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Abstract

To solve decision making tasks in unknown environments, artificial agents need
to explore their surroundings. While simple tasks can be solved through naive
exploration methods such as action noise, complex tasks require exploration objec-
tives that direct the agent to novel states. However, current exploration objectives
typically reward states purely based on how much the agent learns from them,
regardless of whether the states are likely to be useful for solving later tasks. In
this paper, we propose to guide exploration by empowerment to focus the agent
on exploring regions in which it has a strong influence over its environment. We
introduce a simple information-theoretic estimator of the agent’s empowerment
that is added as a reward term to any reinforcement learning method. On a novel
BridgeWalk environment, we find that guiding exploration by empowerment helps
the agent avoid falling into the unpredictable water, which substantially accelerates
exploration and task learning. Experiments on Atari games demonstrate that the
approach is general and often leads to improved performance.

1 Introduction

Figure 1: BridgeWalk Environment. The player
spawns on the left island and collects reward once
it crosses the bridge and reaches the right island.
Movement of the player is deterministic on land
and random in water.

Reinforcement learning algorithms shape the
behavior of artificial agents by maximizing the
sum of expected rewards that an agent could
achieve while interacting with the environment
(Konda and Tsitsiklis, 1999), and train policies
by crediting or discrediting actions based on
their associated values (Williams, 1992). When
environments provide sparse rewards, these val-
ues fail to assign credit to useful actions that
would otherwise lead to long-term rewards (Sut-
ton, 1984). In the past, researchers have ad-
dressed learning with sparse rewards (Ng et al.,
1999) with some recent progress leveraging re-
ward engineering derived from human experts for a number of tasks such as navigation (Chaplot
et al., 2020; Batra et al., 2020) and object rearrangement in simulated environments (Szot et al., 2021).
However, such engineered rewards do not generalize well to other complex tasks, which gives rise to
the need for more general utility functions with minimum computation footprint and application to
potentially all complex environments.

In an attempt towards achieving globally optimal performance, RL agents need to devise intrinsic
motivations to enable efficient learning of a diverse range of tasks (Singh et al., 2004). Even exploring
diverse regions of the underlying state-spaces is exacerbated by the visual complexity of inputs from
partially-observable environments. Recently, Sekar et al. (2020) proposed a method for inferring the
expected novelty of a state by imagining future states using a learned world model. Such motivations
for exploration are effective but also very general in the sense that the explored states would likely
not be useful in solving later tasks.
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Figure 2: Learning with extrinsic and intrinsic rewards. The agent receives an initial observation
from the environment and infers a posterior state representation. Using the learned world model, the
agent generates experience with the environment while predicting extrinsic rewards, and intrinsic
motivations for exploration and empowerment. The exploration reward is computed as the standard
deviation of K independent representations of the state, while the empowerment reward is computed
as the negative entropy of a distribution trained to decode actions from consecutive state pairs. Refer
to Section 3.1 for more details.

In this paper, we propose empowerment as a means for directed exploration in partially-observable
environments with visually complex outputs. We build upon the model-based RL framework in
DreamerV2 (Hafner et al., 2020), where we learn a world model that can imagine future states and
rewards, and use experience collected with the learned MDP to learn state-values and parameterized
policies. We present an efficient way of computing the intrinsic empowerment reward using a
parameterized function of consecutive state-pairs, trained by regressing the output towards the
action that led to the transition between those states. We use the computed empowerment reward
in conjunction with the exploration reward to direct exploration towards states where the agent can
maximally influence outcomes. To evaluate our approach, we conduct experiments on five Atari
games from the Arcade Learning Environment (Bellemare et al., 2012) and a novel simulation
environment called BridgeWalk. The BridgeWalk environment is developed to specially evaluate
agents on their ability to solve tasks in highly stochastic environments with sparse rewards.

2 Related Works
World Models Recent progress in deep learning has enabled learning of informative representations
of high-dimensional temporal data (Srivastava et al., 2015; Vondrick et al., 2016). Latent variable
models with autoregressive prediction in time (Denton and Fergus, 2018) have proven to be efficient
methods of video prediction, with adversarial objectives helping generate sharp videos (Lee et al.,
2018). Hierarchical models for modeling video (Sønderby et al., 2016; Zhao et al., 2017; Saxena et al.,
2021) have opened up new directions for learning high-level planners. Such progress in learning
recurrent latent-variable models has paved the way for model-based RL on partially-observable
environments using learned world models. Recently, recurrent state-space models enabled successful
planning for control tasks (Hafner et al., 2019a;b) and Atari games (Hafner et al., 2020).

Exploration By virtue of the RL objective, agents are penalized for taking low-value courses of
actions making them prone to getting stuck on certain reward modes in the state-space. This makes
exploration an intrinsically important task, especially in partially-observable environments where
even evaluating effective exploration is hard. While some methods directly measure novelty of states
to affect exploration (Lehman and Stanley, 2011; Bellemare et al., 2016; Burda et al., 2018), others
measure disagreement within learned world models (Shyam et al., 2018; Sekar et al., 2020). Recently,
Whitney et al. (2021) showed that decoupling exploration from task policies can be very effective for
sample-efficient learning.

Mutual information objectives MI objectives have been extensively used for learning high-level
representations of action and state spaces. VALOR (Achiam et al., 2018) learns ‘skills’ by encoding
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a sampled skill variable into a trajectory using a policy, and then decoding the same skill using a
probabilistic decoder. The decoder is trained to give high probability to the sampled skill that was
used to generate the input trajectory. VALOR was preceded by VIC (Gregor et al., 2016), DIAYN
(Eysenbach et al., 2018) which differ with regards to whether the MI was between skill and the whole
trajectory, or just the initial and end states, or all states. Our method of computing empowerment
employs a very similar technique where we maximize the mutual information between the action and
next state, given current state, by training a decoder to output the action that caused the transition
between the two states.

3 Method

Learning to solve tasks by reinforcement refers to collecting sequences of observations by acting
in the environment, and then positively or negatively reinforcing the agent’s actions based on the
collected long-term rewards. Since these observations can be very high-dimensional and do not
represent the entire summary of the agent’s experience so far, we encode the entire experience of the
agent in a trajectory into low-dimensional latent variables which are then used for decision-making.
We assume the environment is operating as a partially-observable Markov decision process (POMDP),
and the emission and state transitions of this POMDP as probability distributions parameterized
using neural networks. Using predicted rewards extrinsic and intrinsic to the agent we then compute
state-values and use them to reinforce actions of a parameterized policy. Our reward prediction heads
for extrinsic, exploration, and empowerment rewards are trained separately from and without any
effect on the trained world model.

3.1 Model Learning

We use a recurrent state-space model with discrete latent variables (Hafner et al., 2020) to model
different components in the POMDP. We parameterize and learn the state transition distribution
pψ(s

′|s, a), the decoder distribution pψ(o|s), and an approximate encoder qψ(s|o). Different com-
ponents of the world model are illustrated in Figure 2. The decoder is assumed to be a multivariate
Gaussian with diagonal covariance. The transition and encoder are assumed to be vectors of categori-
cal distributions, trained using straight-through gradients (Bengio et al., 2013). We train the entire
world model to maximize the log-likelihood of observations collected from the environment. Since
computing the exact likelihood requires marginalizing over the entire latent space, we instead use the
ELBO as our training objective. The training loss for the world model is given by

L(ψ) .= Eqψ(s1:T |o1:T ,a1:T )

[ T∑
t=1

ln pψ(ot|st, at) + ζ KL
[
qψ(st|ot, st−1) || pψ(st|st−1)

]]
. (1)

After learning the world model, we also learn the extrinsic reward (rextr) that the agent might obtain
when interacting with the environment. We parameterize this reward head using a neural network and
train it using a squared loss.

3.2 Intrinsic Motivations

In addition to training to maximize rewards extrinsic to our agent from the environment, we consider
the interplay between two model-based intrinsic motivations - exploration and empowerment.

Exploration We compute the exploration reward at any state using the strategy developed by Sekar
et al. (2020). In this approach, we compute K independent neural network representations of a latent
state s obtained from the learned encoder, say {s̃i}Ki=1. The exploration reward for being in that state
is computed as

rexpl(s) = std(s̃1, . . . , s̃K). (2)

If s is multi-dimensional, we compute the average standard deviation across all dimensions to obtain
a scalar reward. This reward quantifies the epistemic uncertainty about different points in the state-
space, and hence acts as an intrinsic motivation for the agent to visit unexplored regions of the
environment.
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Empowerment Klyubin et al. (2005) defined empowerment as the channel capacity of the agent’s
actuation channel, which could be interpreted as the amount of information that the agent could inject
into the MDP that could later be captured in the next state. In more recent approaches, this objective
was defined as the mutual information between the action and the next state distribution (Mohamed
and Rezende, 2015), which can be broken down into two entropies as,

I(at; st+1|st) = H[at|st]−H[at|st+1, st], (3)
where H[at|st] denotes the marginal entropy of the action given the current state, and H[at|st+1, st]
denotes the conditional entropy of the action given the next state. Even though we know the action
marginal p(at|st) (agent’s policy) and the state transition distribution p(st+1|at, st) (via the learned
world model), computing the posterior over the actions, p(at|st+1, st), would be hard as it requires
marginalization over the entire action space (Mohamed and Rezende, 2015). Hence, we compute
an approximate posterior q(at|st, st+1) over the actions and use its entropy to approximate the
conditional entropy term in the mutual information. Based on findings from (Hafner et al., 2020) that
long-term maximization of action entropy does not substantially help the agent in seeking out states
with high action entropy, we omit the entropy of the action marginal in our reward definition. Given a
pair of consecutive states (ŝt, ŝt+1), we define the empowerment reward as

rempow(ŝt, ŝt+1) = Eq(at|ŝt,ŝt+1)[ln q(at | ŝt, ŝt+1)]. (4)

We normalized all rewards by dividing them by a running estimate of the standard deviation of the
returns (Burda et al., 2018).

3.3 Agent Behavior
Given a posterior state s0, the agent imagines experience upto a horizon H , say
{âi−1, ŝi, r

i
extr, r

i
empow, r

i
expl}Hi=1. The predicted rewards and intrinsic motivations from the world

model help learn the agent behavior in an actor-critic framework. We define the actor as a categorical
distribution parameterized using a neural network, that aims to maximize the output of the critic.
The critic deterministically outputs the expected sum of rewards (extrinsic or intrinsic) that the agent
might achieve while interacting with the MDP learned by the world model.

Critic We learn a separate critic for each reward type by regressing a parameterized function
towards the TD(λ) formulation of state values using a squared loss, given by,

Lcritic(ϕ)
.
=

H∑
t=1

1

2

(
vϕ(ŝt)− sg

(
V λt

))2

, (5)

where H is the maximum horizon length for which the agent interacts with the learned MDP in the
world model, ŝt is a latent state in the MDP, vϕ(ŝh) is the critic output corresponding to a reward
head, sg(.) is the stop-gradient operation, V λ is the TD(λ) target that is computed by bootstrapping
with a separate target state-value function (Mnih et al., 2015). We define V λt recursively as

V λt = r̂t +

{
v(ŝH), if t = H

(1− λ) v(ŝt) + λV λt+1, if t < H .
(6)

where r̂h is the reward sample obtained while interacting with the learned world model.

Since we learn a separate critic (and target critic) for each reward type, the total value of a state is
computed by summing up the individual values as

vtotal(ŝh)
.
= βextrvextr(ŝh) + βexplvexpl(ŝh) + βempowvempow(ŝh), (7)

where the β’s are reward scale hyperparameters that sum to 1 (Badia et al., 2020). We implement
these weighted critics by scaling the rewards by these tunable hyperparameters before constructing
corresponding targets for each reward type.

Policy The agent selects actions using a policy that is parameterized by a softmax in action
preferences, where the action preferences are computed using a neural network with parameters θ.
This actor aims to maximize the output of the critic vtotal(ŝt), for each state ŝt that it comes across
while interacting with the MDP learned by the world model. We use reinforce gradients (Williams,
1992) to update the actor parameters using the loss

Lactor(θ)
.
= −

H∑
t=1

((
V λt − vtotal(ŝt)

)
ln pθ(ât | ŝt) + ηH[pθ(ât | ŝt)]

)
. (8)
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Figure 3: Learned empowerment and exploration rewards at different locations in the BridgeWalk
environment (deterministic movement on land and random movement in water). Dark regions on the
map show regions of low reward, bright yellow regions represent a high reward, and grey regions
show locations that the agent did not visit or were inaccessible during all rollouts. Each episode
starts with the agent on the island on the left. As training progresses, the agent updates its intrinsic
motivations of being at each position. Empowerment is always low in the water where movement
is random, hence restricting the exploration to interesting parts of the environment. This eventually
results in finding the goal on the right side faster.

4 Experiments
We performed experiments in a novel simulation environment called BridgeWalk, and five popular
Atari games from the Arcade Learning Environment (Bellemare et al., 2012) - Enduro, Pong, Q*bert,
Seaquest, and Space Invaders. Our experiments on BridgeWalk specifically evaluate the agent’s
ability to explore regions of the environment where it has maximal influence. In addition to reporting
average rewards collected by the agent in all these environments, we also visualize the computed
empowerment for trajectories in Seaquest and BridgeWalk. We consider one model-free baseline -
DQN (Mnih et al., 2013) - and two model-based baselines - DreamerV2 (Hafner et al., 2020) and
Plan2Explore (Sekar et al., 2020) - for comparison. We show that our agent clearly outperforms the
DreamerV2 and Plan2Explore agents on BridgeWalk, and beats all three baselines on most Atari
games.

Training Details We use the same network architectures for the encoder, decoder, and different
components of the world model, across all environments. Our image encoder consists of 4 convolu-
tional layers (LeCun et al., 1989) with channel depth doubled at every convolution, and halved at
every deconvolution. We use the ELU non-linearity (Clevert et al., 2016) after each hidden layer
of all neural networks. The components for extrinsic, exploration and empowerment reward heads
are parameterized using a neural network with 4 hidden layers with 400 activations each and a ELU
non-linearity. Our best performing β hyperparameters for weighing different rewards for BridgeWalk
are 0.45, 0.1, and 0.45 for extrinsic, empowerment, and exploration rewards respectively, and the
same for Atari games are 0.8, 0.1, and 0.1 respectively. We train the agent on 1M frames of experience
in the BridgeWalk environment and 10M frames for all Atari games. We use the Adam optimizer
(Kingma and Ba, 2014) for training, with ϵ = 1e-5 and learning rate of 4e-5 for the actor parameters,
1e-4 for the critic parameters, and 1e-4 for the parameters of the world model. Our experiments took
about 22 hours to train on BridgeWalk, and about 2 days 22 hours to train on Atari using a single
Nvidia Titan Xp GPU.

4.1 BridgeWalk

The BridgeWalk environment consists of two islands connected by a single-step-wide bridge sur-
rounded by water on all sides. At the start of an episode, the player spawns on one island and collects
a reward of 1.0 if it is able to cross the bridge and reach the other island, at which point the episode
terminates. The player’s movement on the map remains deterministic while it wanders anywhere on
land (island or bridge), but becomes stochastic when it steps into the water, where it can be driven
randomly in any direction or in the direction of the water current, as defined during environment setup.
We have made the code for this environment available at: github.com/danijar/bridgewalk.

During initial phases of training, when the agent has not seen any reward, all policies retain a high
entropy. When the agent’s objective is to explore, the policy tries to push the player to explore new
regions of the environment, both in water and land. If the player steps into the water, the current
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Figure 4: Episodic returns on BridgeWalk and Seaquest (Atari 2600). We average results over
3 random seeds, and report the mean and one standard deviation around it. Our agent with the
empowerment and exploration objectives outperforms the purely extrinsic baseline (DreamerV2) as
well as one with added exploration (Plan2Explore). On BridgeWalk, we observe that exploration is
specially critical to finding the goal state in the sparsely rewarding environment. Additionally, the
empowerment objective helps the agent achieve maximum average reward in roughly half the number
of training frames.

may push the agent back towards the region it has already explored, in which case the exploration
objective could actually incentivize the agent to stay on land, as that is the only way the agent can
reach new areas on the map. When the water current is random, the exploration objective can no
longer incentivize the agent to stay on land. This is because the exploration objective treats all ‘new’
regions of the environment the same. This is where the empowerment objective helps the agent
explore meaningful regions on map by incentivizing to stay in regions where its actions can influence
outcomes, i.e. explore areas of the environment that are not stochastic. This enables the agent to
discover rewards faster, using which the agent can learn a useful extrinsic value function.

Figure 4a shows the episodic returns of the agent as training progresses in terms of number of frames
observed in the environment. Without any intrinsic motivations, the DreamerV2 agent could not
attain any reward in 1M frames of training. The Plan2Explore agent was able to discover the second
island, however only converges to the maximum possible average reward after 900k frames, while
our agent with the added empowerment objective converged in 600k frames of training.

Figure 3 illustrates the learned empowerment and exploration rewards at different positions on
the BrideWalk environment map at different phases of training. As training progresses, the agent
discovers more regions on the map, while at the same time learning intrinsic rewards in those regions.
We observe that the agent learns a high empowerment reward on the islands and the bridge, and a
low empowerment reward everywhere else. The exploration reward is high near the edges of the
unexplored regions on the map. As training reaches 500k frames, the empowerment reward is still
low on the goal island whereas the exploration reward is high, because the agent is yet to make more
visits to this region. As training reaches 700k frames, the agent has visited the goal island often, and
now the exploration reward no longer incentivizes the agent to be on either the bridge or the island,
as those regions are already explored. However, the empowerment reward incentivizes the agent to
visit the goal island, as there the agent obtains more deterministic outcomes of its actions.

4.2 Atari

We performed experiments on 5 popular Atari games - Enduro, Pong, Q*bert, Seaquest, and Space
Invaders. Table 1 shows the average rewards receive by our agent on these games, along with
comparison to baselines.

In the Seaquest game, the player uses a submarine to shoot down elements coming from both the
left and right end of the frame. We observed that the empowerment objective helps the agent learn
to keep the submarine close to the center of the frame as that enables it to create most affect on its
movement through its actions. On the other hand, we observed that the DreamerV2 policy tried to
keep the submarine close to either edge of the frame as that gives the agent reward faster, but was a
sub-optimal strategy as the player would get killed faster, leading to shorter episodes and low episodic
rewards. We illustrate the empowerment reward of one experience trajectory in Figure 5, where we
observe that the empowerment reward peaks when the submarine moves down from the surface into
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Figure 5: (Left) Empowerment rewards received by the agent during a 30-frame segment of the
game Seaquest. (Right) Game screenshots around the time when the agent achieved maximum
empowerment reward, which is when the submarine moves away from the surface into the playing
area.

the water as there it can predict the outcomes of its actions. We also show the average rewards as
training progresses in Figure 4b.

In Space Invaders, the player aims to shoot down aliens arranged as a 2D grid before they reach the
player’s cannon. We observed that while the DreamerV2 policy destroyed aliens row-wise, our agent
with the added empowerment objective destroyed them column-wise, as that required shooting from
a single location resulting in more controllable outcomes for the agent. The player could also hide its
cannon behind stationary bunkers, which are destroyed both by the player’s and aliens’ fire. Both our
agent and DreamerV2 learned to use the bunkers to shield themselves while not shooting at the same
from below, which the Plan2Explore policy could not learn in the finite training horizon, resulting in
lower returns for that policy.

Policies with both extrinsic and intrinsic motivations learned to beat the Pong simulator by bouncing
the ball off the floor, with the Plan2Explore policy converging the fastest. We also observed that
normalizing rewards caused the actor and the policy to start to diverge after training for 3M frames,
which is why we skipped reward normalization when training on Pong. In Enduro, the exploration
objective seemed to worsen the player’s performance, and our best performing model was one with
extrinsic rewards from the MDP and the empowerment objective only.

5 Conclusion

In this paper, we addressed the problem of directed exploration in partially-observable environments.
We proposed to use an empowerment objective in conjunction with an exploration objective as
intrinsic motivation for exploring the environment. Such an objective ensures exploration in regions
of the environment where the agent can maximally influence changes in the visited states and
eventually solve tasks to collect rewards.

We also showcased a new simulation environment called BridgeWalk, where the player spawns on an
island and is supposed to cross a single-step-wide bridge to another island to collect reward. The
player’s movement stays deterministic on land and becomes random in water. We showed that an
exploration objective is critical for the agent to discover the goal state in this environment where the
reward is extremely sparse, and that a combination of empowerment and exploration objectives helps
the agent discover the goal state much faster than when just exploration is used. To show that our
method generalizes well to complex tasks, we conducted experiments on five Atari games, on which
our agent outperformed baselines on majority of the games.
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