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Abstract

We introduce WarpSci , a domain agnostic framework designed to overcome crucial system
bottlenecks encountered in the application of reinforcement learning to intricate environ-
ments with vast datasets featuring high-dimensional observation or action spaces. Notably,
our framework eliminates the need for data transfer between the CPU and GPU, enabling
the concurrent execution of thousands of simulations on a single or multiple GPUs. This
high data throughput architecture proves particularly advantageous for data-driven scien-
tific research, where intricate environment models are commonly essential.
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1 Introduction

Reinforcement Learning (RL) stands out as a powerful algorithm for training AI agents,
applicable in diverse domains such as strategy games(OpenAI, 2018; Vinyals et al., 2019),
robotics (Gu et al., 2017; Ibarz et al., 2021), and large language models (Ouyang et al.,
2022). Notably, there has been a recent surge in interest regarding the application of RL
techniques in scientific research, encompassing diverse fields such as multi-agent1 modeling
in economics, climatology, and epidemiology (Zheng et al., 2022; Trott et al., 2021; Zhang
et al., 2022); signal processing in astrophysics (Nousiainen, J. et al., 2022; Yatawatta, 2023);
and investigating reaction paths in chemistry (Lan and An, 2021; Yoon et al., 2021). How-
ever, numerous engineering and scientific challenges persist in the adoption of RL in scientific
investigations. The performance of RL implementations can decelerate significantly when
simulations become data-intensive, particularly in scenarios involving numerous agents or
high-dimensional state or action spaces, resulting in experiments that span weeks. The
comparatively low data throughput of RL further contributes to the emergence of non-
stationary and strongly correlated data sequences, while the finite-horizon roll-out in RL
introduces bias over the value function estimation (Mnih et al., 2016; Zhang et al., 2020;
Lan and An, 2021). Regrettably, such complexity and challenges are commonplace in data-
driven scientific modeling. For instance, in economic simulations, the construction of a
realistic environment necessitates hundreds of agents and numerous actions (Zhang et al.,
2022). Similarly, the study of catalytic reaction pathways involves navigating a chemical
potential energy landscape that can easily exceed twenty dimensions with extreme noise
(Lan and An, 2021). While distributed systems are employed to scale RL performance,

1. An agent is an actor in an environment. An environment is an instance of a simulation and may include
many agents with complex interactions. An agent is neither an environment nor a policy model.
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the associated costs of worker communication and data transfer can be very high (Espeholt
et al., 2018, 2020; Hoffman et al., 2020; Pretorius et al., 2021), as detailed in Appendix A.

2 Contribution

The primary objective of this Extended Abstract is to bring attention to the challenge of RL
in scientific research arising from the data throughput, and introduce our comprehensive
solution, WarpSci . WarpSci is a computational framework specifically designed to achieve
massively high-throughput and domain-agnostic RL simulation in the context of data-driven
scientific research. The framework builds upon the foundation of WarpDrive (Lan et al.,
2022) which is accessible at https://github.com/salesforce/warp-drive.

WarpSci performs the entire RL workflow on a single or multiple GPUs, utilizing a
unified and in-place data store within GPUs for simulation roll-outs and training. This
minimizes the data transfer between CPU and GPU or within GPU, reducing simulation
and training time significantly. The framework also leverages GPU parallelization to con-
currently run thousands of RL simulations, operating independently in the dedicated GPU
blocks and concurrently producing exceptionally large batches of experience. WarpSci offers
simple Python classes located on the CPU to streamline all relevant CPU-GPU communi-
cation and interactions essential for RL, and offer simple toolings for constructing custom
RL environments connected to the CUDA back-end.

This high throughput yet cost-effective architecture proves particularly advantageous
for data-driven scientific research, where enormous data consumption, complex agent in-
teractions, and diverse environments are usually indispensable. More details of the design
choice and the computational architecture are provided in Appendix B.

3 Examples

We present three examples: gym classic control (Brockman et al., 2016) for benchmarking,
a multi-agent economic simulation (Trott et al., 2021), and generalizable catalytic reaction
paths modeling (Lan and An, 2021; Lan et al., 2024). All experiments ran on a single Nvidia
A100 GPU on the Google Cloud Platform. Due to space constraints, we provide a brief
summary in this section, with more information in Appendix C.

Throughput: WarpSci achieves significantly higher (at least 10 − 100×) throughput
than the distributed systems at low cost (a single A100 GPU). For example, 8.6M envi-
ronment steps/second for 10K concurrent cartpole environments, 0.12M for 1K concurrent
economic simulations and 0.95M for catalytic reaction modeling with 2K concurrent en-
vironments 2. Scaling almost linearly to thousands of environments or agents, WarpSci
demonstrates near-perfect parallelism. It can also train across multiple GPUs for further
throughput scaling. Convergence: Our study indicates that training with an increased
data throughput generated by concurrent environments achieves faster and more stable
global convergence. Environments Agnostic: WarpSci offers tools to develop custom
environments for diverse scientific research topics, and supports actor-critic algorithms for
both discrete and continuous actions.

2. In certain experiments, we employed a reduced level of concurrency to optimize the trainer’s capacity
and memory space.
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Appendix A. Scalable Reinforcement Learning

Common scalable RL systems often employ a combination of distributed roll-out and trainer
workers. Roll-out workers execute the environment to produce roll-outs, utilizing actions
sampled from policy models on either roll-out workers or trainer workers. Typically, roll-
out workers operate on CPU machines, occasionally utilizing GPU machines for richer
environments.(Pretorius et al., 2021; Hoffman et al., 2020; Espeholt et al., 2018). Trainer
workers gather roll-out data asynchronously from roll-out workers and iteratively optimize
policies on either CPU or GPU machines. While such a distributed design is scalable,
worker communication and data transfer cost is expensive and individual machine utilization
can be poor. To improve performance, GPU and TPU-based RL frameworks exist (Tang
et al., 2022; Hessel et al., 2021), but have focused on single-agent and domain-specific
environments, e.g., for Atari (Dalton et al., 2020), or learning robotic control in 3-D rigid-
body simulations (Freeman et al., 2021; Makoviychuk et al., 2021). Consequently, building
efficient RL pipelines for simulations with intricate agent interactions, substantial data
consumption, and diverse environments, as usually seen in scientific research, remains a
challenging endeavor.

Appendix B. Details of Architecture

Figure 1: A flow chart depicting WarpSci. Computations within this framework are orga-
nized into GPU blocks, each comprising multiple threads to facilitate concurrent
environment roll-outs. Each thread is responsible for operating an agent that
samples actions and computes rewards. These blocks have access to the global
GPU memory, which houses the RL environment (depicted as a 3-D grid in a
green-bordered box) with local variations, and deep policy models. Additionally,
they store in-place roll-out data for training purposes. The dashed brown boxes
represent references (not copies) of the policy model objects and data placeholders
managed by blocks and hosted in the global memory. Users have the flexibility to
compose and upload their custom environment setups to finalize the environment
construction.
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As shown in Fig. 1, WarpSci executes the entire RL workflow seamlessly on a single
GPU or multiple GPUs, utilizing a unified data storage hosted within the GPU for simu-
lation roll-outs, action inference, reset and training. This approach minimizes CPU-GPU
data communication and eliminates the need for additional data transfer within the GPU,
resulting in a substantial reduction in both simulation and training times. Furthermore,
our framework achieves parallelization at low cost by concurrently running thousands of
single-agent or multi-agent simulations, capitalizing on the inherent parallel processing ca-
pabilities of GPUs. Each environment instance operates independently within a dedicated
GPU block. Within each block, individual agents run on unique GPU threads, enabling
interactions across threads. Each instance maintains a reference (not a copy) to the envi-
ronment with local variations or random configurations, significantly reducing the storage
overhead associated with the environment setup.

WarpSci offers simple Python classes located on the CPU to streamline all relevant
CPU-GPU communication and interactions essential for RL. These classes connect to the
CUDA back-end and offer simple APIs for constructing high-level Python applications.
Users only need supply the step function to finalize the custom environment definition. As
a default environment composer, we employ Numba, a user friendly, just-in-time compiler
for Python. Finally, our framework automatically loads and integrates the environment
step into the environment-agnostic CUDA backend for the RL simulation.

Appendix C. Example Details

All experiments ran on a single Nvidia A100 GPU, a2-highgpu-1g, on the Google Cloud
Platform.

Classic Control. In the field of RL, classic control environments usually serve as fun-
damental benchmarks to evaluate the performance of various RL algorithms and systems.
These environments typically involve simple physics-based systems, yet their challenges lie
in achieving stable and optimal control. Iconic examples, such as CartPole and Acrobot in
gym environment(Brockman et al., 2016), offer controlled scenarios with well-defined dy-
namics, making them ideal for benchmarking the throughput scalability and the learning
capability of WarpSci .

Fig. 2(a) shows that WarpSci ’s performance in classic control environments scales lin-
early to 10K of environments, yielding perfect parallelism. For example, WarpSci runs
at 8.6 million environment steps per second with 10K Cartpole-v1 or Acrobot-v1 environ-
ments. Fig. 2(b) and (c) displays the convergence speed of WarpSci as a function of the
number of environment replicas running in parallel. The data reveal that, under consistent
fixed hyperparameters, the simulations operating with an increased number of concurrent
environments attain global convergence faster and more stably. Particularly, simulations
with 10K Cartpole and Acrobot environment replicas reach the global optimum within 30
and 5 minutes respectively, while 10 environment replicas can barely exhibit satisfactory
convergence in such a short period.
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Figure 2: Scalability, convergence and learning speed for WarpSci applied to gym classic
control environments. (a) Roll-out and training throughput in Cartpole-v1 and
Acrobot-v1 versus the number of parallel environments (log-log scale) to 10K
concurrent environments with random local initialization: the throughput scales
linearly. The average episodic reward (the accumulated total reward collected
from the start to the terminal state) versus the training time (wall-clock minutes)
for (b) Cartpole-v1 and (c) Acrobot-v1 running at various concurrency levels. The
model was trained on a single Nvidia A100 GPU. For robustness, the depicted
results are averaging over eight independent runs from scratch with different
initialization seeds and the same hyperparameters. The shadow regions represent
the error bar of eight independent runs.
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Figure 3: WarpSci performance in the COVID-19 economic simulation in log scale. Left:
Note that there is no data transfer with WarpSci . With 60 parallel environments,
WarpSci achieves 24 times higher throughput over CPU-based distributed train-
ing architectures (“total”). Moreover, both the roll-out and training phase are an
order of magnitude faster than on the distributed N1 node. Right: Environment
steps per second and end-to-end training speed scale almost linearly with the
number of environments. (Credit: Lan et al. (2021))

Multi-Agent Economics. We demonstrate the scalability of WarpSci to more intricate
environments through its evaluation in a COVID-19 simulation. This simulation, grounded
in real-world data, models the interplay between health and economic dynamics during the
COVID-19 pandemic. Notably, the simulation step is significantly more complex compared
to the gym classic control problems, consuming a larger fraction of each iteration’s runtime.

The simulation involves 52 agents, with 51 representing governors for each U.S. state
and Washington D.C., and an additional agent for the federal government of the USA. This
constitutes a complex two-level multi-agent environment, where state agents determine the
stringency level of the pandemic response, and the federal government provides subsidies to
eligible individuals. The actions of each agent influence health and economic outcomes, such
as deaths, unemployment, and GDP. Moreover, the federal government’s actions can alter
the health-economic trade-off and optimization objective for the U.S. states, rendering it a
complex and dynamic two-level RL problem. Interested readers seeking additional scientific
background and technical details are encouraged to refer to Trott et al. (2021); Zheng et al.
(2022).

For this study, WarpSci achieves 24 times higher throughput with 60 environment repli-
cas, compared to a 16 CPU node, n1-standard-16, on the Google Cloud Platform. Across
different timing categories as shown in Fig. 3, the performance gains comprise a 24 times
speed-up during the environment roll-out, a zero data transfer time, and a 30 times speed-up
for training the policy models. Moreover, WarpSci can scale almost linearly to 1K parallel
COVID-19 environments, resulting in even higher throughput gains.
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Figure 4: Convergence and learning speed, quantified by total runtime in wall-clock min-
utes, were assessed for Langmuir-Hinshelwood (a, b) and Eley-Rideal (c, d) hy-
drogenation reactions of NH2 to NH3. Varied numbers of concurrent environment
instances were employed: 4 in red, 20 in green, 100 in blue, and 500 in yellow.
The episodic reward denotes the mean accumulated reward that H atom actors
gather from the initial to the terminal state of (a) Langmuir-Hinshelwood and (c)
Eley-Rideal. Episodic step indicates the average total steps to reach the termi-
nal state for (b) Langmuir-Hinshelwood and (d) Eley-Rideal. Training utilized a
single Nvidia A100 GPU. For robustness, the displayed results are averages over
five independent runs from scratch with different initialization seeds and identical
hyperparameters. Shadow regions depict the error bars of the five independent
runs. (Credit: Lan et al. (2024))

Catalytic Reactions. Comprehending catalytic reaction pathways is essential for ad-
vancing our understanding of chemical processes, refining conditions, and designing robust
catalysts. These pathways offer insights into reaction mechanisms, facilitating the creation
of more selective catalysts (Mattos et al., 2012; Shao et al., 2016). However, exploring these
pathways presents significant challenges, including the complexity of multi-step reactions,
short-lived intermediates, and experimental intricacies (Chen et al., 2021; Shi et al., 2021;
Lan and An, 2021). RL shows promise in overcoming these challenges by providing an au-
tomated approach to navigating reaction networks. However, RL encounters scientific and
engineering obstacles, primarily limited by simulation throughput. Consequently, current
RL research in chemical reactions often concentrates on specific reactions, relying on model
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simplifications with state vector encodings or heuristic rules. This approach limits generaliz-
ability and requires substantial empirical design. Exploration is also confined to predefined
sets of reaction networks, hindering the discovery of unknown mechanisms (Yoon et al.,
2021; Lan and An, 2021; Margraf et al., 2023). Therefore, the pursuit of a more versatile
RL solution to explore undiscovered reaction mechanisms remains a significant challenge in
the field.

In this study, we present a reaction-agnostic methodology facilitated by WarpSci . The
RL environment is constructed solely based on the potential energy landscape derived from
first principles. This approach intrinsically defines the chemical reaction environment as
a function of atomic positions, eliminating the necessity for laborious empirical or semi-
empirical design of reaction-specific representations in RL environments. The outstanding
generalizability and training speed are supported by the remarkable high-throughput ca-
pacity enabled by our architecture.

We forecast the reaction pathway for the crucial hydrogenation step in the Haber-Bosch
(H-B) process on the Fe(111) surface. The H-B process holds a pivotal role in Earth’s
nitrogen cycle and represents over 2 percent of global energy consumption, yielding 160
million tons of ammonia annually. Despite a century of concentrated research to improve the
H-B process, progress has been slow (Chen et al., 2018). Our framework has the potential to
significantly contribute to process optimization, potentially reducing production costs and
CO2 emissions while enabling the establishment of smaller and more widespread plants.

Figure 4 displays the convergence speed asWarpSci processes the Langmuir-Hinshelwood
reaction as a function of the number of environment replicas, running in parallel. The data
reveal that, under consistent fixed hyperparameters, the simulations operating with an
increased number of concurrent environments attain global convergence faster and more
stably. The generalizable RL environment with the same hyperparameters is directly ap-
plicable to the study of Eley-Rideal reaction mechanism. The results highlight the critical
role of massively high data throughput in RL for effectively exploring a broad range of
reaction mechanisms through a generalizable RL environment representation built solely
upon atomic positions.

Our findings reveal that the Langmuir-Hinshelwood mechanism shares the same tran-
sition state as the Eley-Rideal mechanism for H migration to NH2, forming ammonia.
Furthermore, the reaction path identified by our model exhibits a lower energy barrier com-
pared to that through nudged elastic band calculation. In this Extended Abstract, we focus
on presenting the generalizability, training speed and convergence stability facilitated by the
high throughput of WarpSci . Interested readers seeking additional scientific background
and technical details of this study are encouraged to refer to Lan and An (2021); Lan et al.
(2024); Margraf et al. (2023).
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