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Abstract

Distributed machine learning has typically been approached from a data parallel
perspective, where big data are partitioned to multiple workers and an algorithm
is executed concurrently over different data subsets under various synchroniza-
tion schemes to ensure speed-up and/or correctness. A sibling problem that has
received relatively less attention is how to ensure efficient and correct model par-
allel execution of ML algorithms, where parameters of an ML program are parti-
tioned to different workers and undergone concurrent iterative updates. We argue
that model and data parallelisms impose rather different challenges for system de-
sign, algorithmic adjustment, and theoretical analysis. In this paper, we develop a
system for model-parallelism, STRADS, that provides a programming abstraction
for scheduling parameter updates by discovering and leveraging changing struc-
tural properties of ML programs. STRADS enables a flexible tradeoff between
scheduling efficiency and fidelity to intrinsic dependencies within the models, and
improves memory efficiency of distributed ML. We demonstrate the efficacy of
model-parallel algorithms implemented on STRADS versus popular implementa-
tions for topic modeling, matrix factorization, and Lasso.

1 Introduction

Advancements in sensory technologies and digital storage media have led to a prevalence of “Big
Data” collections that have inspired an avalanche of recent efforts on “scalable” machine learning
(ML). In particular, numerous data-parallel solutions from both algorithmic [28, 10] and system
[7, 25] angles have been proposed to speed up inference and learning on Big Data. The recently
emerged parameter server architecture [15, 18] has started to pave ways for a unified programming
interface for data parallel algorithms, based on various parallellization models such as stale syn-
chroneous parallelism (SSP) [15], eager SSP [5], and value-bound asynchronous parallelism [23],
etc. However, in addition to Big Data, modern large-scale ML problems have started to encounter
the so-called Big Model challenge [8, 1, 17], in which models with millions if not billions of pa-
rameters and/or variables (such as in deep networks [6] or large-scale topic models [20]) must be
estimated from big (or even modestly-sized) datasets. Such Big Model problems seem to have re-
ceived less systematic investigation. In this paper, we propose a model-parallel framework for such
an investigation.

As is well known, a data-parallel algorithm parallelly computes a partial update of all model pa-
rameters (or latent model states in some cases) in each worker, based on only the subset of data
on that worker and a local copy of the model parameters stored on that worker, and then aggregates
these partial updates to obtain a global estimate of the model parameters [15]. In contrast, a model
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parallel algorithm aims to parallelly update a subset of parameters on each worker — using either
all data, or different subsets of the data [4] — in a way that preserves as much correctness as possi-
ble, by ensuring that the updates from each subset are highly compatible. Obviously, such a scheme
directly alleviates memory bottlenecks caused by massive parameter sizes in big models; but even
for small or mid-sized models, an effective model parallel scheme is still highly valuable because it
can speed up an algorithm by updating multiple parameters concurrently, using multiple machines.

While data-parallel algorithms such as stochastic gradient descent [27] can be advantageous over
their sequential counterparts — thanks to concurrent processing over data using various bounded-
asynchronous schemes — they require every worker to have full access to all global parameters; fur-
thermore they leverage on an assumption that different data subsets are i.i.d. given the shared global
parameters. For a model-parallel program however, in which model parameters are distributed to
different workers, one cannot blindly leverage such an i.i.d. assumption over arbitrary parameter
subsets, because doing so will cause incorrect estimates due to incompatibility of sub-results from
different workers (e.g., imagine trivially parallelizing a long, simplex-constrained vector across mul-
tiple workers — independent updates will break the simplex constraint). Therefore, existing data-
parallel schemes and frameworks, that cannot support sophisticated constraint and/or consistency
satisfiability mechanisms across workers, are not easily adapted to model-parallel programs. On the
other hand, as explored in a number of recent works, explicit analysis of dependencies across model
parameters, coupled with the design of suitable parallel schemes accordingly, opens up new oppor-
tunities for big models. For example, as shown in [4], model-parallel coordinate descent allows us
to update multiple parameters in parallel, and our work in this paper further this approach by allow-
ing some parameters to be prioritized over others. Furthermore, one can take advantage of model
structures to avoid interference and loss of correctness during concurrent parameter updates (e.g.,
nearly independent parameters can be grouped to be updated in parallel [21]), and in this paper,
we explore how to discover such structures in an efficient and scalable manner. To date, model-
parallel algorithms are usually developed for a specific application such as matrix factorization [10]
or Lasso [4] — thus, there is a need for developing programming abstractions and interfaces that can
tackle the common challenges of Big Model problems, while also exposing new opportunities such
as parameter prioritization to speed up convergence without compromising inference correctness.

Effectively and conveniently programming a model-parallel algorithm stands as another challenge,
as it requires mastery of detailed communication management in a cluster. Existing distributed
frameworks such as MapReduce [7], Spark [25], and GraphLab [19] have shown that a variety of
ML applications can be supported by a single, common programming interface (e.g. Map/Reduce
or Gather/Apply/Scatter). Crucially, these frameworks allow the user to specify a coarse order to
parameter updates, but automatically decide on the precise execution order — for example, MapRe-
duce and Spark allow users to specify that parallel jobs should be executed in some topological order;
e.g. mappers are guaranteed to be followed by reducers, but the system will execute the mappers
in an arbitrary parallel or sequential order that it deems suitable. Similarly, GraphLab chooses the
next node to be updated based on its “chromatic engine” and the user’s choice of graph consistency
model, but the user only has loose control over the update order (through the input graph structure).
While this coarse-grained, fully-automatic scheduling is certainly convenient, it does not offer the
fine-grained control needed to avoid parallelization of parameters with subtle interdependencies that
might not be present in the superficial problem or graph structure (which can then lead to algorithm
divergence, as in Lasso [4]). Moreover, most of these frameworks do not allow users to easily prior-
itize parameters based on new criteria, for more rapid convergence (though we note that GraphLab
allows node prioritization through a priority queue). It is true that data-parallel algorithms can be im-
plemented efficiently on these frameworks, and in principle, one can also implement model-parallel
algorithms on top of them. Nevertheless, we argue that without fine-grained control over parameter
updates, we would miss many new opportunities for accelerating ML algorithm convergence.

To address these challenges, we develop STRADS (STRucture-Aware Dynamic Scheduler), a sys-
tem that performs automatic scheduling and parameter prioritization for dynamic Big Model paral-
lelism, and is designed to enable investigation of new ML-system opportunities for efficient man-
agement of memory and accelerated convergence of ML algorithms, while making a best-effort to
preserve existing convergence guarantees for model-parallel algorithms (e.g. convergence of Lasso
under parallel coordinate descent). STRADS provides a simple abstraction for users to program ML
algorithms, consisting of three “conceptual” actions: schedule, push and pull. Schedule specifies
the next subset of model parameters to be updated in parallel, push specifies how individual workers
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compute partial results on those parameters, and pull specifies how those partial results are aggre-
gated to perform the full parameter update. A high-level view of STRADS is illustrated in Figure 1.
We stress that these actions only specify the abstraction for managed model-parallel ML programs;
they do not dictate the underlying implementation. A key-value store allows STRADS to handle a
large number of parameters in distributed fashion, accessible from all master and worker machines.

Push Pull

Schedule

Master Master

Worker

Key-value
store

Key-value
store

Key-value
store

Master

Worker Worker Worker Worker Worker Worker

Variable/Param 
R/W

Variable/Param 
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Figure 1: High-level architecture of our STRADS
system interface for dynamic model parallelism.

As a showcase for STRADS, we implement and
provide schedule/push/pull pseudocode for three
popular ML applications: topic modeling (LDA),
matrix factorization (MF), and Lasso. It is our
hope that: (1) the STRADS interface enables
Big Model problems to be solved in distributed
fashion with modest programming effort, and (2)
the STRADS mechanism accelerates the conver-
gence Big ML algorithms through good schedul-
ing (particularly through used-defined scheduling
criteria). In our experiments, we present some evidence of STRADS’s success: topic modeling with
3.9M docs, 10K topics, and 21.8M vocabulary (200B parameters), MF with rank-2K on a 480K-by-
10K matrix (1B parameters), and Lasso with 100M features (100M parameters).

2 Scheduling for Big Model Parallelism with STRADS
// Generic STRADS application

schedule() {
// Select U params x[j] to be sent
// to the workers for updating
...
return (x[j_1], ..., x[j_U])

}

push(worker = p, pars = (x[j_1],...,x[j_U])) {
// Compute partial update z for U params x[j]
// at worker p
...
return z

}

pull(workers = [p], pars = (x[j_1],...,x[j_U]),
updates = [z]) {

// Use partial updates z from workers p to
// update U params x[j]. sync() is automatic.
...

}

Figure 2: STRADS interface: Basic functional signa-
tures of schedule, push, pull, using pseudocode.

“Model parallelism” refers to parallelization
of an ML algorithm over the space of shared
model parameters, rather than the space of
(usually i.i.d.) data samples. At a high level,
model parameters are the changing intermedi-
ate quantities that an ML algorithm iteratively
updates, until convergence is reached. A key
advantage of the model-parallel approach is
that it explicitly partitions the model param-
eters into subsets, allowing ML problems with
massive model spaces to be tackled on ma-
chines with limited memory (see supplement
for details of STRADS memory usage).

To enable users to systematically and pro-
grammatically exploit model parallelism,
STRADS defines a programming interface,
where the user writes three functions for
a ML problem: schedule, push and pull
(Figures 1, 2). STRADS repeatedly schedules
and executes these functions in that order, thus creating an iterative model-parallel algorithm.
Below, we describe the three functions.

Schedule: This function selects U model parameters to be dispatched for updates (Figure 1).
Within the schedule function, the programmer may access all data D and all model parameters
x, in order to decide which U parameters to dispatch. A simple schedule is to select model param-
eters according to a fixed sequence, or drawn uniformly at random. As we shall later see, schedule
also allows model parameters to be selected in a way that: (1) focuses on the fastest-converging pa-
rameters, while avoiding already-converged parameters; (2) avoids parallel dispatch of parameters
with inter-dependencies, which can lead to divergence or parallelization errors.

Push & Pull: These functions describe the flow of model parameters x from the scheduler to
the workers performing the update equations, as in Fig 1. Push dispatches a set of parameters
{xj1 , . . . , xjU } to each worker p, which then computes a partial update z for {xj1 , . . . , xjU } (or a
subset of it). When writing push, the user can take advantage of data partitioning: e.g., when only
a fraction 1

P of the data samples are stored at each worker, the p-th worker should compute partial
results zpj =

∑
Di
fxj

(Di) by iterating over its 1
P data points Di. Pull is used to collect the partial

results {zpj } from all workers, and commit them to the parameters {xj1 , . . . , xjU }. Our STRADS
LDA, MF, and Lasso applications partition the data samples uniformly over machines.
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3 Leveraging Model-Parallelism in ML Applications through STRADS
In this section, we explore how users can apply model-parallelism to their ML applications, using
STRADS. As case studies, we design and experiment on 3 ML applications — LDA, MF, and
Lasso — in order to show that model-parallelism in STRADS can be simple to implement, yet also
powerful enough to expose new and interesting opportunities for speeding up distributed ML.

3.1 Latent Dirichlet Allocation (LDA)
// STRADS LDA

schedule() {
dispatch = [] // Empty list
for a=1..U // Rotation scheduling
idx = ((a+C-1) mod U) + 1
dispatch.append( V[q_idx] )

return dispatch
}

push(worker = p, pars = [V_a, ..., V_U]) {
t = [] // Empty list
for (i,j) in W[q_p] // Fast Gibbs sampling
if w[i,j] in V_p

t.append( (i,j,f_1(i,j,D,B)) )
return t

}

pull(workers = [p], pars = [V_a, ..., V_U],
updates = [t]) {

for all (i,j) // Update sufficient stats
(D,B) = f_2([t])

}

Figure 3: STRADS LDA pseudocode. Definitions for
f1, f2, qp are in the text. C is a global model parameter.

We introduce STRADS programming through
topic modeling via LDA [3]. Big LDA mod-
els provide a strong use case for model-
parallelism: when thousands of topics and mil-
lions of words are used, the LDA model con-
tains billions of global parameters, and data-
parallel implementations face the challenge of
providing access to all these parameters; in con-
trast, model-parallellism explicitly divides up
the parameters, so that workers only need to ac-
cess a fraction of parameters at a given time.

Formally, LDA takes a corpus of N docu-
ments as input — represented as word “tokens”
wij ∈ W , where i is the document index and
j is the word position index — and outputs K
topics as well as N K-dimensional topic vec-
tors (soft assignments of topics to each docu-
ment). LDA is commonly reformulated as a
“collapsed” model [14], in which some of the
latent variables are integrated out for faster inference. Inference is performed using Gibbs sampling,
where each word-topic indicator (denoted zij ∈ Z) is sampled in turn according to its distribution
conditioned on all other parameters. To perform this computation without having to iterate over all
W ,Z, sufficient statistics are kept in the form of a “doc-topic” table D, and a “word-topic” table
B. A full description of the LDA model is in the supplement.
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Figure 4: STRADS LDA: Par-
allelization error ∆t at each iter-
ation, on the Wikipedia unigram
dataset with K = 5000 and 64
machines.

STRADS implementation: In order to perform model-
parallelism, we first identify the model parameters, and create a
schedule strategy over them. In LDA, the assignments zij are
the model parameters, while D,B are summary statistics over
zij that are used to speed up the sampler. Our schedule strategy
equally divides the V words into U subsets V1, . . . , VU (where U
is the number of workers). Each worker will only sample words
from one subset Va at a time (via push), and update the sufficient
statistics D, W via pull. Subsequent invocations of schedule will
“rotate” subsets amongst workers, so that every worker touches all
U subsets every U invocations. For data partitioning, we divide
the document tokens wij ∈ W evenly across workers, and denote
worker p’s set of tokens by Wqp , where qp is the index set for the
p-th worker. Further details and analysis of the pseudocode, particularly how push-pull constitutes
a model-parallel execution of LDA, are in the supplement.

Model parallelism results in low error: Parallel Gibbs sampling is not generally guaranteed
to converge [12], unless the parameters being sampled for concurrent updates are conditionally
independent of each other. STRADS model-parallel LDA assigns workers to disjoint words V
and documents wij ; thus, each worker’s parameters zij are almost conditionally independent of
other workers, resulting in very low sampling error 1. As evidence, we define an error score ∆t

that measures the divergence between the true word-topic distribution/table B, versus the local
copy seen at each worker (a full mathematical explanation is in the supplement). ∆t ranges from
[0, 2] (where 0 means no error). Figure 4 plots ∆t for the “Wikipedia unigram” dataset (see §5 for

1This sampling error arises because workers see different versions B — which is an unavoidable when
parallelizing LDA inference, because the Gibbs sampler is inherently sequential.

4



experimental details) with K = 5000 topics and 64 machines (128 processor cores total). ∆t is
≤ 0.002 throughout, confirming that STRADS LDA exhibits very small parallelization error.

3.2 Matrix Factorization (MF)
// STRADS Matrix Factorization

schedule() {
// Round-robin scheduling
if counter <= U // Do W
return W[q_counter]

else // Do H
return H[r_(counter-U)]

}

push(worker = p, pars = X[s]) {
z = [] // Empty list
if counter <= U // X is from W
for row in s, k=1..K

z.append( (f_1(row,k,p),f_2(row,k,p)) )
else // X is from H
for col in s, k=1..K

z.append( (g_1(k,col,p),g_2(k,col,p)) )
return z

}

pull(workers=[p], pars=X[s], updates=[z]) {
if counter <= U // X is from W
for row in s, k=1..K

W[row,k] = f_3(row,k,[z])
else // X is from H
for col in s, k=1..K

H[k,col] = g_3(k,col,[z])
counter = (counter mod 2*U) + 1

}

Figure 5: STRADS MF pseudocode. Definitions for
f1, g1, . . . and qp, rp are in the text. counter is a
global model variable.

We now consider matrix factorization (collab-
orative filtering), which can be used to pre-
dict users’ unknown preferences, given their
known preferences and the preferences of oth-
ers. Formally, MF takes an incomplete matrix
A ∈ RN×M as input, whereN is the number of
users, and M is the number of items. The idea
is to discover rank-K matrices W ∈ RN×K

and H ∈ RK×M such that WH ≈ A. Thus,
the product WH can be used to predict the
missing entries (user preferences). Let Ω be the
set of indices of observed entries in A, let Ωi

be the set of observed column indices in the i-
th row of A, and let Ωj be the set of observed
row indices in the j-th column of A. Then, the
MF task is defined by an optimization problem:
minW,H

∑
(i,j)∈Ω(aij −wihj)

2 +λ(‖W‖2F +

‖H‖2F ). We solve this objective using a parallel
coordinate descent algorithm [24].

STRADS implementation: Our MF sched-
ule strategy is to partition the rows of A into
U disjoint index sets qp, and the columns of A
into U disjoint index sets rp. We then dispatch
the model parameters W,H in a round-robin
fashion. To update the rows of W, each worker p uses push to compute partial summations on its
assigned columns rp of A and H; the columns of H are updated similarly with rows qp of A and
W. Finally, pull aggregates the partial summations, and then update the entries in W and H. In
Figure 5, we show the STRADS MF pseudocode, and further details are in the supplement.

3.3 Lasso
STRADS not only supports simple static schedules, but also dynamic, adaptive strategies that take
the model state into consideration. Specifically, STRADS Lasso implementation schedules param-
eter updates by (1) prioritizing coefficients that contribute the most to algorithm convergence, and
(2) avoiding the simultaneous update of coefficients whose dimensions are highly inter-dependent.
These properties complement each other in an algorithmically efficient way, as we shall see.

Formally, Lasso can be defined by an optimization problem: minβ
1
2 ‖y −Xβ‖22 + λ

∑
j |βj |,

where λ is a regularization parameter that determines the sparsity of β. We solve Lasso us-
ing coordinate descent (CD) update rule [9]: β

(t)
j ← S(xT

j y −
∑

j 6=k x
T
j xkβ

(t−1)
k , λ), where

S(g, λ) := sign(β) (|g| − λ)+.

STRADS implementation: Lasso schedule dynamically selects parameters to be updated with
the following prioritization scheme: rapidly changing parameters are more frequently updated than
others. First, we define a probability distribution c = [c1, . . . , cJ ] over β; the purpose of c is
to prioritize βj’s during schedule, and thus speed up convergence. In particular, we observe that

choosing βj with probability cj = f1(j) :∝
(
δβ

(t−1)
j

)2

+ η substantially speeds up the Lasso

convergence rate, where η is a small positive constant, and δβ(t−1)
j = β

(t−2)
j − β(t−1)

j .

To prevent non-convergence due to dimension inter-dependencies [4], we only schedule βj and βk
for concurrent updates if xT

j xk ≈ 0. This is performed as follows: first, select L′(> L) indices of
coefficients from the probability distribution c to form a set C (|C| = L′). Next, choose a subset
B ⊂ C of size L such that xT

j xk < ρ for all j, k ∈ B, where ρ ∈ (0, 1]; we represent this selection
procedure by the function f2(C). Note that this procedure is inexpensive: by selecting L′ candidate
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βj’s first, only L′2 dependencies need to be checked, as opposed to J2, where J is the total number
of features. Here L′ and ρ are user-defined parameters.

We execute push and pull to update the coefficients indexed by B using U workers in parallel.
The rows of the data matrix X are partitioned into U submatrices, and the p-th worker stores the
submatrix Xqp ∈ R|qp|×J ; with X partitioned in this manner, we need to modify the CD update rule
accordingly. Using U workers, push computes U partial summations for each selected βj , j ∈ B,
denoted by {z(t)

j,1, . . . , z
(t)
j,U}, where zj,p represents the partial summation for βj in the p-th worker at

the t-th iteration: z(t)
j,p ← f3(p, j) :=

∑
i∈qp

{
(xi

j)
Ty −

∑
j 6=k(xi

j)
T (xi

k)β
(t−1)
k

}
. After all pushes

have been completed, pull updates βj via β(t)
j = f4(j, [z

(t)
j,p]) := S(

∑U
p=1 z

(t)
j,p, λ).

// STRADS Lasso

schedule() {
// Priority-based scheduling
for all j // Get new priorities
c_j = f_1(j)

for a=1..L’ // Prioritize betas
random draw s_a using [c_1, ..., c_J]

// Get ’safe’ betas
(j_1, ..., j_L) = f_2(s_1, ..., s_L’)
return (b[j_1], ..., b[j_L])

}

push(worker = p, pars = (b[j_1],...,b[j_L])) {
z = [] // Empty list
for a=1..L // Compute partial sums
z.append( f_3(p,j_a) )

return z
}

pull(workers = [p], pars = (b[j_1],...,b[j_L]),
updates = [z]) {

for a=1..L // Aggregate partial sums
b[j_a] = f_4(j_a,[z])

}

Figure 6: STRADS Lasso pseudocode. Definitions for
f1, f2, . . . are given in the text.

Analysis of STRADS Lasso scheduling We
wish to highlight several notable aspects of the
STRADS Lasso schedule mentioned above.
In brief, the sampling distribution f1(j) and
the model dependency control scheme with
threshold ρ allow STRADS to speed up the
convergence rate of Lasso. To analyze this
claim, let us rewrite the Lasso problem by du-
plicating original features with opposite sign:
F (β) := minβ

1
2 ‖y −Xβ‖22 + λ

∑2J
j=1 βj .

Here, with an abuse of notation, X contains
2J features and βj ≥ 0, for all j = 1, . . . , 2J .
Then, we have the following analysis of our
scheduling scheme.

Proposition 1 Suppose B is the set of indices
of coefficients updated in parallel at the t-th
iteration, and ρ is sufficiently small constant
such that ρδβ(t)

j δβ
(t)
k ≈ 0, for all j 6= k ∈

B. Then, the sampling distribution p(j) ∝(
δβ

(t)
j

)2

approximately maximizes a lower bound on EB
[
F (β(t))− F (β(t) + ∆β(t))

]
.

Proposition 1 (see supplement for proof) shows that our scheduling attempts to speed up the con-
vergence of Lasso by decreasing the objective as much as possible at every iteration. However, in

practice, we approximate p(j) ∝
(
δβ

(t)
j

)2

with f1(j) ∝ δ
(
β

(t−1)
j

)2

+ η because δβ(t)
j is unavail-

able at the t-th iteration before computing β(t)
j ; we add η to give all βj’s non-zero probability of

being updated to account for the approximation.

4 STRADS System Architecture and Implementation
Our STRADS system implementation uses multiple master/scheduler machines, multiple worker
machines, and a single “master” coordinator2 machine that directs the activities of the schedulers
and workers The basic unit of STRADS execution is a “round”, which consists of schedule-push-
pull in that order. In more detail (Figure 1), (1) the masters execute schedule to pick U sets of
model parameters x that can be safely updated in parallel (if the masters need to read parameters,
they get them from the key-value stores); (2) jobs for push, which update the U sets of parameters,
are dispatched via the coordinator to the workers (again, workers read parameters from the key-value
stores), which then execute push to compute partial updates z for each parameter; (3) the key-value
stores execute pull to aggregate the partial updates z, and keep newly updated parameters.

To efficiently use multiple cores/machines in the scheduler pool, STRADS uses pipelined schedule
computations, i.e., masters compute schedule and queue jobs in advance for future rounds. In other

2 The coordinator sends jobs from the masters and the workers, which does not bottleneck at the 10- to
100-machine scale explored in this paper. Distributing the coordinator is left for future work.
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words, parameters to be updated are determined by the masters without waiting for workers’ param-
eter updates; the jobs for parameter updates are dispatched to workers in turn by the coordinator. By
pipelining schedule, the master machines do not become a bottleneck even with a large number of
workers. Specifically, the pipelined strategy does not occur any parallelization errors if parameters
x for push can be ordered in a manner that does not depend on their actual values (e.g. MF and
LDA applications). For programs whose schedule outcome depends on the current values of x (e.g.
Lasso), the strategy is equivalent to executing schedule based on stale values of x, similar to how
parameter servers allow computations to be executed on stale model parameters [15, 1]. In Lasso
experiments in §5, such schedule strategy with stale values greatly improved its convergence rate.

STRADS does not have to perform push-pull communication between the masters and the workers
(which would bottleneck the masters). Instead, the model parameters x can be globally accessible
through a distributed, partitioned key-value store (represented by standard arrays in our pseudocode).
A variety of key-value store synchronization schemes exist, such as Bulk Synchronous Parallel
(BSP), Stale Synchronous Parallel (SSP) [15], and Asynchronous Parallel (AP). In this paper, we
use BSP synchronization; we leave the use of alternative schemes like SSP or AP as future work.
We implemented STRADS using C++ and the Boost libraries, and OpenMPI 1.4.5 was used for
asynchronous communication between the master schedulers, workers, and key-value stores.

5 Experiments
We now demonstrate that our STRADS implementations of LDA, MF and Lasso can (1) reach larger
model sizes than other baselines; (2) converge at least as fast, if not faster, than other baselines; (3)
with additional machines, STRADS uses less memory per machine (efficient partitioning). For
baselines, we used (a) a STRADS implementation of distributed Lasso with only a naive round-
robin scheduler (Lasso-RR), (b) GraphLab’s Alternating Least Squares (ALS) implementation of
MF [19], (c) YahooLDA for topic modeling [1]. Note that Lasso-RR imitates the random scheduling
scheme proposed by Shotgun algorithm on STRADS. We chose GraphLab and YahooLDA, as they
are popular choices for distributed MF and LDA.

We conducted experiments on two clusters [11] (with 2-core and 16-core machines respectively),
to show the effectiveness of STRADS model-parallelism across different hardware. We used the
2-core cluster for LDA, and the 16-core cluster for Lasso and MF. The 2-core cluster contains 128
machines, each with two 2.6GHz AMD cores and 8GB RAM, and connected via a 1Gbps network
interface. The 16-core cluster contains 9 machines, each with 16 2.1GHz AMD cores and 64GB
RAM, and connected via a 40Gbps network interface. Both clusters exhibit a 4GB memory-to-CPU
ratio, a setting commonly observed in the machine learning literature [22, 13], which closely matches
the more cost-effective instances on Amazon EC2. All our experiments use a fixed data size, and
we vary the number of machines and/or the model size (unless otherwise stated); furthermore, for
Lasso, we set λ = 0.001, and for MF, we set λ = 0.05.
5.1 Datasets
Latent Dirichlet Allocation We used 3.9M English Wikipedia abstracts, and conducted experi-
ments using both unigram (1-word) tokens (V = 2.5M unique unigrams, 179M tokens) and bigram
(2-word) tokens [16] (V = 21.8M unique bigrams, 79M tokens). We note that our bigram vocab-
ulary (21.8M) is an order of magnitude larger than recently published results [1], demonstrating
that STRADS scales to very large models. We set the number of topics to K = 5000 and 10000
(also larger than recent literature [1]), which yields extremely large word-topic tables: 25B elements
(unigram) and 218B elements (bigram).

Matrix Factorization We used the Nexflix dataset [2] for our MF experiments: 100M anonymized
ratings from 480,189 users on 17,770 movies. We varied the rank of W,H from K = 20 to 2000,
which exceeds the upper limit of previous MF papers [26, 10, 24].

Lasso We used synthetic data with 50K samples and J = 10M to 100M features, where every
feature xj has only 25 non-zero samples. To simulate correlations between adjacent features (which
exist in real-world data sets), we first generate x1 ∼ Unif(0, 1). Then, with 0.9 probability, we
make xj ∼ Unif(0, 1), and with 0.1 probability, xj ∼ 0.9xj−1 + 0.1Unif(0, 1) for j = 2, . . . , J .
5.2 Speed and Model Sizes
Figure 7 shows the time taken by each algorithm to reach a fixed objective value (over a range of
model sizes), as well as the largest model size that each baseline was capable of running. For LDA
and MF, STRADS handles much larger model sizes than either YahooLDA (could handle 5K topics
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Figure 7: Convergence time versus model size for STRADS and baselines for (left) LDA, (center) MF, and
(right) Lasso. We omit the bars if a method did not reach 98% of STRADS’s convergence point (YahooLDA and
GraphLab-MF failed at 2.5M-Vocab/10K-topics and rank K ≥ 80, respectively). STRADS not only reaches
larger model sizes than YahooLDA, GraphLab, and Lasso-RR, but also converges significantly faster.
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Figure 8: Convergence trajectories of different methods for (left) LDA, (center) MF, and (right) Lasso.

on the unigram dataset) or GraphLab (could handle rank < 80), while converging more quickly;
we attribute STRADS’s faster convergence to lower parallelization error (LDA only) and reduced
synchronization requirements through careful model partitioning (LDA, MF). We observed that each
YahooLDA worker stores a portion of the word-topic table — specifically, those elements referenced
by the words in the worker’s data partition. Because our experiments feature very large vocabulary
sizes, even a small fraction of the word-topic table can still be too large for a single machine’s mem-
ory, which caused YahooLDA to fail on the larger experiments. For Lasso, STRADS converges
more quickly than Lasso-RR because of our dynamic schedule strategy, which is graphically cap-
tured in the convergence trajectory seen in Figure 8 — observe that STRADS’s dynamic schedule
causes the Lasso objective to plunge quickly to the optimum at around 250 seconds. We also see
that STRADS LDA and MF achieved better objective values than the other baselines, confirming
that STRADS model-parallelism is fast without compromising convergence quality.
5.3 Scalability
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Figure 9: STRADS LDA scalablity with increas-
ing machines using a fixed model size. (Left) Con-
vergence trajectories; (Right) Time taken to reach a
log-likelihood of −2.6× 109.

In Figure 9, we show the convergence trajecto-
ries and time-to-convergence for STRADS LDA
using different numbers of machines at a fixed
model size (unigram with 2.5M vocab and 5K top-
ics). The plots confirm that STRADS LDA ex-
hibits faster convergence with more machines, and
that the time to convergence almost halves with ev-
ery doubling of machines (near-linear scaling).

6 Conclusions
In this paper, we presented a programmable framework for dynamic Big Model-parallelism that
provides the following benefits: (1) scalability and efficient memory utilization, allowing larger
models to be run with additional machines; (2) the ability to invoke dynamic schedules that reduce
model parameter dependencies across workers, leading to lower parallelization error and thus faster,
correct convergence. An important direction for future research would be to reduce the communi-
cation costs of using STRADS. We also want to explore the use of STRADS for other popular ML
applications, such as support vector machines and logistic regression.
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