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Abstract

We address prediction problems on tabular categorical data, where each instance is defined
by multiple categorical attributes, each taking values from a finite set. These attributes
are often referred to as fields, and their categorical values as features. Such problems
frequently arise in practical applications, including click-through rate prediction and social
sciences. We introduce and analyze tensorFM, a new model that efficiently captures high-
order interactions between attributes via a low-rank tensor approximation representing the
strength of these interactions. Our model generalizes field-weighted factorization machines.
Empirically, tensorFM demonstrates competitive performance with state-of-the-art methods.
Additionally, its low latency makes it well-suited for time-sensitive applications, such as
online advertising.

1 Introduction

Learning and knowledge discovery from tabular and categorical data is an important problem with various
application areas. We assume that each instance is characterized by multiple categorical attributes, each with
a finite domain. These attributes are often referred to as fields, and their categorical values as features. Even
when the original attribute domains are numeric, they can be discretized into nominal values. This approach
not only enhances model interpretability but also enables the modeling of more complex relationships.

Consider the following two notable and diverse examples of applications where tabular categorical data are
highly common. In social sciences, demographic data and categorical properties often describe instances. For
example, when studying recidivism, typical attributes include age, race, gender, charge degree, number of
prior criminal records, and re-arrest indicator. While some of these attributes, such as age or prior criminal
records, are numeric, discretization can be beneficial, as discussed earlier. In such studies, it is crucial to
develop interpretable models whose decision-making processes can be easily understood, and can reveal
interdependencies between attributes. In online advertising, when predicting the click-through rate, useful
attributes include user ID, geolocation, time of day, advertiser ID, and top-level domain. Similar to the
previous example, these attributes are either categorical or can benefit from discretization. However, a key
challenge in this domain is the limited availability of memory and computational power during real-time
serving. Since the model must process a vast number of ad requests per second, this constraint necessitates a
trade-off between accuracy and model size. Table [I] gives an example of data for both discussed problems.

Table 1: Examples of multi-field categorical data: recidivism (left) and online advertising (right).

Recidivism Age Gender Charge Re-arrest Click User ID Country Hour Adv. ID
-1 24 M Felony 0 1 1404801 Italy 14 182837
-1 34 F Felony 0 -1 4013723  France 19 172726
1 19 M Misd. 1 -1 5200686 France ) 182823
1 25 F Felony 0 1 2190445 Germany 12 937362

Problems of this type can be effectively addressed using Factorization Machines (FMs), as they can model
pairwise interactions between attributes, generate feature embeddings, and maintain computational efficiency.
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In fact, FMs have gained significant attention in online advertising and recommender systems due to their
high performance and efficiency. Since their introduction, various FM variants have been proposed (e.g.
Juan et al.l 2017 [Pan et al.| 2018} [Wang et al., [2017)), all aiming to explicitly model second-order feature
interactions.

The key element of FMs is the low-rank approximation of the weight matrix that captures second-order
feature interactions. Specifically, each feature is associated with a low-dimensional embedding vector, and the
interaction between two features is computed as the dot product of their respective embedding vectors. A
limitation of this approach is that a feature’s embedding is used to model the interactions with the embedding
of the features from all the other fields. However, in many applications, the strength of interactions between
the same features can vary across different fields. For example, the interaction between a top-level domain
and gender may be strong, whereas gender might interact only weakly with country.

Field-aware Factorization Machines (Juan et al., |2017)) address this issue by assigning distinct embeddings
for each feature-field interaction. This strategy allows for a more nuanced modeling of the interactions, but
significantly increases the complexity of the model. To mitigate this, FwFM (Pan et al.,|2018]|) uses instead an
additional interaction strength matriz that weights interactions between fields. While this approach reduces
the number of parameters compared to FFMs, it still requires iterating over all possible pairs of fields, which
can be computationally expensive for large inputs. Adding structure to the interaction strength matrix, such
as a low-rank constraint, reduces the computational cost of evaluating pairwise field interactions |[Almagor &
Hoshenl (2022)); |Shtoff et al.| (2024b)).

The power of deep neural networks to implicitly learn feature interactions has also been considered (Cheng
et al.l 2016; |Guo et al.l 2017). A further interesting research direction studies two-stream approaches that
combine a deep neural network with models that explicitly compute feature interactions (Lian et al.; |2018;
Wang et al., |2021} Mao et al., [2023} |(Coleman et al., [2024). While these approaches can yield state-of-the-art
performance, the inherent complexity of these deep architectures results in larger inference times.

Given the constraints discussed above, we focus on models that learn explicit feature interactions without a
deep neural network component. Our goal is to design a model that has a small number of parameters and
exhibits a small inference time. Our work builds on the Field-weighted Factorization Machine (FwFM) model,
which learns a matrix to weight interactions between different fields. Following prior work, we first impose a
low-rank structure on this matrix, enabling efficient evaluation of second-order feature interactions. Our main
contribution is to extend this approach to higher-order interactions by applying a Canonical Polyadic (CP)
decomposition to a tensor encoding the interaction strengths. Based on this idea, we introduce a variant of
the FwFM model that allows the evaluation of higher-order interactions while retaining the feasibility of fast
online inference. Our experimental findings indicate that the proposed method achieves a favorable trade-off
between accuracy and prediction time compared to existing approaches in the literature.

Our contributions can be summarized as follows:

1. We introduce a new model dubbed tensorFM, which is a higher-order variant of FwFM with a
low-rank approximation of second and higher-order field interactions.

2. We formally prove the inference complexity of tensorFM and its direct predecessors. The inference
complexity of tensorFM is O(nkrd?), where n is the number of fields, k is the size of feature
embeddings, d is the highest order of interactions used, and r is the rank used for the approximation
of the higher-order field interactions. This is potentially much lower than the O(n?k) complexity of
FwFM, particularly when the number of fields is large, or more precisely when n > rd?. However,
our model allows the possibility of modeling higher-order interactions.

3. We provide an empirical comparison study between the new algorithm and several baseline models
on three benchmark datasets.

The paper is organized as follows. Section [2] introduces the notation and formally discusses the direct
predecessors to our proposed model. In Section [3] we derive the tensorFM model. Section [ discusses the
relation of our model to existing methods in the literature. In Section [5, we report the findings of our
experiments on real and synthetic data.
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2 Preliminaries

We introduce the notation used in the paper. Scalars are denoted by lowercase letters (e.g., x), column
vectors by bold lowercase letters (e.g., ), matrices by bold italic uppercase letters (e.g., X), and tensors
by bold uppercase letters (e.g., X). The transpose of a column vector x is denoted with . Given a
matrix X € RP*? we denote with the corresponding bold lowercase letter x; € RP the i-th column of
X, where 1 < i < q. We use (-,-) to denote the inner product between two vectors. Given two tensors
X, Y € RP1*--%Pt_we denote with X o Y their Hadamard Product, we define their Frobenius inner product as
(X, Y)p = E“ . Xiyie - Yiy i, and denote by ||| the Frobenius norm induced by this inner product.

e
Setting. We consider a supervised learning setting over categorical data. In particular, we assume data
composed of n > 1 categorical fields, where each field represents a specific attribute (e.g., the nationality of a
user). Each field j, with 1 < j < n, can take one of m; possible categorical values. We represent each input as
a binary vector obtained by concatenating the one-hot encodings of the n fields. Formally, let D,, ,, = {0,1}™
with m = Z?Zl m; be our input domain, where each data point € D,, ,, is a binary feature vector, and we
say that the data point contains feature ¢ if and only if z; = 1. Each data point € D,, ,, has exactly n
features, i.e., ||x||1 = n, one feature for each field.active features, i.e., ||x|1 = n.

The presentation in this work primarily focuses on binary classification tasks, where each input data point is
associated with a binary label. We consider prediction functions of the form o o f : D,, ,, — [0, 1], where
o(z) =1/(1 4+ e~7) denotes the sigmoid function and f : D,,,, — R is a scoring model. While the sigmoid
transformation is natural for classification, the underlying framework and proposed models directly extend to
other supervised tasks, such as regression, where the sigmoid transformation is unnecessary.

Given a model f : D, , — R, we say that f has inference complexity ¢ if there exists a procedure that
evaluates f(x) for any given & € D,, ,, with computation complexity in O(¢). The goal is to design a scoring
model f that is accurate and has small inference complexity. The challenge of this problem is that the input
x is highly dimensional and sparse. In our work, we are interested in a regime where both m and n are large.

First-order interactions. The simplest model is a linear scoring model
Sin(z) = (w, ) + b, (1)

where w € R™ and b € R are parameters of the model. The resulting prediction function is also known as
logistic regression (Cramer| (2002)), and it can be computed in time O(n) for any sparse input & € D,;, ,. This
model only captures first-order interactions between features, as it evaluates the score based only on what
features are present in the input @ independently from the others.

Second-order interactions. The evaluation of cross-interactions between features is crucial to obtain more
accurate predictions. Naively, those second-order interactions can be expressed by adding the score

fsecond(m) = <mmT7 W>F = Zzixjwi,j , (2)

(2]

where W € R™*"™ ig a parameter describing the weights of a second degree polynomial. The computational
time to evaluate equation [2[is O(n?), and a naive implementation of those second-order interactions presents
two related shortcomings. First, an efficient evaluation of equation [2] would require storing the m x m matrix
in primary memory, which is unfeasible for large m. Also, the matrix W has O(m?) parameters; thus, a large
number of samples are required to obtain a statistically significant solution that generalizes.

There are two mainstream solutions to approach this problem. The first one is to hash the O(m?) pairs of
indexes (i,7) € {1,...,m}? into £ < m? buckets, and associate each bucket with a single weight parameter.
In this case, the computational complexity is still O(n?), however, the memory and the number of parameters
is O(¢). In a seminal work, Rendle| (2010) proposes the Factorization Machine (FM) model as another solution
to tackle this problem.

In the FM model, feature i, with 1 < i < m, is associated with a vector v; € R* of size k. The vectors
{v;}", are also referred to as embedding vectors, and they are parameters of the model. Given an input
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z € Dy, n, we denote with
Az =[agil|...|lazn] € RF*7 (3)

the embedding matriz of =, where the column a, ; is the embedding vector v; of the active feature, i.e.,
x; = 1, associated with the field j. The FM model proposes to evaluate the second-order interactions by
computing

m m 1
fra(@) =" Y miaj(vi,v) = §<A£A:c7 1, —Ly)r ,

i=1 j=i+1

where 1,, is a n X n matrix composed by only 1, and I, is a n X n identity matrix. As an alternative viewpoint,
it is easy to see that fpr (@) = 3 (za”, (VIV)o (1, —I,) )p, where V € RF¥*" is the matrix whose columns
are the embedding vectors of the features. This view illustrates that the FM model provides a factorization
of the full m x m weight matrix W introduced in Equation [2]in terms of the embedding vectors V', hence its
name. FM has O(mk) parameters, and it has inference complexity O(nk).

Building on the idea of factorizing the coefficients of higher order interactions, by associating each feature
with an embedding vector, a lot of different prediction models have been proposed throughout the last decade
(e.g., |[Juan et al., 2017; |Guo et al. 2017 [Sun et all |2021). Relevant to our work is the Field-weighted
Factorization Machine model (FwFM) (Pan et all, 2018)). Compared to the original FM model, the FwFM
model has additional parameters S € R™*"™ that express the interaction strength between fields, i.e., the
level of correlation between a field pair and the label. The intuition is that we would like to weigh more
those cross-interactions between features of fields that have a stronger predictive power. The model can be
expressed as follows:

frwrm(@) = (AT AL, S) | @

where S is optimized in the space of symmetric matrices with zero diagonal. The FwFM has higher expressivity
than an FM model but requires O(n?) additional parameters, and the inference complexity also worsens
to O(n?k). The work of (Shtoff et al. 2024b)) approximates the field interaction matrix S using a low-
rank decomposition of rank p to improve the complexity to O(pnk), and our work can be seen as a direct
generalization of the idea to higher orders of field interaction tensors.

Higher-order interactions. The factorization machine model has been extended to take into account

higher-order interactions (Rendle, 2012). Given p vectors v, ..., v, € R?, we let their p-way inner product
be (v1,...,v,) = >[I}, vi,j- In the higher-order FM model (HOFM), the p-order interactions can be
expressed by evaluating fp—pa(®) = 325 i< <i) @iy -+ - @i, (Vg5 - -, 05, ). Unfortunately, a naive evaluation

of the above expression requires an exponential number of steps O(n?). To address this issue, different works
propose variants of this model based on the ANOVA kernel or the polynomial kernel that have inference
complexity O(np) (Blondel et al., [2016a3bl). Additional methods are discussed in the related work.

3 tensorFM algorithm

We derive the new tensorFM algorithm building upon the models discussed in the previous section. As
a warm-up, we first consider second-order field interactions, observing that imposing additional low-rank
structure on the matrix representing these interactions reduces inference complexity. This observation
motivates us to generalize the low-rank approach to tensors representing higher-order field interactions, which
is the main contribution of this section.

3.1 Warmup: Low-Rank Second-Order interactions

As a warm-up, we first consider second-order interactions. The FM and FwFM models can both be written
in the unified form:
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where S = %(ln — I,,) for FM models, and S is a symmetric zero-diagonal parameter matrix for FwFM
models. While both models follow the structure of Equation equation [5| their inference complexities differ
significantly. FM models admit inference in time O(nk), whereas FwFM models generally require O(n?k)
time. The quadratic dependence on the number of fields in FwFM arises from the absence of structure in S.

A natural approach to reducing inference complexity is to impose low-rank structures, a principle already
exploited in the original factorization machine model. In the case of second-order interactions, it is possible to
evaluate Equation [9] efficiently as a function of the rank of S. The following proposition makes this explicit.
Similar results appear in prior work (Shtoff et al.| [2024b]), but we include the simple argument here for
completeness.

Proposition 1. Let S € R™"*" be a rank r matrixz. Then, after an appropriate preprocessing step depending
only on S, it is possible to evaluate (AL Ay, S)r in time O(rnk) for any ® € Dy, p.

Proof. Since S is a rank r matrix, it can be factorized using the singular value decomposition into three
matrices U’, V’ € R™™" and D’ € R"™*" such that S = U'D'V'T. Let U = U'D’, and V = V’, so that
S =UVT, where U,V € R"™". The following chain of inequality holds

(ATA,, S)r = (ATA,, UV = Tr(ATA,UVT) =Tr(VTATA,U) = (A, V,A,U)r ,

where the second and fourth equality are due to the relation between Frobenius inner product and trace, and
the third equality is due to the cyclic property of the trace operator. The matrix multiplications A, U and
A,V can be computed in time O(rnk), and the statement immediately follows. O

The inference complexity O(nk) of the FM models follows as an immediate corollary of the above proposition.
In fact,

F(@) = (AT Ag, S(10 — L))r = 5(AT Au 1)r — (AT A L) ©)

The second term of equation |§| can be computed in time O(nk) as I, has only n non-zero entries, whereas
the first term can be computed in time O(nk) by noticing that 1, is a rank 1 matrix.

This discussion elucidates the following intuition. It is possible to obtain a model with low inference complexity
that computes the second-order interactions as in equation [5] as long as the weights S have low rank. In our
work, we build on these results and extend them to higher-order interactions.

3.2 Extension to Higher-Order Interactions

Let A, € R¥*™ be defined as in equation [3, where the columns of A, are the embedding vectors of the
features in ©. We denote with @z 1,..., a5, the k rows of the matrix A.

Let 2 < d < n be the dimensionality of the order of interactions that we want to consider (e.g., d = 2 for
second-order interactions). For a given d, our model considers {-order interactions for all 1 < ¢ < d. In
particular, let S ¢ R?<X7 be an ¢ order tensor for 2 < ¢ < d. In our work, we consider the following
model:

d
frrar(@) = fin(@) + D> Y S awiys - Ga,) (7)

0=2i1,...,i¢

Analogous to how the matrix S models second-order field interaction strengths in FwFM, here each tensor
S models f-order field interaction strengths. Without any additional constraint, the inference complexity to
evaluate this model for any given « € D,, ,, is equal to O(d?kn?), which is intractable even for small d. To
reduce the inference complexity of the model, we build on the intuition developed in Section [3.1] In particular,
we want to constrain a notion of rank of the tensor S so that it is possible to evaluate Equation fﬁciently.
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Given an ¢ order tensor W € R™* X" we say that W has canonical polyadic (CP) rank at most r if there

exists a collection of ¢ matrices UM, ... UMW € R™*" such that
W:Zu£1]®...®uy] : (8)
i=1

The CP rank of W is the minimum r > 0 for which such a decomposition exists (Hitchcockl [1927; [Kolda,
& Bader, [2009). Note that for ¢ = 2, the CP rank coincides with the rank of the matrix W, and the
decomposition in equation |8 can be obtained through the singular value decomposition (i.e., UM = U and
U =V, where U and V are defined as in the proof of Proposition . The following result shows that the
CP rank can be used to upper bound the inference complexity of evaluating higher-order interactions, and it
is a generalization of Proposition

Lemma 1. Let Wl € RXXn pe g 0-order tensor with CP rank r. Then, after an appropriate preprocessing

[€] .
_____ W Wil i, (Qpiys---Qxiy) for any given

step depending only on W[Z], it is possible to evaluate T = Zil
input © with time complexity O(brkn).

Proof. The value T can be rewritten as

k
T= <Zam— ®... ®aw,i,wm>

¢ times F

Since W has CP rank r, there exists a collection of ¢ matricies U, ... U that satisfy Equation |8 thus:

k T
T— <Zaw,i®...®am,i,2u;” ®...®u£‘]>
7;:1—/_/ 1

¢ times = F

Since the inner product is a bilinear operator, we have that

kK r

T=22<w’uyl®m®uy1>

i=1j=1 £ times F

If we expand the computations, we have that T is equal to

k r 4 k r £ n r £
=32 > Ilwlaen) =33 11 (Z u??iaw> =22 [T @) .

i=1 j=1a1,...,ar b=1 i=1j=1b=1 \a=1 i=1j=1b=1

which can be computed in time O(¢nkr). O

The CP decomposition of Equation [§] is not the only known tensor decomposition. In Appendix [A] we
explore a parallel to Lemma |l| based on another popular tensor decomposition strategy, known as higher-order
singular value decomposition (HOSVD) or Tucker decomposition.

3.3 Low-rank higher-order interactions: tensorFM

Equipped with Lemma [I], we are ready to introduce our model. As in a factorization model, we consider
an embedding vector v; € R* for each feature 1 < i < n. Our model is defined by parameters d and a
vector r = (ra,...,74)T, where 1 < 7, < n for any 2 < £ < d. For any 2 < ¢ < n, we have parameters
Ulm, cee Uy] € R™*"¢. Given those parameters, the tensor Sl is defined according to the decomposition
in Equation |8} i.e., sl = Z:‘;l u[le]l ®R...Q uﬂ The tensorFM model is equal to equation |7 using tensors
5[2], .. .,S[e]. Given d and 7, we define an instance of this model as tensorFM(r,d). This model has

O(mk +n 2?22 lry) parameters. The inference complexity of this model is O(nk 2?22 £ -ry) and follows by
using Lemma [I]
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Theorem 1. Letd > 2 and v = (r9,...,7q) € {1,...,n}?L. The model tensorFM(r,d) has inference
. d
complezity O(nk Y ,_o 0 -1y).

Proof. Fix an arbitrary € D,,,. The linear component of fi;,(x) can be computed in time O(n). For
any 2 < ¢ < d, we can compute ) sl i (@giys---,0q4,) in time O(frgkn) using Lemma The

1yeeesle 01,
statement follows by summing over all possible values of /. O

Remark. This inference complexity can be expressed using the looser bound O(nkrd?), where r is the highest
rank in r.

Comparison with HOFM. A key distinction between our approach and higher-order factorization machines
(HOFM, Rendle (2012)) lies in the treatment of the interaction tensors S in Equation [7l In HOFM, S is
fixed a priori and chosen to allow efficient computation of the resulting polynomial via mathematical identities
such as Newton’s identities. This is analogous to how the original FM model fixes its interaction matrix.

In contrast, our framework aims to learn the tensor S for each order ¢, while still maintaining computational
efficiency. This is achieved by constraining S to have low CP rank, which ensures that the evaluation of the
model remains tractable even when the interaction structure is learned from data.

Numerical Features. While the focus is on categorical features, our method (like other factorization
machine-based approaches) naturally extends to numerical features. When z; € R is a numerical feature, we
add the corresponding column z;v; to Ay, where v; is the embedding vector associated with that feature.
Recent works have proposed alternative embeddings for numerical features that are compatible with our
setting, where each field is associated with a single embedding vector (Gorishniy et al.l 2022 [Shtoff et al.,
2024a; Riugamer) 2024).

4 Related Work

For d = 2, the second-order interactions of tensorFM(d,r) model coincide with equation |5 where S is
parameterized as the product S = Ul[z] U2[2]T of two rectangular matrices. In the optimization literature,
this decomposition is common to optimize a low-rank matrix. Thus, for d = 2, our model can be seen as a
modified version of FwFM that allows a trade-off between the number of parameters O(nr) and the inference
complexity O(nkr) that is regulated by the rank parameter r (these values coincide with the ones of the
FwFM models for 7 = n). The idea of using low-rank matrix decompositions has also been applied in recent
variants of factorization machines for the special case of d = 2. |Almagor & Hoshen| (2022)) propose a new
method where each field i, with 1 < i < n is associated with a parameter U; € R*¥*" where r is a rank
parameter. The cross-interaction between the features of fields i and j is computed as v} M;;v;, where
M;; = Ul-AUjT ,and A € RF¥F is another parameter. While this work shares similar ideas, their approach is
limited to second-order interactions and does not straightforwardly extend to higher-order interactions. A
similar low-rank decomposition of the field-interaction matrix has also been proposed in other recent work
Shtoff et al| (2024b)). Our model generalizes this idea beyond second-order interactions (d = 2) and can
capture higher-order interactions.

For d > 2, the tensorFM model considers higher-order interactions between features’” embeddings. The
first HOFM was proposed in the original work on FM |Rendle| (2010} [2012]), and it considers a fixed and
given weighting of the higher-order interactions, which is equivalent to our model equation [7] with fixed
tensors S!?, ... Sl The variants of HOFM that consider the ANOVA kernel Blondel et al|(2016a) and
the polynomial kernel Blondel et al.| (2016b)) can be seen as a special selection of 5[2]7 e St that allows a
fast computation of the model. Conversely, in our work, rather than considering a fixed weighting of the
higher-order interactions between feature’s embeddings of the n fields, we consider a more expressive model
that can learn the tensors S[Q]7 RN S[Z]7 while guaranteeing that the resulting model with this weighting can
be still computed efficiently. Our method can be seen as a generalization of the FwFM model that enables us
to both improve the inference complexity and consider higher-order interactions.
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The aforementioned models and our work explicitly compute a polynomial over the cross-products between
feature embeddings. In the literature, many other models have been proposed that compute higher-order
interactions through specific neural network architectures.

The attention-aware factorization machine is another factorization machine model that considers a polynomial
over second-order interactions as in equation [5} however the weights S are chosen depending on A, through
a neural attention network Xiao et al.| (2017). This architecture requires the computation of all the dot
products between the pairs of vectors’ embeddings of the features of @, thus the inference complexity is Q(n?k).
Another model called Autolnt automatically learns high-order feature interactions through a multi-head
self-attentive neural network, but its inference complexity is still Q(n?).

The Cross Interaction Network proposes a network model that can provably approximate a special class of
¢ degree polynomial over cross-interactions between embedding vectors [Lian et al.| (2018]). However, their
analysis of this polynomial approximation uses a version of this model for which the inference complexity is
O(n3kf), which is cubic in n.

Given «, the cross-networks receive in input the concatenation of the vectors y = (@z.1,...,0zn) € R™*,
and they iteratively transform y with a forward process for ¢ steps, where £ is the number of layers Wang
et al.| (2017; [2021)). It is possible to show that the CN networks express a special class of £ + 1 degree
polynomials over the components ¥, ..., Ynr. Compared to our method, the cross-interactions are measured
at the bit level (using the vector y), rather than at the feature level. Our model has the advantage of being
interpretable, as it explicitly learns the interaction strength of cross-interactions between different fields.

Deep Networks. In recent work, it has been shown that a properly fine-tuned Deep Neural Network (DNN)
with a large enough layer size can be competitive with many baselines for recommender systems. In the
literature, DNNs are often trained in parallel with a simpler model that captures lower-order interaction (e.g.,
FM, CN, CIN), i.e., the resulting model is f(x) = g(fsimple(€), fonn(z)) with g(-,-) being some "aggregation"
function of two models, for example, a sum. DNN networks are a class of universal function approximators
Hornik et al.| (1989) and can capture implicitly higher-order feature interactions, while the simpler model
explicitly models the lower-level interaction. It has been shown in a series of works that the combination of
these two architectures leads to more accurate models (e.g, |Guo et al., [2017; |Wang et al 2017; LeGendre
et al., 2019; Wang et al.; |2021). Since we are interested in developing a simple model that can capture
cross-order interactions between features with low inference delay, we do not employ a DNN component
which would significantly increase the inference complexity. We remark that deep networks have been widely
used for recommendation systems, and we refer to a comprehensive survey by [Zhang et al.| (2019).

5 Experiments

The empirical studies compare the introduced tensorFM model with state-of-the-art competitors on three
benchmark datasets (Section and Section [5.2)) . We also include an analysis of the inference time
(Section [5.5)). The code for the experiments is provided in the supplementary material.

Datasets. We evaluate our proposed model tensorFM on three open benchmark datasets Avazu [Avazu
(2014)), Criteo |Labs| (2014)), and COMPAS (Washington), [2018). The Avazu and Criteo datasets contain online
advertising click-through data used for predicting click-through rates. The COMPAS dataset contains criminal
justice records with demographic and offense-related features, used for predicting recidivism within two years.
Table [3] summarizes key information about those datasets.

Baselines. The goal of our work is to develop a Factorization Machine model that explicitly considers
cross-interactions between features and exhibits low inference complexity. Consequently, we compare our
model with other baselines that have relatively low inference complexity, excluding deep architectures that
exhibit significantly larger inference complexity. We use the following baselines:

1. LR: Logistic Regression,

2. FM: Factorization Machine Rendle| (2010),

3. FwFM: Field-weighted Factorization Machines Pan et al.| (2018]),

4. AFM: Attentional Factorization Machines Xiao et al.| (2017)), with 8 attention heads,
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5. CN: Cross Network [Wang et al.| (2021)), with two layers and a vector to parameterize the CN as in
Wang et al.| (2017)).

Noticeably, we excluded CIN and AutoINT, as they exhibit a considerably larger inference time (see discussion
in Section .

We parameterize our model with two integers r and d, and we let tensorEM(r, d) be equal to the model as
defined in Section |3| where we fix the rank r for each higher-order interaction, i.e., 7 = (r,...,r). For all
baseline models, we use the implementation from the pytorch-fm packageﬂ

Hyperparameters. The embedding size is fixed to kK = 8 throughout all the experiments. We perform a
hyper-parameter search using a validation dataset. For the hyper-parameter tuning we adopt the Optuna
optimizer (Akiba et al., |2019)) for 50 steps, using AUC as optimization target. The learning rate is chosen in
the interval [le — 4,0.1] and the regularization coefficients in the interval [le — 4,0]. All the methods are
trained for 5 epochs with a batch size equal to 3000.

For our method, we try low-rank configurations tensorFM(r, d), where r € {1,2,4} and d € {2,3,4} that
exhibit low inference complexity. We refer to those models as low-complezity tensorF M. We also report results
for high-complezity tensorFM where r € {8, 16, 32}.

5.1 Online Advertising Benchmark
In this subsection, we report the experimental results for the datasets Criteo and Avazu. In Table [2| we

Table 2: Comparison of baseline performance in terms of the average test set AUC (%) based on 3 runs. The
best results are bold and the second best results are underlined.

Model Avazu Criteo
LR 76.53 79.39
FM 77.69 80.44
FwFM 77.28 80.87
AFM 77.31 79.75
CN 77.16 79.55

low-complexity tensorFM 77.74 80.79
high-complexity tensorFM  77.77 80.94

report the test performance of the different models evaluated based on the AUC metric (Area Under the
ROC curve). In the table, we report the best-performing low-complexity tensorFM and high-complexity
tensorFM models (chosen using the validation set). For Avazu, these are respectively tensorFM(4,4) and
tensorFM(4, 16), and for Criteo, these are tensorFM(3,4) and tensorFM(3, 32).

Our method obtains competitive performance with respect to the existing baselines. In particular, the
high-complexity tensorFM model achieves the best AUC on both datasets. The low-complexity tensorFM
also obtains competitive results. If we compare low-complexity tensorFM to FwFM, our model has fewer
parameters and a smaller inference complexity. However, the performance of our model matches or outperforms
the FwFM model. This suggests that taking into account higher-order interactions can improve the prediction
performance.

5.2 COMPAS Dataset

The COMPAS (Correctional Offender Management Profiling for Alternative Sanctions) dataset (Washington,
2018) consists of data from individuals involved in the U.S. criminal justice system. Each record contains
14 fields, including demographic information (such as age, race, and sex) and details of interactions with
the criminal justice system (such as criminal history, offense date, and time spent in jail). The dataset also
includes a binary recidivism outcome, indicating whether an individual re-offended within two years. This

Thttps://github.com/rixwew/pytorch-fm


https://github.com/rixwew/pytorch-fm

Under review as submission to TMLR

Table 3: Dataset statistics. Table 4: Recidivism based on COMPAS dataset.
Avazu Criteo COMPAS Baselines AUC ‘ TensorFM AUC
Train set size 28,300,276 33,003,326 4098 LR 83.87 | tensorFM(1,2) 84.87
Valid. size 4,042,897 8,250,124 879 FM 84.03 | tensorFM(2,2) 84.96
Test size 8,085,794 4,587,167 879 FwFM 84.24 | tensorFM(1,3) 85.29
# features (m) 1,544,250 2,086,936 204 AFM 84.13 | tensorFM(2,3)  85.02
# fields (n) 22 39 14 CN 84.33 | tensorFM(1,4) 84.44

dataset allows for the training of machine learning models to predict the likelihood that an individual will
commit another crime within the next two years.

We normalize the numerical features to fall within the range [0, 1] and further discretize them into 5 bins. The
dataset is split into training, validation, and test sets, with proportions of 70%, 15%, and 15%, respectively.
The results are presented in Table[d As we can see, the low-complexity tensorFM models are able to achieve
competitive (or even better) results compared to existing baselines.

5.3 Synthetic Data

In this subsection, we use synthetic data to verify that tensorFM effectively captures higher-order interactions.
The dataset is generated as follows: we consider data points with three fields, each taking 20 possible values.
Each triplet of features (one from each field) is assigned a random binary label uniformly at random. The
dataset consists of one million data points, sampled uniformly over all possible triplets of features.

By construction, the label of each data point is entirely determined by the triplet of its features, meaning that
classification relies on third-order interactions. Table [f] reports the results of our experiments on a randomly
generated dataset as described above. As expected, logistic regression, a linear model, performs poorly. FM
and FwFM perform better, as they can capture second-order interactions, but they exhibit lower performance
than AFM and tensorFM, which are capable of capturing higher-order interactions.

Similarly, we test same baselines on the fourth-order interactions data. In this case, we consider four fields
and every four-tuple of features (one from each field) is assigned a random binary label uniformly at random.

Table 5: Comparison of baseline performance in terms of the test set AUC and LogLoss (%) over the synthetic
data for 3-wise and 4-wise interactions. The best results are bold and the second best results are underlined.

Model 3-wise Interactions ‘ 4-wise Interactions
Test Log-Loss Test AUC ‘ Test Log-Loss Test AUC

LR 68.96 54.87 69.17 53.18
FM 65.08 66.07 67.38 61.11
FwFM 65.14 65.99 67.34 61.07
AFM 62.18 71.96 67.30 61.56
CN 66.76 61.73 68.13 57.70
tensorFM(3,3) 62.39 70.43 65.83 64.68

5.4 Ablation Study

In this section, we examine how the rank r and the interaction order d affect the performance of our method,
tensorFM. The experiments are conducted on the Avazu dataset. Figure[I]shows the test AUC as a function of
the rank r. We observe that increasing the rank leads to improved model accuracy. Additionally, higher-order
interactions also contribute to better performance, indicating that both rank and interaction order play
important roles in enhancing the model’s accuracy. Figure [2] also implies the binary cross entropy loss
decreases as we increase rank and the order of interaction.
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5.5 Inference Time

In this subsection, we measure the inference complexity using an estimate of the number of Floating Point
Operations (FLOPs) necessary to compute the label of a given vector & € D, ,,.

This comparison follows the example of previous work [Sun et al.| (2021)), and allows us to compare the
inference complexity regardless of the implementation details. We compare the number of FLOPs required
for inference for both our model and the baselines as a function of the number of fields n (i.e., the number of
non-zero entries of «). The results are reported in Figure 3] We observe that the number of FLOPs scales
linearly with the number of fields n for our model tensorFM, as well as for LR, FM, and CN.

In contrast, AFM and FwFM demonstrate a quadratic increase in FLOPs counts with respect to n, leading
to a substantially higher number of FLOPs for larger inputs. The FLOPs counts for CIN and AutoINT, also
proportional to €(n?), were omitted from the plot due to their significantly larger values (see Table |§| for a
comprehensive details of the inference complexity for different models). The fastest models, LR and FM,
demonstrate lower accuracy as detailed in Table 2] In contrast, our method not only achieves competitive
accuracy relative to the other baselines but also exhibits a low inference time that scales linearly with the
number of fields n.

We conduct an additional set of experiments to evaluate inference time at serving using an optimized Cython
implementation. Specifically, we compare the runtime of FwFM, DCN, and TensorFM, while omitting AFM

11
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due to its significantly higher computational cost. Similarly, we exclude LR and FM, as they are linear model
with substantially lower inference times. Our evaluation is performed on input points with n = 100 fields and
an embedding size k = 8. We report the average inference time over 1000 points in Table [6]

Table 6: Inference complexity (right) and empirical inference time in milliseconds (left) of different models.
The empirical inference complexity is evaluated as the average inference time on 1000 synthetic data points
with n = 100 fields and embedding size k = 8.

Model Time (ms)

%Eﬁzzigﬁgég 888;3 Model Inference Complexity
TensorFM(4,2) 0.0045 LR O(n)
TensorFM(1,3) 0.0033 FM O(nk)
TensorFM(2,3) 0.0059 FwFM O(n?k)
TensorFM(4,3) 0.0113 AFM O(n?k)
TensorFM(1,4) 0.0071 CN(layer) O(nk - layer)
TensorFM(2,4) 0.0173 AutoINT O(n?)
TensorFM(4,4) 0.0175 CIN Q(n?)
FwFM 0.0247 TensorFM(d,r) O(nkrd?)
CN 0.0101

AFM 0.2209

5.6 Interpretability

Our model enables interpretability by explicitly parameterizing ¢-way feature interactions. In particular,
the interaction tensor S can be directly computed from the learned parameters using the decomposition
in Equation [} We remind that this tensor encodes the strength of (-way interactions among fields. To
evaluate how well these model-induced interactions reflect true statistical dependencies, we compare the
learned interaction values with mutual information computed on the training set.

For any tuple of ¢ featuers (i1, ...,%) with feature i, belonging to field Fy, for 1 <r < ¢, we let

. . 4
I(ir,....i¢) =S} p (@i az,),

where a; is the embedding vector associated with feature . We define the learned interaction strength between
fields (Fg,, ..., Fk,) as
Z(il,‘.,n)e(Fkl,‘..,Fk[) [ (i1, . dg)] - #(in, - - -y de)

Z(il,...,u)e(Fkl,..A,Fw) # (i, vie)

)

where #(i1,...,i¢) denotes the number of times the feature tuple appears in the training set. We compare
this with the mutual information between ¢-tuples of fields and the label, estimated from the empirical
distribution p on the training set:

MI((F,, .-, Fr,);Y) = > S pl(in, - yie), ) log (p((“””)’y))

(il,---,ie)G(Fkl,-».,Fkr) yey p(zla e ,Zz)p(y)

where the sum is over tuples with i, € Fy, .

We perform this analysis on the COMPAS dataset using a tensorFM(3,3) model. We observe a Pearson
correlation of 0.3995 between the learned interaction strengths and the mutual information values, computed
across all possible £-tuples of fields. In addition to correlation, we measure the overlap between the top-k most
strongly interacting field combinations under both metrics. As shown in Figure [4] the blue line represents
the overlap between the top-k triplets ranked by learned interaction strength and those ranked by mutual
information. The observed intersection rate is consistently higher than the expected overlap (k/n)? under a
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random ordering (dashed orange line), indicating a strong alignment between model-induced and data-driven
interactions. In particular, for the top-36 triplets, the overlap exceeds 40%.

A key advantage of tensorFM is its ability to make higher-order feature interactions directly interpretable.
In particular, it is possible to explicitly visualize the significant learned field interactions. Figure 5] shows a
heatmap of the 36 most significant learned third-order interaction strengths.
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Figure 5: Heatmap of the 36 strongest learned third-order interaction strengths aggregated across field
triplets.

6 Conclusions

We introduce tensorFM, a novel variant of factorization machines designed to model higher-order cross-
interactions between feature embeddings. Our model learns a weighting of these cross-order interactions that is
low-rank, enabling efficient computation at inference time. Thereby, tensorFM also provides interpretability by
its representation of the cross-interaction strength between different fields. Finally, we empirically demonstrate
that our model presents a favorable trade-off between accuracy and inference time compared to existing
approaches in the field.

An interesting direction for future work is to integrate our model within a two-stream architecture, combining
it with deep neural components as in DCNv2 (Wang et al. 2021) or xDeepFM (Lian et al|[2018). While our
focus has been on achieving a favorable trade-off between accuracy and inference time, augmenting our model
with deep learning modules may further improve performance, and we leave this extension to future research.
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A Higher-Order Singular Value Decomposition

In this section, we discuss the higher-order singular value decomposition of a tensor, and how it can be
exploited to obtain a fast computation of the higher-order interactions between fields. In particular, we will
prove a similar statement to the one obtained for the CP decomposition (Lemma [1).

Given an ¢ order tensor W € R™**" we say that W has multilinear rank (r1,...,ry) if there exists a
collection of ¢ matrices UM ... UMW, with U € R™*"i for 1 < i < ¢, and a core tensor S = R">*"¢ guch
that:

1 Ty

Lemma 2. Let W € R** X" be q L-order tensor. If W has multilinear rank (r1,...,r¢), then it is possible
to evaluate

4
T= Z ng],...,u'<aw,iu~--aaw,u>F

(2T 7]
with time complexity O((Hf:1 ri) -k + 0 -nkmax{ry,...,re}).
Proof. By proceeding as in the proof of Lemma [l} it is possible to show that

k T1 Ty
T = <Zaw‘ @ ... Qg Z Z Sy - (UE] 9. .. ®u£§>>
—_

£ times =1 ie=1 F

=1 =1 h=1j=1
The computational time to evaluate the above expression is O((Hf:1 r;) -k + € -nkmax{ry,...,re}). O
B Additional Details on the Experiments

In the supplementary material, we provide a readme that contains information on how to run our code and
reproduce our results. We use a cluster with 48 CPU and 192GB of RAM. It takes one week to run all the
experiments with this amount of computational power.
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