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ABSTRACT

We introduce RIPT-VLA, a simple and scalable reinforcement-learning-based inter-
active post-training paradigm that fine-tunes pretrained Vision-Language-Action
(VLA) models using only sparse binary success rewards. Existing VLA training
pipelines rely heavily on offline expert demonstration data and supervised imita-
tion, limiting their ability to adapt to new tasks and environments under low-data
regimes. RIPT-VLA addresses this by enabling interactive post-training with a
stable policy optimization algorithm based on dynamic rollout sampling and leave-
on-out advantage estimation. RIPT-VLA has the following characteristics. First,
RIPT-VLA applies to various VLA models, resulting in an improvement on the
lightweight QueST model by 21.2%, and the 7B OpenVLA-OFT model to an
unprecedented 97.5% success rate. Second, RIPT-VLA is computationally efficient
and data-efficient: With only one demonstration, RIPT-VLA enables an unworkable
SFT model (4%) to succeed with a 97% success rate within 15 iterations. Fur-
thermore, we demonstrate that the policy learned by RIPT-VLA generalizes across
different tasks and scenarios and is robust to the initial state context. These results
highlight RIPT-VLA as a practical and effective paradigm for post-training VLA
models through minimal supervision. Code and checkpoints will be released 1.
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Figure 1: Overview of RIPT-VLA. While VLA models are typically trained with two supervised
stages, we propose a third stage: Reinforcement Interactive Post-Training for VLA. RIPT-VLA sets
state-of-the-art results across diverse benchmarks. It also presents remarkable improvement under
low-data regime: transforms a 1-demo SFT model from near failure to 97% success.

1 INTRODUCTION

Vision-Language-Action (VLA) models (Zitkovich et al., 2023) aim to enable agents to perceive,
reason, and act in the physical world with a unified interface. Current VLA models are trained

1We included anonymous code in the supplementary material for review.
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with two supervised stages: large-scale pretraining on diverse human demonstrations, followed by
supervised fine-tuning (SFT) on smaller-scale task-specific datasets. This paradigm has some distinct
advantages: Pre-training enables the VLA model to build general visuomotor skills while SFT allows
it to specialize in specific environments (Kim et al., 2024). Supervised training allows VLAs to learn
from large-scale pre-recorded vision-language-action datasets. However, this supervised approach
also has two core limitations: First, data is collected offline. The VLA learns to imitate interactions
with the environment, but never sees the consequences of its own actions. The result is a policy
often fails to handle the complexities of real-world scenarios, especially for long-horizon tasks.
Second, task-specific SFT via imitation learning relies heavily on large-scale high-quality human
demonstrations. This data is expensive and time-consuming to collect, and performance degrades
significantly when only a small number of demonstrations are available.

In this paper, we propose RIPT-VLA: a third stage for VLA training paradigm with Reinforcement
Interactive Post-Training. After pretraining and supervised fine-tuning, we allow the VLA model to
interact with the multitask environment and receive binary success/failure rewards. We then optimize
the VLA model to directly improve its success rate across multiple tasks through reinforcement
learning. Inspired by prior RL frameworks for LLMs reasoning (Guo et al., 2025), we propose a
stable and efficient RL framework for VLA finetuning in Section 4. Specifically, we extend the LOOP
framework (Chen et al., 2025) which combines REINFORCE leave-one-out (RLOO) advantage
estimation (Kool et al., 2019) and proximal policy optimization (PPO) (Schulman et al., 2017).
Unlike LOOP, we construct uniform batches of non-zero advantage samples, filtering out any group
of trajectories with zero-advantage, and sampling rollouts until sufficient samples exist. This uniform
batch construction leads to improved training stability, especially as training progresses and the VLA
becomes more successful. RIPT-VLA allows efficient and stable VLA policy update without relying
on shaped or learned rewards, or critic models. Using Reinforcement Learning in a third training stage
has a few distinct advantages: It is more data efficient, yielding close to state-of-the-art performance
with only a single SFT demonstration. The resulting VLA has a much higher performance on the
end-task, as it gets to see interactions with the environment during training. RIPT-VLA works with
both tokenized (Mete et al., 2024) and continuous actions (Kim et al., 2025).

RIPT-VLA resonates with the recent trend of paradigm shift in LLM training (Guo et al., 2025).
While pretraining on large-scale text corpora equips LLMs with broad knowledge and powerful skills,
they often struggle with challenging tasks that require precise reasoning, multi-step planning, or
tool use (Wang et al., 2024). To address these limitations, reinforcement learning has emerged as
a critical third stage—used to reactivate and steer pretrained knowledge with only a small amount
of interactive feedback (Ouyang et al., 2022). Similarly, we observe that pretrained VLA models
also encode rich visuomotor skills, yet struggle to apply them effectively for new tasks and scenarios.
RIPT-VLA bridges this gap by using only sparse binary rewards to unlock and specify these latent
skills with a small number of optimization steps.

In Section 5, we demonstrate that RIPT-VLA achieves state-of-the-art results when combined with
both large-scale and lightweight VLA models across a diverse set of tasks. On the LIBERO bench-
mark (Liu et al., 2023), RIPT-VLA improves QueST (Mete et al., 2024), the best lightweight VLA
model, on all four task suites by 10.9% absolute success rate (SR) on average (Table 1). When
evaluated on OpenVLA-OFT (Kim et al., 2025), the best-performing large VLA model with an
already high success rate (96.7%), RIPT-VLA still helps by further reducing the failure rate from
3.3% to 2.4%. We also achieve top performance on many-task benchmarks LIBERO-90 (94.3%)
and MetaWorld45 (Yu et al., 2020) (92.2%), showing the effectiveness of RIPT-VLA in improving
multi-task (up to 90) performance with a single model (Table 2). Most notably, in the extreme
low-data regime with only a single training demo, RIPT-VLA adapts pretrained knowledge to new
tasks goals or scenarios with remarkable efficiency: boosting success rate from below 4% to over
97% within only 15 RL iterations.

2 RELATED WORKS

Vision-Language-Action Models. Vision-Language-Action (VLA) models empower embodied
agents to interpret multimodal inputs—such as visual observations and natural-language instruc-
tions—and translate them into meaningful actions within the physical world (Zitkovich et al., 2023).
Seminal works like RT-2 (Zitkovich et al., 2023), RT-1 (Brohan et al., 2022b), PaLM-E (Driess et al.,
2023), Octo (Team et al., 2024), Dita (Hou et al., 2025), π0 (Black et al., 2024), and π0.5 (Intelli-
gence et al., 2025), together with OpenVLA (Kim et al., 2024), showcase VLAs achieving emergent
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semantic reasoning and generalization to novel tasks and environments. These models are typically
developed through a two-stage supervised-learning paradigm that begins with an initial pre-training
phase on extensive, web-scale datasets (Driess et al., 2023; Brohan et al., 2022a), which is crucial
for acquiring generalizable visuomotor skills, grounding language in perception, and building robust
internal representations. While this two-stage approach has advanced the field, its offline nature
imposes key limitations. The supervised fine-tuning (SFT) stage typically requires vast expert demon-
strations for new tasks or environments, thereby degrading few-shot performance. This highlights a
critical gap: the need for methods that adapt pretrained VLAs beyond static imitation by leveraging
interactive experience and reducing reliance on extensive expert data.

Reinforcement Learning for LLMs. Large Language Models (LLMs) offer a precedent for
enhancing pretrained models. While LLMs gain broad capabilities via pre-training and SFT, they
often struggle with complex reasoning, planning, or constraint satisfaction (Wang et al., 2024). To
address this, Reinforcement Learning (RL) has emerged as a transformative third stage in LLM
training—enabling learning from interactive feedback rather than static datasets (Ouyang et al., 2022).
Recent progress shows RL can unlock latent capabilities for math (Lightman et al.; Shao et al., 2024),
self-verifiable proofs (Liu et al., 2024a), long-horizon planning through tree-of-thoughts (Yao et al.,
2023), and preference-aligned generation with AI feedback (Lee et al., 2024a). This paradigm, in
which pretrained knowledge is steered by targeted feedback, strongly motivates a similar approach
for VLA models: RL has the potential to adapt pretrained VLAs more effectively to the interactive
and consequential nature of embodied tasks.

Reinforcement Learning for VLA. Recent works have explored applying reinforcement learning
to pretrained VLA models to overcome limitations of supervised fine-tuning and adapt to novel
tasks without collecting new demonstrations. iRe-VLA (Liu et al., 2024b) addresses optimization
instability by alternating between PPO-based updates on a frozen VLM backbone and supervised
distillation stages. However, it still relies on a learned value critic during PPO, and requires shaped
reward functions or success weighting to guide policy learning. ConRFT (Ma et al., 2024) further
combines offline Q-learning with online consistency-policy updates, but similarly depends on a
parameterized value function. Both methods require careful coordination between offline and online
stages to stabilize critic learning. In contrast, RIPT-VLA introduces a fully critic-free optimization
framework with simpler training dynamics under sparse binary rewards.

3 PRELIMINARY

3.1 VISION-LANGUAGE-ACTION MODELS

Autoregressive VLA rollout. A vision-language-action (VLA) model πθ maps a sequence of obser-
vations and previous actions (o1:t, a1:t−1), along with a natural language goal g, to a probability dis-
tribution over the next action at. These models operate autoregressively: at ∼ πθ(· | o1:t, g, a1:t−1).
Given an initial observation-goal pair context c = (o1, g), the model generates a sequence of ac-
tions conditioned on past information in an autoregressive way: πθ(a1:T | o1:T , g) =

∏T
t=1 πθ(at |

o1:t, g, a1:t−1). We denote this sampling process as a = a1:T ∼ πθ(· | c), the observations alone the
sequence as o = o1:T . Sequences terminate upon task success or reaching a time limit. For each
rollout sequence and task goal g, the environment E returns a binary reward R = 1 when the task
goal is successfully reached, and R = 0 otherwise. The environment E can be either a simulator (Yu
et al., 2020; Liu et al., 2023) or the real world.

Current VLA training paradigm. Current Vision-Language-Action (VLA) models are typically
trained in two stages: Stage 1: Pretraining and Stage 2: Supervised Fine-tuning.

In Stage 1, a base policy πθ is pretrained on a large-scale, diverse dataset of real-world demonstrations,
denoted by Dpretrain = {(o,a, g)}Ni=1. The policy is trained to imitate the ground-truth actions given
offline data in Dpretrain. For VLA with tokenized action head, the loss is:

Lpre(θ) = −E(o,a,g)∼Dpretrain

[
T∑
t=1

log πθ(at | o1:t, g, a1:t−1)

]
, (1)

while for regression action headLpre(θ) is implemented as an MSE or L1 loss. This stage enables VLA
capture strong representations and learn general visuomotor and instruction-following capabilities.
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In Stage 2, the pretrained policy is supervised fine-tuned on a smaller, multitask dataset to improve
performance on a small set of target tasks, denoted by Dsft = {(o,a, g)}N

′

i=1. Typically, Dsft contains
around 50 high-quality human demonstrations per task (Mete et al., 2024). The VLA is trained with
the same objective function as in Stage 1. This stage enables the model to adapt its learned skills
from Stage 1 to a specialized set of skills for the target tasks.

Although being the standard process of VLA training, this two-stage process has two significant
issues. Firstly, it relies only on offline supervision and lack interactive feedback from the environment.
Therefore, the learned policy may often fail in real rollouts due to distribution shift and cascading
errors, especially for long-term rollout. Furthermore, the performance of VLA heavily relies on the
high quality and quantity of the task-specific data in Dsft, which is often hard and costly to obtain.

VLA as Markov decision processes. To better optimize VLA models, we define its task as a
Markov decision process (MDP). Each episode is initialized with a context c = (o1, g). The state is
represented as [o1:t, g, a1:t−1], which includes the language goal g, the sequence of past observations
o1:t, and past actions a1:t−1. At each timestep t, the VLA policy produces an action sampled
from the policy distribution: at ∼ πθ(· | o1:t, g, a1:t−1). The environment transitions to the next
observation ot+1 based on hidden environment dynamics, producing a new state [o1:t+1, g, a1:t].
After a sequence of actions a1:T , the agent receives a binary reward R(c, a) ∈ {0, 1} from the
environment E , indicating task success or failure. The objective of VLA optimization is essentially
learning a policy πθ that maximizes expected task success reward: Lθ(c) = Ea∼πθ(·|c) [R(c,a)].

3.2 REINFORCEMENT POLICY OPTIMIZATION

We consider the reinforcement learning setting where an agent interacts with an environment E to
learn a policy πθ(a | c) that maximizes the expected return: Ec∼Dcontext, a∼πθ [R(c,a)], where c is the
context (e.g., goal and initial observation), a is a trajectory (e.g., sequence of actions), and R(c,a) ∈
{0, 1} is a sparse binary reward returned by the environment. To optimize this objective, a standard
approach is policy gradient, which updates πθ with: ∇θLθ(c) = Ea∼πθ [∇θ log πθ(a | c) ·A(c,a)].
Here, A(c,a) is the advantage function indicating how much better the action a is compared to
a baseline. In practice, computing A(c,a) is challenging, especially under sparse rewards. To
address this issue, a recent work proposed a critic-free optimization framework called Leave-One-Out
Proximal Policy Optimization (LOOP) (Chen et al., 2025). It combines the two methods below:

Leave-One-Out Advantage Estimation (RLOO) (Kool et al., 2019). For each sampled context c,
we draw K rollouts {ak ∼ πψ(· | c)}Kk=1 under a fixed sampling policy πψ . Each rollout receives a
binary reward Rk = R(c,ak). The leave-one-out baseline for rollout k is computed by averaging the
rewards from all the other rollouts:

bk =
1

K − 1

∑
j ̸=k

Rj , Ak = Rk − bk. (2)

This group-normalized advantage indicates how much better or worse a rollout performance relative
to others from the same context. This allows use to efficiently compute a stable advantage signal
from sparse binary rewards, without requiring learning value functions.

Proximal Policy Optimization (PPO) (Schulman et al., 2017). To update πθ using collected
rollouts {(ck,ak, Ak)}, we compute the importance ratio rk = πθ(ak | ck)/πψ(ak | ck), where
πθ is the current updating policy and πψ is the fixed sampling policy (normally set to the last
checkpoint of πθ). We then optimize πθ with the following clipped objective (PPO loss): LPPO =
−min (riAi, clip(ri, 1− ϵ, 1 + ϵ)Ai). Here, ϵ is a small updating threshold (we set to 0.2). This
objective encourages rollouts with positive advantages while preventing unstable updates when πθ
deviates too far from its previous version πψ .

LOOP adopts PPO to optimize the advantage estimated by RLOO, which enables sample-efficient
policy optimization in sparse reward settings without critics. It serves as an out-of-box working
implementation for our interactive post-training framework in Section 4.

4 RIPT-VLA

As mentioned above, there is a gap between the current VLA training paradigm and our essential goal
of making it work in our downstream tasks. On one hand, pure supervised training on offline data
makes the policy fragile in real rollout due to compounding errors and the distribution gap between
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Algorithm 1 RIPT-VLA: Reinforcement Interactive Post-Training for VLA Model

Input: Pretrained VLA πθ, reward function R(c,a),
1: context dataset Dcontext
2: for step = 1 to M do
3: Update sampling VLA πψ ← πθ
4: Initialize empty dataset Drollout ← ∅
5: while |Drollout| < B do
6: Sample a context c← (g, o1) ∼ Dcontext
7: Generate K rollouts {ak ∼ πψ(· | c)}Kk=1

8: Compute rewards {Rk ← R(c,ak)}Kk=1

9: Compute baselines: bk ← 1
K−1

∑
j ̸=k Rj

10: Compute advantages: Ak ← Rk − bk for each k
11: if all A = 0 then
12: continue
13: end if
14: Add (c,ak, Ak) for all k to Drollout
15: end while
16: for iteration = 1 to N do
17: Update πθ with PPO loss over Drollout
18: end for
19: end for

offline dataset and online rollout. Furthermore, one has to collect a sufficient number of high-quality
demonstrations for the offline datasets, especially Dsft, the model can easily overfit to the training
distribution. In other words, optimizing VLA through Equation 1 does not necessarily improve the
VLA’s task execution success rate. To bridge this gap, we propose a new VLA training paradigm that
directly optimize pretrained VLA through interaction with the environment E through Reinforcement
Interactive Fine-Tuning. We call this paradigm RIPT-VLA.

4.1 INTERACTIVE POST-TRAINING FOR VLA

The first two stages of our VLA training paradigm are the same as standard setting. In Stage 1, We
pretrain the VLA model on a large diverse dataset Dpretrain to learn visual-language representation
and general visuomotor skills. Then, in Stage 2 we finetune VLA on a small dataset Dsft to adapted it
to follow instructions to solve a small set of target tasks. These stages produce a pretrained VLA
policy πθ that can achieve non-zero success rate (can be very low) on the target tasks.

In RIPT-VLA, we then conduct Stage 3: Reinforcement Interactive Post-Training. In this stage
we assume we can rollout πθ in an environment E and receive a binary reward R(c, a) ∈ {0, 1}
given a ∼ πθ(· | c), where c is the initial context. In addition, we use an initial context dataset
Dc = {(o1, g)} to set up task initializations for model rollouts. Typically, we obtain Dc by directly
extracting the initial states from sequences in Dsft. For each optimization step, we iterate between
two steps: rollout collection and policy optimization.

During rollout collection, we randomly sample contexts ci ∼ Dc and let πθ interact with the
environment E to output a sequence ai. For each rollout we collect its reward R(ci,ai) and compute
its advantage Ai = A(ci,ai), which indicate how strong the model should be encouraged (A > 0) or
penalized (A < 0) for generating rollout a. We add all rollouts and rewards (ci,ai, Ai) to a rollout
dataset Drollout until we obtain B rollouts: Drollout = {(ci,ai, Ai)}Bi=1

During policy optimization, we optimize πθ with reinforcement learning algorithms on Drollout to
maximize its expected task success rate for N iterations. After optimization, we use the updated
VLA policy π′

θ to collect new rollouts and a new step begins. This process repeats until we reach M
steps and outputs the final policy π∗

θ , concluding the full VLA training paradigm. We then deploy π∗
θ

in the environment for testing.

Although RIPT-VLA is simple in concept, it presents several challenges. First, we only have sparse
binary rewards from each rollout sequence, no shaped reward is available. Training a learned reward
model to predict shaped reward values can easily lead to reward hacking (Skalse et al., 2022),
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especially with limited rollout data. Second, as VLA models operate over long-horizon, multi-task
environments, credit assignment becomes highly ambiguous. This causes the value target (e.g.,
from TD error) to be extremely noisy and uninformative. Third, training a stable value function
for VLA requires a model of comparable capacity to the VLA itself, which significantly increases
GPU memory usage and training cost for large VLA models (Zhai et al., 2024). Finally, in multitask
environments, different task contexts can vary significantly in difficulty: some lead to trivial success
while others consistently fail across all rollouts. This results in highly imbalanced success rates and
unstable policy gradient updates.

4.2 DYNAMIC-SAMPLING LEAVE-ONE-OUT PROXIMAL POLICY OPTIMIZATION.

To implement RIPT-VLA in a stable and sample-efficient way, we propose a simple yet effective
policy optimization framework in Algorithm 1. First, we adopt LOOP (Section 3.2) as the foundation
of our implementation. LOOP is particularly well-suited for our VLA setting, where rollouts are
long-horizon and efficient advantage estimation is required for its sparse reward signal. Furthermore,
for VLA in multitask environments, we design a dynamic rollout sampling mechanism to filter out
uninformative contexts for more stable and efficient policy optimization.

LOOP for RIPT-VLA. We apply LOOP (Chen et al., 2025) for both the rollout collection and
policy optimization stage. During rollout collection, we conduct RLOO (Kool et al., 2019) advantage
estimiation. In this step, we use the most recent policy πθ as the sampling policy πψ . Given a single
context c ∼ Dc, we collect K trajectories by repeatingly sampling K times from the policy given
the same context: {ak ∼ πψ(· | c)}Kk=1. We obtain their corresponding rewards {Rk}Kk=1 from the
environment E . For each rollout k, we compute the advantage Ak with Equation 2. For each epoch,
we conduct group sampling on B/K contexts sampled from Dc, obtaining Drollout with B rollouts.

During policy optimization, we use PPO (Schulman et al., 2017) to stabilize policy gradient updates.
For each rollout sample (ci,ai, Ai) ∈ Drollout, we can compute its training objective LPPO. We
perform this update over the collected rollout dataset Drollout using mini-batches for N optimization
steps each epoch. When N = 1, the method corresponds to on-policy RLOO; when N > 1, the same
samples are reused for additional updates, resulting in a partially off-policy optimization.

Dynamic rollout sampling. VLA models often operate in multitask environments (Kim et al.,
2024; Mete et al., 2024; Sun et al., 2022), where task difficulty varies widely across different contexts.
Some contexts have been already well solved by VLA, leading to trivial success across K-group
sampling, while others consistently fail due to inherent task complexity or distribution gap. Both
cases result in rollout groups where all rollout samples receive identical rewards (all 1s or all 0s),
producing all 0 advantage in Equation 2. Therefore there is no gradient signal from the PPO loss
LPPO. Adding these samples to Drollout makes unstable gradient updates during batch optimization, as
they contribute zero gradients that can dominate or dilute meaningful learning signals.

To address this, we apply a simple yet effective dynamic rejection strategy: we discard any sampled
context for which all K rollouts receive the same reward and resample a new context from Dcontext
for group sampling. As training progresses and the policy improves, an increasing number of task
contexts yield uniformly successful rollouts. Dynamic rejection naturally filters out these solved
contexts, allowing optimization to concentrate on the remaining harder contexts. Importantly, this
method make the batch optimization of LPPO. to have the same effective batch size over all the
minibatches across Drollout, which we empirically found to be important for stable policy optimization
in RIPT-VLA.

4.3 GENERALIZE TO DIFFERENT VLA MODELS.

RIPT-VLA is compatible with both discrete and continuous action representations commonly used
in VLA models. To perform stable policy optimization, we compute the trust region ri =

πθ(ai|ci)
πψ(ai|ci)

in the PPO loss to constrain policy updates within a small region of the original policy. A key
component in this formulation is computing the log-probability of the sampled action sequences
under both policies. At each step, we assume the policy outputs a probability distribution over
actions. We compute the log-probability of a sampled action sequence a = (a1, . . . , aT ) as the sum
of the per-step log-probabilities: log πθ(a | c) =

∑T
t=1 log πθ(at | a<t, c). Therefore, we can apply

RIPT-VLA to any VLA model πθ that we can compute log πθ(at | a<t, c).
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Tokenized action head. For VLA models with discrete action outputs, e.g. QueST (Mete et al.,
2024), actions are predicted as sequences of discrete tokens from a fixed vocabulary, where the
action header is a classification head trained with NLL loss. Therefore, log πθ(at | a<t, c) is directly
obtained from applying softmax function to the model’s classification head output logits.

Regression action head. For continuous-action VLA models (Kim et al., 2025), actions are
regressed using MSE or L1 loss, which do not produce a log-probability. To enable policy gradient
optimization, we extend the model with a light-scale prediction head that estimates the scale σθ of
the action value. Assuming the original output head provides the mean µθ, we treat the policy as
a factorized Gaussian (MSE) or Laplace (L1) distribution and train the scale head using the NLL
loss in Equation 1 for a few iterations on Dsft. After that, we can compute log πθ(at | a<t, c) with
predicted µθ and σθ in a closed form.

5 EXPERIMENTS

We evaluate RIPT-VLA on two widely used benchmarks for VLA learning: LIBERO (Liu et al., 2023)
and MetaWorld (Yu et al., 2020). We study several settings: (1) standard multitask (up to 90 tasks)
setting in Sec. 5.2, (2) few-shot (1 ∼ 5 demonstration) setting in Sec. 5.3, and (3) cross-task and
cross-scenario setting in Secs. A.1 and A.2 to showcase the ability of fast generalization leveraging
prior knowledge during pretraining. Additionally, we additional studies to analyze the practical
behavior of RIPT-VLA, including training curves, ablation studies as well as its sensitivity to the
variance and diversity of the context dataset.

5.1 SETUP

Benchmark. LIBERO (Liu et al., 2023) is a lifelong learning benchmark with 5 task suites. Each
suite consists of a set of language-guided manipulation tasks across multiple object types, task
definitions and environment scenarios. Specifically, it includes 4 suites: Goal, Spatial, Object, and
Long. Each suite is designed to evaluate a specific aspect of object manipulation and containing 10
distinct tasks. In addition, it also includes a LIBERO-90 suite that contains 90 different tasks to
access multitask performance at scale. MetaWorld (Yu et al., 2020) is a manipulation task benchmark
for few-shot learning models. We use Meta-Learning 45 (ML45) suite that contains 45 training tasks
and 5 held-out tasks.

For both benchmarks, each task comes with 50 expert demonstrations for training. At evaluation
time, a single VLA model is deployed across all tasks in a suite and performs rollouts on 50 held-out
test contexts per task. We measure performance with the average task success rate (SR).

Base models. We conduct RIPT-VLA on two pretrained VLA with different design choices.

OpenVLA-OFT (Kim et al., 2025) is an Optimized Fine-Tuned variant of the 7B OpenVLA
model (Kim et al., 2024). OpenVLA is initialized from a multimodal backbone that combines
a Llama-2 7B language model with dual vision encoders (Oquab et al., 2023; Zhai et al., 2023) and is
pretrained on 970k robot-manipulation demonstrations. OFT replaces the original tokenized action
decoder with a continuous decoding head and trains with an L1 regression loss. This architecture
represents the large-scale regression action VLA. QueST (Mete et al., 2024) on the other hand, is a
small-scale tokenized action VLA model with 20 million parameters. QueST first learns a VQ-VAE
that compresses short motion segments into a discrete skill codebook; a GPT-style transformer then
autoregressively predicts these skill tokens conditioned on images and language, and a small decoder
turns tokens back into continuous joint commands.

Implementation details. We implement RIPT-VLA with method described in Section 4.2. Unless
otherwise specified, we construct Dc from all initial states in the supervised fine-tuning dataset Dsft.
For OpenVLA-OFT, we finetune the model from official checkpoints for each task suite. We train on
4 RTX A5000 GPUs using LoRA (Hu et al., 2022) with rank 32 on 4 GPUs, and set K = 8, B = 192,
N = 1 and ϵ = 0.1. We set a learning rate of 1e−4 for the LoRA modules and 1e−5 for the action
head. Following Section 4.3, before applying RIPT-VLA, we first train a small Laplace scale header
from scratch (with the same architecture as the action header) with NLL loss on Dsft for 500 steps.

For QueST, as official checkpoints are not provided, we first train the base model from scratch for
each task suite following the official code and hyper-parameters. In the multitask setting, we conduct
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Stage 1 + Stage 2 Models

Method Goal Spatial Object Long Average

Octo (Team et al., 2024) 84.6 78.9 85.7 51.1 75.1
OpenVLA (Kim et al., 2024) 79.2 84.7 88.4 53.7 76.5
Dita (Hou et al., 2025) 85.4 84.2 96.3 63.8 82.4
π0 + FAST (Pertsch et al., 2025) 88.6 96.4 96.8 60.2 85.5
π0 (Black et al., 2024) 95.8 96.8 98.8 85.2 94.2
OpenVLA-OFT* (Kim et al., 2025) 97.9 97.6 98.4 92.9 96.7
OpenVLA-OFT + RIPT 99.0 98.6 98.6 93.8 97.5
(improvement) (+1.1) (+1.0) (+0.2) (+0.9) (+0.8)

Stage-2 Models

Method Goal Spatial Object Long Average

Diffusion Policy (Chi et al., 2023) 68.3 78.3 92.5 50.5 72.4
Seer (Tian et al., 2024) – – – 78.7 –
MDT (Reuss et al., 2024) 73.5 78.5 87.5 64.8 76.1
MDT+ (Reuss et al., 2024) – 95.2 97.8 83.0 –
QueST (Mete et al., 2024) 80.8 87.4 93.6 68.8 82.7
QueST + RIPT 92.7 95.6 98.4 87.5 93.6
(improvement) (+11.9) (+8.2) (+4.8) (+18.7) (+10.9)

Table 1: Multitask SR(%) on the four LIBERO suites. Bold indicates best result and underline marks
the second-best. Improvements from RIPT-VLA are marked in red. *: OpenVLA-OFT results are
obtained from running official checkpoints for each suite.

RIPT-VLA on 3 GPUs with K = 16, B = 2880 (16× 180). For single-task setting, we use 1 GPU
with K = 16, B = 160. For both settings, we set N = 20, PPO mini-batch size as 24, a learning
rate of 1e−6, and the clipping parameter ϵ = 0.2. Please refer to the Appendix for more details.

5.2 STANDARD MULTITASK TRAINING

In this section we evaluate RIPT-VLA under standard multitask benchmarks. For each suite we use
all the 50 expert demonstrations per task as its SFT dataset Dsft. We conduct RIPT-VLA to finetune a
base model on the corresponding dataset for each task suite.

Table 1 compares multitask performance on four LIBERO suites for different VLA models. We
organize the results into two sets based on VLA training paradigm. In the Stage 1+ Stage 2 set,
we include 5 state-of-the-art large VLA models, which are typically larger than 500M parameters,
pretrained (Stage-1) on large-scale general-purpose datasets, e.g., Open-X Embodiment (O’Neill
et al., 2024), and then finetuned using 50 demonstrations per task for each LIBERO suite (Stage-2).
In contrast, the Stage 2 set includes 4 representative small models, which are within 50M parameters
and are directly trained on each LIBERO suite from scratch.

We show that RIPT-VLA significantly improves the best-performing VLA model in both types, setting
new state-of-the-art performance on the 4 LIBERO suites. Specifically, RIPT-VLA improves QueST
on all four task suites by 10.9 absolute SR on average, and yields even larger gains of 18.7 for the
challenging LONG suite. Notably, with RIPT-VLA, the small 20M QueST model achieves much
better performance with large models like Dita (334M) and comparable with π0 (2B). When applying
to OpenVLA-OFT, the best-performing large VLA model with already high SR, RIPT-VLA still
further reduces the average failure rate from 3.3% to 2.5%. By applying RIPT-VLA, we set new
state-of-the-art performance on 3 out of the 4 LIBERO suites (with only a 0.2 gap on the Object
suite), and achieve the highest average success rate across all tasks. These results show the RIPT-VLA
is broadly effective: it can both unlock latent capabilities in small-scale models and further push the
limits of the high-performing ones.

In addition, in the left two columns of Table 2, we show the results on LIBERO-90 and ML45,
which contain 90 and 45 diverse tasks respectively. These benchmarks assess the scalibility and
generalization of a single VLA model across many skills. We apply RIPT-VLA to QueST and compare
with representative imitation learning methods: ACT (Gao et al., 2024), PRISE (Zheng et al., 2024),
Diffusion Policy (Chi et al., 2023), VQ-BeT (Lee et al., 2024b) and ResNet-T (Mete et al., 2024). We
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Full Data 5-shot Data
Method LIBERO-90 ML45 LONG ML45

ACT (Gao et al., 2024) 50.8 90.8 42.0 70.8
PRISE (Zheng et al., 2024) 54.4 80.4 52.7 66.8
DP (Chi et al., 2023) 75.4 90.3 45.9 65.0
VQ-BeT (Lee et al., 2024b) 81.3 87.6 41.8 65.6
ResNet-T (Mete et al., 2024) 84.4 88.4 51.9 54.0
QueST (Mete et al., 2024) 88.6 91.0 50.2 63.6
QueST + RIPT 94.3 92.2 71.4 76.0
(improvement) (+5.7) (+1.2) (+21.2) (+12.4)

Table 2: Mean Success Rate (SR%) across four evaluation settings.

1 3 5 10
Number of Demos

40

60

80
LIBERO-LONG (5-shot)

RIPT
SFT

Figure 2: Few-shot curve.

show that RIPT-VLA improves performance of QueST by 5.7 and 1.2 absolute SR for LIBERO-90
and ML45, again setting new SOTA performance for both benchmarks. This confirms the utility of
RIPT-VLA not only for improving performance on a few related task, but also scale up to broader,
more realistic scenarios where a single model solving many different tasks.

5.3 FEW-SHOT MULTITASK TRAINING

In this section we evaluate RIPT-VLA under few-shot multitask setting. For each suite, we uniformly
sample 1 to 10 expert demonstrations from each task to constitute the few-shot SFT dataset Dsft. This
setting reflects practical situation where large-scale data collection is not available.

The right two columns of Table 2 show results under the 5-shot setting, where each task in the
LIBERO-LONG and ML45 suites is trained with only 5 demonstrations. While baseline models
struggle in this low-data regime, RIPT-VLA significantly improves QueST by 21.2 on LIBERO-
LONG and 12.4 on ML45. These results demonstrate that RIPT-VLA effectively addresses a key
limitation of standard VLA training with SFT: it enables strong performance even with minimal
demonstrations, alleviating concerns about data scarcity in real-world multitask deployment.

To further investigate the effect of the number of few-shot demonstrations, we conduct experiments
under varying few-shot settings with QueST, ranging from 1 to 10 demonstrations per task on
LIBERO-LONG. As shown in Figure 2, RIPT-VLA consistently largely improve the performance
of standard SFT model across all data scales. Note that even for the extremely low-data regime,
where we only have 1 demonstration per task, RIPT-VLA can still acehive a 20.8 absolute gain. As
the number of demonstrations increases, RIPT-VLA continues to yield performance improvements,
indicating its strong sample efficiency and scalability. These results confirm that RIPT-VLA is robust
across different levels of data scarcity and is applicable in both low- and high-data settings.

5.4 ADDITIONAL RESULTS

We further include a series of extensive studies of RIPT-VLA in the Appendix. First, we investi-
gate cross-scenario (Appendix A.1) and cross-goal (Appendix A.2) generalization, showing that
RIPT-VLA enables pretrained visuomotor skills to transfer effectively across environments and task
semantics under extremely low-shot supervision. In Appendix A.3, we provide ablation studies on our
dynamic rollout sampling strategy, the size of the context dataset, and the effect of rollout variance.
We encourage readers to refer to the Appendix for these interesting experiments and deeper analysis.

6 CONCLUSION

We presented RIPT-VLA, a simple yet powerful reinforcement learning paradigm for post-training
pretrained Vision-Language-Action (VLA) models using sparse binary task rewards. RIPT-VLA
enables stable and data-efficient optimization without the need for shaped rewards, value functions, or
reward modeling. Our method significantly improves performance across multiple VLA benchmarks,
and demonstrates remarkable adaptability even in extremely low-data settings. RIPT-VLA serves
as a scalable third-stage training paradigm that complements existing pretraining and supervised
fine-tuning pipelines, unlocking the latent potential of large VLA models through direct environment
interaction. An exciting future direction is to combine RIPT-VLA with reasoning and planning in
VLA models to enable more sophisticated and generalizable behaviors in complex environments.
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7 ETHICS STATEMENT

Our experiments are conducted entirely in simulation using publicly available benchmarks (e.g.,
LIBERO suites, ML45), and do not involve human subject data, personal information, or sensitive
attributes. The proposed method aims to advance sample-efficient reinforcement learning for Vision-
Language-Action (VLA) models. While embodied AI carries potential downstream risks if misused,
our study is limited to controlled settings. We encourage researchers extending this work to follow
established safety protocols when transferring models to physical systems. We acknowledge the envi-
ronmental impact of training large models. Our approach is computationally lightweight compared
to training VLAs from scratch, as it refines existing pretrained models with modest reinforcement
learning iterations. To ensure integrity and reproducibility, we disclose our use of large language
models (LLMs) for writing assistance in Appendix, and provide full experimental details, code, and
scripts in the supplementary materials.

8 REPRODUCIBILITY STATEMENT

We provide an anonymous code release in the supplementary material, including detailed installation
instructions and ready-to-run scripts for reproducing all experiments. All hyperparameters, model
architectures, and training protocols are described and specified in the corresponding configure files.
The datasets and benchmarks used (LIBERO suites, and ML45) are publicly available. Together,
these resources ensure that our results can be reliably reproduced and extended.
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A APPENDIX

A.1 CROSS-SCENARIO GENERALIZATION
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Figure 3: Cross-scenario task generalization from Scenario A to Scenario B with the same goal.
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Figure 4: Cross-goal task generalization from Goal A to Goal B in the same scenario.

Recent paradigm shift in LLM training demonstrate that reinforcement learning can reactivate and
steer pretrained knowledge with only a small amount of interactive feedback (Ouyang et al., 2022).
We adopt a similar approach for VLA and ask: can RIPT-VLA enable sample-efficient pretrained
visuomotor skill transfer across scenarios and goals?

In this section, we conduct experiment on the few-shot cross-scenario generalization setup. For each
experiment, we consider a pair of tasks that have the same taks goal (e.g., ’turn on the stove and put
the frying pan on it’), but operate in different scenarios: Scenario A and Scenario B - with distanct
background layouts and object configurations. In Stage 1, we pretrain QueST on |Dpretrain| = 50
demonstrations from Scenario A to acquire general visuomotor skill for this task goal. In Stage 2,
we conduct SFT on |Dsft| = {1, 2, 3, 4, 5} demonstrations from Scenario B. Then, in Stage 3 we
apply RIPT-VLA to optimize the policy through interactive rollouts on contexts Dcontext extracted
from Dsft. We then evaluate the model performance on the 50 testing contexts of Scenario B. We
conduct experiments with 3 random seeds and plot the mean and variance across different Dsft sizes.

Figure 3 and Figure 1 right 2 show results on 5 scenario pairs. We observe that standard SFT
on VLA models clearly struggles in the 1-shot regime, achieving an average success rate of only
around 5%, and in some cases dropping as low as 2%. Clearly, SFT fails to generalize the task
knowledge from the pretraining stage to the new scenario. In contrast, RIPT-VLA dramatically
improves performance, with absolute SR gain as high as 93.7% (from 3.5% SFT to 97.2%). As the
size of Dsft increases, both SFT and RIPT-VLA performance improve, but RIPT-VLA consistently
maintains a strong improvement, often reaching near-100% performance with just 3-5 demonstrations.
These results supports our core assumption: RIPT-VLA enables pretrained VLA models to rapidly
activate and adapt learned skills with sparse binary rewards feedbacks.

A.2 CROSS-GOAL GENERALIZATION

In this section, we investigate RIPT-VLA in a cross-goal generalization setting. Here we focus on
task pairs that operate in the same scenario but different goals. Specifically, we select Task A and

2Curve setup: A= Scenario 5, B = Scenario 10, Task=“close the top drawer of the cabinet".
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Task B such that they require the same visuomotor skills but have different goals. For example, Task
A is "put the red mug on the right plate" while Task B is "put the red mug on the left plate". This
setting tests whether pretrained visuomotor primitive skills (e.g., pick up and move) can be reused
and recomposed to solve novel task goals (e.g., left vs. right). We again follow the 3 Stage paradigm:
pretrain QueST on 50 demonstrations of Task A, SFT on a 3-10 demonstrations on Task B, and then
apply RIPT-VLA for Task B.

Figure 4 presents result over 5 set of tasks. We observe that cross-goal generalization is significantly
more challenging. With 3 demonstrations, SFT models still struggles and reach only 0.7% success
rate on average, almost not workable at all. With RIPT-VLA, we can improve model performance
to 59.7% on average. Remarkably, for one task pair, RIPT-VLA improves the performance from
near 0% success rate to 84.7%. As the number of demonstration increases, RIPT-VLA consistently
maintains a large advantage across all data regions. At 10 demonstrations, the average success rate of
RIPT-VLA reaches 79.7%, compared to only 29.4% for SFT.

These results further show the limitation of SFT paradigm for VLA generalization under low-
data regime. In contrast, we show that RIPT-VLA is not only help adapt pretrained skills to new
environments, but also excels in fast generalization of task goal semantics.

A.3 ADITIONAL STUDY
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Figure 5: Training curve analysis
of dynamic sampling.
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Figure 6: Analysis on context
dataset size.
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Figure 7: Analysis on initial
state std scale.

Method Goal Spatial Object Long 90 ML45 Average

QueST 80.8 87.4 93.6 68.8 88.6 91.0 85.0
+ RIPT-VLA w/o Dynamic Sampling 90.6 91.3 97.5 78.3 92.2 91.3 90.2
+ RIPT-VLA (Ours) 92.7 95.6 98.4 87.5 94.3 92.2 93.5

Table 3: Ablation on dynamic sampling. We compare full RIPT-VLA against a variant without
dynamic sampling and the QueST baseline across task types and multitask suites.

Effect of dynamic rollout sampling. We ablate the impact of our dynamic rollout sampling strategy
described in Section 4.2. We compare the full RIPT-VLA method with a variant that disables dynamic
rejection. As shown in Table 3, dynamic sampling significantly boosts performance across all task
categories and suites. By filtering out uninformative rollout groups, dynamic sampling ensures stable
and efficient learning with consistent gradient signal across batches. On average, we observe a +3.3
absolute improvement in success rate compared to the non-dynamic variant, demonstrating its crucial
role in stabilizing RIPT-VLA training. In Figure 5, we show training curve (averaged over 3 seeds) of
Column 2 of Figure 4. We see that dynamic rollout sampling accelerates convergence of RIPT-VLA,
achieving consistently higher performance and more stable optimization.

Effect of context dataset size. To study how the size of the context datasetDc impacts performance,
we fix the QueST model SFT-trained with only 1 demonstration for Column 2 of Figure 3 and vary the
number of rollout contexts used in the RIPT-VLA stage. As shown in Figure 6, increasing the number
of rollout contexts significantly improves performance. This is because more contexts provide greater
diversity in initial states for the rollouts interaction, allowing the model to better generalize across
different setups in the testing environments. Notably, expanding Dc requires no additional human
annotations: each context only consists of the initial observation state and no action is needed. This
makes context dataset scaling a cost-effective way to enhance generalization of RIPT-VLA.
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Effect of context variance in RLOO group. In Equation 2, each batch of rollouts is grouped
by shared initial state contexts. In realistic deployments, however, perfectly matching initial states
is impractical due to inevitable setup noise. To simulate this, we compute the standard deviation
of object initial positions across LIBERO-LONG, which is around 2.5 cm. Starting with a QueST
model SFT on 1 demo, we run RIPT-VLA while injecting Gaussian noise into the initial states with
increasing scales of std. As shown in Figure 7, performance remains stable up to 1.0× (2.5 cm), and
only begins to degrade beyond 2.0×. Remarkably, even at 7.0× variance (17.5 cm), RIPT-VLA still
outperforms the SFT baseline by a significant margin.

A.4 LLM USAGE

We used large language models (LLMs) primarily to improve the presentation and clarity of this
paper. Specifically:

• Formatting of result tables in latex from CSV files. We ensure all numbers rigorously
cross-checked against experiment outputs.

• Adjustments to the visual style of curve plots. We ensure all values match the underlying
experimental results.

• Refinement of grammar and wording in the Abstract and Introduction to improve readability.

All experimental design, implementation, and analysis were conducted by the authors.
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