Under review as a conference paper at ICLR 2025

DIFFERENTIALLY PRIVATE RANGE SUBGRAPH COUNTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Subgraph counting is a fundamental problem in graph analysis. Motivated by
the practical need to perform graph analytics on subgraphs defined by selected
vertices (or edges) rather than the entire graph, as well as privacy concerns, we
initiate the study of private range subgraph counting. Given an n-vertex graph G,
where each vertex (or edge) has a d-dimensional attribute vector, a pattern graph
H, and a set @ of range queries ¢, our goal is to count the occurrences of H in
the subgraph of GG induced by vertices (or edges) whose attributes fall within ¢,
all while preserving privacy. We give the first e-differentially private algorithm
for range subgraph counting, achieving near-optimal accuracy (up to a polylog-
arithmic factor of n) for constant privacy parameter € and dimension d, with no
additional computational overhead compared to non-private algorithms. We also
demonstrate that by relaxing to (£, 0)-DP, we can achieve smaller additive errors.
Furthermore, our results generalize the subgraph counting results of the partially
dynamic model in (Fichtenberger et al.,2021)). Empirical evaluations demonstrate
that our algorithm significantly outperforms baseline methods in accuracy while
ensuring strong privacy guarantees.

1 INTRODUCTION

Subgraph counting is essential for understanding the properties of a data graph and has been ex-
tensively studied (Alon et al., [1995; Bera et al 2021} Bjorklund et al., 2014} |(Chiba & Nishizeki,
1985; [Curticapean et al., 2017 /Assadi et al., 2019; [Fichtenberger et al., |2020). Given a host graph
G = (V, E) and a pattern graph H, a subgraph of G that is isomorphic to H is called an occurrence
of H. The goal of subgraph (or pattern) counting is to determine the number of occurrences of H in
G. Subgraph counting is a key graph statistic; for instance, counting triangles and k-stars is crucial
for computing the clustering coefficient, which is valuable for evaluating the effectiveness of friend
recommendation systems. Counting 4-cycles, closed loops of four nodes, is particularly useful for
measuring clustering tendencies in bipartite graphs, such as those found in online dating platforms
or mentor-student networks.

In many applications, beyond counting subgraphs in the entire graph, we are often interested in
counting subgraphs within specific subgraphs. This is driven by practical demands for performing
graph analytics on subgraphs relevant to selected vertices (or edges) rather than the entire graph.
For instance, in patient networks, we may be interested in counting patterns within the subgraph
induced by patients of similar age or geographic location. These subgraphs can be defined based on
specific age ranges, geographic areas, or other relevant attributes. In financial networks, counting
transaction patterns among entities with similar risk profiles or locations can help identify fraudulent
activities or assess systemic risks within the financial system. Another example involves relational
event graphs (Bannister et al.,2013)). In this context, we are given a graph G = (V, '), where each
edge e € I is associated with a real-valued timestamp. We may wish to count the occurrences of
certain patterns within a specific time range, which corresponds to the subgraph induced by all edges
that fall within that time frame.

Now we formally introduce the Range Subgraph Counting problem that addresses the pattern count-
ing scenarios discussed above.

Definition 1.1 ((Vertex-attributed) range subgraph counting problem). Let G = (V, E) be an undi-
rected graph, where each vertex v € V has a real-valued attribute a(v) € R%. For a given interval
q=1[l1,r1] X -+ X [lg,rq], define Vy = {v € V | {; < a;(v) < 14,1 € [d]}, and let G, denote the

Under review as a conference paper at ICLR 2025

subgraph of G induced by V, i.e., Gg = G[V,]. Let Q = {q = [l1,r1] X --- X [lg,7q] | l;,r; €
R, ¢; <7, € [d]} be the query set.

Let H be a fixed, connected pattern graph with O(1) vertices. For each query defined by the interval
q, the goal is to return the number of occurrences of H in G. The pattern H is fixed for all queries.

Note that the attributes of the vertices may represent factors such as age or location, depending on the
practical context. Additionally, an occurrence is only counted if all its vertices are contained within
V4; any occurrences involving vertices outside of V,, are disregarded. We also study a variant of this
problem in the setting where each edge e has an associated real-valued attribute a(e), referred to as
the edge-attributed range subgraph counting problem (see Appendix [F). Furthermore, we note that
our edge-attributed range counting strictly generalize the partially dynamic DP subgraph counting
under continual observation as studied in (Fichtenberger et al., [2021). In the partially dynamic
setting, the edge attribute is timestamp and only allow either insertions or deletions of edge. See
Section E] for more discussions. We remark that |[Deng et al.| (2023b) studied the 1-dimensional
(vertex-attributed) range subgraph counting and listing problems, focusing on optimizing the trade-
off between space and query time.

While one could release the exact pattern counts in response to each query, it is important to recog-
nize that the range subgraph counting algorithm lacks formal privacy guarantees, making it poten-
tially “unsafe” from a privacy perspective.

In this work, we approach the range subgraph counting problem from the perspective of differential
privacy (DP). DP ensures that, even if there is a one-element difference in the database, the output of
the algorithm remains statistically similar (see Definition[I.2)). This means that DP algorithms allow
for statistical analyses of sensitive individual data while guaranteeing that no specific individual’s
information is leaked (Dwork et al., 2006). When DP is applied to graphs, it can be divided into
two types:edge-DP and node-DP. In the former, two adjacent graphs differ only by one edge, while
in the latter, two adjacent graphs differ by one node and all the neighboring edges. In our work, we
focus on edge-DP. Given two graphs G, G’ with the same set of nodes V(G) = V, we say G, G’ are
neighboring, denoted by G ~ G’, if they differ in exactly one edge.

Definition 1.2 (Edge DP (Dwork et alJ [2006; Nissim et al., 2007)). Lete > 0 and § € [0,1). A
randomized algorithm A is (g, 0)-differentially private(DP) if for all events S in the output space of
A and all neighboring graph G ~ G',Pr[A(G) € S| < e Pr[A(G’) € S|+ 6. When § = 0, we
say A preserves pure differential privacy (denoted by e-DP). When 0 < 0 < 1, we say A preserves
approximate differential privacy.

While DP has been extensively studied for subgraph counting in the entire host graph (see Sec-
tion [I.I), private algorithms for range subgraph counting remain unexplored. The challenge with
DP range subgraph counting arises not only from the high sensitivity, which is already present in
standard DP subgraph counting, but also from the increased complexity of the queries. In range
subgraph counting, each query is defined over a specific subgraph induced by a subset of vertices,
making the problem more difficult as the algorithm need to handle multiple induced subgraphs effi-
ciently while ensuring privacy.

Before presenting our main results, we outline a straightforward approach to achieve differential
privacy (DP) in range subgraph counting: For each query ¢ € (), compute the induced subgraph
G, count the occurrences of the pattern graph H (e.g. triangles), add Laplace noise to the counts,
and return the noisy results. However, this approach has significant drawbacks. Specifically, it
results in substantial additive error. The sensitivity of triangle counting in any specific graph G|, is
O(|V,|), necessitating Laplace noise of ©(|V;|). According to the DP composition theorem (Dwork
et al., 2000), this leads to a cumulative error of O(|Q|n) when aiming for e-DP (and O(/|Q|n) for
(¢,6)-DP). When |Q| = ©2(n?), the resulting error becomes prohibitively large, rendering the results
practically unusable. For example, in the case of triangles, where the total number of triangles in
a graph is O(n?), the excessive error O(n?) for e-DP becomes trivial. Furthermore, we note that
range subgraph counting is a nonlinear problem, making it more challenging, and preventing the
direct application of previous DP algorithms designed for linear queries. For instance, the sum of
the number of triangles in two graphs is not equal to the number of triangles in their union.

Our Contribution We present the first efficient range subgraph counting algorithm that satisfies
DP with nearly-optimal additive error, where an algorithm is said to be efficient if it runs in poly-

Under review as a conference paper at ICLR 2025

nomial time. We let fz(G) denote the number of occurrences of H in G, and let GSy,, denote the
global sensitivity of subgraph counting of H (see Definition 2:T).
Theorem 1 (Pure DP (Vertex-Attributed) Range Subgraph Counting). For any € > 0, there exists
an e-differentially private efficient algorithm that, given a graph G = (V, E, a), where the attribute
of each vertex is a d-dimensional vector, pattern graph H, a query set Q), outputs all range subgraph
counting queries which satisfy

GSfH .d- 10g3d+0.5 n)

max | fi1(Gy) = fir(Gy)| = O (-

with probability at least 1 — %

If we relax the requirements to approximate DP, we can derive an algorithm with a smaller additive
error, as stated in the following theorem.

Theorem 2 (Approximate DP (Vertex-Attributed) Range Subgraph Counting). For any € > 0 and
0 < § < 1, there exists an (£,6)-differentially private efficient algorithm that, given a graph G =
(V, E, a), where the attribute of each vertex is a d-dimensional vector, pattern graph H, a query set
Q, outputs all range subgraph counting queries which satisfy

- HS Q) -d-1 3d+0.5
mae | 1(G) — i (G) —0((@) dlg

3

with probability at least 1 :ﬁ, where IiI\SfH denotes the output in Algorithm@

In the above, the quantity HS¢, can be viewed as an approximation of the higher-order local sen-
sitivity (see (Nguyen et al [2023)). The parameter § is typically set to a value on the order of
the reciprocal of a polynomial in the input size (e.g., n~ (1)), It is implicitly incorporated within
HS tx(G), which exhibits a dependency on poly(log(1/d)). In real-world graphs, which are typi-
cally sparse, ﬁsfH (@) is often significantly smaller than GSy,,. For instance, when H is a triangle,

os 10 (G) = dmax(G) < GSy, = n— 2, where diax(G) represents the maximum degree of graph
G. The proof and detailed description of Theorem [2]can be found in Appendix [D.1]

We also show that for the edge-attributed range subgraph counting problem, one can obtain an
efficient pure DP (approximate DP) algorithm with the same additive error as the above. We present
the formal statement Theorem 3]and give its proof in Appendix [F

We note that simply reporting the number [y (G) of subgraphs H in the entire host graph while
satisfying e-DP incurs an additive error of at least (GSy,,). This is due to the fact that the additive
error for the counting problem cannot be lower than the global sensitivity in the worst case (Dwork
et al., 2006). Therefore, our upper bounds achieve nearly optimal additive error up to a factor of
poly log n for any constant d and . Furthermore, note that our theorems still provide non-trivial
bounds when d is not necessarily constant but remains relatively small (e.g., d = o(y/logn)). An
interesting open question is how to obtain better bounds for higher dimensions d (e.g. d = Q(logn)).

Furthermore, we observe that the global sensitivity GS,, can be bounded to be O (n?/#)=2) where
p(H) is the fractional edge cover number of H (Appendix . Suppose d, € are constant. Then if
H is triangle, then p(H) = 3/2, which implies our DP algorithm for range triangle counting has
erro O(n); if H is k-clique (i.e., a complete graph on k vertices) or a k-cycle (i.e., a cycle with k
vertices), then p(H) = %, which implies an error O(n¥=2). The latter also implies for k = 2, i.e.,
H being an edge, then the additive error is O(1).

We experimentally test our DP algorithms for range subgraph counting on real network datasets in
Section [l

Technical Overview To design DP algorithms for the range subgraph counting problem with small
additive error, we observe that many range queries overlap, making it unnecessary to add noise
to each query separately. Our approach maps the graph’s vertices to points in a 2d-dimensional
Euclidean space, based on vertex or edge attributes, translating the range subgraph counting problem
into estimating the weighted sum of points within corresponding rectangles. Here, the weight of a

'O(-) hides polylogarithmic factors.

Under review as a conference paper at ICLR 2025

point reflects the number of occurrences involving the corresponding vertex pair. We employ a range
tree data structure (Bentley & Saxel [1978)) to iteratively summarize these weighted sums within
chosen ranges, adding Laplace noise to the weights of each node in the tree. To answer a range
query, we traverse the tree to find the relevant nodes for the queried range. This approach effectively
leverages query correlations, reducing the amount of noise required.

Our work shares similarities with the DP interval (and rectangle) query problem (see, e.g., (Dwork
et al.| [2015)), which focuses on reporting the number of points in a specified interval, often solved
using a range tree. However, there are several key differences. First, we address edge-DP in graphs,
whereas (Dwork et al., 2015)) focuses on differential privacy in tabular data, where each row corre-
sponds to an individual. Second, unlike point counting, our subgraph counting problem is nonlinear;
specifically, the sum of occurrences of a pattern graph in two graphs is not necessarily equal to the
number of occurrences in their union. Third, in our setting, a single edge change can affect many
mapped points and significantly impact subgraph counts (e.g., one edge may participate in ©(n)
triangles). We address the latter two differences by employing a subgraph projection technique that
uniquely maps each occurrence of a pattern graph H to a distinct point in Euclidean space. This
transformation allows us to appropriately apply the rectangle query algorithm to our problem.

1.1 RELATED WORK

DP Subgraph Counting The DP subgraph counting problem is a significant topic that has been
extensively studied, primarily for the entire graph G. |Nissim et al.| (2007) improved the utility guar-
antees for triangle counting in differential privacy by incorporating instance-specific noise. |Karwa
et al.| (2011) extended the smooth sensitivity approach to k-stars and proposed methods for com-
puting local sensitivity to perform k-triangle counting. [Kasiviswanathan et al.| (2013) introduced a
triangle counting algorithm under the node-DP framework. Zhang et al.| (2015) developed ladder
functions for various subgraph counting tasks. |[Nguyen et al.| (2023) focused on optimizing run-
time by calculating approximate smooth sensitivity for graphs with certain properties, achieving
both privacy and utility while reducing time complexity. Additionally, several studies have exam-
ined subgraph counting under the local DP model, such as (Imola et al.,|[2021; 2022a;bj |[Eden et al.}
2023). (Fichtenberger et al., 2021) studied DP subgraph counting in dynamic model, while our
work explores subgraphs induced by vertices or edges whose attributes fall within specified ranges.
For Vertex-attribute Range Subgraph Counting, the two problems are fundamentally different and
incomparable. In the context of Edge-attribute Range Subgraph Counting, our work generalizes the
partially dynamic problem in their work, where their problem becomes a special case of ours when
treating edge timestamps as attributes. Instead of focusing on specific pattern graphs like triangles
and k-stars, our approach generalizes to arbitrary constant-size pattern graphs.

Differentially Private Range Queries Muthukrishnan and Nikolov (Muthukrishnan & Nikolov}
2012) present algorithms for the half-space range counting problem under differential privacy,
achieving good approximate accuracy in terms of average squared error. Deng et al. (Deng et al.,
2023a)) propose an algorithm for counting queries and bottleneck queries on shortest paths while
ensuring differential privacy. A closer examination of their model reveals that they effectively ad-
dress a range counting problem on a graph. A cut query on a graph is a specialized form of range
counting, where the range space includes all possible cuts. The cut query problem is widely studied
in the field of differential privacy, with significant research dedicated to it (Gupta et al.,2010;2012;
Dalirrooyfard et al.l 2024} Blocki et al., [2012;|Arora & Upadhyay, [2019; Elias et al.| 2020).

2 PRELIMINARIES

Let G = (V, E, a) be a weighted graph with node set V' of size |V| = n, edge set E of size |[E| = m
and vertex attribute vector a : V' — R H = (Vg, Ey) is a pattern graph such as k-star, triangle
and so on. For simplicity, we let V' = [n] := {1,2,...,n}. A subgraph of G isomorphic to H
is called an occurrence of H. We use f(-) represents a function and use fp(G) to represent the
number of occurrences of H in G. For x € R¥, we denote ||x||, = Diek) 1%al-

Differential Privacy The global sensitivity of a function is defined as follows.

Definition 2.1 (Global Sensitivity (Dwork et al. 2006)). For any function f : X — R* de-
fined over a domain space X, the global sensitivity of the function f is defined as GSy =

maxg~a || f(G) — fF(G)]; -

Under review as a conference paper at ICLR 2025

We will make use of the following post-processing theorem and basic composition theorem of dif-
ferential privacy.

Proposition 2.2 (Post-processing theorem (Dwork et al., 2006)). Let M: R% — R% pe an (e,9)-
differential private mechanism and let h: R% — R% be an arbitrary function. Then, the function
go M: R% — R s also (&,6)-differentially private.

Proposition 2.3 (Basic composition theorem (Dwork et al.,[2006)). For any €, > 0, the composi-
tion of k (g, 0)-differentially private algorithms is (ke, kd)-differentially private.

Laplace distribution and Laplace mechanism We now introduce the definitions of Laplace dis-
tribution and Laplace mechanism.

Definition 2.4 (Laplace distribution). We say a zero-mean random variable X follows the Laplace

|z

distribution with parameter b if the probability density function of X follows Lap(b) = Qibe v,
Fact 2.5. IfY ~ Lap(b), then Pr[|Y| > tb] < e™".

The sum of multiple variables that follow the Laplace distribution satisfies the following properties.

Lemma 2.6 ((Chan et al., 2011} [Wainwright, [2019). Let {X;} be a collection of independent
random variables such that X; ~ Lap(b;) for all 1 < i < m. Then, for v > />, b? and

0< A< @forl) =max;{b;}, Pr{[>, X;| > A\ < 2- exp(—s)‘TZQ). Furthermore, if b = b; for
any i € [m] and m > log 3, we have Pr [|2:Z Xi| >2v2- b\/mlogﬂ] < %

The Laplace mechanism is a commonly used class of differential privacy mechanisms.

Definition 2.7 (Laplace mechanism (Dwork et al., [2006)). For any function f : X — R*, the

Laplace mechanism on input x € X samples Y1, . .., Vi independently from Lap(%) and outputs
M(z) = f(x) + (1, ..., Vk). The Laplace mechanism is e-DP.

3 DP RANGE SUBGRAPH COUNTING

We now present a differential privacy algorithm for range subgraph counting and provide a proof
of its privacy and utility guarantees. Due to space constraints, we will focus on the algorithm and
analysis for the one-dimensional case (d = 1) in this section, while the general case for d > 2 will
be addressed in Appendix

3.1 THE ALGORITHM

Overview of the algorithm and some definitions Our algorithm for the case d = 1 consists of
three steps:

(1) Map all the vertices in the input graph G to points in a two-dimensional Euclidean space, where
each point corresponds to a rank pair, which is a point (a,b) € [n]? such that a and b represent
the ranks of some vertices based on their attribute value and index order (see Algorithm [I). We
construct a weight vector w for these points, with the weight of each point representing the number
of occurrences that are “registered” at the corresponding rank pair (see PROJI(G, H) in Algorithm [T)).

(2) Build a range tree on the mapped points and the weight vector w such that each leaf node contains
the weight corresponding to its point, while each internal node contains the sum of the weights of
its children and bound information. Then, add Laplace noise to the weight of each node in the tree
(see TREECONST(W, €, GSy,,) in Algorithm [2)).

(3) For any specified query ¢, traverse the tree to find the corresponding nodes and report their
associated weights (see QUERY(G, H, @, ¢) in Algorithm [3).

Here we make some additional symbol declarations. Recall that V' = [n]. We use u to represent the
initial label of a vertex and use s(u) to represent the rank a vertex after the second step of PROJ.
Note that by definition, the ranks assigned to each vertex are unique.

Definition 3.1. We say an occurrence of H is registered at the vertex pair (u,v) if u,v € Vi and
s(u) < s(ur) <--- < s(upyy|—2) < s(v).

Under review as a conference paper at ICLR 2025

Note that for any occurrence of pattern graph H, it is mapped to a unique vertex pair (u, v).

Definition 3.2 (Discretization). For any range query q = [{,r], where {,r € R, we associate it
with two vertices uy and .., where the attribute value of uy is the first one that is at least {, and the
attribute value of u, is the last one that is at most r. In cases of ties, we select vertices based on the
smallest lexicographical order.

We note that even though the attributes are real values, we can discretize the problem as follows.
The above discretization leads to the following useful fact:

Fact 3.3. For all Q, the number of distinct subgraphs G[V,] induced by the queries in Q is O(n?).

For any range query ¢ = [¢, 7], we first apply the discretization described above to obtain a new
range ¢ = [s(u¢), s(u,)]. Note that the ranges ¢ and ¢’ correspond to the same subgraph. For
simplicity, we will use ¢ = [£, 7] to refer to the range corresponding to its discretized counterpart in
the following. Now we describe our algorithm in more detail.

Subgraph Counting Projection The Algorithmtakes as input an n-vertex graph G = (V| E, a),
where each vertex has an associated attribute. First, it reorders the vertices based on their attribute
values in ascending order, breaking ties by the initial vertex labels. For each occurrence of a sub-
graph H in G, it updates a weight vector w, where each element corresponds to a vertex pair, and the
weight reflects the number of subgraph occurrences involving that pair. The algorithm then returns
the weight vector w, representing the counts of subgraph occurrences for all vertex pairs.

Algorithm 1 PrOJG = (V,E,a),H) >

Subgraph Counting Projection ﬂ _____
I: Input: An n-vertex graph G = (V,E,a). /N / \ 7

2: Sort vertices by attribute value in ascending
order. For vertices with the same attribute

value, sort by their initial labels. Let s : V' — 4 T,
[n] denote the rank. gty
3: Initialize w(y) = 0, forall u,v € V. o,
4: for all occurrences of subgraph H in G do
5. Compute Wis(u),s(v)) = W(s(u),s(v)) T 1, tow, hign,
where the occurrence is registered at (u, v).) o
6: end for Figure 1: Schematic diagram of the 2D
7: return W = {W(s(u).s(0))} Range Tree used in our work. The detail can

be seen in Appendix B}

DP Range Tree Construction. In Algorithm[2} we map all vertex pairs to points on a 2D plane based
on their ranks s(u) and s(v), where each point has an associated weight w((y) s(v))» Tepresenting
the subgraph occurrences involving the corresponding vertex pair. We then utilize a range tree to
preprocess these points and efficiently answer range subgraph counting queries.

A range tree is a binary tree structure designed for interval queries and summation. It recursively
decomposes the interval and precomputes the sums at each node, where each node stores interval
boundaries and corresponding sum values. In the TREECONST algorithm (Algorithm [2)), we imple-
ment a modified version of a 2D range tree, which is fully described in Appendix [B| This enables
efficient querying for subgraph counts within specified ranges while preserving differential privacy.

The schematic diagram of the 2D range tree is shown in Figure[I] Intuitively, the tree construction
process recursively divides the n x n points on the 2D plane into two equal parts, with each tree
node storing interval boundaries and corresponding weight sums.

We begin by partitioning the first dimension of the plane to construct a tree 7, where each node in
T, corresponds to a sub-interval of this dimension. For each node in 7., we then partition the second
dimension to construct a one-dimensional range tree T},. As a result, each node in T}, represents a
range tree T’;, and each node in 7}, corresponds to a sub-interval within the 2D space. Finally, to
ensure differential privacy, Laplace noise is added to the weight of each node in T}, (not both T}, and
T, add noise).

Under review as a conference paper at ICLR 2025

- Algorithm 3 QUERY(G, H,Q,¢) > Private
Algorithm 2 TREECONST(w,e,GSy,) Range Subgraph Counting Query
> Private Range Tree Construction

1: Input: An n-vertex graph G = (V, E,a), a

1: Input: Projection vector w, privacy pa- pattern graph H, a set of range queries (), and
rameter ¢ > 0, and global sensitivity privacy parameter .
GSyy - 2: Compute the global sensitivity:
2: Construct T, according to Definition [B.3] GSyy = fu(Kpn) — fu(K, —e).
using tuples (s(u), $(v), W(s(u),s(v)))s 3: Compute the projection vector:
where u,v € V. B w = PrOI(G, H).
3: Create a noisy version, T, by adding 4: Construct the noisy range tree:
Laplace noise to the weight of each node T, = TREECONST(w, &, GS§,,).
in every T, tree (within each node of s: for each query ¢ € Q do
T:). Specifically, update the weight as 6: Determine ¢ and r according to Defini-
weight = weight + Lap(%), where ¢ = tion32]
GSy,, - log®n. 7: return the result of Definition using
4: return T, T, and the range [¢, n] x [1,7].
8: end for

Query procedure. For each query ¢, we discretize the range [/, 7] and access the range tree T}, to
obtain the result. Specifically, we need to calculate the sum of the weights of the selected nodes
in T;,. In Algorithm [3| the process involves locating the relevant node in 7, and subsequently
identifying the corresponding nodes in T}, by traversing from top to bottom (see Figure|l).

3.2 THE ANALYSIS

We will make use of the following fact.

Fact 3.4 (Properties of Range Tree). Each range tree is a binary tree with a depth of logn. Each
leaf node stores the interval bounds and the sum value, along with the root node of the nested tree.
The sum of the values of the tree nodes equals the sum of the values of the left child plus the sum of
the values of the right child.

Privacy We now prove that Algorithm [3is an e-DP algorithm.

Lemma 3.5. Assuming the weight w(,(y),s(v)) of each pair is generated by Algorithm|l} the number
of occurrences of H in the graph, consisting of all vertices within the range q = [, 7], is equal to
the sum of the weights of all rank pairs falling within the range [{,n] x [1,r]. Thatis, fu(G,) =

(s(u),s(v))€ll,n]x[1,r] W(s(u),s(v))"

In particular, the number fr(G) of pattern graphs H in G is equal to Z(u,v)GVXV W(a,v)-

Proof. If an occurrence of H falls within the range ¢ = [¢,r], it means that all vertices in this
occurrence of H are contained within the range q. Specifically, if an occurrence of H is registered
at the vertex pair (u,v), then the ranks satisfy £ < s(u) < s(u1) < --- < s(ujy,|—2) < s(v) <.

Since the vertex reordering is performed in the second step of Algorithm [T]and each vertex is as-
signed a unique rank, we can transform the subgraph range into a range on the weight vector w.
Consequently, the sum of the weights of all rank pairs in the range [¢, n] x [1, 7] corresponds to the
number of occurrences of subgraph H that fall within the range g = [£, 7].

Lemma 3.6. Algorithm[3|is e-DP.

Proof. We use w and w’ to denote the different weight vectors formed by graphs G and G’,
respectively, where G ~ G’ (i.e., G and G’ differ by a single edge). The global sensitiv-
ity of function f is denoted as GSy, and the global sensitivity of fy is defined as GSy,, =
maxg~c |fu(G) — fu(G’)| (see Definition 2.1). The sensitivity of w, denoted as GS,y, is de-
fined as maxy w- |[W — w'||;. Note that for any w, w’, we have |w — w'||; = [|w]; — ||w'[,].
This follows from the fact that subgraph counting is a monotonic function, meaning that the addition
of any edge does not reduce the number of occurrences of H. Furthermore, each element of w or
w’ is non-negative.

Under review as a conference paper at ICLR 2025

Thus, the global sensitivity of w is GSw = maxw w [|[W — W||; = maxw w |[|W]; — [|[W||;| =

max Z(u,v)EVxV W(uw) — Z(uw)erV wzu,v) ’ = maxg~e [fu(G) — fu(G)] = GSpy,
where the second to last equation follows from Lemma 3.5

Let’s revisit the algorithm with a focus on a layer of the range tree 7). At each layer of T}, we
select all corresponding 7T, trees. The number of T}, trees at this layer is equal to the number of
nodes at that layer of T,,.. For each layer i (where ¢ € [logn]), let p represent all the nodes on the
1-th layer of these T}, trees. The sum of the weights of the selected nodes, Zp p.weight, equals the

sum of the weights of all vertex pairs, which can be written as _,,)<y v W(u,v) (Or equivalently,
2 () eV xv Wis(u),s(v)))-

In other words, if we treat the weights obtained in this way as a vector, its sensitivity is equal to the
sensitivity of w, denoted by GS,.

Since T, has at most log n layers and each T}, tree also has at most log n layers (as stated in Fact,
there are at most log2 n such vectors. Let w; be the vector of weights from all nodes on the T}, trees.
The sensitivity of w; is GSyw, = GSy - log®n = GSy,, - log® n.

Thus, according to the Laplace mechanism and basic composition theorems, adding Laplace noise
with magnitude GSy,, - log? n/e to each element of the vector ensures that T}, achieves differential
privacy. For each query, the range trees T, and T, are reused, and hence Algorithm E] maintains
e-differential privacy based on the post-processing property. O

Utility Now we analyze the utility of Algorithm[3] Interestingly, while the range tree approach is
traditionally employed in non-private algorithms to improve query time, in this context, it also serves
to reduce the errors introduced by differential privacy protection. By leveraging the structure of the
range tree, we can distribute the noise more effectively across the tree’s nodes, which minimizes
the overall impact of noise on query accuracy. This ensures that the utility of the algorithm remains
high, even with the added noise required to preserve privacy.

We first prove that for a query ¢, only a small number of noise terms are required to obtain the
private answer. We have the following lemma whose proof is deferred to Appendix

Lemma 3.7. For a given query q and any pattern graph H, to calculate fr(G,), the number of
occurrence of H in the graph G4, we only need to sum the weights of at most log2 n tree nodes.

We will now show that the DP range subgraph counting implemented by our algorithm provides
strong utility guarantees for d = 1, achieving an error that is close to that of DP global subgraph
counting error (i.e., GSy,,), differing only by a factor of logC n.

As outlined in Algorithm 2, we introduce Laplace noise to the weight of each node in the T}, trees.
Referring back to Lemma we note that when answering a query, we only need to compute the

sum of the weights of at most log? n nodes.

Assume that p represents the T}, nodes selected by query ¢, and each Y}, is an independent ran-
GSy,, log® n
g

. Let fy(-) denote the true result and fg(-) the
output of the algorithm. For any query ¢ € @, the additive error generated can be expressed as:
12(G) = Fr(Go)| = [Speq o) = Spey 50)] < [S5 "V, | = 0 (SL2E0), where
the final inequality follows from the fact that each query utilizes at most log? n tree node weights for
computation by Lemma This bound holds with a probability of at least 1 — 23, as established by

PER
Lemma where b = GSy,, -log®n, m = log® n, and 8 = n3. We can derive the following bound:
~ o35
max,eq ‘ Fu(Gy) = Ju(Gy)| =0 (M) This holds with a probability of at least 1— 1.

This result is achieved by applying the union bound, as there are at most O(n?) effective subgraphs
by Fact[3.3] This finishes the proof for the case d = 1.

dom variable where Y, ~ Lap(

4 EXPERIMENTS

To evaluate the trade-off between privacy and utility in our algorithm, We conducted experiments
on two real-world datasets.

Under review as a conference paper at ICLR 2025

Datasets: Ego-Facebook: Facebook data was collected from survey participants using this Face-
book app. The dataset includes node features (profiles), circles, and ego networks. The network
(Leskovec & Mcauleyl 2012) has n = 4039 and m = 88234.

Fb-Pages-government: Data collected about Facebook pages (November 2017). These datasets
represent blue verified Facebook page networks of different categories. Nodes represent the pages
and edges are mutual likes among them. The network (Leskovec & Mcauley, 2012)) has n = 7057
and m = 89455. For each vertex in the aforementioned two networks, we sample values from a
standard normal distribution to serve as vertex attributes.

Infrastructure: All algorithms are implemented in Python. We ran our experiments on a system
with a 128-core Intel(R) Xeon(R) Platinum 8358 CPU @ 2.60GHz and 504GB RAM.

Baseline: There is no prior work on differential privacy range subgraph counting. We use two base-
lines for comparison. The first baseline BASE_COMP uses the Laplace mechanism and advanced
composition theorem (Dwork et al., [2014)), and we set 6 = 0.01. The second baseline BASE_PRE

adds Laplace noise of size GS% on the basis of subgraph counting projection (PROJ) which is the
same as Algorithm [I} and does not build a tree structure. We use DPSRC to represent our algo-
rithm (pure-DP) and DPSC to represent global subgraph counting with privacy which only focus
the whole graph and answer one query. We give the theoretical information of the above algorithm
in Table In our experiments, we set the attribute dimension d = 1.

Metric: We define the relative error for a query ¢ as m‘iiH((fiq()C;J;%(oGOql)l). This metric follows the
qa)Y.

approach outlined in (Imola et al.,2021). To maintain a consistent standard, we ensure that all tested
algorithms adhere to either e-DP or (g, 0)-DP. We keep the query ¢ fixed and randomly generated
across a series of experiments, ensuring that |V,| = ©(n).In fact, our algorithm can handle any
number of queries, and compared to other algorithms, it demonstrates an advantage when the graph
scale is larger, as shown in Theorem I]

Algorithm Query Type Privacy Additive Error
BASE_COMP Range (e,0)-DP O(n- GSy,)
BASE_PRE Range e-DP O(n -GSy,
DPSC Global e-DP O(GSy,,) or instance-dependen w
DPRSC Range e-DP O(GSy¢,,)

Table 1: The performance guarantees of DP algorithms for counting occurrences of H. For range
queries, the additive error is specified according to Theorem [T} while for single queries, it is mea-
sured by the absolute value of the difference between the algorithm’s output and the actual count.

Relative Error vs e: We evaluated the relation between relative error and €. We tested the algorithm
on the ego-facebook and fb-pages-government datasets for the cases when H is triangle, 2-star and
edge, respectively. Figure [2] describes the relationship between the relative error and ¢ when the
algorithm guarantees e-DP ((g,)-DP) under the same random query. When ¢ is relatively small,
the privacy protection is strong, making it difficult for potential attackers to distinguish between any
two inputs based on the output; however, the relative error is large. As ¢ increases, privacy becomes
weaker and the relative error becomes smaller. In addition, it can be seen that our algorithm is
significantly better than the baseline. In practical applications, the choice of € should be made based
on specific requirements.

Relative Error vs n: We evaluated the relation between relative error and n. We tested the algorithm
on the ego-facebook and fb-pages-government datasets for the cases where H is triangle, 2-star and
edge, respectively under the same random query. In the experiment, we set € = 2.0 and randomly
generate a fixed query. As can be seen from Figure[3] our algorithm is significantly better than the
baseline. And the experimental results are basically in line with intuition: the increase in graph size
will lead to an increase in the number of triangles, 2-stars and edge in most cases. If the growth rate
is greater than the growth rate of additive error, the relative error will decrease, and vice versa. Due

The error is determined by certain unfixed properties of the input graph (such as the number of edges and
the degree of the nodes). In the worst case, it is O(GS§,,), and the actual error may be smaller as usual.

Under review as a conference paper at ICLR 2025

to limitations in equipment and storage optimization, we believe that our algorithm demonstrates
a more pronounced advantage on larger-scale graphs and queries, as the impact of the logn factor

(a) ego-facebook

Triangle 2-Star
100 100
—=— DPRSC —— DPRSC
- —=— BASE_COMP - —=— BASE_COMP
—e— BASE_PRE —e— BASE_PRE
8 2
5w £ o
A s
> >
Ewl—— I e S
2 \M g
102 1072
e e
(a) ego-facebook (b) ego-facebook
Triangle 2-Star
—— DPRSC —— DPRSC
- —=— BASE_COMP . —=— BASE_COMP
—e— BASE_PRE —e— BASE_PRE
8 8
5w 5 w0
$.\\\‘<<<"“‘"-41<—~—.—4—a<—41 2
s >
5w ——— Bl TT—— .
s s
« « ’\\\‘*—~—o””‘*\'—A-f—A«
100 '\\“*‘-ﬂ——.__. 100 ‘\-\ﬁ_,_*
107 102
e .
(d) fbgov (e) fb-gov
Figure 2: Relative error vs €
Triangle 2-Star
—— DPRSC —— DPRSC
. —=— BASE_COMP . —=— BASE_COMP
—e— BASE_PRE —e— BASE_PRE
s s
5w £ oo
s e
> >
2 g
« - . « .f”//’\\\\\\,«.»——¢<-—f.<——4—i
10?2 107
n(x 10%) n(x 104

(b) ego-facebook

Triangle 2-Star
108 108
— DPRSC —+— DPRSC
. —=— BASE_COMP . —=— BASE_COMP
E —e— BASE_PRE h —e— BASE_PRE
s 5
£ £
v v
= 2
2 e, T
10° 10° ./’-\'\.—\
107 102
T3 T 7 H— T3 N
n(x 109 n(x 104)
(d) fb-gov (e) fb-gov

Figure 3: Relative error vs n

becomes less significant in such cases.

5 CONCLUSION

We give the first algorithm for the differentially private range subgraph counting problem that
achieves nearly optimal additive error for any constant dimension d and a constant privacy parameter
€. Our approach establishes a connection between subgraph counting and the range tree technique
within the DP framework. Further exploration of instance-dependent error bounds for private range
subgraph counting would be interesting. Another natural question is how to design an algorithm
that ensures the additive error remains non-trivial, if the vertex attributes are high-dimensional (for

example, d = Q(logn)).

10

Relative Error

Relative Error

Relative Error

Relative Error

Edge

—— DPRSC
—=— BASE_COMP
—e— BASE_PRE

(c) ego-facebook

Edge

—— DPRSC
—=— BASE_COMP
—e— BASE_PRE

Edge

—— DPRSC
—=— BASE_COMP
—e— BASE_PRE

10 1s 20 25
n(x 104

(c) ego-facebook

Edge

—— DPRSC
—=— BASE_COMP
—e— BASE_PRE

Under review as a conference paper at ICLR 2025

REFERENCES

Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the ACM (JACM), 42(4):
844-856, 1995.

Raman Arora and Jalaj Upadhyay. On differentially private graph sparsification and applications.
Advances in neural information processing systems, 32, 2019.

Sepehr Assadi, Michael Kapralov, and Sanjeev Khanna. A simple sublinear-time algorithm for
counting arbitrary subgraphs via edge sampling. arXiv preprint arXiv:1811.07780, 2018.

Sepehr Assadi, Michael Kapralov, and Sanjeev Khanna. A simple sublinear-time algorithm for
counting arbitrary subgraphs via edge sampling. In Avrim Blum (ed.), 10th Innovations in The-
oretical Computer Science Conference, ITCS 2019, January 10-12, 2019, San Diego, California,
USA, volume 124 of LIPIcs, pp. 6:1-6:20. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
2019. doi: 10.4230/LIPICS.ITCS.2019.6. URL https://doi.org/10.4230/LIPIcs.
ITCS.2019.6l

Albert Atserias, Martin Grohe, and Déniel Marx. Size Bounds and Query Plans for Relational Joins.
IEEE, 10 2008. doi: 10.1109/focs.2008.43.

Michael J Bannister, Christopher DuBois, David Eppstein, and Padhraic Smyth. Windows into rela-
tional events: Data structures for contiguous subsequences of edges. In Proceedings of the Twenty-
Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 856-864. SIAM, 2013.

Jon Louis Bentley and James B Saxe. Decomposable searching problems. 1978.

Suman K Bera, Noujan Pashanasangi, and C Seshadhri. Near-linear time homomorphism counting
in bounded degeneracy graphs: The barrier of long induced cycles. In Proceedings of the 2021
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 2315-2332. SIAM, 2021.

Andreas Bjorklund, Rasmus Pagh, Virginia Vassilevska Williams, and Uri Zwick. Listing triangles.
In International Colloquium on Automata, Languages, and Programming, pp. 223-234. Springer,
2014.

Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Sheffet. The johnson-lindenstrauss transform
itself preserves differential privacy. In 2012 IEEE 53rd Annual Symposium on Foundations of
Computer Science, pp. 410-419. IEEE, 2012.

T-H Hubert Chan, Elaine Shi, and Dawn Song. Private and continual release of statistics. ACM
Transactions on Information and System Security (TISSEC), 14(3):1-24, 2011.

Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing algorithms. SIAM Journal
on computing, 14(1):210-223, 1985.

Radu Curticapean, Holger Dell, and Daniel Marx. Homomorphisms are a good basis for counting
small subgraphs. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, pp. 210-223, 2017.

Mina Dalirrooyfard, Slobodan Mitrovic, and Yuriy Nevmyvaka. Nearly tight bounds for differen-
tially private multiway cut. Advances in Neural Information Processing Systems, 36, 2024.

Chengyuan Deng, Jie Gao, Jalaj Upadhyay, and Chen Wang. Differentially private range query on
shortest paths. In Algorithms and Data Structures Symposium, pp. 340-370. Springer, 2023a.

Shiyuan Deng, Shangqi Lu, and Yufei Tao. Space-query tradeoffs in range subgraph counting and
listing. 255:6:1-6:25, 2023b. doi: 10.4230/LIPICS.ICDT.2023.6. URL https://doi.org/
10.4230/LIPIcs.ICDT.2023.6.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Theory of Cryptography: Third Theory of Cryptography Conference,
TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3, pp. 265-284. Springer, 2006.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations
and Trends® in Theoretical Computer Science, 9(3-4):211-407, 2014.

11

https://doi.org/10.4230/LIPIcs.ITCS.2019.6
https://doi.org/10.4230/LIPIcs.ITCS.2019.6
https://doi.org/10.4230/LIPIcs.ICDT.2023.6
https://doi.org/10.4230/LIPIcs.ICDT.2023.6

Under review as a conference paper at ICLR 2025

Cynthia Dwork, Moni Naor, Omer Reingold, and Guy N Rothblum. Pure differential privacy for
rectangle queries via private partitions. In International Conference on the Theory and Applica-
tion of Cryptology and Information Security, pp. 735-751. Springer, 2015.

Talya Eden, Quanquan C. Liu, Sofya Raskhodnikova, and Adam D. Smith. Triangle counting with
local edge differential privacy. In Kousha Etessami, Uriel Feige, and Gabriele Puppis (eds.),
50th International Colloquium on Automata, Languages, and Programming, ICALP 2023, July
10-14, 2023, Paderborn, Germany, volume 261 of LIPIcs, pp. 52:1-52:21. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 2023. doi: 10.4230/LIPICS.ICALP.2023.52. URL https:
//doi.org/10.4230/LIPIcs.ICALP.2023.52]

Marek Elias, Michael Kapralov, Janardhan Kulkarni, and Yin Tat Lee. Differentially private release
of synthetic graphs. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 560-578. SIAM, 2020.

Hendrik Fichtenberger, Mingze Gao, and Pan Peng. Sampling arbitrary subgraphs exactly uniformly
in sublinear time. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli (eds.), 47th Interna-
tional Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020,
Saarbriicken, Germany (Virtual Conference), volume 168 of LIPIcs, pp. 45:1-45:13. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2020. doi: 10.4230/LIPICS.ICALP.2020.45. URL
https://doi.org/10.4230/LIPIcs.ICALP.2020.45.

Hendrik Fichtenberger, Monika Henzinger, and Lara Ost. Differentially private algorithms for
graphs under continual observation. In Petra Mutzel, Rasmus Pagh, and Grzegorz Herman
(eds.), 29th Annual European Symposium on Algorithms, ESA 2021, September 6-8, 2021, Lis-
bon, Portugal (Virtual Conference), volume 204 of LIPIcs, pp. 42:1-42:16. Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik, 2021. doi: 10.4230/LIPICS.ESA.2021.42. URL https:
//doi.org/10.4230/LIPIcs.ESA.2021.42.

Anupam Gupta, Katrina Ligett, Frank McSherry, Aaron Roth, and Kunal Talwar. Differentially pri-
vate combinatorial optimization. In Proceedings of the twenty-first annual ACM-SIAM symposium
on Discrete Algorithms, pp. 1106-1125. SIAM, 2010.

Anupam Gupta, Aaron Roth, and Jonathan Ullman. Iterative constructions and private data release.
In Theory of Cryptography: 9th Theory of Cryptography Conference, TCC 2012, Taormina, Sicily,
Italy, March 19-21, 2012. Proceedings 9, pp. 339-356. Springer, 2012.

Jacob Imola, Takao Murakami, and Kamalika Chaudhuri. Locally differentially private analysis of
graph statistics. In 30th USENIX security symposium (USENIX Security 21), pp. 983—1000, 2021.

Jacob Imola, Takao Murakami, and Kamalika Chaudhuri. {Communication-Efficient} triangle
counting under local differential privacy. In 31st USENIX security symposium (USENIX Secu-
rity 22), pp. 537-554, 2022a.

Jacob Imola, Takao Murakami, and Kamalika Chaudhuri. Differentially private triangle and 4-cycle
counting in the shuffle model. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1505-1519, 2022b.

Vishesh Karwa, Sofya Raskhodnikova, Adam Smith, and Grigory Yaroslavtsev. Private analysis of
graph structure. Proceedings of the VLDB Endowment, 4(11):1146-1157, 2011.

Shiva Prasad Kasiviswanathan, Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Analyzing
graphs with node differential privacy. In Theory of Cryptography: 10th Theory of Cryptography
Conference, TCC 2013, Tokyo, Japan, March 3-6, 2013. Proceedings, pp. 457-476. Springer,
2013.

Jure Leskovec and Julian Mcauley. Learning to discover social circles in ego networks. Advances
in neural information processing systems, 25, 2012.

Shanmugavelayutham Muthukrishnan and Aleksandar Nikolov. Optimal private halfspace count-
ing via discrepancy. In Proceedings of the forty-fourth annual ACM symposium on Theory of
computing, pp. 1285-1292, 2012.

12

https://doi.org/10.4230/LIPIcs.ICALP.2023.52
https://doi.org/10.4230/LIPIcs.ICALP.2023.52
https://doi.org/10.4230/LIPIcs.ICALP.2020.45
https://doi.org/10.4230/LIPIcs.ESA.2021.42
https://doi.org/10.4230/LIPIcs.ESA.2021.42

Under review as a conference paper at ICLR 2025

Dung Nguyen, Mahantesh Halappanavar, Venkatesh Srinivasan, and Anil Vullikanti. Faster approx-
imate subgraph counts with privacy. Advances in Neural Information Processing Systems, 36,
2023.

Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Smooth sensitivity and sampling in private
data analysis. In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing,
pp. 75-84, 2007.

Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cam-
bridge university press, 2019.

Jun Zhang, Graham Cormode, Cecilia M Procopiuc, Divesh Srivastava, and Xiaokui Xiao. Private
release of graph statistics using ladder functions. In Proceedings of the 2015 ACM SIGMOD
international conference on management of data, pp. 731-745, 2015.

13

Under review as a conference paper at ICLR 2025

A UPPER BOUND ON THE GLOBAL SENSITIVITY OF SUBGRAPH COUNTING

In Section 3] we used GSy,, to denote the global sensitivity of subgraph counting. In fact, in many
cases, we do not know the exact value of GSy,, or it is cumbersome to calculate, and we want to
estimate it. Here we give an upper bound for GSy,, through the fractional edge-cover number, an
important metric in graph theory. We also demonstrate the existence of a pattern subgraph H where
GSy,, meets the established upper bound. To the best of our knowledge, this work is the first to
combine differential privacy for graphs with the concept of fractional edge-cover number.

Pattern Graph GSys, p(H)
Edge 1 1
Triangle n—2 %
k-Star (173 k-1
k-Cycle (k—2)1(772) &
k-Clique (Z:g) g

Table 2: Global sensitivity GSy,, and p(H) of some common pattern graphs H

Graph theory We introduce the definition of fractional edge-cover number in (Assadi et al., 2018)
which is a classic definition of a subgraph enumeration and counting field.

Definition A.1 (Fractional Edge-Cover Number). A fractional edge-cover of H(Vy, Ex) is a map-
ping ¢ : Eg — [0, 1] such that for each vertex v € Vu, Y cp. e, #(e) > 1. The fractional
edge-cover number p(H) of H is the minimum value of 3., ¢(e) among all fraction edge cov-
ers ¢.

Atserias, Grohe, and Marx (Atserias et al., 2008) established a relationship between the number of
occurrences of H in a graph, the number of edges, and the fractional edge-cover number.

Lemma A.2 ((Atserias et al., 2008)). The number of occurrences of H in a graph G with m edges
is O(mPH)),

This lemma states that for any graph G, if the number of edges in the graph is m, then the number
of occurrences of subgraph H in G is O(m?)). For example, if H is a triangle, we can obtain

p(H) = % according to the definition of fractional edge-cover number. It means that the number of

triangle in a graph is O(m?), that is O(n®) when the graph is complete graph with n vertices. It is
known that one can efficiently compute the fractional edge cover p(H) in polynomial (in |H|) time
(see (Assadi et al., [2018))).

We try to bound GS¢,, in a simple and effective way. We need to understand the global sensitivity
of the subgraph count in the graph, which is actually to calculate the number of occurrences of H
that contain a specific vertex pair (¢, j) in the complete graph.

Lemma A.3. Given an n vertex graph G, pattern graph H. The upper bound of GSy,, is
O(n20(F)=2),

Proof. GSy,, is global sensitivity of subgraph H counting, note that
GSyp, = max |fu(G) — fu(G)| = |fu(Kn) = fu(Kn = {(i,4)})] = O(n>0=2)

The second equality holds because the global sensitivity of fx is equal to the difference between
the count of the complete graph K, and the count of the complete graph K, with one edge (i, j)
missing. The final equality follows from Lemma[A.2] O

B RANGE TREE IN ALGORITHM [2] AND ALGORITHM

For clarity, we define the tree construction and query process to streamline the algorithm’s descrip-
tion. Here, T', T';, and T, all represent trees. The construction of the range tree is based primarily

14

Under review as a conference paper at ICLR 2025

on (Bentley & Saxel [1978]), with minor modifications. A schematic of the 2D range tree is provided
in Figure
We begin by introducing the basic 1D range tree.

Definition B.1 (1D Range Tree). Given a set of points P = {(x;,w;)}, where each point has an
x-coordinate and weight, the 1D range tree is constructed as follows:

1. Sort the points by x-coordinates, denoted as x1, . .., xy.

2. Begin building the tree recursively from the root node, where the interval spans from x1 to

T

3. For a given interval xy, ..., x, corresponding to a tree node p, set mid = HTT Recur-
sively construct the left child using points xy, . .., %n;q and the right child using points
Tmid+1s - - - » Ty If the interval contains only one point, terminate the recursion.

4. During backtracking, compute the weight of the current tree node as the sum of its interval:
node.weight = left.weight + right.weight.

Definition B.2 (1D Range Tree Query). Given a query range [low, high), start at the root node of
the 1D range tree T.

1. Start the recursive query from the root node of T

2. For the current node, if node falls within the range [low, high), return p.weight. If low
lies within the left child of p, recursively query the left subtree; if high lies within the right
child, recursively query the right subtree.

3. When backtracking, sum the results of the left child and the right child and return them.

Next, we introduce a more complex case. To correspond to our chapter, we separate the 2D case and
the kD (k > 2) case.

Definition B.3 (2D Range Tree Construction). For a set of points P = {(x;,y;, w;)} where each
point has coordinates (x,y) and weight, the 2D range tree is constructed as follow:

1. Group the points by their x-coordinates, and sort each group by x, denoted as p1, . . ., Pp.-

2. Construct the 2D range tree T, using p1,...,Dpy in a similar approach to the 1D range
tree, partitioning the first dimension. Note that each node of T, contains an associated 1D
range tree T, for the second dimension.

3. For each node in T, take the points covered by that node, group them by their y-
coordinates, sort them, and construct a corresponding range tree T, which is contained
in the node T,,.

Definition B.4 (2D Range Tree Query). Given [lows, high] X [lows, highs] and a 2D Range Tree
T, the query process is as follows:

1. Start the recursive query from the root node of T.

2. For the current node, if node falls within the range [lows, high), perform a query on T,
with [lows, highs] (call 1D tree query). If low, lies within the left child of node, recur-
sively query the left subtree; if highq lies within the right child, recursively query the right
subtree.

3. When backtracking, sum the results of the left child and the right child and return them.

Next we describe range tree construction and query in general.
Definition B.5 (kD Range Tree Construction). For a set of points P = {(x},...,z¥ w;)} where
each point has coordinates (x', . .., z") and weight, the kD range tree is constructed as follow:

1. Group the points by their first dimension, and sort each group by the first dimension, de-
noted as py, . .., pn-

15

Under review as a conference paper at ICLR 2025

2. Construct the kD range tree Ty using p1,...,pn in a similar approach to the 1D range
tree, partitioning the first dimension. Note that each node of T contains an associated
(k — 1)D range tree T for the second dimension, recursively.

3. For each node in T, take the points covered by that node, group them by their second
dimension, sort them, and construct a corresponding (k — 1)D range tree Ts.

Definition B.6 (kD Range Tree Query). Given a k-dimensional query range [lows, highy] X - -+ X
[lowg, highy| and kD range tree T':

1. Start the recursive query from the root node of 1.

2. For the current node, if node falls within the range [lowy, highi], perform a query on T
with [lows, highs] (call (k — 1)D tree query recursively). If low; lies within the left child
of node, recursively query the left subtree; if high, lies within the right child, recursively
query the right subtree.

3. When backtracking, sum the results of the left child and the right child and return them.

C PROOF OF LEMMA 3.7

Given a query ¢ = [¢, r], we can prove that only at most log? n tree node weights of T, are needed
to compute the result.

First, consider the tree T, which represents the first dimension (the rank of vertex pairs based on
their first vertex). Our task is to select the tree nodes that cover the range [¢, n]. In the binary range
tree structure, once a parent node is selected, its child nodes are not selected since the parent already
covers the required range. This simplifies the problem to identifying nodes whose first dimension
(rank) is numbered in 7,72 + 1, ..., n.

At the i-th level (from bottom to top, i.e., levels 1,2, ... ,log n), each tree node at this level covers
intervals such as [1,27], [2¢ + 1,2¢F1], ... [2'°8 "~ 1 4 1 n).

Assume j is the smallest rank not less than /. We can represent the difference n — j as a binary
number, which can be expressed as a sum of at most log (n — j) powers of 2. For example, the
number 10 in binary is 1010, i.e., 10 = 23 +2!. Similarly, we can cover the range [/, n] by selecting
at most log n nodes in T}, since the range tree is built based on binary subdivisions of the range.

Similarly, for each node in T}, that we select, it contains a nested tree T},. At this stage, for each
T, we select a tree node corresponding to the range [1,r] (since we have already determined the
left boundary). Just like before, we can cover all rank pairs whose second dimension is in [1, 7] by
selecting at most log n tree nodes from 7.

Thus, by selecting the necessary nodes in both T, and T}, we can cover all rank pairs falling within
[¢,n] x [1,r]. This allows us to retrieve all subgraph counts where the vertices lie in the range [¢, 7].

In summary, we need to select at most log” 7 tree nodes from T, to find all rank pairs within [£, n] x
[1,7]. According to Lemma|[3.5] the number of subgraphs with vertex ranks falling within any given
query range can be efficiently calculated.

Note that we ignore some rounding issues here.

D MISSING ALGORITHM AND PROOF OF THEOREM [I} THE CASE d > 2

In the previous section we discussed the case of one-dimensional attribute for a vertex. In this
section, we extend our algorithm to the case of multi-dimensional (low-dimensional) attribute for a
vertex which is a more general situation, i.e. a(u) € R4, where u € V.

Without loss of generality, we assume that each attribute a;(u) € [0, \;] for ¢ € [d], and each query
q= [lla hl] X X [ldahd]-

When vertex attributes are multi-dimensional, the algorithm needs some adjustments. The entire
algorithm PROJMULT, TREECONSTMULT and QUERYMULT is given in this section.

16

Under review as a conference paper at ICLR 2025

Algorithm 4 PrRoJMULT (G = (V,E,a),H) > Subgraph Counting Projection For Mult-
attribute
1: Input: An n-vertex graph G = (V, E, a).
2: Reorder all vertex labels by i-th attribute value from small to large. If the attribute values are
the same, sort according to the initial label. Obtain the new rank s; : V' — [n] where ¢ € [d].
3: Initialize Wy, v,,...,ug,0q) = 0, fOr any uy, ..., uqg € V.
for all occurrences of subgraph H in G do
50 Compute Wis, (uy),s, (v1),..,52(ua),52(vg)) = W(s(u1),5(v1),..rrsa(ua),sa(va)) T L, Where u; (resp.
v;) be the vertex in this occurrence with the smallest (resp. largest) rank in dimension .
6: end for

7 return W = {W(s(uy),5(01),....5(ua),5(va)) }

»

Algorithm 5 TREECONSTMULT (w, e, GS¢,,) > Private Range Tree Contruction For Mult-
attribute

1: Input: Projection w, privacy parameter € > 0 and global sensitivity GSy¢,, .

2: Create a noisy version, 77, by adding Laplace noise to the weight of each node in every T} tree
(within each node of T;,). Specifically, update the weight as weight = weight + Lap(g), where

t=GSy, - log?¥ n.
3: return 1

Algorithm 6 DPRSC (G, H,Q,¢) > Private Range Subgraph Counting Query For Mult-
attribute

1: Input: An n-vertex graph G = (V, E,a), a pattern graph H, a set of range queries (), and
privacy parameter €.

2GSy, = fur(Ku) — Fr (K —©).
3: w=PROIMULT (G, H).

4: T1 = TREECONSTMULT (w, €, GSy,,)

5: for g € Q do

6: Get ¢; and r; according to Definition for each dimension of q.

7. return Output of Deﬁnitionwith Ty and [€1,71] X -+ X [€g, 4]
8: end for

We refer to Definition for the discretization steps in each dimension. Also, we abuse ¢;, 7; to
denote rank for range.

Fact D.1. For all Q, we have |{G[V,] | ¢ € Q}| = O(n??).

We say the vertex u falls within query g if a(u) satisfy a;(u) € [I;, h;] for i € [d]. If we say that
the vertices (u1,us, ..., uy) falls within the range ¢ if and only if all vertices within the tuple fall
within the range.

Inspired by the case where d = 1, we can still perform subgraph counting projection on the vertices
of the graph. However, instead of projecting onto a plane, we project onto a hyperrectangle. Each
range subgraph counting query actually queries a small hyperrectangle inside the large hyperrect-
angle and calculates the sum of the weights of the tuple in the small hyperrectangle. Similar to
Section[3] we construct a nested tree based on these projections, ensuring that the tree with the finest
granularity has noisy weights. The final result of each query is still determined by the node weights
within the trees.

For the private range subgraph counting algorithm with multi-dimensional attributes, we give an
algorithm with performance guarantee given in Theorem [I]and prove its privacy and utility.

D.1 PROOF OF THEOREMII]

Lemma D.2. Assuming that the weight W(s, (u,),s1(v1),...,sa(ua),sa(va)) Of €ach pair is generated by
Algorithm (I} the number of occurrences of H in the graph consisting of all vertices falling within

17

Under review as a conference paper at ICLR 2025

the range q = [£,r] is equal to the sum of the weights of all rank pairs falling within the range
[¢,n] x [1,r]. Thatis,

fu(Gy) = Z W(sy(u1),81(v1),.,8a(ua),sa(va))

(s1(u1),51(v1),---58d(ua),sa(va)) €[€1,n] X [L,r1]x - X [€a,n] X [1,74]

In particular, the number fy(G) of pattern graphs H in G is equal to
Z(ul,vl,.,.,ud,vd)evd Wy v, ua,00) Where ViV xVx-xV.

d

Proof. First, We use tuples of length 2d to register an occurrence of the pattern graph H. Assume
that a(u) = (ai(u),...,aq(u)), we construct rank tuple (s1(u1),s1(v1), ..., Sa(u2q—1), Sd(v2a))
to register subgraph H.

We say if an occurrence of pattern graph H falls within range ¢, tuple must fall in query. In Al-
gorithm [4] d new sort s is generated, we call the ordering of each dimension s;,. We suppose an
occurrence can be registered at (u1,v1, .. ., uq, vq). If an occurrence of pattern graph H falls within
range ¢, that means

by < si(u) < si(ur) < - < si(upyy—2) < si(v) <ry

for i € [d] and u € V. Note that we have discretized the query ¢ similar to Definition[3.2} so /; and
r; 1s discretized into rank.

Because of rearrange, each vertex has a unique sorting number, so each occurrence is registered at
unique tuple. When all vertices in the tuple are within the range of ¢, all vertices in all subgraphs
represented by the tuple also fall within this range. According to this corresponding relationship, we
can obtain the sum of the weights of the tuples falling into [I;,n] X [1,71] X --- X [lg,n] X [1,74]
is equivalent to the number of occurrences of H in the subgraph consisting of vertices in [l1,71] X
e X [ldﬂ’d]. O]

Lemma D.3. Algorithm[6|is e-DP.

Proof. The proof method is an extension of Lemma GSw = GSy,. And here T; has logn
layers by Factfor i € [d]. Note that our approach in Sectioncan be extended to the case d > 2.
If we combine the node weights of all T,; into a vector, then this vector w;, then the global sensitivity

of this vector is GSy,, = GSy - log2d n = GSy, - log2d n. And there are lode*1 n groups of Ty
that can form the entire point (tuple) set, that is GSy,, - lode n. O

Lemma D.4. For a given query q and any pattern graph H, to calculate fr(G,), the number of
occurrence of H in the graph G induced by all vertices within the range, we only need to sum the

weights of at most 1og2d n tree nodes. In particular,the theorem degenerates into Lemma when
d=1

Proof. Given a query q = [I1,71] X - - X [lg, 7], we can prove that only at most log®? n tree node
weights of T are needed. In Lemma [3.7, we proved the case where d = 1. We use mathematical
induction to prove the case where d > 2.

First, assume that when the dimension is j — 1 only the weight of log® ~2 n tree nodes is required.

We focus on the Th;_;. Note that we need to find tree nodes that fall within [I;,n] from top
to bottom. And once a parent node is selected, its children will not be selected. We can sim-
plify the problem to selecting rank tuple whose 2j — 1-th dimension points are numbered in

1,2+ 1,...,n. At the i-th level, each tree node in this level is responsible for interval numbers
[1,27], [2" 41,2771 ..., [2"°8"~ + 1, n]. In a similar way to Lemma log n nodes in Ts;_q
is needed.

Similarly, each node in the T5;_; we select contains a T5;. At this time, for each Ty, select a tree
node in the range [1,r;] (we have already determined the left boundary). Similarly, we can cover
all rank tuple which 2;j-th dimension is in [1, r;] by selecting at most log n tree nodes. Then we can
obtain all rank pair in range [I;, n] x [1,7;] and obtain all subgraph counting which vertex in [I;, 7;].

18

Under review as a conference paper at ICLR 2025

Recall that for the first j — 1 dimensions, each query requires visiting log® 2 n tree nodes. On this
basis, to continue covering the remaining query dimension [I;, r;] requires log n nodes. Therefore,
for j dimensions, each query requires (log” 2 n) - (log? n) = log? n nodes. Let j = d, we finish
the proof. O

Assume that p represents the Ty nodes selected by query ¢ and each Y}, are independent random

(GsfH log?¢n

variables, where Y}, ~ Lap -

). For a fixed query ¢, the additive error generated is

log>! n 3d+0.5
GSy,, - d-log n
> Y| =0)

fH(Gq) - fH(Gq) =

=Y a(p)| <

with a probability of at least 1 — 1 by Lemma which b = GSy,, - log?n, m = logZd n and
B = n?*1 by Lemma|D.2] Lemrna L and Lemma-

E MISSING PROOF OF THEOREM

(Nguyen et al.}[2023)) introduced the concept of higher order local sensitivity to generalize to the DP
general subgraph counting problem. Since directly adding noise to the local sensitivity can lead to
privacy leakage, their approach is to estimate the noisy local sensitivity. If the local sensitivity of
the local sensitivity still results in privacy leakage, further noise estimation is required for the local
sensitivity of the local sensitivity, and this process is repeated recursively. We leverage their work to
assist in the proof.

First, we introduce the concept of local sensitivity. The local sensitivity of f is defined as

LS;(G) = max [[f(G) = F(G)]h-

Let S be a set of vertex pairs. Let f H(G7 S) denote the number of occurrences of a fixed pattern
graph H in the graph (V(G), E(G) U S). We define

i (G) = max fu(G, 9).

— (k
We denote the output of Algorithmas HS;I{) (G). Specifically, the noisy estimate of local sensitiv-
—~ —~ (1 —~ (1 —
ity LSy, (G) is equivalent to HS;; (G). For clarity, we refer to HS;; (G)as HSy, (G).

Algorithm 7 ESTIMATEHS(G, H,&’,§’) > Estimating higher-order private local sensitivity

(Nguyen et al}[2023), Algorithm 5

1: Input: An n-vertex graph G, privacy parameters ¢’ > 0 and 0 < §’ < 1.
—~ (k)

end for _
return HS;, (G)

2: Letky = ‘EH| HSf =0.
3: for k = kg — 1downto1do
—~ (k E+1 / — (k+1
i HSpG) = fP @) + 1Sy () Y 4 Lap(S) T (G) /)
5:
6:

The following lemmas were proven in (Nguyen et al., 2023).
—~ (k ’
Lemma E.1 ((Nguyen et al), 2023). Let HS;H)(G) = fEG) + HS; o)(G) lni,/é +

(ka1 —
Lap(HS(")(G)/a’), fork = |Eg| —1,...,1 as computed in AlgorzthmH Then HSy,, (G) is
a(kge', 0" + k:Heslé')-DP estimate of local sensitivity.

19

Under review as a conference paper at ICLR 2025

Lemma E.2 ((Nguyen et all,[2023)). It holds that
— (k
PrlS| (G) > P (G) > 1o

fork=1,... kg —1.

The proof of Lemma [E3] follows the proof of Lemma 4.4 in (Karwa et all 201T), and we extend
their result to the case of multi-dimensional function f.

Lemma E.3. Letd > 1. Let BB be an (g1, 61)-DP algorithm such that Pr[B(x) > LS;(z)] > 1 —

Sor all x. Consider the algorithm A that runs B(x) to obtain an estimate LS, of the local sensitivity,
and releases both LS, and a noisy estimate of f, i.e.,

A(z) = (LS,, f(w) + Lap?(LS, /e2)),

where LS = B(x), Lap®(b) represents a d-dimensional vector such that each element is inde-
pendently sampled from a Laplace distribution with mean 0 and scale parameter b. Then A is
(1 + €9,01 + €%103)-DP.

Proof. Given neighboring datasets x and z’, where f(z), f(2') € R%, consider the following:
A(z) = (LS, f(2) + Lap?(LS, /22))
A(a') = (LS, f(a') + Lap® (LS /22))
where LS, = B(z) and LS, = B(z"). Now, define the random variable

Amix = (]—:\g:m f(.’L'/) + Lapd(ﬁw/EQ))'
Let p., p, and ppix be the probability distributions of A(z), A(z') and Apix. First, consider

the difference between A(z’) and Apix. They differ only in the initial estimate LS (either B(z')
or B(x)). Since B is (e1,01)-DP and since post-processing does not affect differential privacy, it
follows that for every event

pz’(E) S ealpmix(E) + 61

Let F denote the event that LS, > LS #(x). By the precondition of the lemma, Pr[B(z) >
LSs(z)] > 1 — 62, Pr(F) > 1 — &5. Here, z € R? is an arbitrary point.

We have
Pmix (2| F) H?:16*52|f($/)i72i‘/LSz d szuf(m)i—zi\\s—\f(z/n—zm
. d _ L LS. H
pz(Z|F) Hi:le ea|f(x)i—zi|/LSs Pl
d 21f (@)= f ()] ol (@)= f)y eallf(@) =)y
o [P L S
i=1

The first inequality follows from the triangle inequality, the second inequality follows from the
definition of event F', and the third inequality is due to the definition of local sensitivity, LS (z) >

1 () = F ()l

For convenience, we can replace points with events, resulting in pyix(E|F) < p,(E|F). Since the
probability of F' is the same under both py,ix and p,, we can strengthen this to pyix(E N F) <

e2p,.(E N F). Note that Pr(F') < §, and thus
pmix(E) S pmix(E N F) +pmix(E mf) S GEQPx(E N F) +pmix(E ﬂf) S egzpz(E) + 62-
Because we obtain p,/ (E) < e pnix(E) + 1, we get

P! (E) S 6€1+62pm(E) —+ 68152 =+ 51.

The inequality is symmetric by the whole proof, as it remains valid when 2’ is replaced with z,
ensuring the result holds regardless of the order of and 2. So we prove A is (g1 + €2,01 + €1 02)-
DP. U

20

Under review as a conference paper at ICLR 2025

Algorithm 8 ApPPROXDPRSC (G, H, Q, ,6) > Approximate DP Range Subgraph Counting
Query For Mult-attribute

1: Input: An n-vertex graph G = (V, E,a), a pattern graph H, a set of range queries (), and
privacy parameter ¢, 6.
Set £’ and ¢’ such that & = (|E| + 1)e’ and 6 = &' + (|[E| + 1)e &
I:IvSfH(G’) :Algorithm(G,H7 g, 0").
w = PROJMULT (G, H).
Ty = TREECONSTMULT (w, ¢’, HS f,, (G))
for ¢ € Q do
Get ¢; and r; according to Deﬁnitionfor each dimension of gq.
return Output of Deﬁnitionwith Ty and [€1,71] X -+ X [lg,rq].
end for

R A A S

Proof of Theorem[2] We prove the privacy and utility of the algorithm separately.

Privacy: We continue to use w as the vector output of the subgraph projection algorithm (the same
as w in Lemma when d = 1). We use w and w’ to denote the different weight vectors formed
by graphs G and G’, respectively. Recall that fr(G) is the subgraph counting function for G. We
have

LSw(G) = max|[w — w'll, = _max _[fu(G) — fu(G)] = L84, (G),

Thus, if we get noisy estimate of LSy, (G), we get noisy estimate of LS, (G). Obviously, we can
get HS,, (G)for (ke',0' + kgre® 8')-DP by Lemma According to Lemma if we release
A(G) = (LSw(G),w + Lap(LSw (G) /")) = (HSy,, (G), w + Lap(HSy,, (G)/¢’)), we can obtain
a((kg 4 1)e'8' + (kg + 1)ef §') estimate of w.

Note that we are not aiming to obtain a differentially private w; instead, our goal is to ensure that
the constructed tree satisfies privacy requirements, as referenced in Lemma@ Let w, represent
the vector of weights of all nodes in innermost trees (for d = 1, this corresponds to all trees T7; for
d > 1, it corresponds to all trees T};). We mention the description of w; in Lemma@ when d = 1.

The vector w; satisfies LSy, = LSy - 1og2d n. The noisy estimate }AISwt (G) is actually log2d n
times the noise estimate HSy, (G).

Therefore,

(LSw,, Wi + Lap(LSw, (G)/2)) = (HSw, w; + Lap(HSw, (G)/2)

= (HSy - log® n, w; + Lap(HSw(G) - log* n/e"))

= (HSy,, - log®*n, w; + Lap(HS,, (G) - log> n/e"))
is (kg +1)e’, 0" + (kg + 1)e'§') -DP, where &’ and &' is privacy parameter in Algorithmﬂ Here,
we set

e=(ky+1), §=0+ (kg+1)e §.

By the post-processing property, Algorithm satisfies (g, 6)-DP. Furthermore, if £ and 0 are speci-
fied, ¢’ and ' can be easily computed.
Utility: The overall proof is similar to the utility proof in Theorem [I| Recall that, in Step 5 of

Algorithm [§] (which calls Algorithm [3), we add independent Laplace noise with a magnitude of

O(HSy, (G) - 1og®¥ n) to the weight of each tree node. For a fixed query g, the additive error
generated is

B - log®? n HS, (Q) - d - log3d+0-5
1(G) — FulG)] = [L wtr) - o[< | ¥ vy| = oSG d-log T,
p p p
e 3d+0.5
:O(HSfH(G)~d8-1og n)

21

Under review as a conference paper at ICLR 2025

With a probability of at least 1 — % (as established in Lemma , we have b = HS tu(G)- log®® n,
— 2d — p2d+1

m = log“®mn,and § = n , as supported by Lemma D.2| Lemma and Lemma The

inequality holds because each query uses at most log?? n tree node weights for computation, as

shown in Lemma[D.4] For the final equality, note that we focus on the family of pattern graphs with
a constant number of edges, where k£ is a constant. O

However, there is no explicit upper bound on HS 74 (G) for all H, and its value typically varies
depending on H and G. For some H, HSy,, can be relatively easy to estimate, while for others, it
presents more significant challenges. Nevertheless, our results remain practically significant. For

common H, such as triangles, ﬁéf A A dimax(G), where dpax(G) represents the maximum degree
of the graph G. In most sparse graphs in the real world, di.x(G) = o(n).

Lemma E.4 ((Karwa et al., 2011)). It holds that

2In1/¢’

/

HS ;. < dmax(G) + .

with probability at least 1 — ¢'.

Proof. (Karwa et al.,|2011)) provided a proof for the case of k-triangles. For clarity, we have rewrit-
ten the proof for triangles.

If H is a triangle, then f(Al) (Q) < dmax(G), (AQ>(G) = 1. According to the algorithm Algorithm
HSy, = fONG) + Y% 4 Lap(1/¢') < dinax(G) + "M% 4 Lap(1/¢’). We have HS;, <

dmax (G) + 22129 with probability at least 1 — ' by Fact O

g

F EDGE-ATTRIBUTED RANGE SUBGRAPH COUNTING PROBLEM

In practical applications, many works require counting subgraphs based on edge attributes. For ex-
ample, in dynamic graphs, temporal networks or relational event graph with edges that have times-
tamps, someone want to query the number of subgraphs related to edges generated within a certain
time range in order to calculate metrics like clustering coefficients for data mining purposes. There-
fore, we have revised our definition and introduced algorithm for range subgraph counting based on
edges.

Definition F.1 (Edge Range Subgraph Counting). G = (V, E, a) is an undirected graph where each
edge e € E carries a real-valued attribute a(e). For an interval ¢ = [€1,71] X - -+ X [lgq, r4], define
E,={ec€ E|t; <a;(e) <ri € [d} and Gy as the subgraph of G induced by E,.

Let H be a connected (pattern) graph with a fixed number of vertices, e.g., triangle, edge, star.
Given an interval g, a query returns the number of occurrences of Q) in G,. The pattern H is fixed
for all queries.

We show that our previous algorithm framework is so powerful that it can be used to solve this
problem with a simple adjustment, which also shows the versatility of our algorithm.

To distinguish them from vertices, we use e’ to denote edges. At the beginning, we have the initial
labels of the edges. Similarly, we use s;(e’) to denote the rank after reordering according to the j-th
dimension attributes. For edge range subgraph counting, we only need to adjust the projection part,
and the rest of the algorithm content will reuse Algorithm 2] and Algorithm [3] just replace vertices
with edges.

22

Under review as a conference paper at ICLR 2025

Algorithm 9 EDGEPROJ(G = (V, E,a), H) > Edge Subgraph Counting Projection

1: Input: An n-vertex graph G = (V, E, a).
2: Reorder all edge labels by attribute value from small to large. If the attribute values are the
same, sort according to the initial label. Obtain the new rank s : E — [n?].

3: Initialize w1 o2 1 02) = 0, for any 6}, e? € E where j € [d].

4: for all occurrences of subgraph H in G do

50 Compute Ws, (el),s5(e2),....5a(eh)sa(e2) = W(si(e})s2(ed)...rsalel).sa(e3)) T 1, Where occur-
rence registered at (ef, e3,..., el €2).

6: end for

7o return W = {W(q, (1), 65(e2).....50(c}),5a(c2)) }

Refer to the construction of Algorithm 2]and Algorithm 3] just replace the vertices with edges. The
proof follows Section [3] The specific proof process is similar to vertex attribute case, we will not
repeat them here for simplicity. The only difference is that here we use edges to determine the
range, and there are at most O(n?) types of edges, so there are at most O(n*?) possible queries. For
building a DP range tree, n?¢ tuples are used to build a d-dimensional DP range tree, and at most

10g2d n? nodes are used each time. We then have the following theorem.

Theorem 3 (Pure DP Edge-Attributed Range Subgraph Counting). For any € > 0, there exists an
e-DP efficient algorithm that given a graph G = (V, E, a), where the attribute of each edge is a
d-dimensional vector, a pattern graph H, and a query set Q) outputs all subgraph counting queries

which satisfy
GSy,, -d- logBd+0-5 n>

e

max | () — Jur(G)| = O (

with probability at least 1 — %

Theorem 4 (Approximate DP Edge-Attributed Range Subgraph Counting). For any € > 0 and
0 < & < 1, there exists an (g,0)-DP efficient algorithm that given a graph G = (V, E,a), where
the attribute of each edge is a d-dimensional vector, a pattern graph H, and a query set Q) outputs

all subgraph counting queries which satisfy

g

max | fir(C) = Fir(C)

with probability at least 1 — %

We extend Theorem [2] to the edge case. By performing edge projection using Algorithm [9] and
replacing the global sensitivity with HS 4 (G) estimated via Algorithm [7|to construct the DP range
tree, we achieve an error of O(HS a2 (@), ignoring d (since terms involving d remain unchanged).
In general, HS 1 (G) provides better results than global sensitivity.

23

	Introduction
	Related Work

	Preliminaries
	DP Range Subgraph Counting
	The algorithm
	The analysis

	Experiments
	Conclusion
	Upper Bound on the Global Sensitivity of Subgraph Counting
	Range Tree in alg: DP Range Tree Contruction and alg: DP Range Tree Contruction for MA
	Proof of lem:the number of node is visited in a query
	Missing algorithm and proof of thm: dp subgraph counting multi d: The case d2
	Proof of thm: dp subgraph counting multi d

	Missing proof of thm: approximate dp subgraph counting multi d
	Edge-attributed range subgraph counting problem

