
Published in Transactions on Machine Learning Research (02/2023)

U-Statistics for Importance-Weighted Variational Inference

Javier Burroni jburroni@cs.umass.edu
University of Massachusetts Amherst

Kenta Takatsu‡ ktakatsu@andrew.cmu.edu
Carnegie Mellon University

Justin Domke domke@cs.umass.edu
University of Massachusetts Amherst

Daniel Sheldon sheldon@cs.umass.edu
University of Massachusetts Amherst

Reviewed on OpenReview: https: // openreview. net/ forum? id= oXmwAPlbVw

Abstract

We propose the use of U-statistics to reduce variance for gradient estimation in importance-
weighted variational inference. The key observation is that, given a base gradient estimator
that requires m > 1 samples and a total of n > m samples to be used for estimation,
lower variance is achieved by averaging the base estimator on overlapping batches of size m
than disjoint batches, as currently done. We use classical U-statistic theory to analyze the
variance reduction, and propose novel approximations with theoretical guarantees to ensure
computational efficiency. We find empirically that U-statistic variance reduction can lead
to modest to significant improvements in inference performance on a range of models, with
little computational cost.

1 Introduction

An important recent development in variational inference (VI) is the use of ideas from Monte Carlo sampling
to obtain tighter variational bounds (Burda et al., 2016; Maddison et al., 2017; Le et al., 2018; Naesseth et al.,
2018; Domke & Sheldon, 2019). Burda et al. (2016) first introduced the importance-weighted autoencoder
(IWAE), a deep generative model that uses the importance-weighted evidence lower bound (IW-ELBO) as its
variational objective. The IW-ELBO usesm samples from a proposal distribution to bound the log-likelihood
more tightly than the conventional evidence lower bound (ELBO), which uses only 1 sample. Later, the
IW-ELBO was also connected to obtaining better approximate posterior distributions for pure inference
applications of VI (Cremer et al., 2017; Domke & Sheldon, 2018), or “IWVI”. Similar connections were made
for other variational bounds (Naesseth et al., 2018; Domke & Sheldon, 2019).

The IW-ELBO is attractive because, under certain assumptions [see Burda et al. (2016); Domke & Sheldon
(2018)], it gives a tunable knob to make VI more accurate with more computation. The most obvious
downside is the increased computational cost (up to a factor of m) to form a single estimate of the bound
and its gradients. A more subtle tradeoff is that the signal-to-noise ratio of some gradient estimators degrades
with m (Rainforth et al., 2018), which makes stochastic optimization of the bound harder and might hurt
overall inference performance.

To take advantage of the tighter bound while controlling variance, one can average over r independent
replicates of a base gradient estimator (Rainforth et al., 2018). This idea is often used in practice and
requires a total of n = rm samples from the proposal distribution.

‡Work done while at UMass.

1

https://openreview.net/forum?id=oXmwAPlbVw

Published in Transactions on Machine Learning Research (02/2023)

Our main contribution is the observation that, whenever using r > 1 replicates, it is possible to reduce
variance with little computational overhead using ideas from the theory of U-statistics. Specifically, instead
of running the base estimator on r independent batches of m samples from the proposal distribution and
averaging the result, using the same n = rm samples we can run the estimator on k > r overlapping batches
of m samples and average the result. In practice, the extra computation from using more batches is a small
fraction of the time for model computations that are already required to be done for each of the n samples.
Specifically:

• We describe how to take an m-sample base estimator for the IW-ELBO or its gradient and reduce
variance compared to averaging over r replicates by forming a complete U-statistic, which averages the
base estimator applied to every distinct batch of size m. This estimator has the lowest variance possible
among estimators that average the base estimator over different batches, but it is usually not tractable
in practice due to the very large number of distinct batches.

• We then show how to achieve most of the variance reduction with much less computation by using
incomplete U-statistics, which average over a smaller number of overlapping batches. We introduce a
novel way of selecting batches and prove that it attains a (1 − 1/`) fraction of the possible variance
reduction with k = `r batches.

• As an alternative to incomplete U-statistics, we introduce novel and fast approximations for IW-ELBO
complete U-statistics. The extra computational step compared to the standard estimator is a single sort
of the n input samples, which is very fast. We prove accuracy bounds and show the approximations
perform very well, especially in earlier iterations of stochastic optimization.

• We demonstrate on a diverse set of inference problems that U-statistic-based variance reduction for the
IW-ELBO either does not change, or leads to modest to significant gains in black-box VI performance,
with no substantive downsides. We recommend always applying these techniques for black-box IWVI
with r > 1.

• We empirically show that U-statistic-based estimators also reduce variance during IWAE training and lead
to models with higher training objective values when used with either the standard gradient estimator or
the doubly-reparameterized gradient (DReG) estimator (Tucker et al., 2018).

2 Importance-Weighted Variational Inference

Assume a target distribution p(z, x) where x ∈ RdX is observed and z ∈ RdZ is latent. VI uses the following
evidence lower bound (ELBO), given approximating distribution qφ with parameters φ ∈ Rdφ , to approximate
ln p(x) (Saul et al., 1996; Blei et al., 2017):

L = E
[
ln p(Z, x)

qφ(Z)

]
≤ ln p(x), Z ∼ qφ.

The inequality follows from Jensen’s inequality and the fact that E
[
p(Z,x)
qφ(Z)

]
= p(x), that is, the importance

weight p(Z,x)
qφ(Z) is an unbiased estimate of p(x).

Burda et al. (2016) first showed that a tighter bound can be obtained by using the average of m importance
weights within the logarithm. The importance-weighted ELBO (IW-ELBO) is

Lm = E
[
ln 1

m

m∑
i=1

p(Zi, x)
qφ(Zi)

]
≤ ln p(x), Zi

iid∼ qφ. (1)

This bound again follows from Jensen’s inequality and the fact that 1
m

∑m
i=1

p(Zi,x)
qφ(Zi) , which is the sample

average of m unbiased estimates, remains unbiased for p(x). Moreover, we expect Jensen’s inequality to
provide a tighter bound because the distribution of this sample average is more concentrated around p(x)
than the distribution of one estimate. Indeed, Lm ≥ Lm′ for m > m′ and Lm → ln p(x) as m→∞ (Burda
et al., 2016).

2

Published in Transactions on Machine Learning Research (02/2023)

In importance-weighted VI (IWVI), the IW-ELBO Lm is maximized with respect to the variational param-
eters φ to obtain the tightest possible lower bound to ln p(x), which simultaneously finds an approximating
distribution that is close in KL divergence to p(z |x) (Domke & Sheldon, 2018). In practice, the IW-ELBO
and its gradients are estimated by sampling within a stochastic optimization routine. It is convenient to
define the log-weight random variables Vi = ln p(Zi, x)− ln qφ(Zi) for Zi ∼ qφ and rewrite the IW-ELBO as

Lm = E[h(V1:m)], h(v1:m) = ln 1
m

m∑
i=1

evi . (2)

Then, an unbiased IW-ELBO estimate with r replicates, using n = rm i.i.d. log-weights (Vj,i)r,mj=1,i=1 is

L̂n,m = 1
r

r∑
j=1

h(Vj,1, . . . , Vj,m). (3)

In L̂n,m, we use the subscript n to denote the total number of input samples used for estimation and m for
the number of arguments of h, which determines the IW-ELBO objective to be optimized.

For gradient estimation, an unbiased estimate for the IW-ELBO gradient ∇φLm is:

Ĝn,m = 1
r

r∑
j=1

g(Zj,1, . . . , Zj,m), Zj,i
iid∼ qφ, (4)

where g(z1:m) is any one of several unbiased “base” gradient estimators that operates on a batch ofm samples
from qφ, including the reparameterization gradient estimator (Kingma &Welling, 2013; Rezende et al., 2014),
the doubly-reparameterized gradient (DReG) estimator (Tucker et al., 2018), or the score function estimator
(Fu, 2006; Kleijnen & Rubinstein, 1996).

2.1 IWVI Tradeoffs: Bias, Variance, and Computation

Past research has shown that by using a tighter variational bound, IWVI can improve both learning and
inference performance, but also introduce tradeoffs such as those pointed out by Rainforth et al. (2018). In
fact, there are several knobs to consider when using IWVI that control its bias, variance, and amount of
computation. These tradeoffs can be complex so it is helpful to review the key elements as they relate to
our setting, with the goal of understanding when and how IWVI can be helpful and providing self-contained
evidence that the setting where U-statistics are beneficial can and does arise in practice.

Consider the task of maximizing an IW-ELBO objective Lm to obtain the tightest final bound on the log-
likelihood. This requires estimating Lm and its gradient with respect to the variational parameters in each
iteration of a stochastic optimization procedure. Assume there is a fixed budget of n independent samples
per iteration, where, for convenience, n = rm for an integer r ≥ 1, as above. The parameters m and r can
be adjusted to control the estimation bias and variance at the cost of increased computation. Specifically:

• For a fixed m, by setting r′ > r, we can reduce the variance of the estimator in Equation (4) by increasing
the computational cost to r′m > rm samples per iteration.

• For a fixed r, by setting m′ > m we can reduce the bias of the objective — that is, the gap in the bound
Lm′ ≤ ln p(x) — by increasing the computational cost to rm′ > rm samples per iteration.

However, Rainforth et al. (2018) observed that increasingm may also have the negative effect of worsening
the signal-to-noise (SNR) ratio of gradient estimation (but also that this could be counterbalanced by
increasing r). Later, Tucker et al. (2018) showed that, for the DReG gradient estimator, increasing m
can increase SNR; see also the paper by (Finke & Thiery, 2019) for a detailed discussion of these issues.

Overall, while the effect of increasing the number of replicates r to reduce variance is quite clear, the effects
of increasing m are sufficiently complex that it is difficult to predict in advance when it will be beneficial.

3

Published in Transactions on Machine Learning Research (02/2023)

2 8 32 128
m

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

er
ro

r

1e 5

n
16
32
64
128
256

Figure 1: Distribution of the distance (error) between
the distribution’s covariance and that of the approx-
imating distribution as a function of m for different
numbers of sampled points n, after training an approx-
imating distribution using the standard IW-ELBO es-
timator. As we increase n, the optimal m also in-
creases, but at a slow rate. [See Section 6 for details.]

However, an important premise of our work is that
the optimal setting of m is often strictly between
1 and n, since this is the setting where U-statistics
can be used to reduce variance. To understand this,
we can first reason from the perspective of a user
that is willing to spend more computation to get
a better model. Assuming the variational bound is
not already tight, this user can increase m as much
as desired to tighten the bound, and then, increase
r as needed to control the gradient variance. This
argument predicts that, for a sufficiently large com-
putational budget and complex enough model (so
that the bound is not already tight with m = 1), a
value m > 1 will often be optimal.

From the perspective of a user with fixed computa-
tional budget, in which the number of optimization
iterations is also being fixed, we could instead ask:
“for a fixed n, what are the optimal choices of m
and r = n/m”? This question can be addressed em-
pirically. Rainforth et al. (2018) reported in their
Figure 6 that the extreme values, i.e., m = 1 or
m = n, were never the best values. We found empirically that for some models, this result also holds for
black box VI, i.e., the optimal choice of m is strictly greater than 1 and less than n, as shown in Figure 1.
See also Figure 5, which shows that similar observations apply when using the DReG estimator. In our
analysis of 17 real Stan and UCI models, with n = 16, around half of them achieved the best performance
for an intermediate value of m, depending on the approximating distribution and base gradient estimator
[see Table 8 and 9 in Appendix G]. And we further conjecture that the fraction of real-world models with
this property will increase as n increases.

For the rest of this work we focus on methods that can reduce variance for the case when 1 < m < n.

3 U-Statistic Estimators

We now introduce estimators for the IW-ELBO and its gradients based on U-statistics, and apply the theory
of U-statistics to relate their variances. The theory of U-statistics was developed in a seminal work by
Hoeffding (1948) and extends the theory of unbiased estimation introduced by Halmos (1946). For detailed
background, see the original works or the books by Lee (1990) and van der Vaart (2000).

The standard estimators in Eqs. (3) and (4) average the base estimators h(v1:m) and g(z1:m) on disjoint
batches of the input samples. The key insight of U-statistics is that variance can be reduced by averaging
the base estimators on a larger number of overlapping sets of samples.

We will consider general IW-ELBO estimators of the form

L̂S(v1:n) = 1
|S|
∑
s∈S

h(vs1 , . . . , vsm), (5)

where S is any non-empty collection of size-m subsets of the indices JnK := {1, . . . , n}, and si is the ith
smallest index in the set s ∈ S. Since Eh(V1:m) = Lm, it is clear (by symmetry and linearity) that
E L̂S(V1:n) = Lm, that is, the estimator is unbiased. For now, we will call this a “U-statistic with kernel h”,
as it is clear the same construction can be generalized by replacing h by any other symmetric function of
m variables1, or “kernel”, while preserving the expected value. Later, we will distinguish between different
types of U-statistics based on the collection S.

1Recall that a symmetric function is a function invariant under all permutations of its arguments.

4

Published in Transactions on Machine Learning Research (02/2023)

We can form U-statistics for gradient estimators by using base gradient estimators as kernels. Let g(z1:m)
be any symmetric base estimator such that E g(Z1:m) = ∇φLm. The corresponding U-statistic is

ĜS(Z1:n) = 1
|S|
∑
s∈S

g(Zs1 , . . . , Zsm) (6)

and satisfies E ĜS(Z1:n) = ∇φLm.

3.1 Variance Comparison

How much variance reduction is possible for IWVI by using U-statistics? In this section, we first define the
standard IW-ELBO estimator and complete U-statistic IW-ELBO estimator, and then relate their variances.
For concreteness, we restrict our attention to IW-ELBO objective estimators, but analagous results hold for
gradients by using a base gradient estimator as the kernel of the U-statistic.

We first express the standard IW-ELBO estimator L̂n,m in the terminology of Eq. (5):
Estimator 1. The standard IW-ELBO estimator L̂n,m of Eq. (3) is the U-statistic L̂S formed by taking S
to be a partition of JnK into disjoint sets, i.e., S =

{
{1, . . . ,m}, {m+1, . . . , 2m}, . . . , {(r−1)m+1, . . . , rm}

}
.

Estimator 2. The complete U-statistic IW-ELBO estimator L̂Un,m is the U-statistic L̂S with S =
(JnK
m

)
, the

set of all distinct subsets of JnK with exactly m elements.

We will show that the variance of the L̂Un,m is never more than that of L̂n,m, and is strictly less under certain
conditions (that occur in practice), using classical bounds on U-statistic variance due to Hoeffding (1948).
Since L̂Un,m is an average of terms, one for each s ∈

(JnK
m

)
, its variance depends on the covariances between

pairs of terms for index sets s and s′, which in turn depend on how many indices are shared by s and s′.
This motivates the following definition:
Definition 3.1. Let V1, . . . , V2m be i.i.d. log-weights. For 0 ≤ c ≤ m, take s, s′ ∈

(J2mK
m

)
with |s ∩ s′| = c.

Using h from Eq. (2), define

ζc = Cov
[
h(Vs1 , . . . , Vsm), h(Vs′

1
, . . . , Vs′

m
)
]
,

which depends only on c and not the particular s and s′.

In words, this is the covariance between two IW-ELBO estimates, each using one batch ofm i.i.d. log-weights,
and where the two batches share c log-weights in common. For example, when m = 2 we have

ζ0 = 0, ζ1 = Cov[ln(1
2e
V1 + 1

2e
V2), ln(1

2e
V1 + 1

2e
V3)], and, ζ2 = Var[ln(1

2e
V1 + 1

2e
V2)].

Then, due to Hoeffding’s classical result,
Proposition 3.2. With ζ1, and ζm defined as above, the standard IW-ELBO estimator L̂n,m (Estimator 1)
and complete U-statistic estimator (Estimator 2) with n = rm and r ∈ N satisfy

m2

n ζ1 ≤ Var[L̂Un,m] ≤ m
n ζm = Var[L̂n,m].

Moreover, for a fixed m, the quantity nVar[L̂Un,m] tends to its lower bound m2ζ1 as n increases.

Proof. The inequalities and asymptotic statement follow directly from Theorem 5.2 of Hoeffding (1948). The
equality follows from the definition of ζm.

Hoeffding proved that mζ1 ≤ ζm. We observe in practice that there is a gap between the two variances that
leads to practical gains for the complete U-statistic estimator in real VI problems.

A classical result of Halmos (1946) also shows that complete U-statistics are optimal in a certain sense: we
describe how this result applies to estimator L̂Un,m in Appendix B.

5

Published in Transactions on Machine Learning Research (02/2023)

Finally, we conclude this discussion by stating the main analogue of Proposition 3.2 for gradient estimation.
The result, also following from Theorem 5.2 of Hoeffding (1948), states that the complete U-statistic gradient
estimator has total variance and expected squared norm no larger than that of the standard estimator:
Proposition 3.3. Let Ĝn,m and ĜUn,m be the standard and complete-U-statistic gradient estimators formed
using a symmetric base gradient estimator g(z1:m) that is unbiased for ∇φLm and the same index sets as
L̂n,m and L̂Un,m, respectively. Then tr(Var[ĜUn,m]) ≤ tr(Var[Ĝn,m]) and E ‖ĜUn,m‖22 ≤ E ‖Ĝn,m‖22.

We provide a proof in Appendix B.1.

3.2 Computational Complexity

There are two main factors to consider for the computational complexity of an IW-ELBO estimator:

1) The cost to compute n log-weights Vi = ln p(Zi, x)− ln q(Zi) for i ∈ JnK, and
2) the cost to compute the estimator given the log-weights.

A problem with the complete U-statistics L̂Un,m and ĜUn,m is that they use
∣∣(JnK
m

)∣∣ =
(
n
m

)
distinct subsets

of indices in Step 2), which is expensive. It should be noted that these log-weight manipulations are very
simple, while, for many probabilistic models, computing each log-weight is expensive, so, for modest m and
n, the computation may still be dominated by Step 1). However, for large enough m and n, Step 2) is
impractical.

4 Incomplete U-Statistic Estimators

In practice, we can achieve most of the variance reduction of the complete U-statistic with only modest
computational cost by averaging over only k �

(
n
m

)
subsets of indices selected in some way. Such an

estimator is called an incomplete U-statistic. Incomplete U-statistics were introduced and studied by Blom
(1976).

A general incomplete U-statistic for the IW-ELBO has the form in Eq. (5) where S (
(JnK
m

)
is a collection

of size-m subsets of JnK that does not include every possible subset. We will also allow S to be a multi-set,
so that the same subset may appear more than once. Note that the standard IW-ELBO estimator L̂n,m is
itself an incomplete U-statistic, where the k = r = n

m index sets are disjoint. We can improve on this by
selecting k > r sets.
Estimator 3 (Random subsets). The random-subset incomplete-U-statistic estimator for the IW-ELBO is
the estimator L̂Sk where Sk is a set of k subsets (si)ki=1 drawn uniformly at random (with replacement) from(JnK
m

)
.

We next introduce a novel incomplete U-statistic, which is both very simple and enjoys strong theoretical
properties.
Estimator 4 (Permuted block). The permuted block estimator is computed by repeating the standard
IW-ELBO estimator ` times with randomly permuted log-weights and averaging the results. Formally, the
permuted-block incomplete-U-statistic estimator for the IW-ELBO is the estimator L̂S`Π with the collection
S`Π defined as follows. Let π denote a permutation of JnK. Define Sπ as the collection obtained by permuting
indices according to π and then dividing them into r disjoint sets of size m. That is,

Sπ =
{{
π(1), π(2), . . . , π(m)

}
,
{
π(m+ 1), . . . , π(2m)

}
, . . . ,

{
π
(
(r − 1)m+ 1

)
, . . . , π(rm)

}}
.

Now, let S`Π =
⊎
π∈Π Sπ where Π is a collection of ` random permutations and

⊎
denotes union as a multiset.

The total number of sets in S`Π is k = r`.

Both incomplete-U-statistic estimators can achieve variance reduction in practice for a large enough number
of sets k, but the permuted block estimator has an advantage: its variance with k subsets is never more
than that of the random subset estimator with k subsets, and never more than the variance of the standard

6

Published in Transactions on Machine Learning Research (02/2023)

IW-ELBO estimator (and usually smaller). On the other hand, the variance of the random subset estimator
is more than that of the standard estimator unless k ≥ k0 for some threshold k0 > r.
Proposition 4.1. Given m and n = rm, the variances of these estimators satisfy the following partial
ordering:

Var[L̂Un,m]︸ ︷︷ ︸
complete

(a)
≤ Var[L̂S`Π]︸ ︷︷ ︸

permuted block

(b)
≤

standard︷ ︸︸ ︷
Var[L̂n,m]

≤
(c)

Var[L̂Sr`]︸ ︷︷ ︸
random subset

.
(7)

Moreover, if the number of permutations ` > 1 and Var[L̂Un,m] < Var[L̂n,m], then (b) is strict; if r = n
m > 1,

then (c) is strict. (Note that the permuted and random subset estimators both use k = r` subsets.)

Proof. By Def. 3.1, if s and s′ are uniformly drawn from
(JnK
m

)
and κ =

∣∣(JnK
m

)∣∣, we have

E[ζ|s∩s′|] =
∑

s,s′∈(JnK
m)

ζ|s∩s′|

κ2 =
∑

s,s′∈(JnK
m)

E[h(Vs1 , . . . , Vsm)h(Vs′
1
, . . . , Vs′

m
)]

κ2 − E[L̂Un,m]2 = Var[L̂Un,m]. (8)

Let π1, . . . , π` be the random permutations. Observe that for s, s′ ∈ Sπi distinct, i.e., two distinct sets within
the ith block, s and s′ are disjoint and then h(Vs1 , . . . , Vsm) is independent of h(Vs′

1
, . . . , Vs′

m
). Hence, all

dependencies between different sets are due to relations between permutations, i.e., each of the `r terms will
have a dependency with the (`− 1)r terms not in the same permutation. Therefore, it follows from (8) that
the total variance of L̂S`Π is

Var[L̂S`Π] = 1
`r ζm + (1− 1

`) Var[L̂Un,m], (9)

i.e., a convex combination of 1
r ζm = Var[L̂n,m] and Var[L̂Un,m]. Hence, using Proposition 3.2, (a) and (b)

holds.

By a similar argument, the total variance of L̂Sr` is

Var[L̂Sr`] = 1
`r ζm + (1− 1

r`) Var[L̂Un,m].

Then, (c) holds because
Var[L̂S`Π]−Var[L̂Sr`] = 1

` (1
r − 1) Var[L̂Un,m] ≤ 0.

A remarkable property of the permuted-block estimator is that we can choose the number of permutations `
to guarantee what fraction of the variance reduction of the complete estimator we want to achieve. Say we
would like to achieve 90% of the variance reduction; then it suffices to set ` = 10. The following Proposition
formalizes this result.
Proposition 4.2. Given m and n = rm, for ` ∈ N the permuted-block estimator achieves a (1−1/`) fraction
of the variance reduction provided by the complete U-statistic IW-ELBO estimator, i.e.,

Var[L̂n,m]︸ ︷︷ ︸
standard

− Var[L̂S`Π]︸ ︷︷ ︸
permuted block

= (1− 1
`)(Var[L̂n,m]︸ ︷︷ ︸

standard

− Var[L̂Un,m]︸ ︷︷ ︸
complete

).

Proof. This follows directly from Eq. (9).

The conclusions of Propositions 4.1 and 4.2 do not depend on the kernel. This means they provide strong
guarantees for our novel and simple permuted-block incomplete U-statistic with any kernel, which may be
of general interest, and also imply the following result for gradients:
Proposition 4.3. The conclusion of Proposition 4.2 holds with Var[L̂] replaced by either E[‖Ĝ‖22] or
tr([Var[Ĝ]), for each pair (L̂, Ĝ) of objective estimator and gradient estimator that use the same collection S
of index sets, and for any base gradient estimator g(v1:m).

7

Published in Transactions on Machine Learning Research (02/2023)

5 Efficient Lower Bounds

In the last section, we approximated the complete U-statistic by averaging over k �
(
n
m

)
subsets. For

example, by Proposition 4.2, we could achieve 90% of the variance reduction with 10× more batches than
the standard estimator, and the extra running-time cost is often very small in practice. An even faster
alternative is to approximate the kernel in such a way that we can compute the complete U-statistic without
iterating over subsets. In this section, we introduce such an approximation for the IW-ELBO objective,
where the extra running-time cost is a single sort of the n log-weights, which is extremely fast. Furthermore,
Proposition 5.2 below will show that it is always a lower bound to L̂Un,m and has bounded approximation
error, so its expectation lower bounds Lm and ln p(x); thus, it can be used as a surrogate objective within
VI that behaves well under maximization. We then introduce a “second-order” lower bound, which has
provably lower error. Unlike the last two sections, these approximations do not have analogues for arbitrary
gradient estimators such as DReG or score function estimators. For optimization, we use reparameterization
gradients of the surrogate objective.
Estimator 5. The approximate complete U-statistic IW-ELBO estimator is

L̂An,m(V1:n) =
(
n

m

)−1∑
s∈(JnK

m)
max(Vs1 , . . . , Vsm)− lnm.

This estimator uses the approximation ln
∑m
i=1 e

vi ≈ max{v1, . . . , vm} for log-sum-exp. The following Propo-
sition shows that we can compute L̂An,m exactly without going over the

(
n
m

)
subsets but instead taking only

O(n lnn) time. The intuition is that each of the n log-weights will be a maximum element of some number
of size-m subsets, and each such term in the summation for L̂An,m will be the same. Moreover, we can reason
in advance how many times each log-weight will be a maximum.
Proposition 5.1. For any v1:n ∈ Rn, it holds that

L̂An,m(v1:n) ≡
(
n

m

)−1 n∑
i=1

biv[i] − lnm,

where bi =
(
n−i
m−1

)
, if i ∈ Jn − (m − 1)K (and 0 otherwise), and [·] : JnK → JnK is a permutation s.t., the

sequence of log-weights v[1], . . . , v[n] is non-increasing.

Proof. For s ∈
(JnK
m

)
, let vs = (vs1 , . . . , vsm). We can see that max vs = v[i] where i is the smallest index in

s. Thus, ∑
s∈(JnK

m)
max vs =

n∑
i=1

biv[i],

where bi is the number of sets s ∈
(JnK
m

)
with minimum index equal to i. The conclusion follows because

there are n− i indices larger than i, but we can take m− 1 of them only when i ∈ Jn− (m− 1)K.

To further understand both the computational simplification and the quality of this approximation, con-
sider this real example of computing the (non-approximate) complete U-statistic IW-ELBO estimator L̂U4,2.
Suppose that the sampled log-weights are

v = (−6034.091,−4351.335,−4157.236,−5419.201).

Given the
(4

2
)
sets, we can evaluate the kernel h(vi, vj) = ln(evi + evj)− ln 2 on each of them to generate the

following table:

8

Published in Transactions on Machine Learning Research (02/2023)

(vi, vj) h(vi, vj)
(−6034.091,−4351.335) −4352.028
(−6034.091,−4157.236) −4157.930
(−6034.091,−5419.201) −5419.895
(−4351.335,−4157.236) −4157.930
(−4351.335,−5419.201) −4352.028
(−4157.236,−5419.201) −4157.930

Mean −4432.956

At three decimal points of precision, we see that h(vi, vj) = max(vi, vj) + ln 2 and therefore −4157.930,
−4352.028, and −5419.895 each appear

(3
1
)
times,

(2
1
)
times, and once, respectively.

0 2000 4000 6000 8000 10000
iterations

−600

−500

−400

−300

−200

ob
je

ct
iv

e

standard IW

permuted

mean difference

0 500 1000 1500 2000
iterations

−60

−50

−40

−30
ob

je
ct

iv
e

−32

−30

0 1000 2000 3000 4000 5000
iterations

−1300

−1250

−1200

−1150

ob
je

ct
iv

e

−1160

−1150

Figure 2: Median envelope of the objective using the permuted-block and standard IW-ELBO estimators
for the mushrooms (left), mesquite (center) and electric-one-pred (right) models. In all cases we used
n = 16 and m = 8. For reference there is a line segment of length similar to the average objective difference,
respectively, 202.08, 0.97, and −3.91.

5.1 Accuracy and Properties of the Approximation

It is straightforward to derive both upper and lower bounds of the complete U-statistic IW-ELBO estimator
L̂Un,m from this approximation.
Proposition 5.2. For any set of log-weights v1:n ∈ Rn, it holds that

L̂An,m(v1:n) ≤ L̂Un,m(v1:n) ≤ L̂An,m(v1:n) + lnm. (10)

Moreover, the first inequality is strict unless m = 1. On the other hand, the second inequality is an equality
when all log-weights are equal.

Proof. This is a direct application of well-known inequalities for log-sum-exp. Let h(v1, . . . , vm) = ln
∑M
i=1 e

vi

and f(v1, . . . , vm) = max{v1, . . . , vm}. Then, for all v1:m ∈ Rm,

f(v1:m) ≤ h(v1:m) ≤ f(v1:m) + lnm. (11)

To see this, write v̂ = max{v1, . . . , vm}. Then,

1
me

v̂ ≤ 1
m

m∑
j=1

evj ≤ ev̂. (12)

Eq. (11) follows from applying ln to (12). Eq. (10) then follows from (11) and the definitions of L̂An,m and
L̂Un,m.

One comment about the approximation quality is in order: in the limit as the variance of the log-weights de-
creases, the second inequality in the bounds above becomes tight, and the approximation error of L̂An,m(v1:n)
approaches its maximum lnm. This can be seen during optimization when maximizing the IW-ELBO, which
tends to reduce log-weight variance [cf. Figure 4].

9

Published in Transactions on Machine Learning Research (02/2023)

5.2 Second-Order Approximation

Based on our understanding of the approximation properties of L̂An,m, we can add a correction term to obtain
a second-order approximation.
Estimator 6. For 2 ≤ m ≤ n, the second-order approximate complete-U-statistic IW-ELBO estimator is

L̂A,2n,m(V1:n) = L̂An,m(V1:n) +
(
n
m

)−1
n−(m−1)∑

i=1
b̃i ln(1 + e∆V[i]), (13)

where ∆V[i] = V[i+1] − V[i] and b̃i =
(
n−1−i
m−2

)
.

This can still be computed in O(n lnn) time and gives a tighter approximation than L̂An,m.
Proposition 5.3. For all v1:n ∈ Rn,

L̂An,m(v1:n) < L̂A,2n,m(v1:n) ≤ L̂Un,m(v1:n).

Moreover, the second inequality is an equality exactly when m = n = 2.

Proof. The first inequality follows directly because the terms in the summation of (13) are positive reals.

For the second inequality, take s ∈
(JnK
m

)
and let i be the smallest index in s. If s is one of the

(
n−1−i
m−2

)
sets

on which i is the smallest index and i+ 1 ∈ s, then

1
me

v[i](1 + ev[i+1]−v[i]) = ev[i] + ev[i+1]

m
≤ 1

m

∑
s∈s

evs .

If i + 1 6∈ s, we know that 1
me

v[i] ≤ 1
m

∑m
j=1 e

vsj . We finish by applying logarithm to both inequalities and
the definition of L̂An,m and L̂Un,m.

In contrast to L̂An,m, the second-order approximation is not a U-statistic. However, it is a tighter lower-bound
of L̂Un,m.
Note 5.4. To use the approximations as an objective, we need them to be differentiable. If the distribution
of W is absolutely continuous, then the approximations are almost surely differentiable because sort is
almost surely differentiable, with Jacobian given by the permutation matrix it represents [cf. Blondel et al.
(2020)].

6 Experiments

In this section, we empirically analyze the methods proposed in this paper. We do so in three parts: we first
study the gradient variance, VI performance, and running time for IWVI in the “black-box” setting2; we
then focus on a case where the posterior has a closed-form solution, using random Dirichlet distributions;
and finally, we study the performance of the estimators for Importance-Weighted Autoencoders.

For black-box IWVI, we experiment with two kinds of models: Bayesian logistic regression with 5 different
UCI datasets (Dua & Graff, 2017) using both diagonal and full covariance Gaussian variational distributions,3
and a suite of 12 statistical models from the Stan example models (Stan Development Team, 2021; Carpenter
et al., 2017), with both diagonal (all models) and full covariance Gaussian (10 models4) approximating

2That is, VI that uses only black-box access to ln p(z, x) and its gradients.
3That is, p(y | θ) =

∏N

i=1 Bernoulli
(
yi; logistic(θT xi)

)
for fixed xi ∈ Rd and p(θ) = N (θ; 0, σ2Id), and V = ln p(θ, y)−ln q(θ)

for θ ∼ q(θ) with either q(θ) = N (θ; µ, diag(w)) or q(θ) = N (θ; µ,LLT); we optimize over (µ,w) or (µ,L), with w constrained
to be positive (via exponential transformation) and L constrained to be lower triangular with positive diagonal (via softplus
transformation). Parameters were randomly initialized prior to transformations from iid standard Gaussians.

4The irt-multilevel model diverged for all configurations using a full covariance Gaussian.

10

Published in Transactions on Machine Learning Research (02/2023)

distributions. We provide additional information regarding the models in Appendix C. For each model,
the variational parameters were optimized using stochastic gradient descent with fixed learning rate for
15 different logarithmically spaced learning rates. We used n = 16 samples per iteration except for the
running time analysis, and experimented with m ∈ {2, 4, 8}. Since this is a stochastic optimization problem,
we ran every combination of model, learning rate, n, and m, using 50 different random seeds to assess
typical performance. We used the reparameterization gradient estimator as the base gradient estimator, and
also provide in Appendix D and G (very similar) results for the doubly-reparameterized (DReG) gradient
estimator.

complete-U approx.
approx. 2nd

random subs.
permuted

0.4

0.5

0.6

0.7

0.8

ra
ti

o
of

gr
ad

s’
to

ta
l

va
ri

an
ce

(a) Ratio of gradient’s total variance.

complete-U approx.
approx. 2nd

random subs.
permuted

0.5

0.6

0.7

0.8

0.9

1.0

ra
ti

o
of

ob
je

ct
iv

e’
s

va
ri

an
ce

(b) Ratio of the objective’s variances.

Figure 3: Ratios of the trace of the variance (i.e., the total variance) of different proposed gradient estimators
to that of the standard gradient estimator, and objective’s variances (b) for the mushrooms dataset (d = 96).
All ratios are below 1, which indicates variance reduction. The estimators can be ordered by variance:
the complete-U-statistic estimator and second-order approximation are lowest, followed by the permuted-
block and first-order approximation, and finally the random subsets estimator. Since ` = 20, we expect
the permuted-block estimator to achieve 1 − 1

20 = 0.95 of the variance reduction; the estimated variance
reduction is 91.24% and 95.72% for the objective.

Gradient Variance We first confirm empirically that U-statistics reduce the variance of gradients within
IWVI. For each random seed, we performed IWVI using the complete U-statistic L̂Un,m for 10,000 iterations.
Every 200 iterations, we computed the gradients, given the values of the parameters at that time, for
each of the alternative gradient estimators: the standard estimator, the complete U-statistic estimator, its
approximations, the permuted-block estimator with ` = 20, and the random subsets estimator with k = 20 nm
(a number of sets equal to the permuted version). In all cases we used n = 16 and m = 8. For each gradient
estimator Ĝ, we estimate the total variance tr(Var[Ĝ]) using 200 independent gradient samples.

Figure 3–(a) shows the total variance of each estimator as a fraction of that of the standard estimator
(that is, the ratio tr(Var[Ĝ])/ tr(Var[Ĝn,m])) for Bayesian logistic regression with the mushrooms dataset.
The ratios are between 60% and 70% for all methods, with the random subsets estimator showing the
highest variance and the complete U-statistic the lowest. This confirms it is possible to reduce gradient
variance with U-statistics. Moreover, the estimators can be ordered by their gradients’ total variance. The
complete U-statistic estimator and the 2nd order approximation have the smallest variance, the permuted-
block estimator has slightly higher variance, and the random subsets estimator has the highest variance (but
still less than that of the standard estimator). Recall that, according to Prop. 4.2, ` = 20 implies that the
permuted estimator achieves 95% of the variance reduction provided by the complete-U-statistic IW-ELBO.
In this case, we estimated the variance reduction of the permuted-block estimator to be 91.24% of that
of the complete-U-statistic estimator. We also show the ratio of the objective’s variances in Figure 3–(b).
Most estimators have a ratio of around 80%, but the permuted-block estimator achieves a 95.72% variance
reduction provided by the complete U-statistic estimator.

11

Published in Transactions on Machine Learning Research (02/2023)

Table 1: For Bayesian logistic regression (a) and Stan models (b), difference in nats of the average objective
(higher is better) when trained using the permuted estimator vs. the standard IW-ELBO estimator. The
variational distribution is a Gaussian distribution using either a full rank covariance matrix (first column)
or a diagonal one (second column). The entry is “—” when the model diverged for all configurations, and
NaN when it diverged for the specific configuration (other configurations are found in the Appendix).

(a) Bayesian logistic regression models.

Dataset
permuted− standard IW-ELBO

m = 8
Full Covariance Diagonal

a1a 112.42 4.48
australian 3.36 1.38
ionosphere 16.58 0.06
mushrooms 202.56 8.69
sonar 50.62 0.19

(b) Stan models.

Dataset
permuted− standard IW-ELBO

m = 8
Full Covariance Diagonal

congress 19.80 7.33
election88 1133.70 6.94
election88Exp NaN 32.76
electric 80.46 4.32
electric-one-pred -3.45 -3.91
hepatitis NaN 0.65
hiv-chr 283.19 15.84
irt 16077.03 1.00
irt-multilevel — 62.32
mesquite 1.41 2.00
radon 268.98 14.83
wells -0.03 -0.11

VI Performance Ultimately, our goal is to provide a more efficient optimization method. To measure typ-
ical stochastic optimization performance, we first took the maximum objective value across learning rates in
each iteration to construct the optimization envelope for each method and random seed [cf. Geffner & Domke
(2018)]. The purpose of the envelope is to eliminate the learning rate as a nuisance parameter since stochastic
optimization methods are very sensitive to learning rate, and one common benefit of variance reduction is to
allow a larger learning rate. Then, for each method we used the median envelope across the 50 random seeds
as a measure of its typical optimization behavior over iterations. Examples can be seen in Figure 2. As a final
metric for each method we computed the average objective value (of the median envelope) across iterations up
to 10,000 iterations,5 excluding the first 50 iterations, which were highly noisy and sensitive to initialization.
This is a useful summary metric to measure the tendency of one method to “stay ahead” of another (see
the examples in Figure 2). Agrawal et al. (2020) found a similar metric effective for learning rate selection.

Table 2: Times for 1000 iterations of optimiza-
tion with different estimators on the mushrooms
dataset with n = 24, m = 12, averaged over 100
trials.

Method Time (s)
Mean Std

L̂24,12 standard IW-ELBO 5.47 0.04
L̂U

24,12 complete U 1573.27 2.12
L̂S20 24

12
random subsets 6.49 0.09

L̂20
SΠ permuted block 6.45 0.09
L̂A

24,12 approx. 5.25 0.02
L̂A,2

24,12 approx. 2nd order 5.54 0.04

Table 1 shows the average objective difference between
the permuted-block and standard IW-ELBO estimators
for m = 8, with positive numbers indicating better per-
formance for permuted-block. We focus on permuted-
block here because it consistently achieves an excellent
tradeoff between variance reduction and running time.
In Appendix D we present similar results for two addi-
tional methods—the 2nd order approximation and the
permuted-block estimator with DReG as the base gra-
dient estimator—and for different values of m; in Ap-
pendix G we show the median envelopes themselves for
many combinations of models, methods, and m. The ex-
amples in Figure 2 were selected to show cases where the
difference is big (left), small (center), and negative (right);
to contextualize our summary metric, we also added a ref-

erence vertical bar showing an iteration where the difference between the two envelopes is approximately

5For some datasets, such as sonar, we observed early convergence by visual inspection and computed the metric only up to
that point. See Figures in Appendix G.

12

Published in Transactions on Machine Learning Research (02/2023)

equal to the average objective difference. These results make it clear that the permuted-block estima-
tor improves the convergence of stochastic optimization for VI across a range of models and settings. In
electric-one-pred, permuted-block was consistently worse, but we verified that it still had lower-variance
gradients; we speculate this is an unstable model where higher variance gradients help escape local optima.

Running Time Table 2 shows the times required to complete 1000 iterations of optimization with different
estimators for Bayesian logistic regression with the mushrooms data set, averaged over 100 trials. Here we
used n = 24 and m = 12, which makes it a challenging setting for the complete U-statistic estimator,
because there are

(24
12
)

= 2,704,156 sets. As expected, the complete U-statistic is orders of magnitude slower.
The approximations are faster than the standard estimator because the smallest m − 1 log-weights do not
contribute to the objective, and thus their gradients are not needed. The permuted-block estimator incurs
an extra cost of less than 1 ms per iteration compared to the standard IW-ELBO estimator for this model
(a 18% increase). However, the increased time only depends on m, n, and `, and not on the model. Even for
a very complex model, we would expect the extra time for these settings to be on the order of order of 1 ms
per iteration, and be negligible compared to other costs. For example, for the irt, the standard estimator
took 16.62s (0.11), while the permuted-block estimator took 17.54s (0.12), i.e., a 5% increase.

Incomplete U-Statistics and Approximations Previously, we analyzed the methods by com-
paring them to the standard IW-ELBO estimator. In this part we will use the complete U-
statistics as a baseline: given a realization of log-weights v1, . . . , vn, we measure the differ-
ence between the objective value assigned by the complete U-statistic and the alternatives. For
this experiment, we will use n = 16, m = 8 and the Bayesian logistic regression dataset
mushrooms. In Figure 4 we plot the difference measured in nats as a function of the iteration
step. From that plot (especially the inset), it is clear that the approximations are underestimators.

0 2000 4000 6000 8000 10000

iterations

−20

−10

0

10

20

30

40

50

60

n
at

s

−0.50

−0.25

0.00

0.25

0.50
standard IW

approx.

approx. 2nd

random subsets

permuted

Figure 4: Difference between estimated value using
any of the methods and that of the complete U-
statistic, in nats, for the mushrooms dataset. (25th
and 75th percentiles shown with dashed lines.) As op-
timization progresses, the error of the incomplete U-
statistics decreases, but the error of the approximation
increases. The inset shows the permuted and both ap-
proximations in a region that is 0.5 nats of the target
value.

It is also interesting to see the approximations and
the incomplete U-statistic being complementary: as
the optimization progresses, the error of the approx-
imations increases, but the error made by the in-
complete U-statistics decreases. We expected this
result because the variance of the log-weights de-
creases with the optimization. (The upper-bound of
Eq. (10) is achieved when all vi are equal; but this is
exactly the case when all the incomplete U-statistics
coincide.)

Dirichlet Experiments We conducted experi-
ments with random Dirichlet distributions as de-
scribed in (Domke & Sheldon, 2018). The goal was
twofold. First, this is a setting where exact inference
is possible, so we can evaluate IWVI with different
estimators on the accuracy of posterior inference di-
rectly, instead of using the IW-ELBO as a proxy.
Secondly, this is a simple setting to demonstrate
that the optimal value of m is often strictly between
1 and n, which is the regime in which our variance
reduction methods are useful (all but the approxi-
mations coincide when m ∈ {1, n}). We again used
SGD with 15 different learning rates and selected,
for each configuration, the learning rate that achieved the best mean objective after 10k iterations. We
optimized each configuration using, for this experiment, 100 different random seeds. We estimated the accu-
racy of the approximation by computing the distance (error) between the distribution’s covariance and the
estimated covariance of the learned approximation. Figure 1 shows the error as a function of m for different
values of n when using the standard IW-ELBO estimator for a random Dirichlet with 50 parameters. The
figure shows that the optimal m increases with n, but slowly. Figure 5 shows similar results for other esti-

13

Published in Transactions on Machine Learning Research (02/2023)

mators: permuted, DReG, and permuted-DReG. In all cases, we confirm that, for this model, the optimal
m lies strictly between 1 and n. We provide in Appendix E additional details.

2 8 32 128
m

2.0

2.5

3.0

3.5

4.0

4.5

5.0

er
ro

r

1e 5 permuted

2 8 32 128
m

1.9

2.0

2.1

2.2

2.3

2.4

2.5

er
ro

r

1e 5 DReG

2 8 32 128
m

1.9

2.0

2.1

2.2

2.3

2.4

2.5

er
ro

r

1e 5 permuted-DReG

n
16
32
64
128
256

Figure 5: Distance between the covariance of a random Dirichlet distribution with 50 parameters and the
covariance of its approximation as a function of m for different values of n after training using the permuted
(left), DReG (center) or permuted-DReG (right) estimators.

6.1 Importance-Weighted Autoencoders

To evaluate the performance of the proposed methods on IWAEs, we trained IWAEs on 4 different datasets:
MNIST, KMNIST, FMNIST, and Omniglot. We compare the standard IW-ELBO estimator and DReG estimators
to their permuted versions, i.e., the permuted and permuted-DReG estimators. We also evaluate the second-
order approximation to the complete-U-statistic estimator. We trained each combination of dataset, method,
and value of m using five different random seeds, and the optimization was run for 100 epochs using Adam
(Kingma & Ba, 2015).

In Figure 6, we present the final testing objective for different values of m (using n = 50 in all cases) for
the KMNIST dataset, and we show results for the rest of the datasets in Figure 8 in the Appendix F along
with further details on the experiments. The figure shows that the permuted versions consistently improved
over the base versions, i.e., the permuted estimator improves over the standard-IW estimator in the same
way as the permuted-DReG estimator improves over the DReG estimator. Additionally, we can see that
the second-order approximation outperforms the permuted estimator for small values of m. However, as
m increases, the permuted estimator takes the lead, which is expected since the approximation error grows
with m.

method

−204.0

−203.5

−203.0

−202.5

−202.0

−201.5

IW
ob

je
ct

iv
e

kmnist — m = 5

method

kmnist — m = 10

method

kmnist — m = 25

standard IW

permuted

approx. 2nd

DReG

permuted-DReG

Figure 6: Objective’s distribution for KMNIST with n = 50 and different combinations of methods and m.

We also compared the total wall-clock time required to complete the optimization with different estimators
in Figure 9 in the Appendix. It can be seen that there is not a significant time increase for using our proposed
methods.

14

Published in Transactions on Machine Learning Research (02/2023)

7 Related and Future Work

Gradient variance reduction is an active topic in VI because of its impact on stochastic optimization. Our
complete- and incomplete-U-statistic methods are complementary to other variance reduction techniques:
they are compatible with different base estimators, including the Doubly Reparameterized Gradient Estima-
tor (DReG) of Tucker et al. (2018) and the generalization of Bauer & Mnih (2021). Another broad approach
to variance reduction is the use of control variates (Miller et al., 2017; Mnih & Gregor, 2014; Ranganath
et al., 2014; Geffner & Domke, 2018; 2020). In the case of IWVI, the control variates of Mnih & Rezende
(2016) and Liévin et al. (2020), which are designed for the score function estimator, could work as a base
estimator from which a U-statistic can be built. We leave its empirical evaluation for future work.

Importance-weighted estimators are also being used for the Reweighted Wake-Sleep (RWS) procedure (Born-
schein & Bengio, 2015; Le et al., 2020) and its variations (Dieng & Paisley, 2019; Kim et al., 2020). Given
the connection between the gradient estimators of RWS and that of the IW-ELBO [see Kim et al. (2020)],
these estimators could be potentially improved by using the ideas of the complete- and incomplete-U-statistic
methods.

The numerical approximations of Section 5 follow a different principle of approximating the objective; it is an
open question if such an approximation can be used in conjunction with other variance reduction methods.
Interestingly, the first-order approximation expresses the objective as a convex combination of the ordered
log-weights (minus a constant), which has a form similar to the objective presented in Wang et al. (2018),
albeit with different coefficients.

It would be an interesting future line of work to extend the order of Proposition 4.1 to a partial order of
random variables in the sense of Mattei & Frellsen (2022).

Nowozin (2018) introduced Jackknife-VI (JVI), which uses complete-U statistics to reduce bias instead of
variance. In Appendix A we briefly discuss possible applications of our methods to JVI.

8 Conclusion

We introduced novel methods based on U-statistics to reduce gradient and objective variance for importance-
weighted variational inference, and found empirically that the methods improve black-box VI performance
and IWAEs training. We recommend using the permuted-block estimator in any situation with r > 1
replicates: it never increases variance, and can be tuned based on computational budget to achieve any
desired fraction of the possible variance reduction. In practice, a 95% fraction of possible variance reduction
can be achieved at a very low cost. The approximations of Section 5 are extremely fast and provide substantial
variance reduction, but are not universally better than the standard estimator because they introduce some
bias that can hurt performance, especially in easier models near the end of optimization.

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant Nos. 1749854
and 1908577. JB would like to thank Tomás Geffner and Miguel Fuentes for their helpful discussions.

15

Published in Transactions on Machine Learning Research (02/2023)

References
Abhinav Agrawal, Justin Domke, and Daniel Sheldon. Advances in black-box VI: Normalizing flows, im-
portance weighting, and optimization. In Advances in Neural Information Processing Systems (NeurIPS),
pp. 1–8, 2020.

Matthias Bauer and Andriy Mnih. Generalized doubly reparameterized gradient estimators. In International
Conference on Machine Learning, pp. 738–747. PMLR, 2021.

Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos,
Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D. Goodman. Pyro: Deep Universal Probabilistic
Programming. Journal of Machine Learning Research, 2018.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisticians.
Journal of the American statistical Association, 112(518):859–877, 2017.

Gunnar Blom. Some properties of incomplete U-statistics. Biometrika, 63(3):573–580, 1976.

Mathieu Blondel, Olivier Teboul, Quentin Berthet, and Josip Djolonga. Fast differentiable sorting and
ranking. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 950–959. PMLR, 13–18
Jul 2020. URL https://proceedings.mlr.press/v119/blondel20a.html.

Jörg Bornschein and Yoshua Bengio. Reweighted wake-sleep. In ICLR, 2015.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance Weighted Autoencoders. In ICLR, 2016.

Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt,
Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. Stan: A probabilistic programming language.
Journal of statistical software, 76(1), 2017.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM transactions
on intelligent systems and technology (TIST), 2(3):1–27, 2011.

Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto, and David Ha.
Deep learning for classical japanese literature, 2018.

Chris Cremer, Quaid Morris, and David Duvenaud. Reinterpreting importance-weighted autoencoders. arXiv
preprint arXiv:1704.02916, 2017.

Adji B Dieng and John Paisley. Reweighted expectation maximization. arXiv preprint arXiv:1906.05850,
2019.

Justin Domke and Daniel Sheldon. Importance weighting and variational inference. In Proceedings of the
32nd International Conference on Neural Information Processing Systems, pp. 4475–4484, 2018.

Justin Domke and Daniel R. Sheldon. Divide and couple: Using Monte Carlo variational objectives for
posterior approximation. In Advances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pp. 338–347, 2019.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.ics.uci.edu/
ml.

Axel Finke and Alexandre H Thiery. On importance-weighted autoencoders. arXiv preprint
arXiv:1907.10477, 2019.

Michael C Fu. Gradient estimation. Handbooks in operations research and management science, 13:575–616,
2006.

16

https://proceedings.mlr.press/v119/blondel20a.html
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Published in Transactions on Machine Learning Research (02/2023)

Tomas Geffner and Justin Domke. Using large ensembles of control variates for variational inference. In
Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp. 9982–
9992, 2018.

Tomas Geffner and Justin Domke. Approximation based variance reduction for reparameterization gradients.
Advances in Neural Information Processing Systems, 33, 2020.

Andrew Gelman and Jennifer Hill. Data analysis using regression and multilevel/hierarchical models. Cam-
bridge university press, 2006.

Paul R Halmos. The theory of unbiased estimation. The Annals of Mathematical Statistics, 17(1):34–43,
1946.

Wassily Hoeffding. A class of statistics with asymptotically normal distribution. Annals of Mathematical
Statistics, 19:273–325, 1948.

Dongha Kim, Jaesung Hwang, and Yongdai Kim. On casting importance weighted autoencoder to an em
algorithm to learn deep generative models. In Silvia Chiappa and Roberto Calandra (eds.), Proceedings
of the Twenty Third International Conference on Artificial Intelligence and Statistics, volume 108 of
Proceedings of Machine Learning Research, pp. 2153–2163. PMLR, 26–28 Aug 2020. URL https://
proceedings.mlr.press/v108/kim20b.html.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR (Poster), 2015.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

Jack PC Kleijnen and Reuven Y Rubinstein. Optimization and sensitivity analysis of computer simulation
models by the score function method. European Journal of Operational Research, 88(3):413–427, 1996.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning through
probabilistic program induction. Science, 350(6266):1332–1338, 2015.

Tuan Anh Le, Maximilian Igl, Tom Rainforth, Tom Jin, and Frank Wood. Auto-encoding sequential Monte
Carlo. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings, 2018.

Tuan Anh Le, Adam R. Kosiorek, N. Siddharth, YeeWhye Teh, and FrankWood. Revisiting reweighted wake-
sleep for models with stochastic control flow. In Ryan P. Adams and Vibhav Gogate (eds.), Proceedings of
The 35th Uncertainty in Artificial Intelligence Conference, volume 115 of Proceedings of Machine Learning
Research, pp. 1039–1049. PMLR, 22–25 Jul 2020. URL https://proceedings.mlr.press/v115/le20a.
html.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Laurence Lock Lee. U-statistics. Theory and Practice. CRC Press, 1990. ISBN 9781351405867.

Valentin Liévin, Andrea Dittadi, Anders Christensen, and Ole Winther. Optimal variance control of the score-
function gradient estimator for importance-weighted bounds. Advances in Neural Information Processing
Systems, 33:16591–16602, 2020.

David J Lunn, Andrew Thomas, Nicky Best, and David Spiegelhalter. Winbugs — a bayesian modelling
framework: concepts, structure, and extensibility. Statistics and computing, 10(4):325–337, 2000.

Chris J. Maddison, Dieterich Lawson, George Tucker, Nicolas Heess, Mohammad Norouzi, Andriy Mnih,
Arnaud Doucet, and Yee Whye Teh. Filtering variational objectives. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December
4-9, 2017, Long Beach, CA, USA, pp. 6573–6583, 2017.

17

https://proceedings.mlr.press/v108/kim20b.html
https://proceedings.mlr.press/v108/kim20b.html
https://proceedings.mlr.press/v115/le20a.html
https://proceedings.mlr.press/v115/le20a.html

Published in Transactions on Machine Learning Research (02/2023)

Nathan Mantel. 232. note: Assumption-free estimators using U statistics and a relationship to the Jackknife
method. Biometrics, pp. 567–571, 1967.

Pierre-Alexandre Mattei and Jes Frellsen. Uphill roads to variational tightness: Monotonicity and monte
carlo objectives. arXiv preprint arXiv:2201.10989, 2022.

AC Miller, NJ Foti, A D Amour, and Ryan P Adams. Reducing reparameterization gradient variance.
Advances in Neural Information Processing Systems, 2017.

Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief networks. In International
Conference on Machine Learning, pp. 1791–1799. PMLR, 2014.

Andriy Mnih and Danilo Rezende. Variational inference for monte carlo objectives. In International Con-
ference on Machine Learning, pp. 2188–2196. PMLR, 2016.

Christian A. Naesseth, Scott W. Linderman, Rajesh Ranganath, and David M. Blei. Variational sequential
Monte Carlo. In International Conference on Artificial Intelligence and Statistics, AISTATS 2018, 9-
11 April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain, volume 84 of Proceedings of Machine
Learning Research, pp. 968–977. PMLR, 2018.

Sebastian Nowozin. Debiasing evidence approximations: On importance-weighted autoencoders and Jack-
knife variational inference. In International Conference on Learning Representations, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Informa-
tion Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.
cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

John C Platt. Sequential minimal optimization: A fast algorithm for training support vector machines. In
Advances in Kernel Methods-Support Vector Learning, 1999.

Tom Rainforth, Adam Kosiorek, Tuan Anh Le, Chris Maddison, Maximilian Igl, Frank Wood, and Yee Whye
Teh. Tighter variational bounds are not necessarily better. In International Conference on Machine
Learning, pp. 4277–4285. PMLR, 2018.

Rajesh Ranganath, Sean Gerrish, and David Blei. Black box variational inference. In Artificial intelligence
and statistics, pp. 814–822. PMLR, 2014.

Danilo Jimenez Rezende, Shakir Mohamed, and DaanWierstra. Stochastic backpropagation and approximate
inference in deep generative models. In International conference on machine learning, pp. 1278–1286.
PMLR, 2014.

Lawrence K Saul, Tommi Jaakkola, and Michael I Jordan. Mean field theory for sigmoid belief networks.
Journal of Artificial Intelligence Research, 4:61–76, 1996.

Stan Development Team. Stan Example models, 2021. URL https://github.com/stan-dev/
example-models.

George Tucker, Dieterich Lawson, Shixiang Gu, and Chris J Maddison. Doubly reparameterized gradient
estimators for Monte Carlo objectives. In International Conference on Learning Representations, 2018.

Aad W van der Vaart. Asymptotic statistics, volume 3. Cambridge University Press, 2000.

Dilin Wang, Hao Liu, and Qiang Liu. Variational inference with tail-adaptive f -divergence. Advances in
Neural Information Processing Systems, 31, 2018.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms, 2017.

18

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://github.com/stan-dev/example-models
https://github.com/stan-dev/example-models

Published in Transactions on Machine Learning Research (02/2023)

A Experiments with Jackknife

The relation between the jackknife estimator and complete U-statistics was made explicit early on by Mantel
(1967). Recently, Nowozin (2018) used the jackknife estimator as a way to diminish the bias in IW-VI,
proposing jackknife VI (JVI). Using the notation of Section 3, the jackknife estimator is

L̂J,rn (V1:n) =
r∑
j=0

c(n, r, j)L̂Un,n−j(V1:n), (14)

where L̂Un,n−j is the complete U-statistic IW-ELBO estimator, and the c(n, r, j) are the Sharot coefficients
[cf. Nowozin (2018)].

In the original version (14), it evaluates a collection of r complete U-statistics with m ranging from n to
n − r. However, there is no need to constrain m in that way, i.e., we can instead compute the following
estimator

L̂J,rn,m(V1:n) =
r∑
j=0

c(m, r, j)L̂Un,m−j(V1:n), for r < m ≤ n,

because the bias is a function of m. This means that once m is fixed, we can pick the number of independent
samples n ≥ m to reduce the variance of the estimation.

complete-U approx. 2nd permuted (` = 20) permuted (` = 100)

method

−210

−200

−190

−180

−170

−160

LJ
,1

2
4
,8

method

complete-U

approx. 2nd

permuted (` = 20)

permuted (` = 100)

Figure 7: Distributions of the objective using the Jack-
knife estimator L̂J,124,8 on an approximation of the pos-
terior of the mushrooms dataset, using different esti-
mators.

For our experiment, we optimized a variational
approximation to the posterior of the mushrooms
dataset as in Section 6. We used the complete-U-
statistic IW-ELBO estimator for optimization (n′ =
16 andm = 8), and we choose the configuration with
the highest final bound.

We evaluated the trained model using the Jackknife
estimator with n = 24, r = 1 and m = 8. For
the inner estimator we used the complete-U-statistic
IW-ELBO estimator, a variation of the permuted-
block IW-ELBO estimator6 with ` = 20 and with
` = 100, and the second order approximation. Fig-
ure 7 shows that, when using the permuted estima-
tor with ` = 20, the increased variance gets trans-
lated into an increased variance in the final estima-
tion. However, it can be reduced by increasing the
number of permutations to ` = 100. In the follow-
ing table, we show the time taken to compute the
Jackknife estimator without accounting for the time

of building the index set.7

Method Mean time (ms) Std
complete-U 23.98 2.28
approx. 2nd 0.71 0.05
permuted (` = 20) 0.69 0.02
permuted (` = 100) 0.86 0.03

In this case, we observed that the alternatives are approximately 30 times faster than using the complete-
U-statistic.

6Since n is not an integer multiple of m− 1, we reduced the total number of sets to `mb n
m
c.

7We pre-computed the index set for the complete-U-statistic, which in this case requires 735471 + 346104 = 1081575 sets,
taking 1.34 seconds.

19

Published in Transactions on Machine Learning Research (02/2023)

B Additional Theoretical results

In this section, we apply a result of Halmos (1946) to the estimation of the IW-ELBO. Subject to certain
conditions, the estimator L̂Un,m has the smallest variance of any unbiased estimator of the IW-ELBO. The
technical conditions are needed to define the class of “unbiased estimators” as ones that are unbiased for all
log-weight distributions in a non-trivial class.
Proposition B.1. Let EF [·] and VarF [·] denote expectation and variance with respect to log-weights
V1, . . . , Vn drawn independently from distribution F , and let Lm(F) = EF

[
ln 1

m

(∑m
i=1 e

Vi
)]

be the IW-
ELBO with log-weight distribution F . Let F̃ denote the set of distributions supported on a finite subset of
R. Suppose Φ is any estimator such that EF̃ [Φ(V1:n)] = Lm(F̃) for all F̃ ∈ F̃ . Then,

VarF [L̂Un,m(V1:n)] ≤ VarF [Φ(V1:n)]

whenever the latter quantity is defined, for any distribution F on the real numbers (up to conditions of
measurability and integrability).

Proof. The result is a direct application of Theorem 5 of Halmos (1946).

For IW-ELBO estimation, the conditions are rather mild: we expect an IW-ELBO estimator to work for
generic log-weight distributions. For gradient estimation, we take the conclusion lightly, because gradient
estimators often use specific properties of the underlying distributions, such as having a reparameterization.

B.1 Additional Proofs

In this section, we provide a proof of Proposition 3.3. We first need to define a quantity similar to Def-
inition 3.1. Recall, from the statement of the Proposition, that g : RdZ → Rdφ , and let gi denote its ith
component.
Definition B.2. Let Z1, . . . , Z2m be i.i.d. drawn from qφ, and 1 ≤ i ≤ dφ. For 0 ≤ c ≤ m, take s, s′ ∈

(J2mK
m

)
with |s ∩ s′| = c. Using g from Proposition 3.3, define

ς(i)c = Cov
[
gi(Zs1 , . . . , Zsm), gi(Zs′

1
, . . . , Zs′

m
)
]
,

which depends only on c and not the particular s and s′.

We can now proceed with the proof.

Proof of Proposition 3.3. For 1 ≤ i ≤ dφ, using Eq. (4) and (6), it follows from Theorem 5.2 of Hoeffding
(1948) that

Var[(ĜUn,m)i] ≤ m
n ς

(i)
m = Var[(Ĝn,m)i].

From the definition of the covariance matrix, we get

tr(Var[ĜUn,m]) =
dθ∑
i=1

Var[(ĜUn,m)i] ≤
dθ∑
i=1

Var[(Ĝn,m)i] = tr(Var[Ĝn,m]).

Using again that ĜUn,m and Ĝn,m are unbiased, that is, E[ĜUn,m] = E[Ĝn,m], then

E ‖ĜUn,m‖22 =
dθ∑
i=1

(Var[(ĜUn,m)i] + E[(ĜUn,m)i]2) ≤
dθ∑
i=1

(Var[(Ĝn,m)i] + E[(Ĝn,m)i]2) = E ‖Ĝn,m‖22.

20

Published in Transactions on Machine Learning Research (02/2023)

C Dataset description

We provide a brief description of the datasets and models used for the experiments. The models used for
Bayesian logistic regressions were taken from the UCI Machine Learning Repository Dua & Graff (2017).
The rest of the models are part of the Stan Example models Stan Development Team (2021); Carpenter
et al. (2017).

For the dataset used for Bayesian logistic regression, whenever there was a categorical variable with k
categories, we dummified it by creating k−1 dummies variables. Additionally, for the a1a dataset, continuous
variables were discretized into quintiles following the work of Platt (1999). However, since we were unable
to find the file describing the actual process used for the discretization, some discrepancies remained.

Table 3: Description of datasets/models.

Name Num. of
variables

Num. of
records Comments

a1a 105 1605
First 1605 instances of the Adult Data Set,
following LIBSVM Chang & Lin (2011),
+ discretized continous and dummified.

australian 35 690 From UCI + dummified.
ionosphere 35 351 From UCI
mushrooms 96 8124 From UCI + dummified.
sonar 61 208 From UCI
congress 4 343 Gelman & Hill (2006) Ch. 7
election88 95 2015 Gelman & Hill (2006) Ch. 19
election88Exp 96 2015 Gelman & Hill (2006) Ch. 19
electric 100 192 Gelman & Hill (2006) Ch. 23
electric-one-pred 3 192 Gelman & Hill (2006) Ch. 23
hepatitis 218 288 WinBUGS Lunn et al. (2000) examples
hiv-chr 173 369 Gelman & Hill (2006) Ch. 7
irt 501 30105 Gelman & Hill (2006) Ch. 14
irt-multilevel 604 30015 Gelman & Hill (2006) Ch. 14
mesquite 3 46 Gelman & Hill (2006) Ch. 4
radon 88 919 radon-chr from Gelman & Hill (2006) Ch. 19
wells 2 3020 Gelman & Hill (2006) Ch. 7
MNIST 784 60000 + 10000 LeCun et al. (2010)
FMNIST 784 60000 + 10000 Fashion-MNIST, Xiao et al. (2017)
KMNIST 784 60000 + 10000 Kuzushiji-MNIST Clanuwat et al. (2018)
Omniglot 784 24345 + 8070 Lake et al. (2015) from Burda et al. (2016)

D Pairwise comparison

In this section we present the mean difference of the medians of the envelopes as described in Section 6. We
compare the methods that used the reparameterized gradients as based gradient estimator, i.e., the permuted-
block estimator and the 2nd order approximation, to the standard IW-ELBO estimator. Additionally, we
compare the standard IW using DReG as a based gradient estimator with a version of the permuted-block
that uses the DReG as a base gradient estimator, namely, the permuted DReG.

Interestingly, in the settings presented in Table 7, only the proposed methods, i.e., the complete-U statistic
with its two approximations, the permuted-block, and the random subsets, converged at some point. All the
other methods diverged, which explains why we cannot compute the difference.

21

https://www.notion.so/a1a-90c39eba44894cd89a21d1f555c89901
https://archive.ics.uci.edu/ml/datasets/statlog+(australian+credit+approval)
https://archive.ics.uci.edu/ml/datasets/ionosphere
https://archive.ics.uci.edu/ml/datasets/mushroom
https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Sonar,+Mines+vs.+Rocks)
http://www.mrc-bsu.cam.ac.uk/wp-content/uploads/WinBUGS_Vol3.pdf

Published in Transactions on Machine Learning Research (02/2023)

Table 4: Bayesian logistic regression models using a Gaussian approximation with a covariance matrix of
full rank. Difference in nats of the average objective (higher values are better).

Dataset
permuted - standard IW approx. 2nd - standard IW permuted DReG - DReG

m
2 4 8 2 4 8 2 4 8

a1a 45.36 100.56 112.42 47.53 105.30 122.34 27.30 111.74 119.51
australian 1.31 2.61 3.36 1.07 2.37 3.22 1.45 1.87 3.94
ionosphere 3.89 13.17 16.58 4.11 13.55 17.55 4.34 15.74 17.91
mushrooms 64.46 145.85 202.56 67.28 153.58 214.31 93.45 186.01 179.02
sonar 30.15 61.09 50.62 32.94 63.34 54.14 27.99 69.54 90.86

Table 5: Bayesian logistic regression models using a diagonal Gaussian approximation. Difference in nats of
the average objective (higher values are better).

Dataset
permuted - standard IW approx. 2nd - standard IW permuted DReG - DReG

m
2 4 8 2 4 8 2 4 8

a1a 1.54 4.01 4.48 1.49 4.08 4.45 1.40 12.67 12.86
australian 0.02 1.00 1.38 0.05 0.96 1.28 -0.07 0.06 1.43
ionosphere -0.10 -0.10 0.06 -0.12 -0.21 0.00 -0.12 -0.08 0.31
mushrooms 1.88 2.76 8.69 1.74 3.30 9.16 1.94 4.69 8.50
sonar 0.03 -0.15 0.19 -0.02 -0.18 0.15 0.03 -0.28 0.21

Table 6: Stan models using a diagonal Gaussian approximation. Difference in nats of the average objective
(higher values are better).

Dataset
permuted - standard IW approx. 2nd - standard IW permuted DReG - DReG

m
2 4 8 2 4 8 2 4 8

congress 2.50 4.61 7.33 2.89 4.76 7.63 2.37 4.68 7.02
election88 0.12 2.66 6.94 0.12 2.84 7.06 0.10 2.67 6.83
election88Exp 0.82 98.52 32.76 4.73 117.78 55.27 -1.89 100.09 32.53
electric 0.26 1.53 4.32 0.16 1.54 4.52 0.24 1.56 4.63
electric-one-pred 0.66 -0.77 -3.91 0.74 -0.76 -4.38 0.69 -0.77 -3.93
hepatitis 0.90 -0.06 0.65 2.06 156.53 1.86 -0.30 0.92 0.69
hiv-chr 0.16 2.03 15.84 0.34 2.12 21.74 -0.08 1.45 12.91
irt 0.19 0.80 1.00 0.15 0.72 0.93 0.11 0.61 1.40
irt-multilevel 35.69 43.79 62.32 29.74 48.20 53.64 34.66 50.26 55.22
mesquite 0.20 0.58 2.00 -0.06 0.28 1.74 -0.29 0.39 1.99
radon 7.88 5.79 14.83 7.85 8.91 65.49 8.16 7.56 60.92
wells -0.02 0.01 -0.11 -0.20 -0.30 -0.35 -0.02 -0.04 -0.14

22

Published in Transactions on Machine Learning Research (02/2023)

Table 7: Stan models using a full covariance Gaussian approximation. Difference in nats of the average
objective (higher values are better).

Dataset
permuted - standard IW approx. 2nd - standard IW permuted DReG - DReG

m
2 4 8 2 4 8 2 4 8

congress 11.62 12.02 19.80 12.33 12.57 20.46 13.55 13.11 20.96
election88 NaN 1785 1133 NaN 2494 2170 NaN 1776 1116
election88Exp NaN NaN NaN NaN NaN NaN NaN NaN NaN
electric NaN -38.02 80.46 NaN -77.53 89.06 NaN -43.16 34.91
electric-one-pred -1.81 -4.73 -3.45 -3.18 -4.77 -4.37 -1.79 -4.72 -3.46
hepatitis NaN NaN NaN NaN NaN NaN NaN NaN NaN
hiv-chr NaN NaN 283.19 NaN NaN 325.79 NaN NaN NaN
irt 17793 20064 16077 19399 22000 17686 NaN NaN NaN
mesquite 2.57 1.20 1.41 2.43 0.95 1.19 2.67 0.53 0.74
radon NaN 1150 268.98 NaN 1316 303.83 NaN 11675 269.26
wells 0.02 0.07 -0.03 -0.29 -0.31 -0.29 0.04 0.02 -0.02

E Random Dirichlet experiment

We follow Domke & Sheldon (2018) for the Random Dirichlet experiment. For a randomly-sampled Dirichlet
Distribution with 50 parameters, we approximate it using a (50 − 1)-dimensional Gaussian distribution
parameterized with a full rank covariance matrix, with its domain constrained to the simplex using PyTorch’s
distributions (Paszke et al., 2019).

We optimize each configuration using 100 different random seeds. We select the learning rate that achieved
the highest objective among all learning rates that converged for all seeds. For each seed, we compute
the Frobenius norm between the empirical covariance of the approximating distribution and that of the
theoretical distribution (the error). The distribution of this error is shown in Figure 1 and 5. We had to
exclude eight outliers with errors greater than 10−4 and up to 0.5. Interestingly, those outliers used either
the DReG or permuted-DReG estimators.

F VAE details.

For the variational autoencoders, we used, for all datasets, the architecture used by Burda et al. (2016).
We trained each configuration for a fixed number of epochs (100) using Adam (Kingma & Ba, 2015) with a
learning rate of 10−4. In all cases, we used a batch size of 500, and a latent variable of dimension 50, while
taking n = 50 samples. Datasets were taken from PyTorch, except for the Omniglot, for which we used
the construction provided by Burda et al. (2016). We evaluated using the standard IW-ELBO estimator,
regardless of the estimator used for the optimization.

To get consistent wall-clock time measurements, we trained only using CPU on dedicated servers, with
disabled hyper-threading and a single task per core. Additionally, we used set_flush_denormal to avoid
creating denormal numbers because some estimators create many of such numbers (especially DReG-like
estimators), having a substantial negative impact on performance. Our implementation of DReG is based
on Pyro’s (Bingham et al., 2018) not-yet-integrated implementation. We are not aware of a PyTorch imple-
mentation without the extra time penalty.

In the following plots, we provide the objective distribution for all dataset/method/m configurations and
the distribution of the wall-clock time.

23

Published in Transactions on Machine Learning Research (02/2023)

−204.0

−203.5

−203.0

−202.5

−202.0

−201.5

IW
ob

je
ct

iv
e

kmnist — m = 5 kmnist — m = 10 kmnist — m = 25

−245.50

−245.25

−245.00

−244.75

−244.50

−244.25

IW
ob

je
ct

iv
e

fmnist — m = 5 fmnist — m = 10 fmnist — m = 25

−156

−154

−152

−150

−148

IW
ob

je
ct

iv
e

omniglot — m = 5 omniglot — m = 10 omniglot — m = 25

method

−108.25

−108.00

−107.75

−107.50

−107.25

−107.00

−106.75

−106.50

IW
ob

je
ct

iv
e

mnist — m = 5

method

mnist — m = 10

method

mnist — m = 25

standard IW

permuted

approx. 2nd

DReG

permuted-DReG

Figure 8: Distribution of the objective for different combinations of datasets, methods and m, using n = 50
samples.

24

Published in Transactions on Machine Learning Research (02/2023)

27500

30000

32500

35000

37500

40000

42500

45000

to
ta

l
ti

m
e

(s
)

kmnist — m = 5 kmnist — m = 10 kmnist — m = 25

27500

30000

32500

35000

37500

40000

42500

45000

to
ta

l
ti

m
e

(s
)

fmnist — m = 5 fmnist — m = 10 fmnist — m = 25

11000

12000

13000

14000

15000

16000

17000

18000

to
ta

l
ti

m
e

(s
)

omniglot — m = 5 omniglot — m = 10 omniglot — m = 25

method

27500

30000

32500

35000

37500

40000

42500

45000

to
ta

l
ti

m
e

(s
)

mnist — m = 5

method

mnist — m = 10

method

mnist — m = 25

standard IW

permuted

approx. 2nd

DReG

permuted-DReG

Figure 9: Distribution of the time taken to run 100 epochs for different combinations of datasets, methods
and m, using n = 50 samples.

25

Published in Transactions on Machine Learning Research (02/2023)

G Figures of median envelope

For some of the methods presented in the paper, we compute the median envelope during training as described
in Section 6.

0 250 500 750 1000
−800

−780

−760

−740

−720

−700

−680

−660

−640

ob
je

ct
iv

e

a1a — m = 2

method

standard IW

complete-U

permuted

0 250 500 750 1000
−800

−780

−760

−740

−720

−700

−680

−660

−640
a1a — m = 4

0 250 500 750 1000
−800

−780

−760

−740

−720

−700

−680

−660

−640
a1a — m = 8

0 250 500 750 1000
−800

−780

−760

−740

−720

−700

−680

−660

−640
a1a — m = 16

0 250 500 750 1000
−320

−310

−300

−290

−280

−270

−260

ob
je

ct
iv

e

australian — m = 2

0 250 500 750 1000
−320

−310

−300

−290

−280

−270

−260

australian — m = 4

0 250 500 750 1000
−320

−310

−300

−290

−280

−270

−260

australian — m = 8

0 250 500 750 1000
−320

−310

−300

−290

−280

−270

−260

australian — m = 16

0 5000 10000
50

100

150

200

250

300

350

400

450

ob
je

ct
iv

e

congress — m = 2

0 5000 10000
50

100

150

200

250

300

350

400

450
congress — m = 4

0 5000 10000
50

100

150

200

250

300

350

400

450
congress — m = 8

0 5000 10000
50

100

150

200

250

300

350

400

450
congress — m = 16

0 5000 10000
−1800

−1750

−1700

−1650

−1600

−1550

−1500

ob
je

ct
iv

e

election88 — m = 2

0 5000 10000
−1800

−1750

−1700

−1650

−1600

−1550

−1500
election88 — m = 4

0 5000 10000
−1800

−1750

−1700

−1650

−1600

−1550

−1500
election88 — m = 8

0 5000 10000
−1800

−1750

−1700

−1650

−1600

−1550

−1500
election88 — m = 16

0 5000 10000

−2400

−2200

−2000

−1800

−1600

−1400

ob
je

ct
iv

e

election88Exp — m = 2

0 5000 10000

−2400

−2200

−2000

−1800

−1600

−1400

election88Exp — m = 4

0 5000 10000

−2400

−2200

−2000

−1800

−1600

−1400

election88Exp — m = 8

0 5000 10000

−2400

−2200

−2000

−1800

−1600

−1400

election88Exp — m = 16

0 5000 10000

−940

−920

−900

−880

−860

−840

−820

−800

ob
je

ct
iv

e

electric — m = 2

0 5000 10000

−940

−920

−900

−880

−860

−840

−820

−800
electric — m = 4

0 5000 10000

−940

−920

−900

−880

−860

−840

−820

−800
electric — m = 8

0 5000 10000

−940

−920

−900

−880

−860

−840

−820

−800
electric — m = 16

0 2000 4000
−1300

−1275

−1250

−1225

−1200

−1175

−1150

ob
je

ct
iv

e

electric-one-pred — m = 2

0 2000 4000
−1300

−1275

−1250

−1225

−1200

−1175

−1150

electric-one-pred — m = 4

0 2000 4000
−1300

−1275

−1250

−1225

−1200

−1175

−1150

electric-one-pred — m = 8

0 2000 4000
−1300

−1275

−1250

−1225

−1200

−1175

−1150

electric-one-pred — m = 16

0 5000 10000
−1400

−1200

−1000

−800

−600

ob
je

ct
iv

e

hepatitis — m = 2

0 5000 10000
−1400

−1200

−1000

−800

−600

hepatitis — m = 4

0 5000 10000
−1400

−1200

−1000

−800

−600

hepatitis — m = 8

0 5000 10000
−1400

−1200

−1000

−800

−600

hepatitis — m = 16

0 5000 10000

iterations

−800

−750

−700

−650

−600

ob
je

ct
iv

e

hiv-chr — m = 2

0 5000 10000

iterations

−800

−750

−700

−650

−600

hiv-chr — m = 4

0 5000 10000

iterations

−800

−750

−700

−650

−600

hiv-chr — m = 8

0 5000 10000

iterations

−800

−750

−700

−650

−600

hiv-chr — m = 16

0 250 500 750 1000
−150

−145

−140

−135

−130

−125

ob
je

ct
iv

e

ionosphere — m = 2

method

standard IW

complete-U

permuted

0 250 500 750 1000
−150

−145

−140

−135

−130

−125

ionosphere — m = 4

0 250 500 750 1000
−150

−145

−140

−135

−130

−125

ionosphere — m = 8

0 250 500 750 1000
−150

−145

−140

−135

−130

−125

ionosphere — m = 16

0 2000 4000
−15940

−15930

−15920

−15910

−15900

−15890

−15880

ob
je

ct
iv

e

irt — m = 2

0 2000 4000
−15940

−15930

−15920

−15910

−15900

−15890

−15880
irt — m = 4

0 2000 4000
−15940

−15930

−15920

−15910

−15900

−15890

−15880
irt — m = 8

0 2000 4000
−15940

−15930

−15920

−15910

−15900

−15890

−15880
irt — m = 16

0 5000 10000
−17000

−16750

−16500

−16250

−16000

−15750

−15500

−15250

−15000

ob
je

ct
iv

e

irt-multilevel — m = 2

0 5000 10000
−17000

−16750

−16500

−16250

−16000

−15750

−15500

−15250

−15000
irt-multilevel — m = 4

0 5000 10000
−17000

−16750

−16500

−16250

−16000

−15750

−15500

−15250

−15000
irt-multilevel — m = 8

0 5000 10000
−17000

−16750

−16500

−16250

−16000

−15750

−15500

−15250

−15000
irt-multilevel — m = 16

0 250 500 750 1000
−60

−55

−50

−45

−40

−35

−30

ob
je

ct
iv

e

mesquite — m = 2

0 250 500 750 1000
−60

−55

−50

−45

−40

−35

−30

mesquite — m = 4

0 250 500 750 1000
−60

−55

−50

−45

−40

−35

−30

mesquite — m = 8

0 250 500 750 1000
−60

−55

−50

−45

−40

−35

−30

mesquite — m = 16

0 250 500 750 1000
−400

−350

−300

−250

−200

ob
je

ct
iv

e

mushrooms — m = 2

0 250 500 750 1000
−400

−350

−300

−250

−200

mushrooms — m = 4

0 250 500 750 1000
−400

−350

−300

−250

−200

mushrooms — m = 8

0 250 500 750 1000
−400

−350

−300

−250

−200

mushrooms — m = 16

0 500 1000 1500 2000
−2000

−1800

−1600

−1400

−1200

ob
je

ct
iv

e

radon — m = 2

0 500 1000 1500 2000
−2000

−1800

−1600

−1400

−1200

radon — m = 4

0 500 1000 1500 2000
−2000

−1800

−1600

−1400

−1200

radon — m = 8

0 500 1000 1500 2000
−2000

−1800

−1600

−1400

−1200

radon — m = 16

0 250 500 750 1000
−200

−180

−160

−140

−120

ob
je

ct
iv

e

sonar — m = 2

0 250 500 750 1000
−200

−180

−160

−140

−120

sonar — m = 4

0 250 500 750 1000
−200

−180

−160

−140

−120

sonar — m = 8

0 250 500 750 1000
−200

−180

−160

−140

−120

sonar — m = 16

0 250 500 750 1000

iterations

−2046

−2045

−2044

−2043

−2042

−2041

−2040

ob
je

ct
iv

e

wells — m = 2

0 250 500 750 1000

iterations

−2046

−2045

−2044

−2043

−2042

−2041

−2040
wells — m = 4

0 250 500 750 1000

iterations

−2046

−2045

−2044

−2043

−2042

−2041

−2040
wells — m = 8

0 250 500 750 1000

iterations

−2046

−2045

−2044

−2043

−2042

−2041

−2040
wells — m = 16

Figure 10: Median envelope for models when using a diagonal Gaussian as approximating distribution for
the estimators complete-U, permuted and the standard IW.

26

Published in Transactions on Machine Learning Research (02/2023)

0 250 500 750 1000
−800

−780

−760

−740

−720

−700

−680

−660

−640

ob
je

ct
iv

e

a1a — m = 2

method

DReG

complete-U-DReG

permuted-DReG

0 250 500 750 1000
−800

−780

−760

−740

−720

−700

−680

−660

−640
a1a — m = 4

0 250 500 750 1000
−800

−780

−760

−740

−720

−700

−680

−660

−640
a1a — m = 8

0 250 500 750 1000
−800

−780

−760

−740

−720

−700

−680

−660

−640
a1a — m = 16

0 250 500 750 1000
−320

−310

−300

−290

−280

−270

−260

ob
je

ct
iv

e

australian — m = 2

0 250 500 750 1000
−320

−310

−300

−290

−280

−270

−260

australian — m = 4

0 250 500 750 1000
−320

−310

−300

−290

−280

−270

−260

australian — m = 8

0 250 500 750 1000
−320

−310

−300

−290

−280

−270

−260

australian — m = 16

0 5000 10000
50

100

150

200

250

300

350

400

450

ob
je

ct
iv

e

congress — m = 2

0 5000 10000
50

100

150

200

250

300

350

400

450
congress — m = 4

0 5000 10000
50

100

150

200

250

300

350

400

450
congress — m = 8

0 5000 10000
50

100

150

200

250

300

350

400

450
congress — m = 16

0 5000 10000
−1800

−1750

−1700

−1650

−1600

−1550

−1500

ob
je

ct
iv

e

election88 — m = 2

0 5000 10000
−1800

−1750

−1700

−1650

−1600

−1550

−1500
election88 — m = 4

0 5000 10000
−1800

−1750

−1700

−1650

−1600

−1550

−1500
election88 — m = 8

0 5000 10000
−1800

−1750

−1700

−1650

−1600

−1550

−1500
election88 — m = 16

0 5000 10000

−2400

−2200

−2000

−1800

−1600

−1400

ob
je

ct
iv

e

election88Exp — m = 2

0 5000 10000

−2400

−2200

−2000

−1800

−1600

−1400

election88Exp — m = 4

0 5000 10000

−2400

−2200

−2000

−1800

−1600

−1400

election88Exp — m = 8

0 5000 10000

−2400

−2200

−2000

−1800

−1600

−1400

election88Exp — m = 16

0 5000 10000

−940

−920

−900

−880

−860

−840

−820

−800

ob
je

ct
iv

e

electric — m = 2

0 5000 10000

−940

−920

−900

−880

−860

−840

−820

−800
electric — m = 4

0 5000 10000

−940

−920

−900

−880

−860

−840

−820

−800
electric — m = 8

0 5000 10000

−940

−920

−900

−880

−860

−840

−820

−800
electric — m = 16

0 2000 4000
−1300

−1275

−1250

−1225

−1200

−1175

−1150

ob
je

ct
iv

e

electric-one-pred — m = 2

0 2000 4000
−1300

−1275

−1250

−1225

−1200

−1175

−1150

electric-one-pred — m = 4

0 2000 4000
−1300

−1275

−1250

−1225

−1200

−1175

−1150

electric-one-pred — m = 8

0 2000 4000
−1300

−1275

−1250

−1225

−1200

−1175

−1150

electric-one-pred — m = 16

0 5000 10000
−1400

−1200

−1000

−800

−600

ob
je

ct
iv

e

hepatitis — m = 2

0 5000 10000
−1400

−1200

−1000

−800

−600

hepatitis — m = 4

0 5000 10000
−1400

−1200

−1000

−800

−600

hepatitis — m = 8

0 5000 10000
−1400

−1200

−1000

−800

−600

hepatitis — m = 16

0 5000 10000

iterations

−800

−750

−700

−650

−600

ob
je

ct
iv

e

hiv-chr — m = 2

0 5000 10000

iterations

−800

−750

−700

−650

−600

hiv-chr — m = 4

0 5000 10000

iterations

−800

−750

−700

−650

−600

hiv-chr — m = 8

0 5000 10000

iterations

−800

−750

−700

−650

−600

hiv-chr — m = 16

0 250 500 750 1000
−150

−145

−140

−135

−130

−125

ob
je

ct
iv

e

ionosphere — m = 2

method

DReG

complete-U-DReG

permuted-DReG

0 250 500 750 1000
−150

−145

−140

−135

−130

−125

ionosphere — m = 4

0 250 500 750 1000
−150

−145

−140

−135

−130

−125

ionosphere — m = 8

0 250 500 750 1000
−150

−145

−140

−135

−130

−125

ionosphere — m = 16

0 2000 4000
−15940

−15930

−15920

−15910

−15900

−15890

−15880

ob
je

ct
iv

e

irt — m = 2

0 2000 4000
−15940

−15930

−15920

−15910

−15900

−15890

−15880
irt — m = 4

0 2000 4000
−15940

−15930

−15920

−15910

−15900

−15890

−15880
irt — m = 8

0 2000 4000
−15940

−15930

−15920

−15910

−15900

−15890

−15880
irt — m = 16

0 5000 10000
−17000

−16750

−16500

−16250

−16000

−15750

−15500

−15250

−15000

ob
je

ct
iv

e

irt-multilevel — m = 2

0 5000 10000
−17000

−16750

−16500

−16250

−16000

−15750

−15500

−15250

−15000
irt-multilevel — m = 4

0 5000 10000
−17000

−16750

−16500

−16250

−16000

−15750

−15500

−15250

−15000
irt-multilevel — m = 8

0 5000 10000
−17000

−16750

−16500

−16250

−16000

−15750

−15500

−15250

−15000
irt-multilevel — m = 16

0 250 500 750 1000
−60

−55

−50

−45

−40

−35

−30

ob
je

ct
iv

e

mesquite — m = 2

0 250 500 750 1000
−60

−55

−50

−45

−40

−35

−30

mesquite — m = 4

0 250 500 750 1000
−60

−55

−50

−45

−40

−35

−30

mesquite — m = 8

0 250 500 750 1000
−60

−55

−50

−45

−40

−35

−30

mesquite — m = 16

0 250 500 750 1000
−400

−350

−300

−250

−200

ob
je

ct
iv

e

mushrooms — m = 2

0 250 500 750 1000
−400

−350

−300

−250

−200

mushrooms — m = 4

0 250 500 750 1000
−400

−350

−300

−250

−200

mushrooms — m = 8

0 250 500 750 1000
−400

−350

−300

−250

−200

mushrooms — m = 16

0 500 1000 1500 2000
−2000

−1800

−1600

−1400

−1200

ob
je

ct
iv

e

radon — m = 2

0 500 1000 1500 2000
−2000

−1800

−1600

−1400

−1200

radon — m = 4

0 500 1000 1500 2000
−2000

−1800

−1600

−1400

−1200

radon — m = 8

0 500 1000 1500 2000
−2000

−1800

−1600

−1400

−1200

radon — m = 16

0 250 500 750 1000
−200

−180

−160

−140

−120

ob
je

ct
iv

e

sonar — m = 2

0 250 500 750 1000
−200

−180

−160

−140

−120

sonar — m = 4

0 250 500 750 1000
−200

−180

−160

−140

−120

sonar — m = 8

0 250 500 750 1000
−200

−180

−160

−140

−120

sonar — m = 16

0 250 500 750 1000

iterations

−2046

−2045

−2044

−2043

−2042

−2041

−2040

ob
je

ct
iv

e

wells — m = 2

0 250 500 750 1000

iterations

−2046

−2045

−2044

−2043

−2042

−2041

−2040
wells — m = 4

0 250 500 750 1000

iterations

−2046

−2045

−2044

−2043

−2042

−2041

−2040
wells — m = 8

0 250 500 750 1000

iterations

−2046

−2045

−2044

−2043

−2042

−2041

−2040
wells — m = 16

Figure 11: Median envelope for models when using a diagonal Gaussian as approximating distribution using
the complete-U DReG, permuted DReG and the standard DReG gradient estimators.

27

Published in Transactions on Machine Learning Research (02/2023)

0 5000 10000
−1200

−1100

−1000

−900

−800

−700

−600

ob
je

ct
iv

e

a1a — m = 2

method

standard IW

complete-U

permuted

0 5000 10000
−1200

−1100

−1000

−900

−800

−700

−600
a1a — m = 4

0 5000 10000
−1200

−1100

−1000

−900

−800

−700

−600
a1a — m = 8

0 5000 10000
−1200

−1100

−1000

−900

−800

−700

−600
a1a — m = 16

0 5000 10000
−450

−400

−350

−300

−250

ob
je

ct
iv

e

australian — m = 2

0 5000 10000
−450

−400

−350

−300

−250

australian — m = 4

0 5000 10000
−450

−400

−350

−300

−250

australian — m = 8

0 5000 10000
−450

−400

−350

−300

−250

australian — m = 16

0 5000 10000
50

100

150

200

250

300

350

400

450

ob
je

ct
iv

e

congress — m = 2

0 5000 10000
50

100

150

200

250

300

350

400

450
congress — m = 4

0 5000 10000
50

100

150

200

250

300

350

400

450
congress — m = 8

0 5000 10000
50

100

150

200

250

300

350

400

450
congress — m = 16

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

ob
je

ct
iv

e

election88 — m = 2

0 5000 10000
−10000

−9000

−8000

−7000

−6000

−5000

−4000

−3000

election88 — m = 4

0 5000 10000
−10000

−9000

−8000

−7000

−6000

−5000

−4000

−3000

election88 — m = 8

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
election88 — m = 16

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

ob
je

ct
iv

e

election88Exp — m = 2

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
election88Exp — m = 4

0 5000 10000
−10000

−9000

−8000

−7000

−6000

−5000

−4000

−3000

−2000
election88Exp — m = 8

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
election88Exp — m = 16

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

ob
je

ct
iv

e

electric — m = 2

0 5000 10000
−1800

−1700

−1600

−1500

−1400

−1300

−1200

−1100

−1000
electric — m = 4

0 5000 10000
−1800

−1700

−1600

−1500

−1400

−1300

−1200

−1100

−1000
electric — m = 8

0 5000 10000
−1800

−1700

−1600

−1500

−1400

−1300

−1200

−1100

−1000
electric — m = 16

0 2000 4000
−1300

−1275

−1250

−1225

−1200

−1175

−1150

ob
je

ct
iv

e

electric-one-pred — m = 2

0 2000 4000
−1300

−1275

−1250

−1225

−1200

−1175

−1150

electric-one-pred — m = 4

0 2000 4000
−1300

−1275

−1250

−1225

−1200

−1175

−1150

electric-one-pred — m = 8

0 2000 4000
−1300

−1275

−1250

−1225

−1200

−1175

−1150

electric-one-pred — m = 16

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

ob
je

ct
iv

e

hepatitis — m = 2

0 5000 10000
−5000

−4500

−4000

−3500

−3000

−2500

−2000

−1500
hepatitis — m = 4

0 5000 10000
−5000

−4500

−4000

−3500

−3000

−2500

−2000

−1500
hepatitis — m = 8

0 5000 10000
−5000

−4500

−4000

−3500

−3000

−2500

−2000

−1500
hepatitis — m = 16

0.00 0.25 0.50 0.75 1.00

iterations

0.0

0.2

0.4

0.6

0.8

1.0

ob
je

ct
iv

e

hiv-chr — m = 2

0 5000 10000

iterations

−3500

−3000

−2500

−2000

−1500

hiv-chr — m = 4

0 5000 10000

iterations

−3500

−3000

−2500

−2000

−1500

hiv-chr — m = 8

0 5000 10000

iterations

−3500

−3000

−2500

−2000

−1500

hiv-chr — m = 16

0 250 500 750 1000
−300

−250

−200

−150

ob
je

ct
iv

e

ionosphere — m = 2

method

standard IW

complete-U

permuted

0 250 500 750 1000
−300

−250

−200

−150

ionosphere — m = 4

0 250 500 750 1000
−300

−250

−200

−150

ionosphere — m = 8

0 250 500 750 1000
−300

−250

−200

−150

ionosphere — m = 16

0 5000 10000
−120000

−100000

−80000

−60000

−40000

−20000

ob
je

ct
iv

e

irt — m = 2

0 5000 10000
−120000

−100000

−80000

−60000

−40000

−20000
irt — m = 4

0 5000 10000
−120000

−100000

−80000

−60000

−40000

−20000
irt — m = 8

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
irt — m = 16

0 500 1000 1500 2000
−60

−55

−50

−45

−40

−35

−30

ob
je

ct
iv

e

mesquite — m = 2

0 500 1000 1500 2000
−60

−55

−50

−45

−40

−35

−30

mesquite — m = 4

0 500 1000 1500 2000
−60

−55

−50

−45

−40

−35

−30

mesquite — m = 8

0 500 1000 1500 2000
−60

−55

−50

−45

−40

−35

−30

mesquite — m = 16

0 5000 10000
−600

−500

−400

−300

−200
ob

je
ct

iv
e

mushrooms — m = 2

0 5000 10000
−600

−500

−400

−300

−200

mushrooms — m = 4

0 5000 10000
−600

−500

−400

−300

−200

mushrooms — m = 8

0 5000 10000
−600

−500

−400

−300

−200

mushrooms — m = 16

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

ob
je

ct
iv

e

radon — m = 2

0 5000 10000
−5000

−4000

−3000

−2000

radon — m = 4

0 5000 10000
−5000

−4000

−3000

−2000

radon — m = 8

0 5000 10000
−5000

−4000

−3000

−2000

radon — m = 16

0 250 500 750 1000
−600

−500

−400

−300

−200

ob
je

ct
iv

e

sonar — m = 2

0 250 500 750 1000
−600

−500

−400

−300

−200

sonar — m = 4

0 250 500 750 1000
−600

−500

−400

−300

−200

sonar — m = 8

0 250 500 750 1000
−600

−500

−400

−300

−200

sonar — m = 16

0 500 1000 1500 2000

iterations

−2048

−2046

−2044

−2042

−2040

ob
je

ct
iv

e

wells — m = 2

0 500 1000 1500 2000

iterations

−2048

−2046

−2044

−2042

−2040
wells — m = 4

0 500 1000 1500 2000

iterations

−2048

−2046

−2044

−2042

−2040
wells — m = 8

0 500 1000 1500 2000

iterations

−2048

−2046

−2044

−2042

−2040
wells — m = 16

Figure 12: Median envelope for models when using a Gaussian distribution with full-rank covariance as
approximating distribution for the estimators complete-U, permuted and the standard IW.

28

Published in Transactions on Machine Learning Research (02/2023)

0 5000 10000
−1200

−1100

−1000

−900

−800

−700

−600

ob
je

ct
iv

e

a1a — m = 2

method

DReG

complete-U-DReG

permuted-DReG

0 5000 10000
−1200

−1100

−1000

−900

−800

−700

−600
a1a — m = 4

0 5000 10000
−1200

−1100

−1000

−900

−800

−700

−600
a1a — m = 8

0 5000 10000
−1200

−1100

−1000

−900

−800

−700

−600
a1a — m = 16

0 5000 10000
−450

−400

−350

−300

−250

ob
je

ct
iv

e

australian — m = 2

0 5000 10000
−450

−400

−350

−300

−250

australian — m = 4

0 5000 10000
−450

−400

−350

−300

−250

australian — m = 8

0 5000 10000
−450

−400

−350

−300

−250

australian — m = 16

0 5000 10000

100

200

300

400

ob
je

ct
iv

e

congress — m = 2

0 5000 10000

100

200

300

400

congress — m = 4

0 5000 10000

100

200

300

400

congress — m = 8

0 5000 10000

100

200

300

400

congress — m = 16

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

ob
je

ct
iv

e

election88 — m = 2

0 5000 10000
−10000

−8000

−6000

−4000

election88 — m = 4

0 5000 10000
−10000

−8000

−6000

−4000

election88 — m = 8

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
election88 — m = 16

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

ob
je

ct
iv

e

election88Exp — m = 2

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
election88Exp — m = 4

0 5000 10000
−10000

−8000

−6000

−4000

−2000
election88Exp — m = 8

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
election88Exp — m = 16

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

ob
je

ct
iv

e

electric — m = 2

0 5000 10000
−1800

−1600

−1400

−1200

−1000
electric — m = 4

0 5000 10000
−1800

−1600

−1400

−1200

−1000
electric — m = 8

0 5000 10000
−1800

−1600

−1400

−1200

−1000
electric — m = 16

0 2000 4000

iterations

−1300

−1275

−1250

−1225

−1200

−1175

−1150

ob
je

ct
iv

e

electric-one-pred — m = 2

0 2000 4000

iterations

−1300

−1275

−1250

−1225

−1200

−1175

−1150

electric-one-pred — m = 4

0 2000 4000

iterations

−1300

−1275

−1250

−1225

−1200

−1175

−1150

electric-one-pred — m = 8

0 2000 4000

iterations

−1300

−1275

−1250

−1225

−1200

−1175

−1150

electric-one-pred — m = 16

0 250 500 750 1000
−300

−250

−200

−150

ob
je

ct
iv

e

ionosphere — m = 2

method

DReG

complete-U-DReG

permuted-DReG

0 250 500 750 1000
−300

−250

−200

−150

ionosphere — m = 4

0 250 500 750 1000
−300

−250

−200

−150

ionosphere — m = 8

0 250 500 750 1000
−300

−250

−200

−150

ionosphere — m = 16

0 500 1000 1500 2000
−60

−55

−50

−45

−40

−35

−30

ob
je

ct
iv

e

mesquite — m = 2

0 500 1000 1500 2000
−60

−55

−50

−45

−40

−35

−30

mesquite — m = 4

0 500 1000 1500 2000
−60

−55

−50

−45

−40

−35

−30

mesquite — m = 8

0 500 1000 1500 2000
−60

−55

−50

−45

−40

−35

−30

mesquite — m = 16

0 5000 10000
−600

−500

−400

−300

−200
ob

je
ct

iv
e

mushrooms — m = 2

0 5000 10000
−600

−500

−400

−300

−200

mushrooms — m = 4

0 5000 10000
−600

−500

−400

−300

−200

mushrooms — m = 8

0 5000 10000
−600

−500

−400

−300

−200

mushrooms — m = 16

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

ob
je

ct
iv

e

radon — m = 2

0 5000 10000
−5000

−4000

−3000

−2000

radon — m = 4

0 5000 10000
−5000

−4000

−3000

−2000

radon — m = 8

0 5000 10000
−5000

−4000

−3000

−2000

radon — m = 16

0 250 500 750 1000
−600

−500

−400

−300

−200

ob
je

ct
iv

e

sonar — m = 2

0 250 500 750 1000
−600

−500

−400

−300

−200

sonar — m = 4

0 250 500 750 1000
−600

−500

−400

−300

−200

sonar — m = 8

0 250 500 750 1000
−600

−500

−400

−300

−200

sonar — m = 16

0 500 1000 1500 2000

iterations

−2048

−2046

−2044

−2042

−2040

ob
je

ct
iv

e

wells — m = 2

0 500 1000 1500 2000

iterations

−2048

−2046

−2044

−2042

−2040
wells — m = 4

0 500 1000 1500 2000

iterations

−2048

−2046

−2044

−2042

−2040
wells — m = 8

0 500 1000 1500 2000

iterations

−2048

−2046

−2044

−2042

−2040
wells — m = 16

Figure 13: Median envelope for models when using a Gaussian distribution with full-rank covariance as
approximating distribution using the complete-U DReG, permuted DReG and the standard DReG gradient
estimators.

29

Published in Transactions on Machine Learning Research (02/2023)

Table 8: Median objective averaged over the last 200 iterations when using the estimators complete-U,
permuted and the standard IW. It can be seen that for at least 10 models out of 17, using either the di-
agonal Gaussian or the full rank covariance Gaussian approximation, the best objective is achieved with
an intermediate value of m, and it is at least 1 nat larger than the objective with m = 16. These mod-
els are: congress, election88, election88Exp, electric, electric-one-pred, hepatitis, hiv-chr,
irt-multilevel, mushrooms and radon. Optimizations using m = 1 are not shown.

model method
Diagonal Gaussian Full Rank Covariance Gaussian

m
2 4 8 16 2 4 8 16

a1a standard IW -652.8 -649.7 -648.0 -647.6 -639.0 -660.7 -738.1 -772.1
complete-U -652.6 -648.9 -646.7 -647.6 -637.8 -639.0 -663.9 -772.1
permuted -652.6 -649.0 -647.0 -647.7 -637.8 -639.2 -664.1 -771.2

australian standard IW -264.4 -261.2 -259.1 -258.0 -256.8 -256.8 -256.8 -257.2
complete-U -264.8 -261.5 -259.1 -258.0 -256.8 -256.8 -256.8 -257.2
permuted -264.7 -261.4 -259.0 -257.9 -256.8 -256.8 -256.8 -257.1

congress standard IW 417.1 419.5 419.5 417.6 416.9 417.2 412.4 403.9
complete-U 418.8 420.3 420.3 417.6 419.4 420.3 419.2 403.9
permuted 418.5 420.2 420.4 417.1 419.4 420.2 418.9 402.9

election88 standard IW -1529.5 -1523.3 -1525.0 -1535.6 NaN -5964.2 -4383.2 NaN
complete-U -1529.7 -1521.5 -1519.8 -1535.6 NaN -4943.1 -2046.2 NaN
permuted -1529.4 -1520.6 -1520.5 -1535.5 NaN -5443.7 -3000.9 NaN

election88Exp standard IW -1755.7 -1570.8 -1502.7 -1461.2 NaN NaN NaN NaN
complete-U -1760.0 -1496.5 -1467.0 -1461.2 NaN NaN -3748.2 NaN
permuted -1766.6 -1512.3 -1482.7 -1461.9 NaN NaN NaN NaN

electric standard IW -830.5 -827.7 -826.1 -830.9 NaN -1421.1 -1166.2 -1207.2
complete-U -830.6 -827.0 -823.0 -830.9 NaN -1459.2 -1090.3 -1207.2
permuted -830.6 -827.1 -823.5 -830.9 NaN -1413.6 -1098.1 -1203.4

electric-one-pred standard IW -1148.6 -1147.5 -1146.4 -1144.6 -1153.0 -1145.8 -1141.5 -1141.2
complete-U -1148.3 -1145.2 -1146.8 -1144.6 -1150.7 -1144.1 -1140.3 -1141.2
permuted -1148.3 -1146.6 -1146.5 -1144.6 -1151.0 -1144.5 -1140.0 -1141.2

hepatitis standard IW -561.3 -774.9 -775.4 -774.4 NaN NaN NaN -1693.7
complete-U -561.2 -564.3 -773.1 -774.4 NaN -1664.4 -1592.8 -1693.7
permuted -561.2 -773.8 -775.2 -774.4 NaN -1779.6 -1715.7 -1682.1

hiv-chr standard IW -606.4 -604.4 -607.5 -603.8 NaN NaN -1879.9 -1945.0
complete-U -606.2 -604.0 -602.6 -603.8 NaN -3395.8 -1450.6 -1945.0
permuted -606.2 -604.0 -603.1 -603.7 NaN NaN -1486.9 -1960.9

ionosphere standard IW -133.1 -129.2 -127.2 -125.6 -125.3 -126.6 -132.5 -142.3
complete-U -133.2 -129.6 -127.3 -125.6 -124.9 -125.2 -127.2 -142.3
permuted -133.3 -129.6 -127.3 -125.7 -124.9 -125.2 -127.3 -142.2

irt standard IW -15887.5 -15887.1 -15886.8 -15886.7 -36563 -64934 -68447 NaN
complete-U -15887.4 -15887.0 -15886.8 -15886.7 -33230 -37383 -50316 NaN
permuted -15887.4 -15887.0 -15886.8 -15886.6 -35620 -37547 -54763 NaN

irt-multilevel standard IW -15204.7 -15194.1 -15191.3 -15196.8 NaN NaN NaN NaN
complete-U -15198.7 -15164.0 -15185.8 -15196.8 NaN NaN NaN NaN
permuted -15200.3 -15173.0 -15186.2 -15197.0 NaN NaN NaN NaN

mesquite standard IW -29.9 -29.7 -29.6 -29.3 -29.8 -29.7 -29.6 -29.2
complete-U -29.9 -29.8 -29.6 -29.3 -29.8 -29.7 -29.6 -29.2
permuted -29.9 -29.7 -29.6 -29.2 -29.8 -29.7 -29.6 -29.2

mushrooms standard IW -211.6 -206.5 -204.3 -215.5 -180.8 -194.2 -215.8 -339.0
complete-U -210.6 -204.3 -200.8 -215.5 -180.2 -180.7 -185.6 -339.0
permuted -210.8 -204.5 -201.4 -215.4 -180.2 -180.7 -187.6 -337.3

radon standard IW -1210.5 -1210.4 -1213.3 -1210.4 NaN -2422.9 -1595.8 -1636.5
complete-U -1210.5 -1210.2 -1210.2 -1210.4 NaN -1548.0 -1445.9 -1636.5
permuted -1210.5 -1210.2 -1211.8 -1210.4 NaN -1600.6 -1454.7 -1645.2

sonar standard IW -136.2 -126.3 -121.3 -117.9 -138.0 -154.9 -200.9 -226.7
complete-U -136.5 -127.4 -121.5 -117.9 -116.6 -120.9 -156.3 -226.7
permuted -136.5 -127.3 -121.5 -117.9 -116.7 -121.5 -158.2 -228.5

wells standard IW -2042.1 -2041.9 -2041.7 -2041.2 -2041.9 -2041.8 -2041.7 -2041.1
complete-U -2042.2 -2042.0 -2041.7 -2041.2 -2041.9 -2041.9 -2041.8 -2041.1
permuted -2042.2 -2041.9 -2041.7 -2041.2 -2041.9 -2041.8 -2041.8 -2041.1

30

Published in Transactions on Machine Learning Research (02/2023)

Table 9: Median objective averaged over the last 200 iterations when using the complete-U DReG, permuted
DReG and the standard DReG gradient estimators. It can be seen that for at least 8 models out of 17,
using either the diagonal Gaussian or the full rank covariance Gaussian approximation, the best objective is
achieved with an intermediate value ofm, and it is at least 1 nat larger than the objective withm = 16. These
models are: congress, election88, election88Exp, electric, electric-one-pred, irt-multilevel,
mushrooms and radon. Optimizations using m = 1 are not shown.

model method
Diagonal Gaussian Full Rank Covariance Gaussian

m
2 4 8 16 2 4 8 16

a1a DReG -652.7 -649.9 -648.0 -647.0 -659.7 -770.3 -936.6 -1205.4
comp.-DReG -652.5 -648.6 -646.5 -647.0 -655.7 -667.4 -894.2 -1205.4
perm.-DReG -652.5 -648.7 -646.4 -647.1 -655.3 -725.2 -874.7 -1209.8

australian DReG -264.4 -261.2 -259.0 -257.8 -256.7 -256.7 -256.7 -256.9
comp.-DReG -264.7 -261.6 -259.0 -257.8 -256.7 -256.7 -256.6 -256.9
perm.-DReG -264.7 -261.5 -258.9 -257.8 -256.7 -256.7 -256.6 -256.9

congress DReG 417.9 419.7 419.9 418.2 418.5 418.9 413.2 404.5
comp.-DReG 419.6 420.5 420.7 418.2 420.5 420.8 419.8 404.5
perm.-DReG 419.4 420.5 420.7 417.9 420.4 420.7 419.8 404.6

election88 DReG -1529.2 -1522.3 -1524.2 -1534.9 NaN -5964.4 -4349.2 NaN
comp.-DReG -1529.1 -1520.7 -1518.4 -1534.9 NaN -4950.7 -2079.0 NaN
perm.-DReG -1529.1 -1520.7 -1518.4 -1534.3 NaN -5439.8 -3041.2 NaN

election88Exp DReG -1755.8 -1571.9 -1502.0 -1461.9 NaN NaN NaN NaN
comp.-DReG -1733.2 -1495.9 -1468.8 -1461.9 NaN NaN -3664.0 NaN
perm.-DReG -1766.8 -1512.3 -1483.3 -1460.1 NaN NaN -3947.5 NaN

electric DReG -830.0 -827.2 -824.8 -826.2 NaN -1417.4 -1291.3 -1314.0
comp.-DReG -830.2 -826.1 -822.0 -826.2 NaN -1459.2 -1219.0 -1314.0
perm.-DReG -829.9 -826.3 -822.6 -826.3 NaN -1427.2 -1239.1 -1326.1

electric-one-pred DReG -1148.8 -1147.5 -1146.4 -1144.6 -1153.0 -1145.8 -1141.4 -1141.2
comp.-DReG -1148.5 -1146.0 -1146.8 -1144.6 -1150.7 -1144.1 -1140.3 -1141.2
perm.-DReG -1148.3 -1146.7 -1146.5 -1144.6 -1151.0 -1144.5 -1140.0 -1141.2

hepatitis DReG -561.3 -776.3 -775.1 -774.0 NaN NaN NaN NaN
comp.-DReG -561.1 -772.0 -772.6 -774.0 NaN NaN NaN NaN
perm.-DReG -561.3 -773.5 -774.8 -774.0 NaN NaN NaN NaN

hiv-chr DReG -606.2 -604.1 -605.4 -602.7 NaN NaN NaN NaN
comp.-DReG -606.1 -603.7 -602.2 -602.7 NaN NaN NaN NaN
perm.-DReG -606.1 -603.6 -602.9 -602.7 NaN NaN NaN NaN

ionosphere DReG -133.1 -129.3 -127.1 -125.6 -124.3 -125.8 -130.7 -142.1
comp.-DReG -133.2 -129.6 -127.2 -125.6 -124.2 -124.2 -124.7 -142.1
perm.-DReG -133.3 -129.6 -127.2 -125.6 -124.2 -124.3 -125.7 -142.0

irt DReG -15887.3 -15886.9 -15886.6 -15886.3 NaN NaN NaN NaN
comp.-DReG -15887.3 -15886.9 -15886.5 -15886.3 NaN NaN NaN NaN
perm.-DReG -15887.3 -15886.9 -15886.5 -15886.3 NaN NaN NaN NaN

irt-multilevel DReG -15226.1 -15199.4 -15195.8 -15224.4 NaN NaN NaN NaN
comp.-DReG -15206.9 -15188.6 -15188.0 -15224.4 NaN NaN NaN NaN
perm.-DReG -15214.0 -15191.6 -15188.4 -15222.2 NaN NaN NaN NaN

mesquite DReG -29.9 -29.8 -29.6 -29.4 -29.8 -29.7 -29.7 -29.3
comp.-DReG -29.9 -29.8 -29.6 -29.4 -29.8 -29.7 -29.7 -29.3
perm.-DReG -29.9 -29.8 -29.6 -29.4 -29.8 -29.7 -29.7 -29.3

mushrooms DReG -211.6 -206.6 -204.7 -215.9 -192.2 -251.2 -305.6 -405.3
comp.-DReG -210.6 -204.3 -201.1 -215.9 -180.3 -193.6 -253.5 -405.3
perm.-DReG -210.7 -204.4 -201.5 -215.4 -180.4 -194.3 -250.9 -400.8

radon DReG -1210.5 -1210.3 -1219.9 -1210.3 NaN -2410.8 -1624.9 -1650.9
comp.-DReG -1210.4 -1210.1 -1210.2 -1210.3 NaN -1538.0 -1445.7 -1650.9
perm.-DReG -1210.4 -1210.2 -1212.5 -1210.2 NaN -1593.3 -1466.2 -1642.4

sonar DReG -136.2 -126.2 -121.1 -117.6 -135.4 -152.5 -226.3 -259.6
comp.-DReG -136.5 -127.2 -121.5 -117.6 -115.2 -118.4 -155.6 -259.6
perm.-DReG -136.5 -127.3 -121.3 -117.6 -115.3 -118.9 -156.4 -260.5

wells DReG -2042.2 -2041.9 -2041.8 -2041.2 -2041.9 -2041.9 -2041.8 -2041.2
comp.-DReG -2042.2 -2042.0 -2041.9 -2041.2 -2041.9 -2041.9 -2041.9 -2041.2
perm.-DReG -2042.2 -2042.0 -2041.8 -2041.2 -2041.9 -2041.9 -2041.9 -2041.2

31

	Introduction
	Importance-Weighted Variational Inference
	IWVI Tradeoffs: Bias, Variance, and Computation

	U-Statistic Estimators
	Variance Comparison
	Computational Complexity

	Incomplete U-Statistic Estimators
	Efficient Lower Bounds
	Accuracy and Properties of the Approximation
	Second-Order Approximation

	Experiments
	Importance-Weighted Autoencoders

	Related and Future Work
	Conclusion
	Experiments with Jackknife
	Additional Theoretical results
	Additional Proofs

	Dataset description
	Pairwise comparison
	Random Dirichlet experiment
	VAE details.
	Figures of median envelope

