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ABSTRACT

Despite the efficacy of network sparsity in alleviating the deployment strain of
Large Language Models (LLMs), it endures significant performance degradation.
Applying Low-Rank Adaptation (LoRA) to fine-tune the sparse LLMs offers an
intuitive approach to counter this predicament, while it holds shortcomings in-
clude: 1) The inability to integrate LoRA weights into sparse LLMs post-training,
and 2) Insufficient performance recovery at high sparsity ratios. In this paper,
we introduce dynamic Low-rank Sparse Adaptation (LoSA), a novel method
that seamlessly integrates low-rank adaptation into LLM sparsity within a unified
framework, thereby enhancing the performance of sparse LLMs without increas-
ing the inference latency. In particular, LoSA dynamically sparsifies the LoRA
outcomes based on the corresponding sparse weights during fine-tuning, thus
guaranteeing that the LoRA module can be integrated into the sparse LLMs post-
training. Besides, LoSA leverages Representation Mutual Information (RMI) as
an indicator to determine the importance of layers, thereby efficiently determining
the layer-wise sparsity rates during fine-tuning. Predicated on this, LoSA adjusts
the rank of the LoRA module based on the variability in layer-wise reconstruction
errors, allocating an appropriate fine-tuning for each layer to reduce the output
discrepancies between dense and sparse LLMs. Extensive experiments tell that
LoSA can efficiently boost the efficacy of sparse LLMs within a few hours, with-
out introducing any additional inferential burden. For example, LoSA reduced the
perplexity of sparse LLaMA-2-7B by 68.73↓ and increased zero-shot accuracy by
16.32%↑, achieving a 2.60× speedup on CPU and 2.23× speedup on GPU, re-
quiring only 45 minutes of fine-tuning on a single NVIDIA A100 80GB GPU.
Code is available at https://github.com/wzhuang-xmu/LoSA.

1 INTRODUCTION

The development of large language models (LLMs) (Zhang et al., 2022; Touvron et al., 2023a;b) has
marked substantial advancements in the field of natural language processing (Achiam et al., 2023).
As the scale of these models increases, they demonstrate enhanced capabilities in understanding and
generating across diverse contexts (Kaplan et al., 2020; Brown et al., 2020). Nevertheless, the expo-
nential growth in model size presents formidable challenges for deployment and inference, primarily
due to escalated computational demands and latency (Zhu et al., 2023). To mitigate these issues, a
variety of model compression strategies have been developed. Techniques such as sparsity (Frantar
& Alistarh, 2023; Sun et al., 2023; Dong et al., 2024; Ma et al., 2023; Xia et al., 2023; An et al.,
2024; Huang et al., 2025a), quantization (Egiazarian et al., 2024; Xiao et al., 2023; Xu et al., 2024b;
Lin et al., 2023), and knowledge distillation (Ko et al., 2024; Hsieh et al., 2023; Gu et al., 2023;
Agarwal et al., 2024) have proven effective in reducing model size while largely preserving their
original efficacy, thus enhancing the feasibility of deploying large models in practical applications.
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Figure 1: Comparing traditional sparse LLM combined with LoRA to our LoSA method: (a) Tra-
ditional LLM sparsity methods employ uniform sparsity rates, and LoRA also uses uniform ranks.
Additionally, LoRA weights cannot be merged into the sparse LLM weights. (b) LoSA performs
dynamic sparse low-rank adaptation on LLMs, simultaneously applying sparsity to both LLM and
low-rank adaptation. Moreover, LoSA dynamically determines the layer-wise sparsity rates based
on representation mutual information and allocates the ranks of the low-rank adaptation according
to the reconstruction errors of the sparse LLM.

Among the diverse array of model compression techniques, sparsity emerges as a prominent method
for diminishing both the size and computational demands of LLMs (Li et al., 2023b; Lu et al., 2024;
Frantar & Alistarh, 2023; Sun et al., 2023). Notable implementations such as SparseGPT (Frantar
& Alistarh, 2023) and Wanda (Sun et al., 2023) have effectively demonstrated one-shot sparsity,
achieving substantial reductions in model size while largely maintaining performance. These strate-
gies also enhance inference speed on CPUs and GPUs through integration with specialized libraries
such as DeepSparse (NeuralMagic, 2021) and nm-vllm (NeuralMagic, 2024). However, these ap-
proaches encounter performance degradations at high sparsity levels. Consequently, fine-tuning are
essential to recuperate the efficacy of sparse LLMs (Guo et al., 2024), thereby ensuring that they
remain robust and effective in practical applications.

Leveraging parameter-efficient fine-tuning (PEFT) methods (Houlsby et al., 2019; Lester et al.,
2021; Hu et al., 2021) offers a compelling approach to fine-tune sparse LLMs without necessi-
tating the adjustment of the entire model’s parameters. By incorporating only a minimal number
of additional parameters, PEFT methods circumvent the resource-intensive demands typically asso-
ciated with full-model fine-tuning. Among various PEFT strategies, Low-rank Adaptation (LoRA)
(Hu et al., 2021) distinguishes itself through its innovative use of two low-rank matrices. These ma-
trices are integrated during the fine-tuning phase and subsequently can be merged with the original
model weights. This integration effectively preserves the original structure of the model while also
eliminating delays during inference, thereby streamlining the deployment process and improving
the model’s performance after fine-tuning.

However, directly employing the existing LoRA method to fine-tune sparse LLMs faces several crit-
ical issues: 1) Incompatibility between sparse LLMs and LoRA. The weights refined through
LoRA cannot be seamlessly integrated into sparse LLMs (Zhang et al., 2023a). Retaining LoRA
weight matrices leads to increased inference delays in sparse LLMs (Table 9), thereby compromis-
ing the compression and acceleration advantages initially gained from sparsity. 2) Static setup of
uniform sparsity rates. Existing SparseGPT (Frantar & Alistarh, 2023) and Wanda (Sun et al.,
2023) methods predefine a uniform sparsity rate for each layer; however, the relative importance of
each layer may change during the fine-tuning process. The setting of uniform layer-wise sparsity
rates impairs the performance of the sparse model. 3) Static determination of the LoRA matrices’
rank. LoRA’s approach of predetermining the rank for each layer fails to account for the variability
in layer-wise reconstruction errors that arise during the sparsity of LLMs. Consequently, this results
in a uniform allocation of fine-tuning parameters across different layers, which is insufficient for
achieving satisfactory fine-tuning performance (Zhang et al., 2023b).

To address the issues mentioned above, we propose dynamic Low-rank Sparse Adaptation (LoSA)
for LLMs, a method that seamlessly integrates low-rank adaptation into LLM sparsity. LoSA at-
tains this objective through three primary innovations. Firstly, to maintain compatibility between
the sparse LLM weights and low-rank adaptation, we dynamically sparsify the low-rank adaptation,
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ensuring they align with the sparsity patterns of the LLM weights. Furthermore, we dynamically
adjust the layer-wise sparsity rates of the LLM using Representation Mutual Information (RMI)
(Tishby et al., 2000; Zheng et al., 2022). Firstly, we derive that RMI can be used as a metric to
determine the importance of each layer in LLMs according to the Information Bottleneck (IB) prin-
ciple (Tishby et al., 2000). Furthermore, we approximate the calculation of RMI using normalized
Hilbert-Schmidt Independence Criterion (HSIC) (Gretton et al., 2005; Kornblith et al., 2019). This
means that we only need to obtain the feature map of LLM to calculate RMI, allowing us to deter-
mine the importance of each layer and efficiently set the layer-wise sparsity rate during fine-tuning.
Lastly, we dynamically determine the ranks for the low-rank adaptation based on reconstruction
errors, which allows us to allocate a larger fine-tuning parameter budget to layers with greater re-
construction errors. This strategy not only achieves a rational distribution of fine-tuning parameters
but also maximizes the reduction of reconstruction errors in sparse LLMs, enhancing overall fine-
tuning performance.

Extensive experimental results demonstrate the efficiency and effectiveness of our proposed LoSA
for sparsifying representative LLMs, including LLaMA-1 (Touvron et al., 2023a), LLaMA-2 (Tou-
vron et al., 2023b), LLaMA-3 (Meta, 2024a), LLaMA-3.1 (Meta, 2024b), OPT (Zhang et al., 2022)
and Vicuna (Chiang et al., 2023) with their parameter sizes ranging from 7 billion to 70 billion.
Remarkably, our approach reduces the perplexity of a sparse LLaMA-2-7B (Touvron et al., 2023b)
model with sparsity ratio of 70%, obtained using Wanda (Sun et al., 2023) method, by 68.73↓, while
achieving an accuracy improvement of 16.32%↑ across seven downstream datasets. Moreover, it
achieves a 2.60× speedup on CPU and 2.23× speedup on GPU, requiring only 45 minutes of fine-
tuning on a single NVIDIA A100 80GB GPU.

2 METHODOLOGY

2.1 PRELIMINARIES

Notation. In this study, we use uppercase letters (e.g.,X,Y ) to denote random variables. Bold
typeface represents vectors (e.g.,x, y), matrices or tensors (e.g.,X,Y ). Calligraphic font indicates
loss functions (e.g.,L).

Problem Formulation. Following the approach introduced by SparseGPT (Frantar & Alistarh,
2023), we conceptualize the implementation of sparsity in LLMs as a layer-wise reconstruction
problem. Our objective is to minimize the difference in output between each layer of a sparse LLM
and its corresponding dense counterpart. Consider a dense LLM composed of n layers, where the
weight matrix of the i-th layer is denoted as Wi ∈ Rcout×cin , cin and cout representing the number of
input and output channels, respectively. The input feature maps are represented by Xi ∈ Rcin×d,
where d is the hidden dimension. The sparsity mechanism in an LLM involves applying a binary
mask Mi ∈ {0, 1}cout×cin to the weight matrix Wi, which selectively eliminates individual elements.

In this study, we explore the integration of low-rank adaptations with sparsity methods for LLMs.
Our approach incorporates low-rank adaptations into the framework of layer-wise reconstruction
error optimization. We introduce low-rank adaptation for the i-th layer as Bi ∈ Rcout×ri and Ai ∈
Rri×cin , with ri representing the rank of the adaptation. Simultaneously, we define the ranks of the
low-rank adaptations for all n layers collectively as r = (r1, r2, ..., rn), and the sparsity rates for
all n layers as s = (s1, s2, ..., sn). Consequently, the low-rank sparse adaptation for LLMs can be
viewed as the following optimization problem:

min
M ,BA

n∑
i=1

||Wi ∗Xi − (Mi ⊙ (Wi +BiAi)) ∗Xi︸ ︷︷ ︸
Li

||22,

s.t.
∥Mi∥0
cout · cin

= si,
1

n

n∑
i=1

si = Θ,
1

n

n∑
i=1

ri = Ω,

(1)

where ∗ denotes matrix multiplication, ⊙ represents Hadamard product, ∥ · ∥2 signifies the ℓ2 norm,
Li denotes reconstruction error of the i-th layer, and ∥Mi∥0 indicates the number of 0 elements in
matrix Mi.
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The proposed formula integrates LLM sparsity and low-rank adaptation into a unified optimiza-
tion objective, framing it as a constrained layer-wise reconstruction problem. This approach offers
advantages over the conventional method of optimizing sparsity and fine-tuning separately. By em-
ploying joint optimization, we aim to improve the accuracy of sparse LLM and low-rank adaptation
can be merged into sparse LLM.

Our optimization objective underscores the necessity of determining three critical parameters in the
joint optimization process for sparse fine-tuning: sparsity mask M , layer-wise sparsity rates s, and
the rank allocations for each layer r. To derive the sparsity mask M , we leverage existing sparsity
methods such as SparseGPT (Frantar & Alistarh, 2023) and Wanda (Sun et al., 2023). Notably, our
approach is designed to be compatible with any sparsity method, offering the potential to enhance
the accuracy of any sparse LLM. In the subsequent sections, we will elucidate our methodology for
determining the layer-wise sparsity rates s and the layer-wise rank allocations r, which are crucial
components of our optimization framework.

2.2 LAYER-WISE SPARSITY RATE

Motivation. The current SparseGPT (Frantar & Alistarh, 2023) and Wanda (Sun et al., 2023)
methods choose a uniform sparsity rate for each layer to sparsify LLMs, largely because determin-
ing layer-wise sparsity rates requires sorting the weight importance of each layer. For LLMs with
billions of parameters, this is challenging and time-consuming due to computational bottleneck.
However, uniform sparsity across layers is not optimal, as the contributions of each layer to the final
performance vary significantly (Yin et al., 2023). Applying the same sparsity rate to all layers risks
removing important weights (Lu et al., 2022; Wang et al., 2020). This leads us to consider how to
overcome computational bottleneck and quickly determine the layer-wise sparsity rates for LLMs?

In this paper, we propose a metric based on Representation Mutual Information (RMI) (Bachman
et al., 2019; Tschannen et al., 2019) for efficiently determining layer-wise sparsity rates. Specif-
ically, the calculation of RMI relies on the feature map of each layer, allowing us to evaluate the
importance of a layer by simply extracting its feature maps. This RMI-based approach for deter-
mining layer-wise sparsity rates significantly reduces computational complexity. We will provide a
detailed explanation of this method below.

RMI for Sparsity. The Information Bottleneck (IB) (Tishby et al., 2000) principle elucidates the
process of balancing mutual information between input and output representations in LLMs. For the
hidden representation of the i-th layer Xi, the goal is to minimize the mutual information I(X;Xi)
between input X and Xi to reduce inter-layer redundancy, while simultaneously maximizing the
mutual information I(Xi;Y ) between Xi and output Y to ensure the layer retains task-relevant
information for accurate predictions of Y . Specifically, it can be formulated as:

min I(X;Xi)− βI(Xi;Y ), (2)

where β is a trade-off parameter that balances information compression and the retention of task-
relevant information. Given a LLM consist of n layers, we aim to minimize redundancy not only
between the input and individual layers but also across different layers within the model. To gener-
alize the IB principle in this multi-layer context, we extend the objective as follows:

min

n∑
i=1

n∑
j=i+1

(I(X;Xi) + I(Xj ;Xi))− βI(Xi;Y ). (3)

In this expanded formulation, the term I(Xj ;Xi)(i ̸= j, i, j = 1, . . . , n) represents the mutual
information between two distinct layers, capturing the redundancy between them. The objective
is to minimize this inter-layer mutual information so that the representations learned by different
layers are as independent as possible. This implies that layers that are highly correlated with others
are less important. Therefore, the RMI between different layers I(Xj ;Xi) can serve as an accurate
and robust indicator of the importance of LLM layers (Zheng et al., 2021).

Algorithm Design. Now we describe how to obtain the layer-wise sparsity rate of LLM using
RMI. We use X1, ..., Xn to represent the hidden representations in each layer, the RMI between the
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i-th layer and the j-th layer is denoted as I(Xi, Xj). As mentioned above, a layer correlated to other
layers is less important. Therefore, the importance of a specific layer i is defined as:

pi = e−
∑n

j=1,j ̸=i I(Xi,Xj), (4)

where e is natural constant. With the layer-wise importance p ∈ Rn×1, determining the layer-wise
sparsity rate is transformed into a linear programming problem. Formally, the layer-wise sparsity
rate s ∈ Rn×1 can be determined as follows:

min
s

pTs s.t.
1

n

n∑
i=1

si = Θ. (5)

It should be noted that the RMI mentioned above is challenging to compute in practice, since the dis-
tribution in I(Xi, Xj) is intractable and is time-consuming to estimate. Here, we introduce the nor-
malized Hilbert-Schmidt Independence Criterion (HSIC) (Gretton et al., 2005; Zheng et al., 2021;
Kornblith et al., 2019) 1 to address this issue. First, we obtain the feature maps of each layer in
LLM, denoted as X1,X2, . . . ,Xn. Therefore, the RMI is calculated as:

I(Xi, Xj) ≈ nHSIClinear(Xi, Xj) =
||XT

j Xi||2F
||XT

i Xi||F ||XT
j Xj ||F

, (6)

where || · ||F denotes the Frobenius norm. This means that in Eq. 6, we use the feature maps to
estimate the RMI indicator, making the practical calculation of RMI possible. Combining Eq. 5
and Eq. 6, we can determine the importance of each layer of LLM across layers, thereby quickly
determining the layer-wise sparsity rate of LLM. The end-to-end time to compute the layer-wise
sparsity of LLaMA-2-7B (Touvron et al., 2023b) is only 48 seconds using one NVIDIA A100 80GB
GPU, which is quite fast. We demonstrate the effectiveness of the above method in the ablation
experiments in Section 3.5.

2.3 SPARSITY-AWARE RANK ALLOCATION

Problem Setup. Using low-rank adaptation can effectively restore the performance of sparse
LLMs. However, once a LLM with non-uniform layer-wise sparsity is obtained, low-rank adaptation
fine-tuning faces a critical challenge: how to allocate the layer-wise rank of low-rank adaptation for
the non-uniform sparse LLM within a limited fine-tuning parameter budget? LoRA (Hu et al., 2021)
uniformly assigns the same rank to all low-rank adaptations, which is inefficient because it fails to
account for the variability in layer-wise reconstruction errors across the sparse LLM during fine-
tuning (Frantar & Alistarh, 2023; Xu et al., 2024a). Intuitively, layers with higher reconstruction
errors should be allocated a larger fine-tuning budget, as this would help reduce the reconstruction
errors more effectively. Thus, we propose a sparsity-aware rank allocation algorithm that efficiently
distributes the fine-tuning parameter budget across each layer, guided by the layer-wise reconstruc-
tion errors of the sparse LLM. The objective is to maximize the overall reduction in reconstruction
error during the fine-tuning of the sparse LLM. Details of this algorithm are discussed below.

Algorithm Design. The notation (L1,L2, . . . ,Ln) denotes the reconstruction errors for n layers,
and the average value is Lavg = 1

n

∑n
i=1 Li. Meanwhile, Ω indicates the average rank of all n layers.

Consequently, the rank of the i-th layer is computed as:

ri = ⌊ Li

Lavg
× Ω⌉ (7)

where ⌊x⌉ rounds x to the nearest integer. This formula ensures a rational allocation of the fine-
tuning budget to each layer based on its reconstruction error. Layers with higher reconstruction
errors are assigned larger ranks, while those with lower errors receive smaller ranks, maximizing the
reduction in reconstruction error for sparse LLMs. In Section 3.5, we demonstrate the effectiveness
of this sparsity-aware rank allocation method through ablation experiments. Additionally, we com-
pare our approach with a strategy that allocates ranks based on sparsity rates, demonstrating that our
method achieves better performance.

1Normalized HSIC is also known as CKA (Kornblith et al., 2019), RV coefficient (Robert & Escoufier,
1976), and Tucker’s congruence coefficient (Lorenzo-Seva & Ten Berge, 2006).
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For training stability, when low-rank adaptations B,A increase their rank, we concatenate random
Gaussian initialized parameters N (0, σ2) to A and zeros to B. The above initialization operation is
the same as LoRA (Hu et al., 2021), so the layer’s output remains unchanged before and after new
parameters added. When B,A decrease their rank, the new adaptations directly inherit parameters
from the original adaptations and the extra parameters are discarded.

2.4 DYNAMIC SPARSITY AND ADAPTATION

To achieve better sparse fine-tuning LLMs, we further extend our algorithm to implement a dynamic
sparsity and fine-tuning approach. This involves progressively sparsifying an increasing number of
weights while simultaneously conducting low-rank adaptation fine-tuning. Dynamic sparsity and
fine-tuning ensure the maximum integration of LLM sparsity and low-rank adaptation fine-tuning.
We perform T steps of sparsity and fine-tuning, and determine the progressive sparsity rate using
the cubic sparsity schedule proposed by (Zhu & Gupta, 2017), as described below:

Θt = Θf −Θf

(
1− t

T

)3

, t = 1, 2, ..., T (8)

where Θf is final sparsity rate and Θt denotes the average sparsity rate of the n layers at step t.
Furthermore, since the reconstruction error tends to increase with the rising sparsity rate, we linearly
increase the average rank Ωt at each step, i.e.,

Ωt+1 = Ωt + 1, t = 1, 2, ..., T (9)

After calculating the average sparsity rate Θt at step t, we first establish the layer-wise sparsity rates
st using the method outlined in Section 2.2. Subsequently, we simultaneously sparsify the weights
of LLM and low-rank adaptation by applying the sparse mask M t, which is derived using either
the SparseGPT (Frantar & Alistarh, 2023) or Wanda (Sun et al., 2023) method. This coordinated
approach ensures compatibility between the LLM weights and the low-rank adaptations, facilitat-
ing the integration of low-rank adaptations into the sparse weights of the LLM after fine-tuning.
Once we have established sparse LLM, we then ascertain the layer-wise rank rt for the low-rank
adaptations, employing the rank allocation method described in Section 2.3. The full details of the
algorithm are outlined in Algorithm 1.

Algorithm 1: Dynamic Low-rank Sparse Adaptation (LoSA)
Input: Dense weight of LLM W , low-rank adaptation weight BA, dynamic steps T , target

sparsity rate Θf , initial average rank Ω1.
Output: Sparse fine-tuning LLM.

for t = 1, · · · , T do
Calculate the progressive sparsity rate Θt using Eq. 8;
Obtain RMI between two layers using Eq. 6;
Calculate the layer-wise importance pt by Eq. 4;
Obtain the layer-wise sparsity rate st by Eq. 5;
Get sparse mask M t of W t +BtAt through SparseGPT or Wanda;
Calculate the current average rank by Eq. 9;
Allocate layer-wise rank rt by Eq. 7;
Update low-rank adaptation weight BtAt;

end
Sparse low-rank adaptation is merged into sparse LLM weight to obtain the final sparse LLM.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTINGS

Models and Baselines. We have applied our method to several LLMs, including LLaMA-1 (Tou-
vron et al., 2023a), LLaMA-2 (Touvron et al., 2023b), LLaMA-3 (Meta, 2024a), LLaMA-3.1 (Meta,
2024b), Vicuna (Chiang et al., 2023), and OPT (Zhang et al., 2022), with parameter sizes ranging
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Table 1: Perplexity of LoSA for sparse LLMs on WikiText-2 dataset at 50/60/70% sparsity.

LLaMA-1 LLaMA-2 LLaMA-3 LLaMA-3.1 Vicuna

Sparsity Method 7B 13B 30B 7B 13B 70B 8B 8B 13B

0% Dense 5.68 5.09 4.77 5.12 4.57 3.12 6.05 6.18 5.94

50%

SparseGPT 7.22 6.21 5.31 6.51 5.63 3.98 9.30 9.18 7.73
w. LoRA 6.91 6.04 5.16 6.31 5.49 3.91 8.50 8.49 6.51
w. LoSA 6.86 5.98 5.13 6.27 5.44 3.88 8.38 8.36 6.46

Wanda 7.26 6.15 5.24 6.42 5.56 3.98 9.59 9.53 7.29
w. LoRA 6.84 6.04 5.17 6.33 5.46 3.94 8.56 8.53 6.53
w. LoSA 6.82 5.94 5.13 6.24 5.41 3.93 8.41 8.42 6.44

60%

SparseGPT 10.41 8.43 6.81 10.14 7.88 5.10 14.85 15.10 10.02
w. LoRA 8.29 6.94 6.18 7.98 6.75 4.90 10.77 10.73 7.87
w. LoSA 8.14 6.81 6.10 7.82 6.65 4.88 10.58 10.44 7.54

Wanda 10.69 8.75 6.56 10.79 8.40 5.25 20.02 21.51 9.54
w. LoRA 8.38 6.95 5.99 8.07 6.78 5.01 11.29 11.09 7.82
w. LoSA 8.20 6.75 5.92 7.88 6.62 4.95 10.85 10.59 7.59

70%

SparseGPT 26.30 19.24 12.56 27.42 20.57 9.46 40.53 39.76 21.95
w. LoRA 11.48 8.95 7.54 11.06 8.99 6.32 16.50 16.05 10.19
w. LoSA 11.20 8.71 7.21 10.82 8.82 6.13 15.74 15.41 9.92

Wanda 85.77 55.90 17.37 79.67 48.07 11.10 112.10 109.99 44.89
w. LoRA 13.46 9.90 8.34 12.57 9.65 6.50 20.25 18.98 10.42
w. LoSA 11.75 8.79 7.98 10.94 8.86 6.30 16.59 16.46 9.94

from 7 billion to 70 billion. To further validate the effectiveness of our approach in enhancing the
accuracy of existing sparse methods, we selected Wanda (Sun et al., 2023) and SparseGPT (Frantar
& Alistarh, 2023) as baselines, and also compare with LoRA (Hu et al., 2021). We set the rank of
LoRA to 8 and the remaining training settings for LoRA are the same as those for LoSA.

Evaluation. We report perplexity of sparse LLM on WikiText-2 (Merity et al., 2016) dataset and
use lm-eval-harness (Gao et al., 2021) to evaluate the zero-shot accuracy on downstream datasets,
including HellaSwag (Zellers et al., 2019), Winogrande (Sakaguchi et al., 2021), BoolQ (Clark
et al., 2019), OpenBookQA (Mihaylov et al., 2018), PIQA (Bisk et al., 2020), ARC-Easy, and ARC-
Challenge (Clark et al., 2018).

Datasets and Training Details. We randomly sampled a 10K subset from the Alpaca-GPT4
(Peng et al., 2023) to construct our fine-tuning dataset. We utilized the same calibration dataset
as SparseGPT (Frantar & Alistarh, 2023) and Wanda (Sun et al., 2023), which consists of 128
sequences sampled from the C4 training set (Raffel et al., 2020) for sparsification. During the
fine-tuning process, we employed the Paged AdamW optimizer (Dettmers et al., 2024), setting a
maximum gradient norm of 0.3. The learning rate followed a linear learning rate schedule and set
the learning rate to be 2 × 10−4. All experiments were conducted on NVIDIA A100 80GB GPUs.
We use one GPU for the 7B, 13B, and 8B models, two GPUs for the 30B models, and three GPUs
for the 70B models. We set the fine-tuning steps T = 5 and initial average rank Ω1 = 6.

3.2 LANGUAGE MODELING

The perplexity results of fine-tuning the sparse LLMs at 50-70% sparsity rate on the WikiText-
2 dataset are presented in Table 1. LoSA improves the performance of both the SparseGPT and
Wanda methods across models of various parameter sizes and architectures. For instance, when
fine-tuning 70 % sparse LLaMA-2-7B with LoSA, the perplexity of the sparse models obtained by
SparseGPT and Wanda is reduced by 16.60 and 68.73, respectively. Additionally, our method sig-
nificantly outperforms LoRA. These results highlight the effectiveness of our method in enhancing
the language modeling capabilities of sparse LLMs.
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Table 2: Mean Zero-shot accuracy results of LoSA for sparse LLMs on the HellaSwag, Winogrande,
BoolQ, OpenBookQA, PIQA, ARC-Easy and ARC-Challenge datasets at 50/60/70% sparsity. The
detailed accuracy of each dataset can be found in Appendix J.

LLaMA-1 LLaMA-2 LLaMA-3 LLaMA-3.1 Vicuna

Sparsity Method 7B 13B 30B 7B 13B 70B 8B 8B 13B

0% Dense 61.74 63.84 67.41 61.88 65.00 69.14 65.62 65.93 65.53

50%

SparseGPT 57.96 60.93 65.34 59.29 62.53 68.93 60.99 61.22 63.40
w. LoRA 59.83 62.68 66.31 60.47 63.90 69.56 63.20 64.25 63.56
w. LoSA 60.54 63.09 66.86 61.32 64.23 69.82 64.20 64.59 64.28

Wanda 57.08 61.39 65.59 59.46 62.88 68.21 59.65 59.58 63.74
w. LoRA 59.46 63.07 66.37 60.51 63.84 69.04 62.65 63.05 64.16
w. LoSA 60.09 63.49 67.19 60.85 64.32 69.65 63.20 63.63 64.41

60%

SparseGPT 52.72 56.57 61.63 53.90 58.20 66.27 54.05 55.80 60.25
w. LoRA 55.92 60.00 64.90 57.50 61.08 68.32 58.98 60.19 61.26
w. LoSA 57.38 61.06 65.97 58.52 61.67 69.04 60.30 60.74 61.67

Wanda 51.98 56.19 62.46 52.51 58.19 66.27 48.90 49.78 60.19
w. LoRA 55.39 59.67 64.50 56.83 60.91 68.24 57.09 57.61 60.89
w. LoSA 56.21 60.88 65.86 58.06 61.82 69.08 58.60 58.64 61.42

70%

SparseGPT 43.60 48.00 53.64 43.07 47.38 60.84 43.02 42.83 48.53
w. LoRA 50.41 55.00 61.63 50.76 55.16 65.72 50.36 52.33 55.15
w. LoSA 52.74 56.53 62.37 52.51 57.16 66.41 51.99 54.06 56.40

Wanda 37.45 40.79 53.35 35.33 38.88 58.48 35.42 36.10 42.06
w. LoRA 48.30 51.83 59.06 48.18 50.62 65.27 47.02 47.52 52.34
w. LoSA 51.20 55.31 61.57 51.65 53.00 66.12 50.37 50.33 56.37

3.3 ZERO-SHOT TASKS

We report the improvements in zero-shot accuracy on seven downstream tasks achieved by LoSA
for sparse LLMs with 50-70% sparsity, obtained using SparseGPT and Wanda methods in Table 2.
Our LoSA method significantly enhances the zero-shot accuracy across different models ranging
from 7 billion to 70 billion parameters. Notably, our LoSA method increases the average zero-
shot accuracy of the 70% sparse LLaMA-2-7B obtained via Wanda by 16.32%, surpassing LoRA
by 3.47%. These experimental results highlight the substantial enhancements in understanding and
reasoning capabilities of sparse LLMs brought about by our LoSA approach.

3.4 N:M SPARSITY

We extend LoSA to N:M sparsity and adopt a mixed N:8 sparsity (N refers to non-zero weights)
configuration following DominoSearch (Sun et al., 2021). We allow different layers to have distinct
N values while maintaining a constant overall sparsity ratio. We assign lower N values to more
important layers and the N value for each layer are determined using the method described in Section
2.2. The results are presented in Table 3. It is evident that LoSA improves the accuracy of the
LLaMA-2-7B under N:M sparsity and outperforms LoRA.

Table 3: Perplexity and mean zero-shot ac-
curacy of mixed N:M sparsity.

Method N:M Sparsity Perplexity Accuracy

SparseGPT 2:8 103.76 33.27
w. LoRA 2:8 22.47 41.46
w. LoSA Mixed 2:8 19.97 43.77
Wanda 2:8 3006.24 32.71
w. LoRA 2:8 56.14 38.72
w. LoSA Mixed 2:8 25.41 41.91

Table 4: The perplexity of the LLaMA-2-7B at differ-
ent sparsity rates.

Sparsity 40% 50% 60% 70% 80% 90%

SprseGPT 6.12 6.51 10.14 27.42 115.50 1439.35
w. LoRA 6.08 6.30 7.98 11.06 26.35 93.16
w. LoSA 6.05 6.25 7.82 10.82 21.54 84.39
Wanda 6.07 6.42 10.79 79.67 1980.85 17151.30
w. LoRA 6.04 6.31 8.07 12.57 36.43 335.43
w. LoSA 6.02 6.21 7.88 10.94 24.38 168.71
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3.5 ABLATION STUDY

Robustness across Different Sparsity Rates. Table 4 presents the results of perplexity for sparse
LLaMA-2-7B across different sparsity rate, ranging from 40% to 90%. These results demonstrate
that LoSA consistently reduces the perplexity of both SparseGPT and Wanda across all sparsity
levels and consistently outperforms LoRA. This validates the robustness and effectiveness of LoSA
method at various sparsity rates, ensuring reliable performance even as the pruning level varies.

Effectiveness of the Proposed Strategies. In this paper, we propose three strategies: Layer-wise
Sparsity Rate (LSR, Section 2.2), Sparsity-Aware Rank Allocation (SRA, Section 2.3), and Dy-
namic Sparsity and Adaptation (DSA, Section 2.4). To demonstrate the effectiveness of three strate-
gies, we conduct an ablation study in Table 5. The first row of the table presents the result of the
70% sparse LLaMA-2-7B obtained by Wanda and further fine-tuned by LoSA. We then progres-
sively remove each strategy from LoSA (rows 2-4), combinations of two strategies (rows 5-6), and
all three strategies (row 7). We can see that removing any strategy causes a decrease in the final
accuracy. The severity of the accuracy drop follows the order: removing three strategies > remov-
ing two strategies > removing one strategy. Additionally, among the three strategies, we found that
DSA contributed the most to the final accuracy. The experimental results demonstrate that all three
proposed strategies contribute to the final accuracy, and using all three strategies achieves the best
results.

Table 5: Ablation of the proposed strategies.

Method Perplexity Accuracy

LoSA 10.94 51.65
w/o LSR 11.36 (+0.42) 50.62 (-1.03)
w/o SRA 11.44 (+0.50) 50.94 (-0.71)
w/o DSA 11.78 (+0.84) 49.90 (-1.75)
w/o LSR & SRA 11.94 (+1.00) 48.81 (-2.84)
w/o LSR & DSA 12.23 (+1.29) 48.30 (-3.35)
w/o SRA & DSA 12.03 (+1.09) 48.54 (-3.11)
w/o LSR & SRA & DSA 12.74 (+1.80) 47.76 (-3.89)

Table 6: Experimental results of OPT-13B.

Method Sparsity Perplexity Accuracy

Dense 0% 10.13 55.22

SparseGPT 70% 20.26 47.68
w. LoRA 70% 17.73 51.34
w. LoSA 70% 17.05 52.31
Wanda 70% 73.70 41.51
w. LoRA 70% 20.54 49.16
w. LoSA 70% 19.75 50.13

Experimental results for OPT model. We show experimental results of LoSA fine-tuning 70%
sparse OPT-13B (Zhang et al., 2022) in Table 6. LoSA effectively restores the accuracy of sparse
model that are not based on the LLaMA architecture, and its performance is better than LoRA.

Table 7: Different ways to al-
locate rank. SR: Sparsity Rate
RE: Reconstruction Error.

Method Perplexity Accuracy
SR 11.37 50.97
RE 10.94 51.65

Reconstruction Error vs. Sparsity Rate. In Section 2.3, we
allocate fine-tuning parameters per layer based on reconstruction
error. Table 7 compares this with an alternative method that as-
signs higher ranks to layers with higher sparsity. Specifically, we
used the Wanda to obtain a 70% sparse LLaMA-2-7B model, and
carried out LoSA fine-tuning. The results show that reconstruc-
tion error-based allocation outperforms sparsity-based allocation,
likely because the optimization goal is to minimize error between
the dense and sparse LLM, sparsity rate does not adequately re-
flect changes in reconstruction error. Addtionally, computing the
reconstruction error takes only 46 seconds on an NVIDIA A100
80GB GPU, making it a better proxy for rank allocation.

Dynamic Steps. We present the ablation study of the dynamic steps T in Figure 2. Steps T deter-
mines the frequency at which the sparsity rate increases. A larger T means the sparsity rate increases
more slowly, and fewer parameters are removed each time. We show the impact of different values of
T on the final perplexity while keeping the number of fine-tuning samples constant. Specifically, we
demonstrate the results of fine-tuning a 70% sparse LLaMA-2-7B model obtained using the Wanda
method with LoSA. Increasing T appropriately can effectively reduce the model’s perplexity. How-
ever, a larger T may result in insufficient training of the model after each sparsification, which in
turn leads to a further increase in perplexity.
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Rank Budget. We show the impact of different rank budgets on the LLM’s perplexity in Figure 2,
with Ω1 = 2, 6, 10, 16, for the 70 % sparse LLaMA-2-7B obtained using Wanda. All experiments
are conducted with a fixed set of 10K fine-tuning samples. Increasing the rank budget appropriately
can effectively reduce perplexity, leading to a better recovery of the sparse model’s performance.
However, since the fine-tuning samples are fixed, further increasing the rank budget results in insuf-
ficient training of low-rank adaptation, which causes an increase in perplexity.

3.6 ANALYSIS

Fine-tuning Efficiency. In Table 8, we demonstrate the fine-tuning efficiency of LoSA. We com-
pared the fine-tuning parameters, time, and GPU memory usage between LoSA and LoRA. LoSA
requires fewer fine-tuning parameters, only 1 − s% of LoRA’s (where 1 − s% is the sparsity rate),
and its GPU memory usage is similar to LoRA. However, since LoSA performs T = 5 rounds
of sparsification and calculates layer-wise sparsity rates and rank allocation, it takes more time for
fine-tuning. Nevertheless, LoSA provides better accuracy and lower inference latency compared to
LoRA, and it only requires about an hour of fine-tuning, which we believe is a worthwhile trade-off.

2 4 6 8 10 12 14 16
Step / Rank Values

11.0

11.2

11.4

11.6

11.8

Pe
rp

le
xi

ty

Step
Rank

Figure 2: Effect of different steps and ranks
on perplexity.

Table 8: Fine-tuning efficiency of LoSA.

Method Fine-tuning
Params (M)

Fine-tuning
Time (min)

Fine-tuning
Memory (GB)

Wanda 0 0 0
w. LoRA 20.28 13.78 53.59
w. LoSA 20.28× (1− s%) 45.34 53.92

SparseGPT 0 0 0
w. LoRA 20.28 21.40 53.59
w. LoSA 20.28× (1− s%) 73.91 53.92

Inference Speedup. We analyzed the acceleration effect of the sparse LLaMA-2-7B, as shown
in Table 9. We measured the end-to-end time of the model generate tokens using the DeepSparse
(NeuralMagic, 2021) inference engine on an Intel(R) Xeon(R) Silver 4314 CPU and the nm-vllm
(NeuralMagic, 2024) inference engine on a NVIDIA RTX 4090 24GB GPU. Compared to the dense
model, our method achieves a remarkable 1.77-2.60× speedup on CPU and 1.71-2.23× speedup
on GPU at 50-70% sparsity. In contrast, LoRA cannot merge weights into sparse weights which
introduces additional inference latency that increases with higher sparsity rates. This demonstrates
the advantage of our LoSA method in maintaining the acceleration performance of sparse LLMs.

Table 9: The end-to-end inference speedup of sparse LLaMA-2-7B on CPU and GPU.

Device Sparsity Dense 50% 60% 70%
LoRA LoSA LoRA LoSA LoRA LoSA

CPU
Throughput
(tokens/s) ↑ 3.43 5.68 6.08 6.64 7.41 7.88 8.93

Speedup ↑ 1.00× 1.65× 1.77× 1.94× 2.16× 2.29× 2.60×

GPU
Throughput
(tokens/s) ↑ 57.35 79.63 97.88 88.58 111.82 98.10 127.69

Speedup ↑ 1.00× 1.39× 1.71× 1.54× 1.95× 1.71× 2.23×

4 CONCLUSION

In this paper, we propose a novel dynamic low-rank sparse adaptation method for the efficient fine-
tuning of sparse LLMs. Our method simultaneously sparsifies both LLM and low-rank adaptation,
ensuring that low-rank adaptation can be merged into LLM weight post-training, thereby not increas-
ing inference latency. Moreover, we introduce representation mutual information as an effective and
efficient metric for dynamically determining the layer-wise sparsity rates during fine-tuning. Addi-
tionally, we dynamically adjust the rank of low-rank adaptation based on the layer-wise reconstruc-
tion error changes during sparsity, ensuring a efficient fine-tuning budget allocation for each layer.
Extensive experiments demonstrate the effectiveness of our method in fine-tuning sparse LLMs.
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A LIMITATION

Although our LoSA method effectively enhances the accuracy of existing sparsity techniques under
different sparsity settings, there is still a gap to achieving lossless high-ratio sparsity for LLMs. This
underscores the need for future exploration of more efficient fine-tuning methods to further improve
the accuracy of sparse LLMs.

B RELATED WORK

LLM Sparsity. Existing sparsity methods (Huang et al., 2025b), including SparseGPT (Frantar
& Alistarh, 2023) and Wanda (Sun et al., 2023), enable training-free sparsity of LLMs, effectively
eliminating non-essential weights while striving to preserve model performance as much as possi-
ble. However, existing sparsity methods can lead to significant accuracy degradation under high
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sparsity rates, partly because these methods pre-set uniform layer-wise sparsity rates, overlooking
the fact that redundancy levels vary between different layers of LLMs (Song et al., 2024; Men
et al., 2024; Chen et al., 2024). OWL (Yin et al., 2023) has recognized this issue and employs
heuristic metrics to set the sparsity rates of LLMs inversely proportional to the ratio of observed
activation outliers within each layer, thereby achieving a non-uniformly sparse LLMs. While setting
non-uniform pruning rates can partially improve the accuracy of sparse LLMs, the accuracy still
remains unsatisfactory. Therefore, fine-tuning sparse LLMs to restore their accuracy is necessary.
This paper proposes using low-rank sparse adaptation to restore the accuracy of sparse LLMs and
dynamically determine the layer-wise sparsity rates using representation mutual information during
the fine-tuning process. Representation mutual information (Bachman et al., 2019; Tschannen et al.,
2019) have been successfully applied to prune small models such as CNNs and BERT (Zheng et al.,
2021; Fan et al., 2021; Hu et al., 2024). However, its application in pruning LLMs has not been
well explored. In this paper, we derive the use of the representation mutual information metric to
efficiently and rapidly determine the relative importance of each layer in LLMs during sparse fine-
tuning. Through extensive experiments, we validate the effectiveness of the representation mutual
information metric in pruning LLMs.

Low-Rank Adaptation (LoRA). LoRA (Hu et al., 2021) stands out as a highly effective
parameter-efficient fine-tuning (PEFT) method (Houlsby et al., 2019; Pfeiffer et al., 2020; Lester
et al., 2021; Liu et al., 2021), which incorporates trainable low-rank matrices that seamlessly rein-
tegrate into the original model weights post-tuning, ensuring maintained efficiency without added
latency or memory overhead. In LoRA fine-tuning, a crucial rank parameter dictates the tuning
budget for each layer. AdaLoRA (Zhang et al., 2023b) underscores the importance of adaptive al-
location, suggesting that this budget be tailored according to the significance score of each weight
matrix. SoRA (Ding et al., 2023) is to dynamically adjust the rank of low-rank adaptation in the
training process with a sparse gating unit trained by proximal gradient method. ALoRA (Liu et al.,
2024) evaluates the importance of each rank, iteratively prunes low-contribution ranks, and reallo-
cates resources to achieve dynamic adjustment of ranks. Similarly, we have identified the issue with
the distribution of fine-tuning parameters during the fine-tuning of sparse LLMs. Uniformly set-
ting the rank size like LoRA, does not effectively restore the accuracy of sparse LLMs. Therefore,
this paper advocates for the dynamic allocation of the rank parameter budget, based on the sparse
reconstruction errors across different layers, to optimize tuning efficacy. Although both LoSA and
previous related works propose adjusting the rank in LoRA to achieve efficient parameter allocation,
LoSA’s dynamic rank adjustment strategy is specifically designed for sparse LLMs. Allocating fine-
tuning parameters based on reconstruction error helps minimize the reconstruction error of sparse
LLMs.

Joint Sparsity and LoRA. Combining network sparsity with LoRA has been shown to effectively
enhance the accuracy of sparse LLMs (Li et al., 2024b;a; Zhao et al., 2024). For instance, LLM-
Pruner (Ma et al., 2023) executes a one-shot structured pruning of LLMs, followed by fine-tuning us-
ing LoRA. LoRAPrune (Zhang et al., 2023a) implements iterative structured pruning, where weight
importance is determined by replacing gradients on full weights with those calculated via LoRA.
LoSparse (Li et al., 2023a) performs structured pruning on LLMs, using a combination of low-rank
and sparse matrices to approximate the original weight matrix. LoRAShear (Chen et al., 2023) uti-
lizes LoRA in conjunction with dynamic fine-tuning strategies to reinstate knowledge in structural
pruning LLMs. All these studies apply LoRA to fine-tune structural pruning LLMs. Adjusting
the input/output dimensions of the two low-rank adaptations in LoRA and integrating them into
the structural pruning weights is straightforward (Zhao et al., 2024; Guo et al., 2023). However,
this approach is not viable for unstructured pruning (network sparsity). Unstructured pruning re-
moves individual weights, resulting in sparse LLMs. In contrast, low-rank adaptations remain dense
even after dimensional adjustments, making it impossible to merge them into sparse LLMs. Con-
sequently, this paper aims to explore effective techniques for integrating low-rank adaptations into

Table 10: Experimental results of comparison between cubic and linear sparsity schedule.

Method Perplexity Accuracy
Linear 8.04 57.79
Cubic 7.88 58.06
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the sparse weights of LLM. The goal is to ensure that sparse LLMs and low-rank adaptations share
the same sparse mask, thereby the model’s sparsity is preserved and inference latency remains unaf-
fected.

C MORE ABLATION STUDIES

C.1 CUBIC VS. LINEAR SPARSITY SCHEDULE

In Section 2.4, we gradually increase the sparsity rate using cubic sparsity schedule, where we
compare this with the setting of linearly increasing the sparsity rate. Linear sparsity schedule can be
be expressed as:

Θt = Θf −Θf

(
1− t

T

)
, t = 1, 2, ..., T (10)

where Θf is final sparsity rate and Θt denotes the average sparsity rate of the n layers at step t.

We present the impact of using a cubic sparsity schedule versus a linear sparsity schedule on fı̀nal
accuracy in Table 10. Specifically, we provide results of LoSA fı̀ne-tuning LLaMA-2-7B at a 60%
sparsity rate, as obtained using Wanda method. The cubic sparsity schedule consistently outper-
forms the linear sparsity schedule in terms of accuracy. Compared to the linear sparsity schedule,
which removes redundant connections uniformly, the cubic sparsity schedule prunes the network
more aggressively in the initial phase when redundant connections are abundant, and then gradually
reduces the number of weights pruned each time as fewer weights remain in the network. Our exper-
iments showed that the cubic sparsity schedule performed better than the linear sparsity schedule,
which is why we adopted it.

C.2 PARTIAL OR ALL LINEAR LAYERS?

In our experiments, we applied low-rank adaptation to all linear layers in both the attention and
MLP modules of the LLM. We present the experimental results of applying low-rank adaptation to
only a subset of the linear layers in Table 11. Specifically, we experimented with applying low-rank
adaptation solely to the linear layers within the attention of 60% sparse LLaMA-2-7B, as obtained
using Wanda. The results indicated that partial application of low-rank adaptation yielded worse
performance compared to applying it to all linear layers. We believe that since all the linear layers
are sparse, low-rank adaptation should be added to all of them to maximize the recovery of accuracy.

Table 11: Experimental results of adding low-rank adaptation to partial linear layers.

Linear Layer Perplexity Accuracy
Q,V 8.22 56.59
Q,K,V,O 8.13 56.95
All 7.88 58.06

C.3 COMPARISON WITH STRUCTURED PRUNING.

We compare the performance of structured pruning and unstructured pruning in Table 12. Specifi-
cally, for structured pruning, we use the LLM-Pruner (Ma et al., 2023) method to obtain the pruned
LLM and then perform LoRA fine-tuning on the pruned LLM, with the fine-tuning settings refer-
enced in Section 3.1. The acceleration data for structured pruning is obtained from LLM-Pruner
paper. From the experimental data in the table, we can see that unstructured pruning can achieve
basically the same acceleration effect on the GPU as structured pruning, while maintaining signifi-
cantly better accuracy than structured pruning.

C.4 LOSA VS. ”FINE-TUNE FIRST, THEN SPARSIFY”

A key issue addressed by LoSA is that LoRA cannot be merged into sparse LLMs. However, there is
a simple solution to this problem: first fine-tune the LLM using LoRA, and then apply sparsification
methods such as SparseGPT or Wanda. We call the above method as ”Fine-tune first, then sparsify”.
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Table 12: Comparison results of unstructured pruning and structured pruning.

Method Sparsity Perplexity Accuracy Speedup
LLaMA-2-7B 0% 5.12 61.88 1.00×
LLM-Pruner

w. LoRA Structured 50% 23.25 51.02 1.85 ×
SparseGPT

w. LoSA Unstructured 50% 6.25 61.32 1.71 ×

We compare LoSA with this ”Fine-tune first, then sparsify” approach in Table 13. We use the
Wanda method to obtain sparse LLaMA-2-7B model and use LoSA or the ”Fine-tune first, then
sparsify” method to fine-tune. As shown in the experimental data from Table 13, the accuracy of
the ”Fine-tune first, then sparsify” method is lower than that of LoSA, especially in high sparsity
settings, where it leads to severe accuracy degradation. In contrast, LoSA adopts an iterative sparse
fine-tuning approach that maintains good accuracy and can be merged into sparse LLMs, further
demonstrating the superiority of the LoSA method.

Table 13: LoSA vs. ”Fine-tune first, then sparsify”.

Method Sparsity Perplexity Accuracy
LLaMA-2-7B 0 % 5.12 61.88

”Fine-tune first, then sparsify” 50 % 7.00 60.35
LoSA 50 % 6.21 60.85

”Fine-tune first, then sparsify” 60 % 11.00 53.44
LoSA 60 % 7.88 58.06

”Fine-tune first, then sparsify” 70 % 77.57 34.99
LoSA 70 % 10.94 51.65

C.5 LOSA VS. SPARSE LORA

We show the effect of fine-tuning the sparse LLMs using Sparse LoRA, where Sparse LoRA is an
improved version of LoRA that has the same mask as sparse LLMs and can be merged into sparse
LLMs. Specifically, we show the results for the 70% sparse LLaMA-2-7B (Touvron et al., 2023b)
model in Table 14.

Table 14: LoSA vs. Sparse LoRA.

Method Perplexity HellaSwag Winogrande BoolQ OBQA PIQA ARC-e ARC-c Mean

LLaMA-2-7B 5.12 57.17 68.90 77.74 31.40 78.07 76.39 43.52 61.88

SparseGPT 27.42 33.08 58.41 64.89 17.40 62.46 43.22 22.01 43.07
w. Sparse LoRA 11.26 43.63 62.06 63.46 22.80 70.84 57.22 29.01 49.86
w. LoRA 11.06 44.80 62.90 63.36 24.20 71.22 58.71 30.12 50.76
w.LoSA 10.82 46.06 63.85 70.15 24.80 71.93 60.44 30.35 52.51

Wanda 79.67 27.92 49.33 52.87 12.60 55.33 30.60 18.69 35.33
w. Sparse LoRA 12.74 40.53 56.84 64.08 22.20 68.53 55.77 26.37 47.76
w. LoRA 12.57 40.77 57.22 64.19 22.40 68.55 57.32 26.79 48.18
w. LoSA 10.94 45.10 60.93 67.65 25.20 71.06 62.50 29.10 51.65

Since Sparse LoRA’s Low-rank adaptation is also sparse, its accuracy is worse than LoRA, and it
is also much worse than LoSA. Additionally, since both Sparse LoRA and LoSA can be merged
into sparse LLMs, their inference acceleration effects are basically the same, and both outperform
LoRA. Overall, our proposed LoSA method outperforms both Sparse LoRA and LoRA in terms of
accuracy and inference acceleration.

18



Published as a conference paper at ICLR 2025

C.6 ABLATION EXPERIMENT ON OPT MODEL.

We present ablation experiments of our proposed strategies on the LLaMA-2-7B model in Sec-
tion 3.5. In this section, we further demonstrate the effectiveness of our two proposed strategies,
including Layer-wise Sparsity Rate (LSR and Section 2.2) and Sparsity-Aware Rank Allocation
(SRA, Section 2.3), on the OPT model which is non-LLaMA architecture. Specifically, we used
the Wanda method to obtain a 70% sparse OPT-13B (Zhang et al., 2022) model. The experimental
results are in Table 15.

Table 15: Ablation experiment results on the OPT model.

Method Perplexity HellaSwag Winogrande BoolQ OBQA PIQA ARC-e ARC-c Mean

LoSA 19.75 45.20 59.91 60.96 24.80 73.39 57.65 29.01 50.13
w/o LSR 20.72 44.21 59.32 59.34 24.20 72.45 57.10 28.15 49.24
w/o SRA 20.55 44.84 59.66 59.24 24.40 72.69 57.07 28.41 49.47
w/o LSR & SRA 21.48 43.35 58.78 58.65 23.90 72.09 56.45 27.56 48.68

We can see that removing either the LSR or SRA leads to a decrease in LoSA accuracy. The results
demonstrate the soundness and effectiveness of LSR and SRA across different architectures.

D EXTENDING LOSA TO STRUCTURED PRUNING

Although LoSA focuses on fine-tuning unstructured pruned LLMs, we extended the LoSA method
to fine-tune structured pruned LLMs in this section. We use the Wanda-sp (An et al., 2024) method
to determine the mask of structured pruned LLMs. We compared LoSA with SliceGPT (Ashkboos
et al., 2024), LLM-Pruner (Ma et al., 2023), LoRAPrune (Zhang et al., 2023a) and LoRAShear
(Chen et al., 2023) on the LLaMA-1-7B model (Touvron et al., 2023a) with 20% pruning rate. The
experimental results are reported in Table 16.

Table 16: Experimental results of LoSA fine-tuning structured pruned LLMs.

Method Perplexity HellaSwag Winogrande BoolQ OBQA PIQA ARC-e ARC-c Mean

LLaMA-1-7B 5.69 73.18 78.35 72.99 67.01 67.45 41.38 42.40 63.25

SliceGPT 8.71 37.89 64.09 45.67 62.75 53.62 31.74 33.20 46.99
LLM-pruner 8.14 69.54 76.44 68.11 65.11 63.43 37.88 40.00 60.07
LoRAPrune 7.63 65.82 79.31 70.00 62.76 65.87 37.69 39.14 60.05
LoRAShear / 70.17 76.89 68.69 65.83 64.11 38.77 39.97 60.63
LoSA 7.07 71.67 78.17 71.56 65.86 66.93 40.66 40.50 62.19

Our LoSA method outperforms SliceGPT, LLM-Pruner, LoRAPrune and LoRAShear as shown
above, demonstrating the superior performance of LoSA.

E EXTENDING LOSA TO FINE-TUNE OTHER TRAINING-FREE SPARSITY
METHODS

Our LoSA method is designed for fine-tuning sparse LLMs, which means that LoSA can be com-
bined with any training-free sparsity methods to enhance their accuracy. We have demonstrated the
improvement that LoSA brings to SparseGPT (Frantar & Alistarh, 2023) and Wanda (Sun et al.,
2023). We further show the performance improvements of LoSA on other training-free sparsity
methods, including Pruner-Zero (Dong et al., 2024) and ALPS (Meng et al., 2024). All experimen-
tal data are based on a 70% sparse LLaMA-2-7B (Touvron et al., 2023b) model. The experimental
results are reported in Table 17.

From the data above, we can observe that the accuracy of training-free sparse LLMs has significantly
decreased compared to the dense model. LoSA effectively improves the accuracy of sparse LLMs,
outperforming LoRA.
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Table 17: Experimental results of LoSA fine-tuning other training-free sparsity methods.

Method Perplexity HellaSwag Winogrande BoolQ OBQA PIQA ARC-e ARC-c Mean

LLaMA-2-7B 5.12 57.17 68.90 77.74 31.40 78.07 76.39 43.52 61.88

Pruner-Zero 103.15 27.56 50.99 41.93 13.00 56.90 34.47 18.60 34.78
w. LoRA 11.56 43.43 60.46 67.19 21.00 70.40 59.60 27.47 49.94
w. LoSA 10.78 45.56 62.10 69.15 25.00 71.73 61.08 29.45 52.01

ALPS 19.31 38.35 61.96 64.59 22.20 66.82 48.37 24.95 46.75
w. LoRA 10.83 47.54 62.88 69.11 27.00 73.23 61.70 29.78 53.03
w. LoSA 10.28 49.90 64.34 71.38 28.10 75.24 63.78 31.27 54.86

F COMPARISON OF LOSA AND MORE BASELINES

We present a comparison of LoSA with AdaLoRA (Zhang et al., 2023b) and SoRA (Ding et al.,
2023) which dynamically adjust the rank of LoRA like LoSA. Since AdaLoRA and SoRA have only
been experimented on smaller models and there is no experimental data for LLMs such as LLaMA,
we use the open source codes of AdaLoRA and SoRA to fine-tune a 70% sparse LLaMA-2-7B
(Touvron et al., 2023b) model obtained by the Wanda (Sun et al., 2023) method. Since the rank of
LoRA is 8, according to the original paper, the initial rank for each incremental matrix in AdaLoRA
is 12. The rank of the SoRA method is set to 8, and other hyperparameters are set according to
the original paper. Other experimental settings follow those in Section 3.1 and are aligned with the
settings of LoRA and LoSA. The experimental results are reported in Table 18.

Table 18: Comparison of AdaLoRA (Zhang et al., 2023b) SoRA (Ding et al., 2023) and LoSA.

Method Perplexity HellaSwag Winogrande BoolQ OBQA PIQA ARC-e ARC-c Mean

LLaMA-2-7B 5.12 57.17 68.90 77.74 31.40 78.07 76.39 43.52 61.88

Wanda 79.67 27.92 49.33 52.87 12.60 55.33 30.60 18.69 35.33
w. LoRA 12.57 40.77 57.22 64.19 22.40 68.55 57.32 26.79 48.18
w. AdaLoRA 12.08 41.01 57.78 64.73 23.00 69.09 57.77 26.90 48.61
w. SoRA 11.89 41.37 57.87 64.95 23.40 68.78 58.25 27.17 48.83
w. LoSA 10.94 45.10 60.93 67.65 25.20 71.06 62.50 29.10 51.65

The results clearly show that our LoSA method outperforms AdaLoRA and SoRA, demonstrating
the effectiveness of LoSA. This is evident because AdaLoRA and SoRA only dynamically adjust
the rank, and the weights of AdaLoRA and SoRA cannot be merged into sparse LLMs. In contrast,
LoSA dynamically adjusts the rank based on reconstruction error, determines layer-wise sparsity
rates for sparse LLMs, and adopts dynamic sparse fine-tuning. Additionally, LoSA weights can
be merged into sparse LLMs. These strategies ensure that LoSA achieves better accuracy than
AdaLoRA and SoRA.

G MORE EXPERIMENTAL RESULTS OF N:M SPARSITY

We demonstrated the accuracy of LoSA fine-tuning sparse LLMs with mixed 2:8 sparsity in Section
3.4. In this section, we further demonstrate the accuracy of LoSA fine-tuning sparse LLMs with
mixed 2:4 sparsity and show the acceleration effect of the sparse LLMs with mixed 2:4 and mixed
2:8 sparsity on GPU. The results of LoSA fine-tuning the mixed 2:4 sparse LLaMA-2-7B (Touvron
et al., 2023b) obtained by Wanda (Sun et al., 2023) method are shown in Table 19.

LoSA improves accuracy for mixed 2:4 sparsity and outperforms LoRA. Since mixed 2:4 and mixed
2:8 sparsity is a specific type of sparsity pattern, it can also leverage the nm-vllm (NeuralMagic,
2024) inference engine to achieve accelerated inference on GPUs. We also measured the inference
acceleration effect of sparse LLaMA-2-7B with mixed 2:4 and mixed 2:8 sparsity on NVIDIA RTX
4090 24GB GPU. The results are shown in Table 20.
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Table 19: Experimental results of LoSA fine-tuning the mixed 2:4 sparse LLaMA-2-7B obtained by
Wanda method.

Method Sparsity Perplexity HellaSwag Winogrande BoolQ OBQA PIQA ARC-e ARC-c Mean

LLaMA-2-7B 0% 5.12 57.17 68.90 77.74 31.40 78.07 76.39 43.52 61.88

Wanda 2:4 11.02 40.92 62.43 67.65 24.20 70.84 61.78 31.20 51.29
w. LoRA 2:4 8.27 50.37 64.80 72.81 27.60 75.19 69.40 35.58 56.54
w. LoSA Mixed 2:4 7.72 51.85 66.01 74.51 29.70 76.54 71.08 37.26 58.14

Table 20: Speedup of LLaMA-2-7B with mixed N:M sparsity on GPU.

Speed Dense Mixed 2:4 Mixed 2:8
Throughput (tokens/s) 57.35 98.35 133.40
Speedup 1.00× 1.71× 2.33×

H EFFICIENCY ANALYSIS AS THE MODEL SIZE INCREASES

We measured the time consumption of our proposed methods, Layer-wise Sparsity Rate (LSR, Sec-
tion 2.2) and Sparsity-Aware Rank Allocation (SRA, Section 2.3), on LLMs of different parameter
sizes using a single NVIDIA A100 80GB GPU. The results are reported in Table 21.

Table 21: Time consumption of our proposed methods on models with different parameter sizes.

Time (seconds) 7B 8B 13B 30B 70B
LSR 48 34 74 140 332
SRA 46 32 71 132 321

From the table, we can observe that as the model size increases, the required computation time also
increases. However, for the largest 70B model, the computation time for LSR and SRA are only
332 seconds and 321 seconds, respectively, which are very fast and have minimal computational
overhead.

I ANALYSIS OF SPARSITY RATE

We plot the layer-wise sparsity rate of the sparse LLMs obtained by our LoSA method in Figure 3.
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Figure 3: Layer-wise sparsity rates of different LLMs.
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We observed that the RMI metric tends to assign lower sparsity rates to the initial and final layers of
LLMs while allocating higher sparsity rates to the middle layers. From the results, we can see that
there is a lot of redundancy in the middle layer of LLMs.

J DETAILED ZERO-SHOT TASK RESULTS

We evaluated a series of zero-shot learning tasks, as shown in Tables 2 and 3. These tasks include
HellaSwag (Zellers et al., 2019), Winogrande (Sakaguchi et al., 2021), BoolQ (Clark et al., 2019),
OpenBookQA (Mihaylov et al., 2018), PIQA (Bisk et al., 2020), ARC-Easy, and ARC-Challenge
(Clark et al., 2018). We present detailed task performance metrics in Tables 22, 23, 24, 25 and 26,
providing a comprehensive understanding of the zero-shot capabilities of the related models.
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Table 22: Zero-shot accuracy results of LoSA for sparse LLaMAs at 50% sparsity.

Model Method HellaSwag Winogrande BoolQ OBQA PIQA ARC-e ARC-c Mean

LLaMA-1-7B

Dense 56.92 69.93 75.05 34.40 78.67 75.34 41.89 61.74

SparseGPT 51.43 67.88 72.05 30.00 75.30 71.38 37.71 57.96
w. LoRA 55.72 68.59 74.16 31.00 76.39 71.46 41.47 59.83
w. LoSA 55.72 69.22 76.06 32.00 77.04 72.90 40.87 60.54

Wanda 51.85 66.06 71.22 28.80 75.63 69.11 36.86 57.08
w. LoRA 55.39 67.01 72.72 32.00 77.11 72.35 39.68 59.46
w. LoSA 55.72 68.03 73.36 31.40 77.15 73.48 41.21 60.09

LLaMA-1-13B

Dense 59.94 72.77 77.89 33.20 79.16 77.40 46.50 63.84

SparseGPT 54.95 71.67 76.97 31.20 77.26 72.47 41.98 60.93
w. LoRA 58.90 69.93 80.00 33.40 78.67 73.93 43.88 62.68
w. LoSA 59.29 71.19 80.03 33.60 79.22 73.95 44.37 63.09

Wanda 55.71 71.98 75.90 32.20 77.26 73.19 43.52 61.39
w. LoRA 58.64 71.03 79.69 34.50 78.40 74.41 44.79 63.07
w. LoSA 58.85 71.82 79.77 34.60 78.78 74.49 46.08 63.49

LLaMA-1-30B

Dense 63.35 75.69 82.69 36.00 81.01 80.30 52.82 67.41

SparseGPT 59.15 75.22 82.32 35.00 78.20 78.96 48.56 65.34
w. LoRA 60.50 75.34 83.46 35.20 79.22 80.05 50.60 66.31
w. LoSA 61.16 75.43 83.55 35.30 79.81 80.32 52.45 66.86

Wanda 60.93 73.48 81.90 34.60 79.27 79.29 49.66 65.59
w. LoRA 62.37 73.72 82.72 36.60 79.54 79.80 49.83 66.37
w. LoSA 63.02 74.35 85.20 35.20 79.71 80.22 52.65 67.19

LLaMA-2-7B

Dense 57.17 68.90 77.74 31.40 78.07 76.39 43.52 61.88

SparseGPT 52.37 69.85 75.02 29.20 75.46 73.27 39.85 59.29
w. LoRA 55.63 68.35 76.94 31.90 76.09 73.32 41.04 60.47
w. LoSA 55.73 68.67 77.19 32.00 75.71 77.42 42.49 61.32

Wanda 52.49 68.19 75.99 31.20 76.00 72.77 39.59 59.46
w. LoRA 55.31 68.11 77.06 31.80 77.58 72.73 40.96 60.51
w. LoSA 55.75 68.13 77.13 33.00 77.59 73.06 41.21 60.85

LLaMA-2-13B

Dense 60.06 72.22 80.52 35.20 79.11 79.42 48.46 65.00

SparseGPT 55.83 72.77 81.44 32.60 78.02 74.83 42.24 62.53
w. LoRA 58.68 72.06 80.58 34.40 78.78 77.48 45.33 63.90
w. LoSA 58.92 72.30 81.44 35.00 79.38 77.68 45.88 64.23

Wanda 56.90 71.35 81.84 32.00 78.40 76.18 43.52 62.88
w. LoRA 58.77 71.51 81.77 33.20 79.43 76.89 45.31 63.84
w. LoSA 59.00 71.59 81.83 33.80 79.47 77.57 47.01 64.32

LLaMA-2-70B

Dense 66.10 78.06 83.40 37.20 82.21 82.55 54.44 69.14

SparseGPT 63.80 78.85 83.55 38.20 81.94 82.40 53.75 68.93
w. LoRA 63.45 78.37 84.74 39.20 82.97 83.08 55.12 69.56
w. LoSA 64.06 78.57 85.34 39.20 82.54 83.31 55.20 69.82

Wanda 64.10 78.14 82.50 37.40 81.88 80.80 52.65 68.21
w. LoRA 64.06 76.64 83.30 38.10 82.54 83.38 55.29 69.04
w. LoSA 64.16 77.74 85.57 38.20 82.59 83.16 56.14 69.65

LLaMA-3-8B

Dense 60.19 72.77 81.35 34.80 79.71 80.09 50.43 65.62

SparseGPT 53.39 72.38 79.27 30.80 76.06 73.02 41.98 60.99
w. LoRA 57.40 71.82 81.91 31.40 78.51 76.22 45.14 63.20
w. LoSA 57.85 72.77 81.99 32.80 78.62 76.98 48.38 64.20

Wanda 51.23 70.24 78.69 30.20 75.68 71.04 40.44 59.65
w. LoRA 56.95 72.22 78.18 31.20 78.18 76.01 45.82 62.65
w. LoSA 57.29 72.38 78.75 32.00 78.45 76.52 48.21 63.20

LLaMA-3.1-8B

Dense 59.98 73.32 82.05 33.20 79.98 81.57 51.45 65.93

SparseGPT 53.62 72.14 81.19 29.20 76.17 74.49 41.72 61.22
w. LoRA 57.46 71.82 82.37 32.00 79.33 78.54 48.29 64.25
w. LoSA 57.65 72.30 82.54 32.40 79.76 78.75 48.72 64.59

Wanda 51.19 70.72 78.62 26.80 75.08 73.11 41.55 59.58
w. LoRA 56.67 71.19 79.02 30.60 78.51 77.48 47.89 63.05
w. LoSA 57.17 71.35 80.55 31.60 78.67 78.03 47.97 63.63
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Table 23: Zero-shot accuracy results of LoSA for sparse LLaMAs at 60% sparsity.

Model Method HellaSwag Winogrande BoolQ OBQA PIQA ARC-e ARC-c Mean

LLaMA-1-7B

Dense 56.92 69.93 75.05 34.40 78.67 75.34 41.89 61.74

SparseGPT 44.86 63.61 70.24 24.40 73.10 62.62 30.20 52.72
w. LoRA 52.27 65.82 64.92 29.20 75.84 67.30 36.12 55.92
w. LoSA 52.30 65.85 74.43 29.20 76.06 67.55 36.26 57.38

Wanda 43.63 62.04 67.19 25.00 73.02 62.61 30.34 51.98
w. LoRA 52.00 63.85 66.67 29.40 75.48 66.25 34.13 55.39
w. LoSA 52.16 64.17 69.66 29.70 75.76 66.41 35.58 56.21

LLaMA-1-13B

Dense 59.94 72.77 77.89 33.20 79.16 77.40 46.50 63.84

SparseGPT 49.06 68.75 70.37 27.60 75.63 68.40 36.20 56.57
w. LoRA 55.80 67.96 77.34 30.60 77.31 70.75 40.27 60.00
w. LoSA 56.22 69.77 78.93 32.00 77.64 71.63 41.21 61.06

Wanda 48.92 68.19 69.82 27.64 74.91 68.92 34.93 56.19
w. LoRA 55.34 69.06 76.27 30.20 76.88 70.20 39.76 59.67
w. LoSA 55.81 69.85 76.29 31.00 77.97 72.60 42.66 60.88

LLaMA-1-30B

Dense 63.35 75.69 82.69 36.00 81.01 80.30 52.82 67.41

SparseGPT 55.03 72.80 76.50 32.20 76.83 74.71 43.32 61.63
w. LoRA 61.01 72.69 81.25 35.00 78.51 78.07 47.78 64.90
w. LoSA 62.03 72.91 81.67 36.30 79.32 79.25 50.32 65.97

Wanda 56.71 72.30 76.24 31.60 77.67 76.19 46.52 62.46
w. LoRA 60.31 72.65 79.05 34.60 78.89 77.82 48.21 64.50
w. LoSA 61.02 72.75 81.56 36.40 79.22 79.12 50.94 65.86

LLaMA-2-7B

Dense 57.17 68.90 77.74 31.40 78.07 76.39 43.52 61.88

SparseGPT 45.74 65.90 71.99 25.80 71.11 64.02 32.76 53.90
w. LoRA 51.51 65.04 73.79 30.00 74.79 68.82 38.57 57.50
w. LoSA 52.95 67.32 73.82 31.00 75.97 69.95 38.63 58.52

Wanda 44.22 64.88 65.84 25.20 72.09 64.56 30.80 52.51
w. LoRA 51.28 65.82 70.43 30.20 74.97 69.36 35.75 56.83
w. LoSA 51.62 66.93 74.04 31.40 74.98 70.37 37.12 58.06

LLaMA-2-13B

Dense 60.06 72.22 80.52 35.20 79.11 79.42 48.46 65.00

SparseGPT 49.89 70.88 77.28 28.80 75.41 68.98 36.18 58.20
w. LoRA 55.85 69.01 78.13 32.40 77.42 74.03 40.70 61.08
w. LoSA 56.13 69.69 79.05 32.60 77.99 74.74 41.47 61.67

Wanda 48.82 68.75 77.28 29.00 75.84 69.87 37.80 58.19
w. LoRA 55.61 68.98 78.29 31.20 77.42 72.35 42.49 60.91
w. LoSA 55.90 69.93 78.38 32.40 77.91 74.54 43.69 61.82

LLaMA-2-70B

Dense 66.10 78.06 83.40 37.20 82.21 82.55 54.44 69.14

SparseGPT 59.41 76.64 83.85 35.60 80.35 80.26 49.49 66.52
w. LoRA 61.86 77.74 84.83 38.00 81.66 81.61 52.56 68.32
w. LoSA 62.23 77.43 84.90 38.40 82.69 82.90 54.70 69.04

Wanda 59.43 76.16 84.10 36.20 79.92 80.09 47.95 66.27
w. LoRA 62.43 76.01 84.25 38.50 81.01 82.20 53.24 68.24
w. LoSA 62.54 76.72 86.48 38.60 81.07 83.04 55.12 69.08

LLaMA-3-8B

Dense 60.19 72.77 81.35 34.80 79.71 80.09 50.43 65.62

SparseGPT 45.84 68.51 77.77 22.80 70.57 62.16 30.72 54.05
w. LoRA 52.91 68.67 76.91 26.20 75.17 72.22 40.78 58.98
w. LoSA 53.48 70.24 80.37 28.20 75.19 72.64 41.98 60.30

Wanda 38.02 60.14 68.56 20.00 67.95 59.93 27.73 48.90
w. LoRA 50.32 65.43 73.76 26.80 74.37 69.44 39.51 57.09
w. LoSA 51.54 68.51 75.57 27.00 75.57 71.42 40.61 58.60

LLaMA-3.1-8B

Dense 59.98 73.32 82.05 33.20 79.98 81.57 51.45 65.93

SparseGPT 45.53 68.75 77.65 24.20 71.38 68.10 34.98 55.80
w. LoRA 53.21 68.35 78.75 28.00 75.79 73.91 43.34 60.19
w. LoSA 53.62 69.22 79.97 28.10 76.17 74.66 43.47 60.74

Wanda 38.75 60.85 70.67 21.40 69.59 60.19 27.05 49.78
w. LoRA 51.47 65.90 73.85 27.80 75.24 70.29 38.74 57.61
w. LoSA 51.85 67.40 74.83 28.80 75.34 72.01 40.27 58.64
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Table 24: Zero-shot accuracy results of LoSA for sparse LLaMAs at 70% sparsity.

Model Method HellaSwag Winogrande BoolQ OBQA PIQA ARC-e ARC-c Mean

LLaMA-1-7B

Dense 56.92 69.93 75.05 34.40 78.67 75.34 41.89 61.74

SparseGPT 34.58 56.43 64.80 16.80 64.25 45.24 23.12 43.60
w. LoRA 45.86 60.93 63.12 23.20 70.62 58.67 30.46 50.41
w. LoSA 46.45 64.09 68.65 24.80 72.14 60.77 32.25 52.74

Wanda 28.86 52.80 59.69 14.20 57.56 31.27 17.75 37.45
w. LoRA 41.70 57.85 65.05 22.60 69.48 54.12 27.30 48.30
w. LoSA 45.13 60.06 67.65 24.40 71.65 59.72 29.78 51.20

LLaMA-1-13B

Dense 59.94 72.77 77.89 33.20 79.16 77.40 46.50 63.84

SparseGPT 37.51 63.30 68.78 20.80 67.63 52.78 25.17 48.00
w. LoRA 50.10 63.61 72.29 26.20 74.43 64.56 33.79 55.00
w. LoSA 51.28 64.88 74.59 29.20 75.35 64.62 35.76 56.53

Wanda 31.06 54.38 61.59 16.20 62.68 42.05 17.58 40.79
w. LoRA 47.56 61.01 66.02 23.00 72.74 61.57 30.89 51.83
w. LoSA 50.21 64.95 71.16 25.60 74.10 66.16 34.98 55.31

LLaMA-1-30B

Dense 63.35 75.69 82.69 36.00 81.01 80.30 52.82 67.41

SparseGPT 44.56 69.30 65.35 25.80 72.42 65.78 32.25 53.64
w. LoRA 55.66 72.13 79.36 30.40 77.15 73.86 42.83 61.63
w. LoSA 56.32 73.40 80.09 32.30 77.42 73.94 43.10 62.37

Wanda 44.23 67.01 66.70 26.40 72.03 64.86 32.25 53.35
w. LoRA 53.78 67.72 77.74 30.80 76.44 68.22 38.74 59.06
w. LoSA 56.21 69.77 78.50 32.20 77.31 73.90 43.09 61.57

LLaMA-2-7B

Dense 57.17 68.90 77.74 31.40 78.07 76.39 43.52 61.88

SparseGPT 33.08 58.41 64.89 17.40 62.46 43.22 22.01 43.07
w. LoRA 44.80 62.90 63.36 24.20 71.22 58.71 30.12 50.76
w. LoSA 46.06 63.85 70.15 24.80 71.93 60.44 30.35 52.51

Wanda 27.92 49.33 52.87 12.60 55.33 30.60 18.69 35.33
w. LoRA 40.77 57.22 64.19 22.40 68.55 57.32 26.79 48.18
w. LoSA 45.10 60.93 67.65 25.20 71.06 62.50 29.10 51.65

LLaMA-2-13B

Dense 60.06 72.22 80.52 35.20 79.11 79.42 48.46 65.00

SparseGPT 36.90 61.64 66.02 21.00 67.57 52.61 25.94 47.38
w. LoRA 49.86 66.77 71.99 26.40 74.21 63.97 32.94 55.16
w. LoSA 50.57 67.56 76.42 28.20 74.27 67.47 35.67 57.16

Wanda 29.60 51.70 62.32 13.60 58.65 37.21 19.11 38.88
w. LoRA 45.70 60.93 62.20 24.00 71.98 60.23 29.27 50.62
w. LoSA 46.79 62.90 68.20 25.20 73.65 63.38 30.80 53.00

LLaMA-2-70B

Dense 66.10 78.06 83.40 37.20 82.21 82.55 54.44 69.14

SparseGPT 50.98 75.45 80.06 30.00 75.24 73.57 40.61 60.84
w. LoRA 59.50 74.98 84.04 34.00 79.71 78.41 49.40 65.72
w. LoSA 60.21 75.09 84.72 35.00 79.80 79.43 50.60 66.41

Wanda 48.16 73.88 74.46 27.00 74.86 72.69 38.31 58.48
w. LoRA 59.06 75.45 82.48 34.00 79.05 78.41 48.46 65.27
w. LoSA 60.10 74.66 84.92 34.10 79.16 79.38 50.51 66.12

LLaMA-3-8B

Dense 60.19 72.77 81.35 34.80 79.71 80.09 50.43 65.62

SparseGPT 34.26 56.75 66.51 16.80 63.28 42.09 21.42 43.02
w. LoRA 44.93 62.35 61.59 21.80 70.57 60.06 31.23 50.36
w. LoSA 46.09 62.98 62.87 23.80 72.09 62.96 33.11 51.99

Wanda 27.36 49.96 53.33 12.00 56.04 31.86 17.41 35.42
w. LoRA 39.52 57.22 61.92 17.40 68.44 56.40 28.24 47.02
w. LoSA 43.12 61.01 62.61 23.20 70.95 60.35 31.40 50.37

LLaMA-3.1-8B

Dense 59.98 73.32 82.05 33.20 79.98 81.57 51.45 65.93

SparseGPT 33.97 54.70 67.34 14.80 61.92 45.33 21.76 42.83
w. LoRA 45.44 61.33 71.74 21.80 71.60 60.73 33.64 52.33
w. LoSA 46.32 64.48 74.19 25.20 71.82 62.04 34.34 54.06

Wanda 27.43 48.70 57.71 13.60 55.01 31.86 18.43 36.10
w. LoRA 39.75 56.67 64.51 19.40 68.99 55.72 27.65 47.52
w. LoSA 42.12 58.88 65.34 21.20 72.31 61.53 30.97 50.33
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Table 25: Zero-shot accuracy results of LoSA for sparse Vicuna/OPT at 50/60/70% sparsity.

Model Method HellaSwag Winogrande BoolQ OBQA PIQA ARC-e ARC-c Mean

Vicuna-13B(50%)

Dense 59.64 71.59 85.26 36.80 79.00 78.66 47.78 65.53

SparseGPT 56.88 69.82 83.58 36.00 77.22 75.08 45.71 63.40
w. LoRA 57.00 70.09 84.10 36.20 78.13 75.05 44.37 63.56
w. LoSA 57.39 72.22 84.77 36.30 78.45 75.38 45.39 64.28

Wanda 56.67 70.96 83.68 36.00 77.69 75.55 45.65 63.74
w. LoRA 57.30 71.51 83.67 36.20 78.45 76.18 45.82 64.16
w. LoSA 57.34 71.88 83.82 36.60 78.67 76.72 45.85 64.41

Vicuna-13B(60%)

Dense 59.64 71.59 85.26 36.80 79.00 78.66 47.78 65.53

SparseGPT 51.75 68.27 81.09 32.20 74.80 71.65 42.02 60.25
w. LoRA 54.23 69.77 81.56 32.30 77.15 71.21 42.61 61.26
w. LoSA 54.67 70.09 81.62 32.40 77.31 72.90 42.71 61.67

Wanda 51.46 68.43 81.71 31.60 74.65 71.84 41.64 60.19
w. LoRA 54.08 68.55 80.31 32.00 76.93 71.91 42.41 60.89
w. LoSA 54.85 69.14 81.28 32.80 77.20 71.97 42.66 61.42

Vicuna-13B(70%)

Dense 59.64 71.59 85.26 36.80 79.00 78.66 47.78 65.53

SparseGPT 38.52 61.01 73.30 17.80 67.30 53.91 27.90 48.53
w. LoRA 49.00 64.80 73.91 24.40 73.61 65.74 34.56 55.15
w. LoSA 49.40 64.96 76.85 26.40 74.54 66.58 36.09 56.40

Wanda 31.84 54.70 62.78 16.40 61.75 44.87 22.10 42.06
w. LoRA 45.77 60.93 68.32 24.20 71.87 62.37 32.94 52.34
w. LoSA 49.03 65.35 76.12 27.00 73.94 65.40 37.71 56.37

OPT-13B(70%)

Dense 52.43 65.04 65.93 27.20 75.84 67.13 32.94 55.22

SparseGPT 40.94 61.40 63.65 21.00 69.10 52.44 25.94 47.68
w. LoRA 46.79 60.77 63.79 26.40 72.96 59.55 29.10 51.34
w. LoSA 46.83 61.01 68.65 27.00 72.99 60.02 29.69 52.31

Wanda 34.36 55.09 55.02 15.60 62.89 43.73 23.89 41.51
w. LoRA 44.81 59.69 60.52 22.60 71.93 55.85 28.67 49.16
w. LoSA 45.20 59.91 60.96 24.80 73.39 57.65 29.01 50.13

Table 26: Zero-shot accuracy results of LoSA for sparse LLaMA-2-7B at N:M sparsity.

Sparsity Method HellaSwag Winogrande BoolQ OBQA PIQA ARC-e ARC-c Mean

2:8

Dense 57.17 68.90 77.74 31.40 78.07 76.39 43.52 61.88

SparseGPT 27.82 47.99 43.67 13.20 54.62 28.62 16.98 33.27
w. LoRA 33.26 52.09 62.20 19.00 61.21 42.13 20.31 41.46
w. LoSA 36.14 54.85 62.32 19.20 63.44 47.72 22.70 43.76

Wanda 26.19 50.83 37.83 13.80 52.88 26.52 20.90 32.71
w. LoRA 29.10 51.54 62.20 14.40 58.22 37.33 18.26 38.72
w. LoSA 33.24 54.30 62.28 17.00 61.64 43.06 21.84 41.91
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