show

m(2)®(y; ) = m(y)@(2;y). ®)
To see this, we compute
M
w()B(a,y) = hr(a)T(gia) [ [ 7 0)atws Do, pia)das

M M
= k/min {W(y)T(ﬂf;y) HT(Zi§ y)q(z;z*), m(x)T (y; ) HT<ZZ'§ w)Q(y;Z)} dz_y
= 7m(y)®(y, ).

Connections between modified and classical versions. The acceptance probability in the modified
version of Multiple-Try MH can be expanded as follows:

mm{ w(y) T2, Tz y)ala; 2°) 1}:min W) L T sty
W(x)nile(iv )(,z)7 ()Hz 1 T(zf )%

_ . Zi;érhw(zh +w Y, T M T

—mln{ : HT }

D i Wz y) Fw(z,y) -3
(6)

If T(—, —) is invariant in the first argument (as in our application to BC-LLM), then this last formula
is exactly equal to 3(z, y; z,z"), the acceptance probability for the classical version, but if we were
to use the same points for both the non-realized forward and backward proposals.

Equivalence with MULTI-SS-MH-UPDATE. Finally, we show that the modified version of
Multiple-Try MH described in the previous sections is equivalent to what is implemented in MULTI-
SS-MH-UPDATE, for a fixed S. To see this, we make the replacements:

* r<-=cC
zie(cfﬁ),c g)fori=1....M

.y (Cgcm) —k)

* T(——) « Q(——,ys,X)
s (=) + p(=ly, X)

Plugging these into (6), the acceptance ratio becomes
M =(m
_ { Qer: ek, ys: X) Xy p((E ep)ly. X) 1}
Q™5 e k¥, X) Sy p((E™, gy, X)

_ mm{ Qleric i ys, X) XM plyselys, (7™, ¢ 1), X)QE™ ¢k, ys,X) 1}
Q(él(gm)chk»y&X) ZOSmSM’m¢mp(ySC|yS,(él(€ ),ka),X)Q(éém);C,k,ys,X)
@)
(0)

where the equality comes from (#4) and we set ¢’ = ¢, for convenience of notation. Observe that
this is exactly the formula in Line 6 of Algorithm [3]

Meanwhile, plugging into (3) and using [@4), we see that the sampling weights used in the modified
version of Multiple-Try MH are equivalent to those in Line 3 of Algorithm [3] This completes the
proof of the equivalence.

B Implementation details for BC-LLM

Here we discuss how the hyperparameters for BC-LLM should be selected:
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Fraction w of data used for partial posterior: Choosing a small w may lead to the LLM proposing
less relevant concepts, but tends to lead to more diverse proposals. In contrast, a large w tends to
lead to less diverse proposals because the LLM is encouraged to propose concepts that are relevant
to the dataset D, which may not necessarily generalize. In experiments, we found that w = 0.5
provided good results.

Number of candidate concepts M : More candidate proposals per iteration can allow for more
efficient exploration of concepts. The number of candidates is limited by the number of concepts
that the LLM can reliably extract in a single batch. There tends to also be diminishing returns,
as the first few candidates generated by the LLLM based on the top keyphrases tend to be highest
quality and most relevant. We found that setting M/ = 10 provided good performance.
Warm-start and Burn-in: Since Gibbs sampling can be slow to converge, we precede it with a
warm-start, which we obtain by updating concepts greedily. That is, we select the concept that
maximizes argmax p(y|c_g, ys, X), instead of sampling from the distribution. In experiments,
we run warm-start for one epoch and stored the last 20 iterates as posterior samples; the rest of the
samples were treated as burn-in.

Number of iterations 7": Although Monte Carlo procedures for Bayesian inference typically have
thousands of samples, this is cost-prohibitive when an LLM must query each observation for a new
concept per iteration. In experiments, we found that even setting 7" as low as 4 to be quite effective.
Generally speaking, if the goal is solely prediction accuracy, a small 7" may suffice. On the other
hand, if the goal is uncertainty quantification for the relevant concepts, one may prefer T' on the
higher end (e.g. 10) for more complete exploration of concepts.

C Example prompts

Here we provide example prompts that one may use with BC-LLM. The prompt should vary with
how much prior knowledge one has about the prediction target as well as how much information one

would like to reveal to the LLM about the prediction target.

C.1 Example prompt for keyphrase extraction (Step 0)

Example prompt for extracting keyphrases from images, where we reveal limited information to the

LLM about the prediction target:

Given an image, your task is to brainstorm a set of
descriptors that will help classify the image to its
corresponding label Y. For the provided image, list as
many descriptors about it. For each descriptor, also
list as many descriptors that mean the same thing or
generalizations of the descriptor. All descriptors, synonyms,
and generalizations cannot be more than two words. Output
characteristics that this image possess, such as "round
wings" or "red head." Do not output general categories of
descriptors like "wing color" or "head shape." Output at
least 10 keyphrases.

Example prompt for extracting keyphrases from clinical notes, where we do not reveal information

about the prediction target but we provide ideas on patient characteristics that one should extract:

Here is a clinical note: ( note )

Output a list of descriptors that summarizes the patient

case (such as aspects on demographics, diagnoses, social
determinants of health, etc). For each descriptor, also

list as many descriptors that mean the same thing or
generalizations of the descriptor. All descriptors, synonyms,
and generalizations cannot be more than two words. QOutput as
a JSON in the following format...
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C.2 Example prompt for proposing concepts (Step 2)

Example prompt for having the LLM brainstorm candidate concepts based on top keyphrases in the
keyphrase model, where we do not reveal information about the prediction target and only reveal that
the dataset contains patient notes:

The goal is to come up with a concept bottleneck model (CBM)
that only extracts 3 meta-concepts from patient notes to
predict some outcome Y with maximum accuracy. A meta-concept
is a binary feature extractor defined by a yes/no question.
We have 2 meta-concepts so far:

1.
2.

To come up with the 3rd meta-concept, I have done the
following: I first fit a CBM on the 2 existing meta-concepts.
Then to figure out how to improve this 3-concept CBM, I first
asked an LLM to extract a list of concepts that are present
in each note, and then fit a linear regression model on the
extracted concepts to predict the residuals of the 3-concept
CBM. These are the top extracted concepts in the resulting
residual model, in descending order of importance:

( top keyphrases from keyphrase model )

Given the residual model, create cohesive candidates for the
3rd meta-concept. Be systematic and consider all the listed
concepts in the residual model. Start from the most to the
least predictive concept. For each concept, check if it
matches an existing meta-concept or create a new candidate
meta-concept. Work down the list, iterating through each
concept. Clearly state each candidate meta-concept as a
yes/no question.

Suggestions for generating candidate meta-concepts: Do

not propose meta-concepts that are simply a union of two
different concepts (e.g. ¢‘Does the note mention this
patient experiencing stomach pain or being female?" is not
allowed), questions with answers that are almost always a

yes (e.g. the answer to ‘‘Does the note mention this patient
being sick?" is almost always yes), or questions where the
yes/no options are not clearly defined (e.g. ‘‘Does the note
mention this patient experiencing difficulty?" is not clearly
defined because difficulty may mean financial difficulty,
physical difficulties, etc). Do not propose meta-concepts
where you would expect over 95, agreement or disagreement
with the 4 existing meta-concepts (e.g. ¢‘Does the note
mention the patient having high blood pressure?" overlaps

too much with ¢‘Does the note mention the patient having
hypertension?").

Finally, summarize all the generated candidate concepts in a
JSON.

C.3 Example prompt for annotations for candidate concepts (Step 3)

A simple concept extraction procedure is to obtain binary or categorical concept extractions. We use
prompts like this:

You will be given a clinical note. I will give you a series
of questions. Your task is answer each question with 1 for
yes or O for no. If the answer to the question is not clearly
yes or no, you may answer with the probability that the answer
is a yes. Respond with a JSON that includes your answer to
all of the questions. Questions:
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. Does the note mention the patient having social support?

2. Does the note mention the patient having stable blood
pressure?

3. Does the note mention the patient not experiencing
respiratory distress?

4. Does the note mention the patient experiencing substance
abuse or dependence?

5. Does the note mention the patient being uninsured?

clinical note: ( note )

Note that in cases where the LLM was unsure about the concept’s value, it was allowed to return a
probability, which prior works have found to be helpful [6]]. In general, the LLM outputted 1°s and
0’s. Probabilities were outputted occasionally, which as highlighted in the main manuscript, can be
audited and checked by a human.

D Additional Results

D.1 MIMIC

To assess the robustness of BC-LLM, we include the following variations. First, we test the
robustness of BC-LLM to prompt phrasing. In particular, we feed in a prompt that is more
vague than that used in the main manuscript during Step 0 of BC-LLM by replacing the
original sentence “Output a list of descriptors that summarizes the patient case
(such as aspects on demographics, diagnoses, SDOH, etc).* with “Output a list
of descriptors that summarizes the patient case.® Second, we test the robustness of
the results to the choice of LLM by rerunning the same experiment using Cohere’s Command-R
LLM, rather than GPT-40-mini.

Results are shown in Figure [5| First, we see that BC-LLM is quite robust to prompt phrasing,
as the results with this simpler prompt are similar to the more detailed prompt. Second, we see
that performance of all the methods—BC-LLM and the comparator methods—are lower using
Command-R. Nevertheless, we see that the performance rankings between the methods are similar,
with BC-LLM performing better for nearly all metrics.

Recall Precision
0.8
Method
073 /ﬁti\/ 061 = —— BCLLM Ablation
0.50 — 0.4 - BC-LLM Cohere
/ LLM+CBM Cohere
025~ 0.24 /- —— Boosting LLM+CBM Cohere
o e Human(Oracle)+CBM Cohere

0.00 0.0 Bag-of-words Cohere
250 500 750 250 500 750 250 500 750 250 500 750
Num train obs Num train obs Num train obs Num train obs

Figure 5: Additional results running BC-LLM and comparator methods on the MIMIC dataset,
evaluated in terms of performance and recovery of true concepts. Error bars indicate the 95% CI.

D.2 CUB-Birds dataset

Table 2] reports results from two additional sets of experiments on the CUB-Birds dataset. First, to
evaluate robustness of BC-LLM to the choice of LLM, we report the performance of BC-LLM and
comparator methods when Anthropic’s Claude 3.5 Haiku is used instead, with all other settings the
same as that discussed in Section Second, to facilitate comparisons to other “hard concept” CBM
results on the CUB-Birds dataset, we evaluate BC-LLM on the dataset’s original task of classifying
all 200 bird species, setting K = 100. Because the size of this dataset and the number of concepts is
substantially larger, we only ran the greedy phase of BC-LLM. Nevertheless, BC-LLM outperforms
the comparator methods.
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Method | Accuracy (1) AUC (1) Brier (])
Using Claude 3.5 Haiku
BC-LLM 0.665 (0.593, 0.736)  0.849 (0.811, 0.888) 0.443 (0.367,0.519)
LLM+CBM 0.583 (0.517, 0.648) 0.771 (0.722, 0.821)  0.507 (0.434, 0.580)
Boosting LLM+CBM | 0.640 (0.568,0.712) 0.811 (0.769, 0.852)  0.552 (0.455, 0.649)
Classifying between all 200 bird species
BC-LLM 0.558 (0.514, 0.600)  0.992 (0.990, 0.994)  0.593 (0.562, 0.625)
LLM+CBM 0.516 (0.474, 0.558) 0.988 (0.984,0.991) 0.606 (0.567, 0.646)
Boosting LLM+CBM | 0.005 (0.003, 0.007) 0.500 (0.500, 0.500) 1.012 (1.011, 1.012)

Table 2: Additional results for the CUB-Birds dataset

D.3 Other image datasets

To evaluate BC-LLM on other real-world image datasets, Table [3|includes two additional imaging

datasets:

Functional Map of the World (fMoW) [164]: RGB satellite images classified into 62 building/land
use categories. Models were trained on satellite images from the US, with 100 images sampled
from each category. CBMs were trained to have 60 concepts. Models were evaluated in terms
of in-distribution performance (i.e. images from the USA) as well as out-of-distribution (OOD)

performance when evaluated on satellite images from China.
Imagenette [65]]: 10 classes from ImageNet. CBMs were trained to have 10 concepts.

Method | Accuracy () AUC (1) Brier (|
JMoW: USA images
BC-LLM 0.357 (0.340, 0.375)  0.904 (0.898,0.910) 0.780 (0.766, 0.792)
LLM+CBM 0.311 (0.295,0.327) 0.878 (0.871,0.885) 0.892 (0.872, 0.914)
Boosting LLM+CBM | 0.118 (0.105, 0.130)  0.757 (0.748, 0.764)  1.029 (1.018, 1.039)
fMoW: OOD-China images
BC-LLM 0.265 (0.246, 0.285)  0.840 (0.830, 0.849)  0.853 (0.839, 0.868)
LLM+CBM 0.223 (0.205, 0.242)  0.791 (0.780, 0.801)  1.023 (1.00, 1.045)
Boosting LLM+CBM | 0.084 (0.072, 0.098) 0.707 (0.693, 0.722)  1.065 (1.054, 1.077)
Imagenette

BC-LLM 0.987 (0.980, 0.993)  0.999 (0.997, 1.000) 0.072 (0.062, 0.085)
LLM+CBM 0.902 (0.883, 0.919)  0.988 (0.986, 0.990) 0.125 (0.107, 0.142)
Boosting LLM+CBM | 0.639 (0.610, 0.670)  0.899 (0.888, 0.909) 0.448 (0.422, 0.479)

Table 3: Results on additional imaging datasets

E Experiment details

E.1 Evaluating correct concept matches

Quantifying a “correct” concept match requires going beyond exact string matching, as there are
many possible refinements for a single concept. For instance, for the concept “Does the note
mention the patient smoke at present?”, there are rephrasings (“Does this note mention if the patient
currently smokes?””), polar opposites (“Does the note not mention the currently smoking?”), or
closely overlapping concepts (“Does the note mention the patient’s smoking history?””). To quantify
if a learned concept was correct, we used the following rule: if the absolute value of the Pearson
correlation for LLM annotations of two concepts exceeds 50%, the two concepts are sufficiently
similar. We manually confirmed that any pair of learned and true concepts that passed this rule were

always closely related.
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E.2 MIMIC

The entire dataset consists of 7043 observations of which we trained on 100, 200, 400, and 800
randomly selected observations and evaluated 500 held-out observations. We used the “Chief
Complaint” and “Social History” sections of the notes. The label Y was generated per a LR model,
in which

Pr(Y =1|X)

1 P S R
Py = 0/X)

=4 % 1{Does the note imply the patient is unemployed?}

+ 4 % 1{Does the note imply the patient is retired?}

+ 4 % 1{Does the note mention the patient consuming alcohol in the present or the past?}

— 4 % 1{Does the note mention the patient smoking in the present or the past?}

+ 5 x 1{Does the note mention the patient using recre- ational drugs in the present or the past?}

LLM+CBM summarization and BC-LLM were run to fit CBMs with K = 6 concepts. BC-LLM was
run for T = 5 epochs. Boosting LLM+CBM ran for 10 iterations, in which at most 1 new candidate
was added each iteration.

E.3 CUB-Birds dataset

To train a bird classifier for R subtypes, LLM+CBM summarization and BC-LLM were run to fit
CBMs with K = min(10, max(4, R)) concepts. BC-LLM was run for a maximum of 7' = 5 epochs
or 25 iterations, whichever was reached first. Boosting LLM+CBM ran for 10 iterations, in which at
most 1 new candidate was added each iteration. For the black-box comparator, we used a ResNet50
model pre-trained on ImageNetV2, which ensures ResNet’s training set does not overlap with the
CUB-Birds dataset.

E.4 Clinical notes and tabular data from the Zuckerberg San Francisco General Hospital

Data in this experiment contained PHI, for which IRB approval was obtained. To predict readmission
risk, the models were trained to analyze the sections “Brief history leading to hospitalization” and the
“Summary of hospitalization” in the discharge summary for each patient. LLM+CBM summarization
and BC-LLM were run to fit CBMs with K = 4 concepts. BC-LLM was run for 7' = 5 epochs.
Boosting LLM+CBM ran for 10 iterations, in which at most 1 new candidate was added each iteration.

E.5 Clinician survey

To conduct the survey for clinical relevance of features and concepts, the following instructions were
given to clinicians:

Please rate the features learned by BC-LLM and its comparator methods. 1In
the attached CSV, we have listed 25 or so features from various methods,
where we mask which method has learned which feature. Please fill in the
column "How clinically relevant is the candidate concept with determining
a patient’s readmission risk? Enter values = 1: 1low, 2:medium, 3: high."
Please try to use the full range of scores, rather than assigning all the
features the same score.

Table ] shows the table that clinicians were asked to fill in. The ordering of features was randomly
shuffled to obfuscate which method had learned which concepts.

F Laplace Approximation of Split-Sample Posterior

In this section, we describe how to perform Laplace approximation of the split-sample posterior
p(ys<|ys,c, X) when the likelihood model is logistic and the prior on the coefficient vector 0 is a
standard normal N\ (0,~21). For simplicity, we omit discussing the constant term 6. Fixing the list
of concepts c, we let @ denote the n x K matrix whose (4, j)-th entry is given by ®;; = ¢, (;).
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Table 4: Clinicians were asked to fill in the following table with their ratings of the clinical relevance
of each feature/concept for predicting a patient’s readmission risk.

Candidate concept Score (1-3)
Does the patient have multiple medications prescribed?

Does the patient have a history of hypertension (HTN)?

Is this patient experiencing chest pain?

What is the patient’s weight?

Does the patient have heart failure with reduced ejection fraction?
What are the patient’s lab results for BNP?

Does the patient have substance dependence?

Is the patient stable at discharge?

Does the patient have a history of falls?

How many emergency department encounters does this patient have?
What are the patient’s lab results for Lactate Dehydrogenase?

Does the patient have uncontrolled diabetes?

Does the patient have a history of frequent hospital admissions?
How many encounters does this patient have?

Does the patient have a history of diabetes mellitus type 2 (DM2)?
Does the patient have complex medical history?

Does the patient have a history of sepsis?

What are the patient’s lab results for Creatinine?

Does the patient have a history of drug or substance use disorder?
What is the patient’s value for Expiratory Positive Airway Pressure (EPAP)?
Does the patient have had any missed outpatient appointments?
What are the patient’s lab results for Glucose?

Are the patient’s outpatient follow-up appointments scheduled?

Given any subset of example indices T C [n], we can write the joint likelihood for these examples as
p(yr]0,c,X) = exp (Z (inT‘I’i- —log(1 + eXp(eTq’i-)))> - 3
i€T
Multiplying by the prior for 0, the joint conditional distribution for y and 0 is then:
0 2
p(0,yrle,X) = (2m7%) "/ ? exp (Z (Z/z'GT‘sz —log(1 + eXp(OTq’i‘))) - |2||22) - O
, Y
€T
To form the Laplace approximation to (9)), we first denote

gr(0) = —logp(8,ys-|c, X)

0 2
= Z (—yiOTfIh-. + log(1 + eXp(OT@i.))> + ”2 H22, (10)
ieT v
and its Hessian by
2 e 2 T 2
Hr(0) =V 0) = ———®, P, +v°L 11
7(0) 97(0) ; (1§07 )2 gl (11)
Let
GMAP,T = argmin gT(O) (12)

be the maximum a posteriori (MAP) estimate. We can then perform a quadratic approximation of the
exponent around Oyap, 1 to get

1
(0 — Oriap 1) Hr (Ormap.7)(0 — Ornap.T)

6.1l X) ~ pOyiae 1. yrle, e

13)
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Plugging in (9) evaluated at @y;ap 7 and integrating out with respect to 6 gives
- T T [6nap, 7l
p(yrle,X) ~ exp Z (yiBMAP,T‘I’i- —log(1 + eXp(BMAP,T(I’i-))) t
ier 2y (14)
- (2m)E=D/29 71 det(He (Omap,r)) /2.
We finish by applying the above formulas with respect to 7' = [n] and T' = S and taking ratios:

p(yle, X)
p < ,C, X = T~
(yselys ) p(ysle, X)
~ exp (Z (yiH{/IAp{)i. —log(1+ exp(@ﬁAp‘ii.)))
=1 (15)
- Z (yiole/IAP,s‘I’i~ —log(1 + exp(eﬁAP,Sq)i~))>
1€S
. exp (IIHMAP,SH% - ||9MAP§) (det(stMAp,s)))W
2’}/2 det(H(BMAp)) )

Remark F.1. The MAP estimate @yap can be computed by a call to scikit-learn’s
LogisticRegression() model, setting C = 272,

Remark F.2. In the current implementation of our procedure, we use a slightly different method
to perform Laplace approximation, which instead approximates the integral p(ys<|ys,c, X) =

fp(ySC |07 c, X)p(e‘y57 C, X)de

G Proof of Theorem [3.1

Recall the definition
L(C) = Hlé%X]E(X,Y)NV{Ing(Y|X,O,C)}. (16)

This quantifies how relevant the concepts in c are to the prediction of the response Y. Note that the
definition does not require that the model class is correctly specified (i.e. there does not have to be

some c and @ sothat p (Y =1|X =,0,c) =0 (Zle Orde, () + 90)). Before presenting the
proof, we first detail the assumptions we make.
Assumption G.1.

i. Y €{0,1} is a binary response;
ii. The data D is generated i.i.d. from some distribution v/;

iii. The prior on 8 is A/(0,72I);

iv. C* := argmax, L(c) comprises all permutations of a single vector ¢ *;
v. There exists some A > 0 such that L(c *) — argmax gc- L(c) > A;

vi. Let Cp, = Uc_, y.x{c: Q(c;c_k,y,X) > 0}. Assume C, is a finite set of size at most
exp(n!=¢) for some 0 < € < 1;

vii. There exists 7 > 0 such that for each c_y, there exists [ € {1,2,..., K} such that ¢f =
argmax, L((c,c_x)), ¢f ¢ c—k, and Q(¢;¢—k,y,X) > 1 almost surely for all y, X with n
large enough;

viii. There exists some B such that for any ¢ € CX, all distinct, we have ||0}||2 < R, where

0 = argmaxg E(x y)~,{logp(Y]X,0,c)}; a7

ix. Let ®¢ = Pc(X) = (e, (X)), ey (X)), ..., epe (X)) for X ~ v. There exists some Ay, such
that for any ¢ € C,, r, all eigenvalues of the second moment matrix E[®.®Z] are bounded from
below by Amin. Here, C,, k- denotes the K'-fold product of C,, but with any vectors containing
duplicate concepts removed;

x. We modify the algorithm so that the random subset .S can only take one of exp(n!~¢) possibili-
ties S, = {Sl, So, e, SB,n}~

Note that for simplicity, we avoid discussing the constant term 6. Most components in Assumption
G.1 are either standard regularity conditions ((i), (ii), (iv), (v), (vi), (viii), (ix)) that are often made
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in statistical analysis or are hyperparameter choices ((iii) and (x)). The key new assumption is (vii),
which asserts that at each step, there is at least a fixed nonzero probability of the LLM proposing
one of the K “best” concepts conditional on the data. This helps to ensure at every outer loop of the
sampler (i.e. for every cycle through all the positions of the concept vector), enough mass flows to
the optimal set of concepts. We believe this is a reasonable assumption even in regimes where the
LLM has limited knowledge, as long as the degree of knowledge is non-zero.

Proof of Theorem[3.1] We prove the theorem only for SS-MH-UPDATE for simplicity, but it will be
clear how to generalize it to MULTI-SS-MH-UPDATE.

Step 1: Taking a subsequence. Note that the Markov chain in question corresponds to the list L
returned in line 7 of Algorithm Denote this using (¢ ?)$°;. Because of the cyclic nature of the
updates, this chain is not time invariant and is hence difficult to work with. We argue that it suffices
to study the temporal projection (c *)?°,, where ¢; = €y fort = 0, 1,2, .. .. This is because every
stationary distribution for (¢ *)$°, is also stationary for (c )92 ,.

Step 2: Reduction to connected components. Since (¢ *)9° ; satisfies the detailed balance equations, it
is a symmetric Markov chain, i.e. it has an equivalent representation as a flow on a network, in which
the vertices are states and the edges correspond to nonzero transition probabilities. This property is
inherited by (c )92, . Consider a connected component A of the network. The Markov chain, when
restricted to A, is aperiodic, since there must exist a self-loop. Furthermore, it is finite according to
Assumption vi). As such, (c )2, has a unique stationary distribution 7 4 supported on A [66].
Indeed, all stationary distributions of (¢ *)$°, are convex combinations of such distributions. Hence,
it suffices to show the desired property for 7 4.

Step 3: Concentration. In order to analyze 74, we need quantitative control over the transition
probabilities via concentration. For a given dataset D of size n, we condition on the event guaranteed

by Proposition[G.3]

Step 4: Convergence. We again focus on a single connected component .4 and the goal is to show that
with high probability, 7 4(C* N .A) > 1 — 6 for some 6 — 0 uniformly. We may ignore the rest of the
network. Let a = | A| and b = |C* N A|. Since A itself is finite, we can enumerate its states starting
with those in C* N A. The stationary distribution can be written as a vector v = (v1.p, Vp41.4), While
the Markov chain itself can be represented as a transition matrix P, which we write in block form as

Pii Py
P= . 18
iPzi P22] (18)
The stationarity equation gives us
Viti:a(I = Pa2) = vipPia, (19)
from which we obtain
_ 1P 12/[op
Vos1allz = [|[ViaPi2(I — Pao) 7 t||, < ——2 (20)
| I = TP,

so long as the denominator on the right hand side is nonzero. To see this, notice that any state j
for b+ 1 < j < a corresponds to a vector ¢ (0) ¢ C*. However, using Assumption Vii), there
is a sequence (¢ (0, ¢ W .. & &-1) such that for k = 1,..., K, we have (i) é_(lli) = é_(lz,_l),
(i) Q(én; € ¥V yg,X) > n, (i) L(€ ®) > L(& *~1) with equality holding iff & (¥) = & (k=1
Combining (iii) with (28)), we see that all acceptance ratios along this sequence are equal to 1, which
means that the transition probability from state j to states in C* is at least

K
[T @@se! . ys. X) > . @1
k=1

The sum of entries in row j — b in Py5 is the total probability of transition from state j to other states
within A\C* and hence has value less than 1 — €. This holds for any row. Applying Lemma
we thus get |Pa2|/op < 1 — 7%, which allows us to bound the denominator in (20). Next, every
entry in P15 is the probability of transition from a state in C* to a state in A\C*. Using Step 3 and
Assumption[G.I|v), the acceptance probability c of such a transition satisfies

loga < max logp(ysc|ys,c,X) —logp(ys:|ys,c*,X)
ce A\C* (22)
< —nA+0n").
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We thus have
IP12llop < v/{a = B)bexp (—nA(L+0(m™)). 23)

which allows us to bound the numerator in (20). Combining this with the earlier bound on the
denominator gives

[Vasiellz < v/(a —b)bn~ K exp (—nA(l + O(n‘el))) : 24

We then compute

TA(C"NA) = [[vial
=1—|[voy1all

> 1= Va—b[Vaiiels @3
>1—+/bla—b)2n Kexp (an(l + O(nié/)> ,

whose error term we can bound as

Vb(a —b)2n K exp (an(l + O(niﬁ/)) < |Chlexp (an(l + O(n*g))
< exp(n'™%) exp (—nA(l + O(n—e/)> (26)
< exp(O(n™°)).

Finally, we note that all hidden constants can be chosen to be independent of n. O

Lemma G.2. Let M be a m x n matrix whose entries are non-negative, and suppose Z?:l M;; <8
fori=1,2,...,m. Then |M|,, < S.

Proof. Let D be the m x m diagonal matrix whose entries are given by D;; = Z?Zl M;;.

Then D™'M is a stochastic matrix, which has operator norm at most 1, while [|Dl,, <
maxi<i<n Z?=1 M;; < 3. Putting these together, we get

||M||0p = HDD_lMHOP < ||DH0P||D_1M||OP <5, (27)

as we wanted. O

Proposition G.3 (Concentration of split-sample posterior). Assuming the conditions in Assumption
then for any € < €/2, we have

1
su — o clyg,c,X) = L(c)| = O(n~*¢ )3
CGCn,K%eSn [(1 —w)n] gp(yselys ) (c) ( ) (28)

with probability converging to 1.

Proof. Let us fix ¢ for now. We first write
lz(g) = logp(Y = yZ|X = Xi, 0, C)

29
— 43,:07®, —log (1 n eXp(OTCI?i.)) . 29

Let [(0) = Ex, ,,[li(0)] and set 8" = argmax!(0). For convenience, denote & = ®.. Note
that ® has entries bounded between 0 and 1 and hence has a second moment matrix with max-
imum eigenvalue bounded above by K. Furthermore, it is a sub-Gaussian random vector with
bounded sub-Gaussian norm. Using these properties, we may find a universal value R’ such that
E [®®T1(]|®|2 < R')] = 1E [®#®T]. Consider the ball B(2R) of radius 2R. For any 6 € B(2R),
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the Hessian of the population log likelihood hence satisfies

H(0) = V%(6)

exp(®79) 23T

(1 + exp(®7H))>
exp(®70)

(1 + exp(®79))

;82T 1(|[2]; < R)

. (30)
S S L. Y Py
2 0eB(2R),veB(R) (1 + exp(v10))
e2R'R T
= mz& [@®7]

/
_ )\mineQR R

< 7/1.
T 2(1 4 e2R'R)2
Using this lower bound on the curvature, we see that

~ ~ A R2e2R'R
(67— sup I(6) > Jminfte

> . (31)
0cdB(2R) 2(1 + e2H'R)2

Next, we use the fact that n=1/23"" | (1;(8) —I(8)) is a sub-Gaussian process with increments
bounded according to

S K6 -0, (32)
o

n1/? Z (1:(6) — 1(8)) —n =1/ Z (1:(6") — ("))

We can thus use Talagrand’s comparison inequality [67] to get, for any ¢ > 0, that

n

S (1:(6) ~ 1(6))

i=1

—1/2

n sup < RVK + Rt (33)

0cB(2R)

with probability at least 1 — e=*". Take ¢ = n'/2=¢ for any ¢ < ¢/2. Note that [,,(8) =
n~t Y7, 1;(8) is concave, with

[,(8°) > 1(6%) —O(n™), (34)
while

sup  1,(0) < sup 1(6) —|—O(n_6/)
6€dB(2R) 9cdB(2R)

, (35)
. P2.2R'R
é l_(e*) + AInln-R €

21+ 2R O™).

As such, whenever n is large enough, we see that lAn also attains its global maximum in B(2R) and
that this maximum value satisfies

sup 1,(8) —1(6*)] = O(n™°). (36)
OcRK

Recall further that [(8*) = L(c). We next want to integrate out p(y|6, ¢, X) = exp(nl,,(8)) with
respect to the prior. Using (36)), we get the upper bound

1
1o, X) = [ 0(316.6.X) sz exp(—6]7/2:%)d6

< exp(nL(c) + O(n'~)).

(37
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To get a lower bound, we use the fact that the Hessian of the population likelihood also has an lower
bound

H(6) = —[H(8)||lop! = —VKL. (38)
For any 0 < r < R, this gives a lower bound of
inf  L(O) > L(O") — VEKr?, (39)
6cB(0*,r)
where B(6™,r) is the ball of radius r centered at 8*. Using again, we get
inf  1,(8) > L(8") — VKr* — O(n™). 40
GEB}I(IG*)()i()\/iT (™) (40)

The prior density is bounded from below by W exp(—2R?/4?) on B(2R). We therefore have

1
[ 2316 X) sz exp(—%/2:%)a0

ri Vol(B(1))
——— "¢
= )RR
The maximum is achieved when we set r =
we get

(4D)
<p(~2R2 /) exp (n(L(6") — VEr* - 0<n*’>>) -

(2 )1 /2 Combining (37) and (1)) and taking logarithms,

log p(yle, X) = nL(c) + O(n' ). (42)
Performing the same calculation with y g instead of y and taking differences, we get

=0(n™ ). (43)

m log p(yselys,c,X) — L(c)

Finally, we take a union bound over all ¢ € C,, x and S' € S,,, noting that all hidden constants can be
chosen to be independent of c. O

H Stationary Distribution Under Consistent Proposals

In this section, we motivate the multiple-try partial posterior Metropolis update (Algorithm [3)) in
more detail. Notably, we have the following proposition.
Proposition H.1. Suppose the LLM proposes from the conditional partial posterior distribution,
ie. Q(Cr;C_y = c_g) = p(Cklc—g,ys,X). Then the Markov chain defined by running Gibbs
sampling (Algorithm|[I) with SS-MH-UPDATE or MULTI-SS-MH-UPDATE instead of MH-UPDATE
has the posterior p(Cly, X) as a stationary distribution.

Proof. We first show this for SS-MH-UPDATE. It suffices to show that the acceptance probability in
Line 4 of Algorithmis equal to that of a Metropolis-Hastings filter with p(C|y, X) as the target.
We compute:

p(yselys, (e;e—x), X)p(ys, (¢, i) |X)
p(y1X)

p(e,c-i)ly, X) =

crysx) Y
—p(ysc|ys,<c7cfk>,x>p<c|cfk,x,ys>%
Hence,
p((& e i)y, X)Q(cick,y5,X) _ p((& ci) X, y)p((c, c—1)]y, X)
p((cvka)|Y7X)Q(é;kaay57X) p((c,c,k)|y7 ) ((é C— k)|y7X) (45)
_ p(yselys, (c-k,¢),X)
p(yselys,c, X)

as we wanted.

To show the statement for MULTI-SS-MH-UPDATE, we use its equivalence, for a fixed S, to the
modified Multiple-Try Metropolis-Hastings method described in Appendix [A] In Appendix [A] we
prove that this method satisfies the detailed balance equations for the posterior. Since the detailed
balance equations are linear in the transition probabilities, we can marginalize this over S to show
that the posterior is stationary with respect for MULTI-SS-MH-UPDATE, which draws S uniformly
at random. O
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